JP2012127016A - Method for producing hollow fiber-like organic nanotube in semi-wet system - Google Patents

Method for producing hollow fiber-like organic nanotube in semi-wet system Download PDF

Info

Publication number
JP2012127016A
JP2012127016A JP2010277974A JP2010277974A JP2012127016A JP 2012127016 A JP2012127016 A JP 2012127016A JP 2010277974 A JP2010277974 A JP 2010277974A JP 2010277974 A JP2010277974 A JP 2010277974A JP 2012127016 A JP2012127016 A JP 2012127016A
Authority
JP
Japan
Prior art keywords
organic
hollow fiber
general formula
nanotube
organic nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010277974A
Other languages
Japanese (ja)
Inventor
Maki Ogiso
真樹 小木曽
Ryeo-Yeon U
麗娟 于
Susumu Aoyanagