JP5360643B2 - Carbon nanotube manufacturing method and manufacturing apparatus - Google Patents

Carbon nanotube manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP5360643B2
JP5360643B2 JP2008134922A JP2008134922A JP5360643B2 JP 5360643 B2 JP5360643 B2 JP 5360643B2 JP 2008134922 A JP2008134922 A JP 2008134922A JP 2008134922 A JP2008134922 A JP 2008134922A JP 5360643 B2 JP5360643 B2 JP 5360643B2
Authority
JP
Japan
Prior art keywords
carbon nanotubes
reaction chamber
mixture
fullerene
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008134922A
Other languages
Japanese (ja)
Other versions
JP2009280450A (en
JP2009280450A5 (en
Inventor
哲夫 曽我
モハマド モミヌザマン シャリフ
Original Assignee
国立大学法人 名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 名古屋工業大学 filed Critical 国立大学法人 名古屋工業大学
Priority to JP2008134922A priority Critical patent/JP5360643B2/en
Publication of JP2009280450A publication Critical patent/JP2009280450A/en
Publication of JP2009280450A5 publication Critical patent/JP2009280450A5/ja
Application granted granted Critical
Publication of JP5360643B2 publication Critical patent/JP5360643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は金属触媒を含まない高純度カーボンナノチューブの製造方法及び製造装置に関する。   The present invention relates to a method and an apparatus for producing high-purity carbon nanotubes that do not contain a metal catalyst.

カーボンナノチューブはセンサ、水素吸蔵、複合材、キャパシタ、燃料電池、太陽電池等、多くの応用が期待されている。   Carbon nanotubes are expected to be used in many applications such as sensors, hydrogen storage, composite materials, capacitors, fuel cells, and solar cells.

従来、カーボンナノチューブはCVD法(特開2006−117516)、アーク放電法(特開2004−256373)、レーザ蒸発法等で製造されるが、いずれの方法においても金属触媒を用いている。   Conventionally, carbon nanotubes are produced by a CVD method (Japanese Patent Laid-Open No. 2006-117516), an arc discharge method (Japanese Patent Laid-Open No. 2004-256373), a laser evaporation method, and the like, and any method uses a metal catalyst.

そのために、カーボンナノチューブを利用する際には金属触媒を除去しなければならず、多大な労力が必要である。また、カーボンナノチューブ薄膜として用いる場合は混入した金属触媒を除去することが不可能であった。
金属触媒を全く用いないでカーボンナノチューブを合成できれば金属触媒を除去する精製のプロセスを省くことができ、工業的には大変重要な技術である。また、金属触媒を含まないカーボンナノチューブを製造でき、電気的応用や医療分野での応用等用途が広がる。
特開2004−256373 特開2006−117516
Therefore, when using carbon nanotubes, the metal catalyst must be removed, which requires a great deal of labor. Further, when used as a carbon nanotube thin film, it is impossible to remove the mixed metal catalyst.
If carbon nanotubes can be synthesized without using any metal catalyst, the purification process for removing the metal catalyst can be omitted, which is an extremely important technology in the industry. In addition, carbon nanotubes that do not contain a metal catalyst can be produced, which expands applications such as electrical applications and medical applications.
JP 2004-256373 A JP 2006-117516 A

従来、カーボンナノチューブの合成には金属触媒を必要とし、金属触媒を用いないでカーボンナノチューブを合成することは困難であった。また、カーボンナノチューブ薄膜を堆積する際に基板を高温にしておく必要があった。   Conventionally, synthesis of carbon nanotubes requires a metal catalyst, and it has been difficult to synthesize carbon nanotubes without using a metal catalyst. In addition, it is necessary to keep the substrate at a high temperature when depositing the carbon nanotube thin film.

本発明は、金属触媒を用いることなくカーボンナノチューブを合成でき、金属触媒を含まないカーボンナノチューブを提供することを解決すべき課題としている。また、基板を加熱していない場所においてもカーボンナノチューブ薄膜を作製することができるため、基板の温度を余り上げることなくカーボンナノチューブの合成が可能となる。

An object of the present invention is to provide a carbon nanotube that can synthesize carbon nanotubes without using a metal catalyst and does not contain a metal catalyst. Further, since the carbon nanotube thin film can be produced even in a place where the substrate is not heated, the carbon nanotube can be synthesized without increasing the temperature of the substrate.

[1]反応チャンバ内にて、金属触媒を用いることなく、フラーレンと有機溶媒の混合物を霧状にして、キャリアガスを用いて、当該霧状にした混合物を加熱した雰囲気中に導入し、当該加熱した雰囲気中に置いた基板上あるいは前記反応チャンバの壁にカーボンナノチューブを形成することを特徴とするカーボンナノチューブの製造方法。 [1] in a reaction chamber, without using a metal catalyst, and a mixture of fullerene and an organic solvent atomized using a carrier gas, is introduced into an atmosphere heated mixture was the mist, the A method for producing carbon nanotubes, comprising forming carbon nanotubes on a substrate placed in a heated atmosphere or on the walls of the reaction chamber .

[2]前記フラーレンは、C60 70 、C 74 のいずれか一つあるいはその混合であることを特徴とする前記[1]に記載のカーボンナノチューブの製造方法。 [2] The carbon nanotube production method according to [1], wherein the fullerene is any one of C 60 , C 70 , and C 74 or a mixture thereof .

[3]前記有機溶媒は、エタノール、メタノール、アセトン、ヘキサン、トルエン、テレビン油、酢酸メチル、酢酸エチル、あるいはエーテルのいずれか一つであることを特徴とする前記[1]または[2]に記載のカーボンナノチューブの製造方法。 [3] The organic solvent is any one of ethanol, methanol, acetone, hexane, toluene, turpentine, methyl acetate, ethyl acetate, or ether, according to the above [1] or [2] Carbon nanotube manufacturing method.

[4]前記キャリアガスが窒素、ヘリウム、あるいはアルゴンのいずれか一つであることを特徴とする前記[1]乃至[3]のいずれか1項に記載のカーボンナノチューブの製造方法 [4] The carrier gas is nitrogen, helium or carbon nanotube manufacturing method according to any one of [1] to [3], which is a one of argon,

[5]超音波ネブライザを用いて前記フラーレンと有機溶媒の混合物を霧状にすることを特徴とする前記[1]乃至[4]のいずれか1項に記載のカーボンナノチューブの製造方法 [5] The method for producing carbon nanotubes according to any one of [1] to [4], wherein a mixture of the fullerene and the organic solvent using an ultrasonic nebulizer nebulized.

[6]前記加熱した雰囲気を構成する場所を基準にキャリアガスの供給元とは反対側の加熱をしていない場所に置かれた基板上あるいは反応チャンバの壁にカーボンナノチューブを低温で形成することを特徴とする前記[1]乃至[5]のいずれか1項に記載のカーボンナノチューブの製造方法。 [6] form carbon nanotubes at a low temperature in the wall of the substrate or the reaction chamber in a place that does not heat the side opposite to the source of carrier gas relative to the location which constitutes the heating atmosphere method for producing a carbon nanotube according to any one of [1] to [5], characterized in that the.

[7]前記[1]乃至[6]のいずれか1項に記載のカーボンナノチューブの製造方法を実施するための装置であって、反応チャンバと、当該反応チャンバを加熱する手段と、フラーレンと有機溶媒の混合物を当該反応チャンバに導入するための供給手段とを備えることを特徴とするカーボンナノチューブの製造装置 [7] the [1] to a device for carrying out the method of manufacturing the carbon nanotube according to any one of [6], a reaction chamber, means for heating the reaction chamber, the fullerene and organic A carbon nanotube production apparatus comprising: a supply means for introducing a mixture of solvents into the reaction chamber

[8]前記反応チャンバは石英管であり、反応チャンバを加熱する手段として電気炉を用い、フラーレンと有機溶媒の混合物を当該反応チャンバに導入するための供給手段として超音波ネブライザを用いることを特徴とする前記[7]に記載のカーボンナノチューブの製造装置。 [8] The reaction chamber is a quartz tube, and an electric furnace is used as means for heating the reaction chamber, and an ultrasonic nebulizer is used as supply means for introducing a mixture of fullerene and organic solvent into the reaction chamber. The carbon nanotube production apparatus according to [7] .

本発明は、反応チャンバ内にて、金属触媒を用いることなく、フラーレンと有機溶媒の混合物を霧状にして、キャリアガスを用いて、当該霧状にした混合物を加熱した雰囲気中に導入し、当該加熱した雰囲気中に置いた基板上あるいは前記反応チャンバの壁にカーボンナノチューブを形成することを特徴とする。本発明はカーボンナノチューブの合成には従来用いられている金属触媒の代わりフラーレンを用いる。このため、合成したカーボンナノチューブには不純物となる金属触媒を含んでいない。 In the reaction chamber, without using a metal catalyst, a mixture of fullerene and an organic solvent is atomized, and a carrier gas is used to introduce the atomized mixture into a heated atmosphere . Carbon nanotubes are formed on a substrate placed in the heated atmosphere or on the walls of the reaction chamber . In the present invention, fullerene is used in place of a conventionally used metal catalyst for the synthesis of carbon nanotubes. For this reason, the synthesized carbon nanotube does not contain a metal catalyst that becomes an impurity.

従来は金属触媒を除去するのに、合成したカーボンナノチューブを酸やアルカリ溶液で処理する必要があったため多大な労力を要していたが、本発明のカーボンナノチューブはこの工程が不要となり、労力を大幅に低減できる。また、酸やアルカリ溶液での処理中にカーボンナノチューブの特性が変化することが報告されているが、本発明のカーボンナノチューブはこれらの処理が不要であり、特性は劣化しない。   Conventionally, in order to remove the metal catalyst, it has been necessary to treat the synthesized carbon nanotubes with an acid or an alkali solution. However, this process is not necessary for the carbon nanotubes of the present invention. It can be greatly reduced. Moreover, although it has been reported that the characteristics of carbon nanotubes change during treatment with an acid or alkali solution, the carbon nanotubes of the present invention do not require these treatments, and the characteristics do not deteriorate.

基板にカーボンナノチューブ薄膜を作製する際に、あらかじめ触媒となる金属をつけておいた基板にメタン等のカーボン原料を供給するか、フェロセン等の触媒となる金属化合物を溶解させたアルコール等を加熱された基板に供給する必要があった。そのために、基板上には必ずカーボンナノチューブと同時に金属が共存していた。また、金属シリサイドの形成や金属炭化物の形成も問題となっていた。本発明で作製するカーボンナノチューブ薄膜には金属成分を全く含まないため、応用分野が広がる。   When preparing a carbon nanotube thin film on a substrate, a carbon raw material such as methane is supplied to a substrate on which a metal serving as a catalyst has been attached in advance, or alcohol or the like in which a metal compound serving as a catalyst such as ferrocene is dissolved is heated. It was necessary to supply to the substrate. Therefore, the metal always coexists with the carbon nanotube on the substrate. In addition, the formation of metal silicide and the formation of metal carbide has also been a problem. Since the carbon nanotube thin film produced by the present invention does not contain any metal component, the application field is expanded.

基板を加熱されていない場所に置いてもカーボンナノチューブを合成できるため、ネサガラス、プラスチック、ポリイミド等高温に耐えられない部材にもカーボンナノチューブ薄膜を形成することができる。   Since the carbon nanotubes can be synthesized even when the substrate is placed in an unheated place, the carbon nanotube thin film can be formed on a member that cannot withstand high temperatures, such as Nesa glass, plastic, and polyimide.

以下、本発明を具体化した実施例について図面を参照しつつ説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings.

図1は本発明で用いたカーボンナノチューブの合成装置の略図である。装置は電気炉1、超音波ネブライザ2、石英管3、バブラ4から成る。窒素をキャリアガスとして毎分1.5リットル流し、超音波ネブライザによってエタノール(100ml)とC60(100mg)の混合物を霧状にして温度を850℃に保たれた電気炉内に導入した。位置5、位置6には基板が置かれている。基板としてはシリコンと石英ガラスを用いた。 FIG. 1 is a schematic view of a carbon nanotube synthesis apparatus used in the present invention. The apparatus comprises an electric furnace 1, an ultrasonic nebulizer 2, a quartz tube 3, and a bubbler 4. Nitrogen was used as a carrier gas at a flow rate of 1.5 liters per minute, and a mixture of ethanol (100 ml) and C 60 (100 mg) was atomized by an ultrasonic nebulizer and introduced into an electric furnace maintained at 850 ° C. Substrates are placed at positions 5 and 6. Silicon and quartz glass were used as the substrate.

石英管で電気炉内の加熱された部分の管璧に堆積している生成物を透過電子顕微鏡で観察したところ、直径が50〜100nmの多層カーボンナノチューブと直径0.4〜1nmの単層カーボンナノチューブであることが観測された。基板位置5に置かれたシリコン基板上とガラス基板上にも同様なカーボンナノチューブが堆積していた。シリコン基板上に堆積したカーボンナノチューブの走査電子顕微鏡写真を図2に示す。   When the product deposited on the wall of the heated part in the electric furnace with a quartz tube was observed with a transmission electron microscope, it was found to be a multi-walled carbon nanotube with a diameter of 50 to 100 nm and a single-walled carbon nanotube with a diameter of 0.4 to 1 nm. It was observed that there was. Similar carbon nanotubes were also deposited on the silicon substrate and the glass substrate placed at the substrate position 5. FIG. 2 shows a scanning electron micrograph of the carbon nanotubes deposited on the silicon substrate.

電気炉の温度を700℃から800℃、窒素の供給量毎分1リットルから4リットルまで変化させて同様な実験を行なったところ、すべての条件でカーボンナノチューブの生成が確認できたが、温度850℃、窒素供給量毎分1.5リットルの時に最も多くカーボンナノチューブが製造できた。   When the same experiment was performed by changing the temperature of the electric furnace from 700 ° C. to 800 ° C. and the supply amount of nitrogen from 1 liter to 4 liters per minute, the production of carbon nanotubes was confirmed under all conditions. Carbon nanotubes could be produced most at a temperature of 1.5 liters per minute at ℃.

石英管内の下流側で電気炉外の加熱されていない部分の管壁に堆積している生成物も透過電子顕微鏡観察と走査電子顕微鏡観察からカーボンナノチューブであることが確認された。図3は電気炉内の温度を850℃、窒素の供給量を毎分1.5リットルとした時の基板位置6の位置に置かれたシリコン基板上に生成されたカーボンナノチューブの走査電子顕微鏡写真である。基板位置6の位置は熱電対による測定から温度は約200℃であると測定され、低い基板温度でのカーボンナノチューブ薄膜の堆積を可能とした。   The product deposited on the tube wall of the non-heated portion outside the electric furnace on the downstream side in the quartz tube was also confirmed to be a carbon nanotube by observation with a transmission electron microscope and a scanning electron microscope. FIG. 3 is a scanning electron micrograph of carbon nanotubes produced on a silicon substrate placed at the substrate position 6 when the temperature in the electric furnace is 850 ° C. and the supply amount of nitrogen is 1.5 liters per minute. . The position of the substrate position 6 was measured to be about 200 ° C. from the measurement with a thermocouple, and the carbon nanotube thin film could be deposited at a low substrate temperature.

以上において、本発明の実施例を説明したが、本発明は上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。実施例ではキャリアガスとして窒素を用いたが、どんなガスでも構わない。実施例では原料の供給は超音波ネブライザで行なったが、どんな供給方法でも構わない。実施例ではフラーレンとしてC60を用いたが、C70、C74等どんなフラーレンやフラーレンが混合したカーボン材料であれば構わない。実施例では有機溶媒としてエタノールを用いたが、どんな有機溶媒でも構わない。実施例ではエタノール100mlとC60100mgの混合物を用いたが、他の割合でも構わない。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it is needless to say that the embodiments can be appropriately modified and applied without departing from the spirit thereof. In the embodiment, nitrogen is used as a carrier gas, but any gas may be used. In the embodiment, the raw material is supplied by an ultrasonic nebulizer, but any supply method may be used. In the examples, C 60 is used as the fullerene, but any fullerene such as C 70 and C 74 or a carbon material mixed with fullerene may be used. In the examples, ethanol was used as the organic solvent, but any organic solvent may be used. In the examples, a mixture of 100 ml of ethanol and 100 mg of C 60 was used, but other ratios may be used.

本発明は金属触媒を含まない高純度のカーボンナノチューブの合成が可能である。   The present invention makes it possible to synthesize high-purity carbon nanotubes that do not contain a metal catalyst.

カーボンナノチューブの製造装置Carbon nanotube production equipment 図1において基板位置5に置かれたシリコン基板上カーボンナノチューブの走査電子顕微鏡写真。1 is a scanning electron micrograph of carbon nanotubes on a silicon substrate placed at substrate position 5 in FIG. 図1において基板位置6に置かれたシリコン基板上カーボンナノチューブの走査電子顕微鏡写真。1 is a scanning electron micrograph of carbon nanotubes on a silicon substrate placed at a substrate position 6 in FIG.

符号の説明Explanation of symbols

1…電気炉
2…超音波ネブライザ
3…石英管
4…バブラ
5…基板
6…基板
DESCRIPTION OF SYMBOLS 1 ... Electric furnace 2 ... Ultrasonic nebulizer 3 ... Quartz tube 4 ... Bubbler 5 ... Substrate 6 ... Substrate

Claims (8)

反応チャンバ内にて、金属触媒を用いることなく、フラーレンと有機溶媒の混合物を霧状にして、キャリアガスを用いて、当該霧状にした混合物を加熱した雰囲気中に導入し、当該加熱した雰囲気中に置いた基板上あるいは前記反応チャンバの壁にカーボンナノチューブを形成することを特徴とするカーボンナノチューブの製造方法。 In the reaction chamber, without using a metal catalyst, the mixture of fullerene and organic solvent is atomized, and the carrier gas is used to introduce the atomized mixture into a heated atmosphere, and the heated atmosphere A method for producing carbon nanotubes, comprising forming carbon nanotubes on a substrate placed inside or on a wall of the reaction chamber. 前記フラーレンは、C60、70、C74のいずれか一つあるいはその混合であることを特徴とする請求項1に記載のカーボンナノチューブの製造方法。 The method for producing carbon nanotubes according to claim 1, wherein the fullerene is any one of C 60, C 70 , and C 74 or a mixture thereof. 前記有機溶媒は、エタノール、メタノール、アセトン、ヘキサン、トルエン、テレビン油、酢酸メチル、酢酸エチル、あるいはエーテルのいずれか一つであることを特徴とする請求項1または2に記載のカーボンナノチューブの製造方法。 The method for producing carbon nanotubes according to claim 1 or 2, wherein the organic solvent is any one of ethanol, methanol, acetone, hexane, toluene, turpentine, methyl acetate, ethyl acetate, or ether. . 前記キャリアガスが窒素、ヘリウム、あるいはアルゴンのいずれか一つであることを特徴とする請求項1乃至3のいずれか1項に記載のカーボンナノチューブの製造方法。 The method for producing carbon nanotubes according to any one of claims 1 to 3, wherein the carrier gas is any one of nitrogen, helium, and argon. 超音波ネブライザを用いて前記フラーレンと有機溶媒の混合物を霧状にすることを特徴とする請求項1乃至4のいずれか1項に記載のカーボンナノチューブの製造方法 The method for producing carbon nanotubes according to any one of claims 1 to 4, wherein the mixture of the fullerene and the organic solvent is atomized using an ultrasonic nebulizer . 前記加熱した雰囲気を構成する場所を基準にキャリアガスの供給元とは反対側の加熱をしていない場所に置かれた基板上あるいは反応チャンバの壁にカーボンナノチューブを低温で形成することを特徴とする請求項1乃至5のいずれか1項に記載のカーボンナノチューブの製造方法。 Carbon nanotubes are formed at a low temperature on a substrate or a reaction chamber wall placed on a place where heating is not performed on the side opposite to a carrier gas supply source with respect to a place constituting the heated atmosphere. The manufacturing method of the carbon nanotube of any one of Claim 1 thru | or 5. 請求項1乃至6のいずれか1項に記載のカーボンナノチューブの製造方法を実施するための装置であって、反応チャンバと、当該反応チャンバを加熱する手段と、フラーレンと有機溶媒の混合物を当該反応チャンバに導入するための供給手段とを備えることを特徴とするカーボンナノチューブの製造装置。 An apparatus for carrying out the carbon nanotube production method according to any one of claims 1 to 6, wherein a reaction chamber, means for heating the reaction chamber, and a mixture of fullerene and an organic solvent are reacted. An apparatus for producing carbon nanotubes, comprising: supply means for introducing into the chamber. 前記反応チャンバは石英管であり、反応チャンバを加熱する手段として電気炉を用い、フラーレンと有機溶媒の混合物を当該反応チャンバに導入するための供給手段として超音波ネブライザを用いることを特徴とする請求項7に記載のカーボンナノチューブの製造装置。
The reaction chamber is a quartz tube, and an electric furnace is used as a means for heating the reaction chamber, and an ultrasonic nebulizer is used as a supply means for introducing a mixture of fullerene and an organic solvent into the reaction chamber. Item 8. The carbon nanotube production apparatus according to Item 7.
JP2008134922A 2008-05-23 2008-05-23 Carbon nanotube manufacturing method and manufacturing apparatus Expired - Fee Related JP5360643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134922A JP5360643B2 (en) 2008-05-23 2008-05-23 Carbon nanotube manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134922A JP5360643B2 (en) 2008-05-23 2008-05-23 Carbon nanotube manufacturing method and manufacturing apparatus

Publications (3)

Publication Number Publication Date
JP2009280450A JP2009280450A (en) 2009-12-03
JP2009280450A5 JP2009280450A5 (en) 2011-07-21
JP5360643B2 true JP5360643B2 (en) 2013-12-04

Family

ID=41451331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134922A Expired - Fee Related JP5360643B2 (en) 2008-05-23 2008-05-23 Carbon nanotube manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5360643B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415465A (en) 2011-03-08 2013-11-27 国立大学法人名古屋大学 Carbon nanotube manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058805A (en) * 1999-08-18 2001-03-06 Sony Corp Production of carbon nanotube
JP2003292314A (en) * 2002-03-29 2003-10-15 Toray Ind Inc Production of carbon nanotube
JP2004083293A (en) * 2002-08-22 2004-03-18 Fujitsu Ltd Method for manufacturing carbon nanotube using fullerene
WO2004106234A1 (en) * 2003-02-07 2004-12-09 Bussan Nanotech Research Institute Inc. Process for producing monolayer carbon nanotube with uniform diameter
JP2007210853A (en) * 2006-02-10 2007-08-23 Fujitsu Ltd Method for producing carbon nanotube
AU2007317741A1 (en) * 2006-03-29 2008-05-15 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes from a metal layer

Also Published As

Publication number Publication date
JP2009280450A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
US7504570B2 (en) Method of manufacturing carbon nanotubes
Zhao et al. Fabrication and growth mechanism of carbon nanotubes by catalytic chemical vapor deposition
Yoon et al. Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition
JP5839571B2 (en) Method for producing graphene film doped with nitrogen atoms
Rohmund et al. A simple method for the production of large arrays of aligned carbon nanotubes
Chaisitsak et al. Parametric study of atmospheric-pressure single-walled carbon nanotubes growth by ferrocene–ethanol mist CVD
Yu et al. Etching effects of ethanol on multi-walled carbon nanotubes
CN1994875A (en) Method of forming nitrogen-doped single-walled carbon nanotubes
Musso et al. Growth of vertically aligned carbon nanotubes by CVD by evaporation of carbon precursors
Terrado et al. Carbon nanotube growth on cobalt-sprayed substrates by thermal CVD
Yardimci et al. The effects of catalyst pretreatment, growth atmosphere and temperature on carbon nanotube synthesis using Co–Mo/MgO catalyst
Kim et al. Synthesis of high quality single-walled carbon nanotubes with purity enhancement and diameter control by liquid precursor Ar–H2 plasma spraying
Khorrami et al. Influence of carrier gas flow rate on carbon nanotubes growth by TCVD with Cu catalyst
Song et al. The growth mode change in carbon nanotube synthesis in plasma-enhanced chemical vapor deposition
WO2009135344A1 (en) Method of self-assembly growing carbon nanotubess by chemical-vapor-deposition without the use of metal catalyst
KR20070071177A (en) Method for manufacturing single-walled carbon nanotube on glass
Byeon et al. Growth of ultra long multiwall carbon nanotube arrays by aerosol-assisted chemical vapor deposition
Sun et al. Metal catalyst-free mist flow chemical vapor deposition growth of single-wall carbon nanotubes using C60 colloidal solutions
JP5360643B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
JP4977982B2 (en) Method for producing linear carbon material and method for producing functional device
Liu et al. Effects of argon flow rate and reaction temperature on synthesizing single-walled carbon nanotubes from ethanol
Bao et al. Catalyst-free synthesis of carbon nanofibers by ultrasonic spray pyrolysis of ethanol
Chen et al. Optimization of carbon nanotube powder growth using low pressure floating catalytic chemical vapor deposition
Bhattacharjee et al. Chemical vapour deposition (CVD) technique and the synthesis of carbon nanomaterials (CNMs)
Sang-Gook et al. Effect of ammonia gas etching on growth of vertically aligned carbon nanotubes/nanofibers

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5360643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees