JP5207359B2 - Mass production method of metal coordination type organic nanotube - Google Patents

Mass production method of metal coordination type organic nanotube Download PDF

Info

Publication number
JP5207359B2
JP5207359B2 JP2008085969A JP2008085969A JP5207359B2 JP 5207359 B2 JP5207359 B2 JP 5207359B2 JP 2008085969 A JP2008085969 A JP 2008085969A JP 2008085969 A JP2008085969 A JP 2008085969A JP 5207359 B2 JP5207359 B2 JP 5207359B2
Authority
JP
Japan
Prior art keywords
metal
organic
general formula
metal coordination
nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008085969A
Other languages
Japanese (ja)
Other versions
JP2009233825A (en
Inventor
真樹 小木曽
真澄 浅川
敏美 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008085969A priority Critical patent/JP5207359B2/en
Priority to PCT/JP2009/056140 priority patent/WO2009119746A1/en
Publication of JP2009233825A publication Critical patent/JP2009233825A/en
Application granted granted Critical
Publication of JP5207359B2 publication Critical patent/JP5207359B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/68Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyaminoacids or polypeptides

Description

本発明は、医薬、化成品分野などにおける包接・分離・徐放材料として、あるいはエレクトロニクス分野などにおける触媒・電子・磁気・蛍光など高機能性材料として有用な、金属配位型有機ナノチューブの製造方法に関するものである。   The present invention relates to the production of metal-coordinated organic nanotubes that are useful as inclusion / separation / sustained release materials in the fields of medicine and chemicals, or as high-functional materials such as catalysts, electrons, magnetism, and fluorescence in the electronics field. It is about the method.

ナノテクノロジーを代表する材料として、0.5〜500ナノメートル(以下nmと記す)の細孔を有するナノチューブ状材料が注目を集めている。
本発明者らは、長鎖炭化水素基とペプチド鎖とを結合させたペプチド脂質の自己集合により形成される有機ナノチューブの合成について検討を進めた結果、該ペプチド脂質と遷移金属イオンとを水中に共存させることにより、ナノメートルサイズの遷移金属配位型の有機ナノチューブが形成することを見出している(特許文献1、非特許文献1)。
特開2004−250797号公報 M.Kogiso, Z.Yong, T.Shimizu, Adv.Mater., 2007, 19, 242
As a material representative of nanotechnology, a nanotube-shaped material having pores of 0.5 to 500 nanometers (hereinafter referred to as nm) has attracted attention.
As a result of studying the synthesis of organic nanotubes formed by self-assembly of peptide lipids in which long-chain hydrocarbon groups and peptide chains are bound, the present inventors have found that the peptide lipids and transition metal ions are submerged in water. It has been found that nanometer-sized transition metal coordination-type organic nanotubes are formed by coexistence (Patent Document 1, Non-Patent Document 1).
JP 2004-250797 A M. Kogiso, Z. Yong, T. Shimizu, Adv. Mater., 2007, 19, 242

しかしながら、従来の遷移金属配位型の有機ナノチューブの製造方法においては、ペプチド脂質を完全に水に溶解させてから遷移金属イオン水溶液を混合するため、ペプチド脂質を溶解させるための加温や超音波照射などの操作が必要であり、また、ペプチド脂質の溶解度(最大50ミリモル)によって、溶媒の単位容量当たりの製造効率は最大でも5グラム/リットルと限られていた。
また、前記特許文献1及び非特許文献1に記載されたペプチド脂質は、RCO(NHCHCO)OHで表わされるペプチド脂質であるが、下記の一般式(II)で表されるペプチド脂質は、水中では、金属配位性のアミノ基ではなく、金属配位性でないアンモニウム基として存在するため、従来の製造方法では金属配位型有機ナノチューブを形成しなかった。
H(NH−CHR’−CO)NHR (II)
(式中、Rは炭素数7〜25の炭化水素基、R’はアミノ酸側鎖、mは1〜10の整数を表す。)
However, in the conventional method for producing transition metal coordination type organic nanotubes, the peptide lipid is completely dissolved in water and then mixed with the transition metal ion aqueous solution. Operation such as irradiation is necessary, and the production efficiency per unit volume of the solvent is limited to 5 g / liter at the maximum due to the solubility of the peptide lipid (maximum 50 mmol).
Moreover, peptide-lipid conjugate described in Patent Document 1 and Non-Patent Document 1 is a peptide lipid represented by RCO (NHCH 2 CO) m OH , a peptide lipid represented by the following general formula (II) is In water, since it exists not as a metal-coordinating amino group but as an ammonium group that is not metal-coordinating, the conventional production method did not form metal-coordinating organic nanotubes.
H (NH—CHR′—CO) m NHR (II)
(In the formula, R represents a hydrocarbon group having 7 to 25 carbon atoms, R ′ represents an amino acid side chain, and m represents an integer of 1 to 10.)

本発明は、以上のような事情に鑑みてなされたものであって、これまで最大でも5グラム/リットルと限られていた金属配位型有機ナノチューブの製造効率を大幅に向上させることを目的とするものである。また、本発明は、水溶液中で金属配位型有機ナノチューブを形成することのなかったアミンを末端にもつ上記一般式(II)で表されるペプチド脂質からも金属配位型有機ナノチューブを製造することを目的とするものでもある。   The present invention has been made in view of the circumstances as described above, and has an object to greatly improve the production efficiency of metal coordination-type organic nanotubes, which has been limited to 5 g / liter at the maximum. To do. In addition, the present invention also produces a metal coordination type organic nanotube from the peptide lipid represented by the above general formula (II) having an amine terminal which has not formed a metal coordination type organic nanotube in an aqueous solution. It is also for the purpose.

本発明者らは、上記課題を解決するため、鋭意検討した結果、ペプチド脂質を有機溶媒に懸濁し、金属塩の溶液と混合するだけで、従来の水中の場合よりも10〜100倍の製造効率で、金属配位型有機ナノチューブが形成することを見出し、本発明を完成させるに至った。また、水中では金属配位型有機ナノチューブを形成することがなかった上記一般式(II)で表されるペプチド脂質は、有機溶媒中では金属配位性のアミノ基として存在するため、金属配位型有機ナノチューブを製造することが出来ることが判明した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have produced peptide 10 to 100 times more than in conventional water simply by suspending a peptide lipid in an organic solvent and mixing it with a metal salt solution. The inventors have found that metal coordination-type organic nanotubes can be formed efficiently, and have completed the present invention. In addition, the peptide lipid represented by the above general formula (II), which did not form metal coordination organic nanotubes in water, exists as a metal coordination amino group in an organic solvent. It has been found that type organic nanotubes can be produced.

本発明は、これらの知見に基づいて完成に至ったものであり、以下のとおりのものである。
[1] 下記一般式(I)
RCO(NH−CH −CO)mOH (I)
(式中、Rは炭素数6〜24の炭化水素基mは2又は3を表す。)又は
下記一般式(II)
H(NH−CHCH −CO)mNHR (II)
(式中、Rは炭素数7〜25の炭化水素基mは2又は3を表す。)
で表わされるペプチド脂質を有機溶媒に懸濁させる工程、その懸濁液に金属塩の溶液を混合させる工程、その懸濁液を室温で静置することにより金属配位型有機ナノチューブを生成させる工程、金属配位型有機ナノチューブを懸濁液から回収し、室温で風乾又は減圧乾燥させる工程からなる、金属配位型有機ナノチューブの製造方法。
[2] 前記金属塩がアルカリ金属塩を除く全ての金属塩である、[1]に記載の金属配位型有機ナノチューブの製造方法。
[3] 前記一般式(I)におけるRが、炭素数11又は13の炭化水素基、或いは前記一般式(II)におけるRが、炭素数12又は14の炭化水素基である、[1]又は[2]に記載の金属配位型有機ナノチューブの製造方法。
[] 前記金属配位型有機ナノチューブの平均外径が10〜500nmであり、平均長さが0.1〜100μmである、[1]〜[]のいずれかに記載の金属配位型有機ナノチューブの製造方法。
[] 前記有機溶媒が、沸点が120℃以下のアルコール類である、[1]〜[]のいずれかに記載の金属配位型有機ナノチューブの製造方法。
The present invention has been completed based on these findings, and is as follows.
[1] The following general formula (I)
RCO (NH—CH 2 —CO) mOH (I)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms , m represents 2 or 3 ) or the following general formula (II)
H (NH-CHCH 2 -CO) mNHR (II)
(In the formula, R represents a hydrocarbon group having 7 to 25 carbon atoms , and m represents 2 or 3. )
The step of suspending the peptide lipid represented by the organic solvent, the step of mixing a solution of the metal salt into the suspension, and the step of generating the metal coordination type organic nanotube by allowing the suspension to stand at room temperature A method for producing metal-coordinated organic nanotubes, comprising recovering metal-coordinated organic nanotubes from a suspension and air-drying or drying under reduced pressure at room temperature.
[2] The method for producing a metal coordination organic nanotube according to [1], wherein the metal salt is any metal salt except alkali metal salts.
[3] R in the general formula (I) is a hydrocarbon group having 11 or 13 carbon atoms, or R in the general formula (II) is a hydrocarbon group having 12 or 14 carbon atoms, [1] or [2] The method for producing a metal coordination organic nanotube according to [2].
[ 4 ] The metal coordination type according to any one of [1] to [ 3 ], wherein the metal coordination organic nanotube has an average outer diameter of 10 to 500 nm and an average length of 0.1 to 100 μm. A method for producing organic nanotubes.
[ 5 ] The method for producing a metal coordination organic nanotube according to any one of [1] to [ 4 ], wherein the organic solvent is an alcohol having a boiling point of 120 ° C. or lower.

本発明は、ペプチド脂質を溶媒に懸濁させるだけでよいので、これまでペプチド脂質の溶解に必要であった加温や超音波照射などの操作が必要ではなく、またペプチド脂質の溶解度に制限されないため、通常で50〜500グラム/リットルと、水中よりも10〜100倍の製造効率が達成できる。また、水中では金属配位型有機ナノチューブを形成することがなかった一般式(II)で表されるペプチド脂質は、有機溶媒中では金属配位性のアミノ基として存在するため、本発明の製造方法により金属配位型有機ナノチューブを製造することができる。   In the present invention, since it is only necessary to suspend peptide lipids in a solvent, operations such as heating and ultrasonic irradiation which were necessary for dissolving peptide lipids are not necessary, and the solubility of peptide lipids is not limited. Therefore, the production efficiency of 50 to 500 grams / liter, which is 10 to 100 times that of water, can be achieved. In addition, the peptide lipid represented by the general formula (II), which did not form metal coordination organic nanotubes in water, exists as a metal coordination amino group in an organic solvent. Metal coordination type organic nanotubes can be produced by this method.

本発明のペプチド脂質は、長鎖炭化水素基を有するペプチド脂質、すなわち
一般式(I)
RCO(NH-CHR’-CO)OH (I)
又は一般式(II)
H(NH-CHR’-CO)NHR (II)
で表わされるペプチド脂質である。
The peptide lipid of the present invention is a peptide lipid having a long-chain hydrocarbon group, that is, the general formula (I)
RCO (NH—CHR′—CO) m OH (I)
Or general formula (II)
H (NH—CHR′—CO) m NHR (II)
It is a peptide lipid represented by.

上記一般式(I)中、Rは、炭素数が6〜24の炭化水素基、好ましくは炭素数2以下の側鎖が付いてもよい直鎖炭化水素である。この炭化水素基は飽和であっても不飽和であってもよく。不飽和の場合には3個以下の二重結合を含むことが好ましい。Rの炭素数は6〜24、好ましくは10〜16、より好ましくは11もしくは13である。
また、上記一般式(II)中、Rは、炭素数が7〜25の炭化水素基、好ましくは炭素数2以下の側鎖が付いてもよい直鎖炭化水素である。この炭化水素基は飽和であっても不飽和であってもよく。不飽和の場合には3個以下の二重結合を含むことが好ましい。Rの炭素数は7〜25、好ましくは11〜17、より好ましくは12もしくは14である。
In the above general formula (I), R is a hydrocarbon group having 6 to 24 carbon atoms, preferably a linear hydrocarbon which may have a side chain having 2 or less carbon atoms. This hydrocarbon group may be saturated or unsaturated. In the case of unsaturated, it is preferable to contain 3 or less double bonds. R has 6 to 24 carbon atoms, preferably 10 to 16 carbon atoms, and more preferably 11 or 13.
In the general formula (II), R is a hydrocarbon group having 7 to 25 carbon atoms, preferably a linear hydrocarbon which may have a side chain having 2 or less carbon atoms. This hydrocarbon group may be saturated or unsaturated. In the case of unsaturated, it is preferable to contain 3 or less double bonds. The carbon number of R is 7 to 25, preferably 11 to 17, and more preferably 12 or 14.

上記一般式(I)及び(II)中、R’はアミノ酸側鎖であり、このアミノ酸としては、天然及び非天然のアミノ酸が挙げられ、好ましくはグリシンである。より好ましくはグリシンが二つ以上連続した部分が一ヶ所以上あると良い。   In the above general formulas (I) and (II), R 'is an amino acid side chain, and examples of the amino acid include natural and non-natural amino acids, preferably glycine. More preferably, there should be one or more portions where two or more glycines are continuous.

次に、これらのペプチド型脂質を用いて炭化水素基を表面にもつ有機ナノチューブの製造方法について述べる。
本発明では、有機溶媒に、上記一般式(I)又は(II)で表されるペプチド脂質を懸濁し、得られた懸濁液に金属塩の溶液を混合した後、その懸濁液を室温で静置することで、金属配位型有機ナノチューブを生成させるものである。
Next, the manufacturing method of the organic nanotube which has a hydrocarbon group on the surface using these peptide type lipids is described.
In the present invention, the peptide lipid represented by the above general formula (I) or (II) is suspended in an organic solvent, and the resulting suspension is mixed with a metal salt solution, and then the suspension is cooled to room temperature. The metal coordination type organic nanotube is produced by standing still.

このペプチド脂質を懸濁させる有機溶媒としては、沸点が120℃以下であるアルコール類を用いることができるが、好ましくはメタノールあるいはエタノールである。アルコール類は単独でもよいし、2種以上の混合であってもよい。
更に、このアルコール類に、芳香族炭化水素類、パラフィン類、塩化パラフィン類、塩化オレフィン類、塩化芳香族炭化水素類、エーテル類、ケトン類、エステル類、含窒素化合物の1種以上を混合した混合溶媒を用いてもよい。この混合溶媒はアルコール類を好ましくは少なくとも10容積%、より好ましくは少なくとも50容積%含む。
As the organic solvent for suspending the peptide lipid, alcohols having a boiling point of 120 ° C. or lower can be used, and methanol or ethanol is preferable. Alcohols may be used alone or in combination of two or more.
Furthermore, one or more of aromatic hydrocarbons, paraffins, chlorinated paraffins, chlorinated olefins, chlorinated aromatic hydrocarbons, ethers, ketones, esters and nitrogen-containing compounds were mixed with the alcohols. A mixed solvent may be used. The mixed solvent preferably contains at least 10% by volume of alcohols, more preferably at least 50% by volume.

また、前記金属塩としては、アルカリ土類金属、遷移金属、希土類金属、その他金属(アルミニウム、ゲルマニウム、インジウム、タリウム、スズ、鉛、ビスマス)、半金属(ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン、テルル、ポロニウム)など、アルカリ金属以外のすべての金属塩が挙げられる。塩としては酢酸塩、硝酸塩、硫酸塩、ハロゲン化物などすべての塩が利用可能である。金属塩を溶解させる溶媒は水が好ましいが、水とアルコールの混合溶媒、またはアルコール単独でもよい。   Examples of the metal salt include alkaline earth metals, transition metals, rare earth metals, other metals (aluminum, germanium, indium, thallium, tin, lead, bismuth), semimetals (boron, silicon, germanium, arsenic, antimony, And all metal salts other than alkali metals such as tellurium and polonium). As the salt, all salts such as acetate, nitrate, sulfate and halide can be used. The solvent for dissolving the metal salt is preferably water, but may be a mixed solvent of water and alcohol, or alcohol alone.

ペプチド脂質の懸濁液と前記金属塩の溶液を混合して得られた懸濁液を、室温で、10分から数時間静置すると、金属配位型有機ナノチューブが生成される。生成に必要な時間はペプチド脂質の濃度、金属塩の種類、溶媒などにより異なる。この際、ペプチド脂質の懸濁液にトリエチルアミンなどの弱塩基を0.1−1当量加えることで、金属配位型有機ナノチューブが生成する速度を上げることが出来る。
本発明においては、この生成した金属配位型有機ナノチューブを、懸濁液から回収し、室温で風乾又は減圧乾燥させることにより、金属配位型有機ナノチューブを得るものであるが、金属配位型有機ナノチューブの回収方法は特に限定されるものではなく、吸引ろ過や遠心分離などの通常の方法が用いられる。
When the suspension obtained by mixing the peptide lipid suspension and the metal salt solution is allowed to stand at room temperature for 10 minutes to several hours, metal coordination-type organic nanotubes are produced. The time required for production varies depending on the peptide lipid concentration, the type of metal salt, the solvent, and the like. At this time, by adding 0.1-1 equivalent of a weak base such as triethylamine to the suspension of peptide lipid, the rate at which the metal coordination-type organic nanotube is generated can be increased.
In the present invention, the produced metal coordination organic nanotube is recovered from the suspension and air-dried or dried under reduced pressure at room temperature to obtain the metal coordination organic nanotube. The recovery method of the organic nanotube is not particularly limited, and a normal method such as suction filtration or centrifugal separation is used.

次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によって何ら限定されるものではない。
(実施例1)
[N−(グリシルグリシン)トリデカンカルボキサミドの合成]
グリシルグリシンベンジルエステル塩酸塩0.57g(2.2ミリモル)にトリエチルアミン0.31ml(2.2ミリモル)を加えエタノール10mlに溶解した。ここにトリデカンカルボン酸0.46g(2ミリモル)を含むクロロホルム溶液50mlを加えた。この混合溶液を−10℃で冷却しながら1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩0.42g(2.2ミリモル)を含むクロロホルム溶液20mlを加え、徐々に室温に戻しながら一昼夜撹拌した。反応溶液を10重量%クエン酸水溶液50ml、4重量%炭酸水素ナトリウム水溶液50ml、純水50mlで洗浄した後、減圧下で濃縮し白色固体(N−(グリシルグリシンベンジルエステル)トリデカンカルボキサミド)0.57g(収率65%)を得た。得られた化合物0.43g(1ミリモル)をジメチルホルムアミド100mlに溶解し、触媒として10重量%パラジウム/炭素を0.5g加え、接触水素還元を行った。6時間後、セライトろ過した後、減圧下で濃縮することにより、N−(グリシルグリシン)トリデカンカルボキサミド0.21g(収率60%)を得た。
この物理的性状及び元素分析値(燃焼法による)の測定結果を次に示す。
融点:158℃
元素分析(C18H34N2O4
計算値(%)C63.13、H10.01、N8.18
実測値(%)C62.09、H9.65、N8.25
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these examples.
Example 1
[Synthesis of N- (glycylglycine) tridecane carboxamide]
To 0.57 g (2.2 mmol) of glycylglycine benzyl ester hydrochloride was added 0.31 ml (2.2 mmol) of triethylamine and dissolved in 10 ml of ethanol. 50 ml of chloroform solution containing 0.46 g (2 mmol) of tridecanecarboxylic acid was added thereto. While cooling this mixed solution at −10 ° C., 20 ml of a chloroform solution containing 0.42 g (2.2 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was added and gradually returned to room temperature. Stir all day and night. The reaction solution was washed with 50 ml of 10 wt% aqueous citric acid solution, 50 ml of 4 wt% aqueous sodium hydrogen carbonate solution and 50 ml of pure water, and then concentrated under reduced pressure to give a white solid (N- (glycylglycine benzyl ester) tridecane carboxamide). Obtained .57 g (yield 65%). 0.43 g (1 mmol) of the obtained compound was dissolved in 100 ml of dimethylformamide, and 0.5 g of 10 wt% palladium / carbon was added as a catalyst to perform catalytic hydrogen reduction. Six hours later, the mixture was filtered through celite and concentrated under reduced pressure to obtain 0.21 g (yield 60%) of N- (glycylglycine) tridecane carboxamide.
The measurement results of the physical properties and elemental analysis values (by the combustion method) are shown below.
Melting point: 158 ° C
Elemental analysis (C 18 H 34 N 2 O 4 )
Calculated (%) C63.13, H10.01, N8.18
Actual value (%) C62.09, H9.65, N8.25

(実施例2)
[N−(グリシルグリシン)トリデシルアミド塩酸塩の合成]
t−ブチルオキシカルボニル−グリシルグリシン0.51g(2.2ミリモル)にトリエチルアミン0.31ml(2.2ミリモル)を加えエタノール10mlに溶解した。ここにトリデシルアミン0.40g(2ミリモル)を含むクロロホルム溶液50mlを加えた。この混合溶液を−10℃で冷却しながら1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩0.42g(2.2ミリモル)を含むクロロホルム溶液20mlを加え、徐々に室温に戻しながら一昼夜撹拌した。反応溶液を10重量%クエン酸水溶液50ml、4重量%炭酸水素ナトリウム水溶液50ml、純水50mlで洗浄した後、減圧下で濃縮しオイル(N−(t−ブチルオキシカルボニル−グリシルグリシン)トリデシルアミド)を得た。得られたオイルをクロロホルム100mlに溶解し、4N塩酸/酢酸エチル10mlを加えてペプチドの脱保護を行った。4時間後、減圧下で濃縮することにより、N−(t−ブチルオキシカルボニル−グリシルグリシン)トリデシルアミド塩酸塩0.19g(収率27%)を得た。
この物理的性状及び元素分析値(燃焼法による)の測定結果を次に示す。
融点:140℃
元素分析(C17H36ClN3O2・1.5H2O)
計算値(%)C54. 6、H10.43、N11.15
実測値(%)C53.81、H10.86、N11.43
(Example 2)
[Synthesis of N- (glycylglycine) tridecylamide hydrochloride]
To 0.51 g (2.2 mmol) of t-butyloxycarbonyl-glycylglycine, 0.31 ml (2.2 mmol) of triethylamine was added and dissolved in 10 ml of ethanol. To this was added 50 ml of a chloroform solution containing 0.40 g (2 mmol) of tridecylamine. While cooling this mixed solution at −10 ° C., 20 ml of a chloroform solution containing 0.42 g (2.2 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was added and gradually returned to room temperature. Stir all day and night. The reaction solution was washed with 10% by weight citric acid aqueous solution (50 ml), 4% by weight sodium hydrogen carbonate aqueous solution (50 ml) and pure water (50 ml), and concentrated under reduced pressure to obtain oil (N- (t-butyloxycarbonyl-glycylglycine) tridecyl. Amide). The obtained oil was dissolved in 100 ml of chloroform, and 10 ml of 4N hydrochloric acid / ethyl acetate was added to deprotect the peptide. After 4 hours, N- (t-butyloxycarbonyl-glycylglycine) tridecylamide hydrochloride (0.19 g, yield 27%) was obtained by concentration under reduced pressure.
The measurement results of the physical properties and elemental analysis values (by the combustion method) are shown below.
Melting point: 140 ° C
Elemental analysis (C 17 H 36 ClN 3 O 2・ 1.5H 2 O)
Calculated (%) C54.6, H10.43, N11.15
Actual value (%) C53.81, H10.86, N11.43

(実施例3)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド8.6gを、エタノール200mlに懸濁させた後、硝酸亜鉛(II)の水溶液(5.5g、50ml)を室温大気中で混合した。混合液を、3時間静置した後、吸引濾過し、減圧で乾燥して、固形物9.5gを得た。
得られた固形物について、赤外吸収スペクトルを測定し、1700〜1750cm-1に存在していたペプチド脂質のカルボン酸に由来する吸収帯がほぼ消失し、新たに1570cm-1にカルボキシレートアニオンが亜鉛イオンに配位したことを示す吸収帯が生じたことから、得られた固形物が、N−(グリシルグリシン)トリデカンカルボキサミドが金属イオンに配位した物であることがわかる。図1に赤外吸収スペクトルを示す。
また、得られた固形物を電子顕微鏡により観察した。図2に、得られた走査電子顕微鏡写真を示す。その結果、平均外径が100nm程度の亜鉛イオン配位型ナノチューブが形成していることがわかった。
(Example 3)
After 8.6 g of N- (glycylglycine) tridecane carboxamide obtained in Example 1 was suspended in 200 ml of ethanol, an aqueous solution of zinc (II) nitrate (5.5 g, 50 ml) was added in the atmosphere at room temperature. Mixed. The mixture was allowed to stand for 3 hours, filtered with suction, and dried under reduced pressure to obtain 9.5 g of a solid.
Infrared absorption spectrum of the obtained solid was measured, and the absorption band derived from the carboxylic acid of the peptide lipid that existed at 1700-1750 cm -1 almost disappeared, and a carboxylate anion was newly added at 1570 cm -1. Since an absorption band indicating that it was coordinated to zinc ions was generated, it was found that the obtained solid was a product in which N- (glycylglycine) tridecane carboxamide was coordinated to a metal ion. FIG. 1 shows an infrared absorption spectrum.
Moreover, the obtained solid substance was observed with the electron microscope. FIG. 2 shows the obtained scanning electron micrograph. As a result, it was found that zinc ion coordination nanotubes having an average outer diameter of about 100 nm were formed.

(実施例4)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド8.6gを、メタノール200mlに懸濁させた後、酢酸亜鉛(II)の水溶液(5.5g、50ml)を室温大気中で混合した。混合液を、1日静置した後、吸引濾過し、減圧で乾燥して、固形物9.5gを得た。
実施例3と同様、赤外吸収スペクトルにより、得られた固形物が、N−(グリシルグリシン)トリデカンカルボキサミドが金属イオンに配位していることがわかる。
また、得られた固形物を電子顕微鏡により観察した。図3に、得られた走査電子顕微鏡写真を示す。その結果、平均外径が100nm程度の亜鉛イオン配位型ナノチューブが形成していることがわかった。
Example 4
After 8.6 g of N- (glycylglycine) tridecane carboxamide obtained in Example 1 was suspended in 200 ml of methanol, an aqueous solution of zinc (II) acetate (5.5 g, 50 ml) was added at room temperature in the atmosphere. Mixed. The mixture was allowed to stand for 1 day, then filtered with suction and dried under reduced pressure to obtain 9.5 g of a solid.
As in Example 3, the infrared absorption spectrum shows that the obtained solid is coordinated with N- (glycylglycine) tridecane carboxamide to a metal ion.
Moreover, the obtained solid substance was observed with the electron microscope. FIG. 3 shows the obtained scanning electron micrograph. As a result, it was found that zinc ion coordination nanotubes having an average outer diameter of about 100 nm were formed.

(実施例5)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド8.6gを、エタノール200mlに懸濁させた後、酢酸亜鉛(II)の水溶液(5.5g、50ml)を室温大気中で混合した。混合液を、3時間静置した後、吸引濾過し、減圧で乾燥して、固形物10gを得た。
実施例3と同様、赤外吸収スペクトルにより、得られた固形物が、N−(グリシルグリシン)トリデカンカルボキサミドが金属イオンに配位していることがわかる。
また、得られた固形物を電子顕微鏡により観察した。図4に、得られた走査電子顕微鏡写真を示す。その結果、平均外径が100nm程度の亜鉛イオン配位型ナノチューブが形成していることがわかった。
(Example 5)
After 8.6 g of N- (glycylglycine) tridecane carboxamide obtained in Example 1 was suspended in 200 ml of ethanol, an aqueous solution of zinc (II) acetate (5.5 g, 50 ml) was added at room temperature in the atmosphere. Mixed. The mixture was allowed to stand for 3 hours, then filtered with suction and dried under reduced pressure to obtain 10 g of a solid.
As in Example 3, the infrared absorption spectrum shows that the obtained solid is coordinated with N- (glycylglycine) tridecane carboxamide to a metal ion.
Moreover, the obtained solid substance was observed with the electron microscope. FIG. 4 shows the obtained scanning electron micrograph. As a result, it was found that zinc ion coordination nanotubes having an average outer diameter of about 100 nm were formed.

(実施例6)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド8.6gを、エタノール200mlとトリエチルアミン0.7mlに懸濁させた後、該懸濁液に、硝酸銅(II)の水溶液(5.5g、50ml)を室温大気中で混合した。混合液を、1日静置した後、吸引濾過し、減圧で乾燥して、固形物10gを得た。
実施例3と同様、赤外吸収スペクトルにより、得られた固形物が、N−(グリシルグリシン)トリデカンカルボキサミドが金属イオンに配位していることがわかる。
また、得られた固形物を電子顕微鏡により観察した。図5に、得られた走査電子顕微鏡写真を示す。その結果、平均外径が100nm程度の銅イオン配位型ナノチューブが形成していることがわかった。
(Example 6)
After 8.6 g of N- (glycylglycine) tridecane carboxamide obtained in Example 1 was suspended in 200 ml of ethanol and 0.7 ml of triethylamine, an aqueous solution of copper (II) nitrate ( 5.5 g, 50 ml) was mixed at room temperature in air. The mixture was allowed to stand for 1 day, then filtered with suction and dried under reduced pressure to obtain 10 g of a solid.
As in Example 3, the infrared absorption spectrum shows that the obtained solid is coordinated with N- (glycylglycine) tridecane carboxamide to a metal ion.
Moreover, the obtained solid substance was observed with the electron microscope. FIG. 5 shows the obtained scanning electron micrograph. As a result, it was found that copper ion coordination nanotubes having an average outer diameter of about 100 nm were formed.

(実施例7)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド8.6gを、エタノール200mlに懸濁させた後、該懸濁液に、塩化コバルト(II)の水溶液(5.95g、50ml)を室温大気中で混合した。混合液を、1日静置した後、吸引濾過し、減圧で乾燥して、固形物9.5gを得た。
実施例3と同様、赤外吸収スペクトルにより、得られた固形物が、N−(グリシルグリシン)トリデカンカルボキサミドが金属イオンに配位していることがわかる。
また、得られた固形物を電子顕微鏡により観察した。図6に、得られた走査電子顕微鏡写真を示す。その結果、平均外径が100nm程度のコバルトイオン配位型ナノチューブが形成していることがわかった。
(Example 7)
After 8.6 g of N- (glycylglycine) tridecane carboxamide obtained in Example 1 was suspended in 200 ml of ethanol, an aqueous solution of cobalt (II) chloride (5.95 g, 50 ml) was suspended in the suspension. ) At room temperature in the atmosphere. The mixture was allowed to stand for 1 day, then filtered with suction and dried under reduced pressure to obtain 9.5 g of a solid.
As in Example 3, the infrared absorption spectrum shows that the obtained solid is coordinated with N- (glycylglycine) tridecane carboxamide to a metal ion.
Moreover, the obtained solid substance was observed with the electron microscope. FIG. 6 shows the obtained scanning electron micrograph. As a result, it was found that cobalt ion coordination nanotubes having an average outer diameter of about 100 nm were formed.

(実施例8)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド8.6gを、エタノール200mlに懸濁させた後、該懸濁液に、塩化ランタン(III)の水溶液(4.65g、50ml)を室温大気中で混合した。混合液を、3時間静置した後、吸引濾過し、減圧で乾燥して、固形物10gを得た。
実施例3と同様、赤外吸収スペクトルにより、得られた固形物が、N−(グリシルグリシン)トリデカンカルボキサミドが金属イオンに配位していることがわかる。
また、得られた固形物を電子顕微鏡により観察した。図7に、得られた走査電子顕微鏡写真を示す。その結果、平均外径が120nm程度のランタンイオン配位型ナノチューブが形成していることがわかった。
(Example 8)
After 8.6 g of N- (glycylglycine) tridecane carboxamide obtained in Example 1 was suspended in 200 ml of ethanol, an aqueous solution of lanthanum (III) chloride (4.65 g, 50 ml) was suspended in the suspension. ) At room temperature in the atmosphere. The mixture was allowed to stand for 3 hours, then filtered with suction and dried under reduced pressure to obtain 10 g of a solid.
As in Example 3, the infrared absorption spectrum shows that the obtained solid is coordinated with N- (glycylglycine) tridecane carboxamide to a metal ion.
Moreover, the obtained solid substance was observed with the electron microscope. FIG. 7 shows the obtained scanning electron micrograph. As a result, it was found that lanthanum ion coordination nanotubes having an average outer diameter of about 120 nm were formed.

(実施例9)
実施例2で得られたN−(グリシルグリシン)トリデシルアミド塩酸塩1.82gを、エタノール20mlに懸濁させた。該懸濁液に、トリエチルアミン(1.05ml)を加えた後、酢酸亜鉛(II)の水溶液(1.49g、5ml)を室温大気中で混合した。混合液を、3時間静置した後、吸引濾過し、減圧で乾燥して、固形物2gを得た。
実施例3と同様、赤外吸収スペクトルにより、得られた固形物が、N−(グリシルグリシン)トリデシルアミドが金属イオンに配位していることがわかる。
また、得られた固形物を電子顕微鏡により観察した。図8に、得られた走査電子顕微鏡写真を示す。その結果、平均外径が100nm程度の亜鉛イオン配位型ナノチューブが形成していることがわかった。
Example 9
1.82 g of N- (glycylglycine) tridecylamide hydrochloride obtained in Example 2 was suspended in 20 ml of ethanol. Triethylamine (1.05 ml) was added to the suspension, and then an aqueous solution of zinc (II) (1.49 g, 5 ml) was mixed in the air at room temperature. The mixture was allowed to stand for 3 hours, then filtered with suction and dried under reduced pressure to obtain 2 g of a solid.
As in Example 3, it can be seen from the infrared absorption spectrum that the resulting solid has N- (glycylglycine) tridecylamide coordinated to the metal ion.
Moreover, the obtained solid substance was observed with the electron microscope. FIG. 8 shows the obtained scanning electron micrograph. As a result, it was found that zinc ion coordination nanotubes having an average outer diameter of about 100 nm were formed.

本発明の製造方法で得られる金属配位型有機ナノチューブは、例えば、医薬、化成品分野などにおける包接・分離・徐放材料として、あるいはエレクトロニクス分野などにおける触媒・電子・磁気・蛍光など高機能性材料としての利用が期待される。   The metal coordination-type organic nanotube obtained by the production method of the present invention is, for example, a highly functional material such as an inclusion / separation / sustained-release material in the fields of medicine and chemicals, or a catalyst / electron / magnetism / fluorescence in the electronics field. Expected to be used as a functional material.

実施例3で得られた固形物の赤外吸収スペクトル。The infrared absorption spectrum of the solid substance obtained in Example 3. FIG. 実施例3の走査電子顕微鏡写真。4 is a scanning electron micrograph of Example 3. FIG. 実施例4の走査電子顕微鏡写真。4 is a scanning electron micrograph of Example 4. FIG. 実施例5の走査電子顕微鏡写真。6 is a scanning electron micrograph of Example 5. FIG. 実施例6の走査電子顕微鏡写真。7 is a scanning electron micrograph of Example 6. 実施例7の走査電子顕微鏡写真。9 is a scanning electron micrograph of Example 7. 実施例8の走査電子顕微鏡写真。9 is a scanning electron micrograph of Example 8. 実施例9の走査電子顕微鏡写真。The scanning electron micrograph of Example 9.

Claims (5)

下記一般式(I)
RCO(NH−CH−CO)mOH (I)
(式中、Rは炭素数6〜24の炭化水素基、mは2又は3を表す。)又は
下記一般式(II)
H(NH−CH−CO)mNHR (II)
(式中、Rは炭素数7〜25の炭化水素基、mは2又は3を表す。)
で表わされるペプチド脂質を有機溶媒に懸濁させる工程、その懸濁液に金属塩の溶液を混合させる工程、その懸濁液を室温で静置することにより金属配位型有機ナノチューブを生成させる工程、金属配位型有機ナノチューブを懸濁液から回収し、室温で風乾又は減圧乾燥させる工程からなる、金属配位型有機ナノチューブの製造方法。
The following general formula (I)
RCO (NH—CH 2 —CO) mOH (I)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, m represents 2 or 3) or the following general formula (II)
H (NH—CH 2 —CO) mNHR (II)
(In the formula, R represents a hydrocarbon group having 7 to 25 carbon atoms, and m represents 2 or 3.)
The step of suspending the peptide lipid represented by the organic solvent, the step of mixing a solution of the metal salt into the suspension, and the step of generating the metal coordination type organic nanotube by allowing the suspension to stand at room temperature A method for producing metal-coordinated organic nanotubes, comprising recovering metal-coordinated organic nanotubes from a suspension and air-drying or drying under reduced pressure at room temperature.
前記金属塩がアルカリ金属塩を除く全ての金属塩である、請求項1に記載の金属配位型有機ナノチューブの製造方法。   The manufacturing method of the metal coordination type | mold organic nanotube of Claim 1 whose said metal salt is all the metal salts except an alkali metal salt. 前記一般式(I)におけるRが、炭素数11又は13の炭化水素基、或いは前記一般式(II)におけるRが、炭素数12又は14の炭化水素基である、請求項1又は2に記載の金属配位型有機ナノチューブの製造方法。 The R in the general formula (I) is a hydrocarbon group having 11 or 13 carbon atoms, or the R in the general formula (II) is a hydrocarbon group having 12 or 14 carbon atoms. A method for producing metal-coordinated organic nanotubes. 前記金属配位型有機ナノチューブの平均外径が10〜500nmであり、平均長さが0.1〜100μmである、請求項1〜のいずれか1項に記載の金属配位型有機ナノチューブの製造方法。 The metal coordination-type organic nanotube according to any one of claims 1 to 3 , wherein the metal coordination-type organic nanotube has an average outer diameter of 10 to 500 nm and an average length of 0.1 to 100 µm. Production method. 前記有機溶媒が、沸点が120℃以下のアルコール類である請求項1〜のいずれか1項に記載の金属配位型有機ナノチューブの製造方法。 The method for producing metal-coordinated organic nanotubes according to any one of claims 1 to 4 , wherein the organic solvent is an alcohol having a boiling point of 120 ° C or lower.
JP2008085969A 2008-03-28 2008-03-28 Mass production method of metal coordination type organic nanotube Expired - Fee Related JP5207359B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008085969A JP5207359B2 (en) 2008-03-28 2008-03-28 Mass production method of metal coordination type organic nanotube
PCT/JP2009/056140 WO2009119746A1 (en) 2008-03-28 2009-03-26 Method for mass producing metal-complexed organic nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085969A JP5207359B2 (en) 2008-03-28 2008-03-28 Mass production method of metal coordination type organic nanotube

Publications (2)

Publication Number Publication Date
JP2009233825A JP2009233825A (en) 2009-10-15
JP5207359B2 true JP5207359B2 (en) 2013-06-12

Family

ID=41113934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085969A Expired - Fee Related JP5207359B2 (en) 2008-03-28 2008-03-28 Mass production method of metal coordination type organic nanotube

Country Status (2)

Country Link
JP (1) JP5207359B2 (en)
WO (1) WO2009119746A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040193B (en) * 2009-10-23 2013-05-08 中国科学院理化技术研究所 Method for preparing organic micromolecule nano ring and nano tube
MX2017006509A (en) * 2014-11-21 2018-03-23 Japan Oil Gas & Metals Jogmec Absorbent, method for using same, and method for producing same.
CN115043744A (en) * 2022-06-22 2022-09-13 西北工业大学 Preparation method of self-assembled amino acid nano material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721612A (en) * 1984-04-12 1988-01-26 The Liposome Company, Inc. Steroidal liposomes
JP2976017B2 (en) * 1997-05-01 1999-11-10 工業技術院長 Double-headed nucleobase derivatives cross-linked with long alkylene chains
US7871598B1 (en) * 2000-05-10 2011-01-18 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use
JP3699086B2 (en) * 2003-02-18 2005-09-28 独立行政法人科学技術振興機構 Fine hollow fiber
JP5043319B2 (en) * 2005-09-02 2012-10-10 協立化学産業株式会社 Inorganic nanoparticle composite
JP5062736B2 (en) * 2006-06-14 2012-10-31 独立行政法人産業技術総合研究所 Hollow fiber organic nanotube and method for producing the same

Also Published As

Publication number Publication date
JP2009233825A (en) 2009-10-15
WO2009119746A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP3560333B2 (en) Metal nanowire and method for producing the same
JP4815586B2 (en) Selective mass synthesis method of Au25 cluster
WO2016158806A1 (en) Novel composite of iron compound and graphene oxide
JP5207359B2 (en) Mass production method of metal coordination type organic nanotube
CN110368974B (en) Novel nitrogen-doped copper nano catalyst for carbon dioxide reduction reaction
JP3699086B2 (en) Fine hollow fiber
JP2007531822A (en) Synthesis of nano-sized metal particles
JP5158805B2 (en) Silver nanocluster-containing fine hollow fiber organic nanotube and method for producing the same
JP2009203484A (en) Method for synthesizing wire-shaped metal particle
JP5540279B2 (en) Method for producing metal nanoparticles and method for producing metal nanoparticle dispersion solution
US11331725B2 (en) Synthetic method for preparing small palladium nanocubes
JP2013237736A (en) Gelling agent, and method for producing metal nanoparticle and method for producing graphene using the same
JP2014162909A (en) Method for producing metal complex-supporting mesoporous material
EP1894890B1 (en) Transition metal oxide nano-tube
KR101804014B1 (en) Hydrogen generating metal photocatalyst immobilized to graphene carrier and preparation method thereof
JP3934089B2 (en) Carbon nanotube purification method
Nguyen et al. Wet chemical synthesis of silver nanowires based on a soft template of cholesteryl pyridine carbamate organogel
JP5435570B2 (en) Peroxo complex forming a nanotube-like structure stable in the atmosphere and catalyst for oxidation reaction using the complex
JP2010138468A (en) Method for manufacturing cobalt nanoparticle
KR101793522B1 (en) Metal-CNT complex nanowire, and method for manufacturing thereof
JP5062737B2 (en) Method for producing hollow fiber organic nanotube
JP2012127016A (en) Method for producing hollow fiber-like organic nanotube in semi-wet system
JP5245158B2 (en) Porous fine particles formed by agglomerating tubular structures into a spherical shape and a method for producing the same
EP1669324B1 (en) Carbon nanotube functionalized with osmium clusters and process for preparing same
Gong et al. Inclusion of Cu nano-cluster 1D arrays inside a C 3-symmetric artificial oligopeptide via co-assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees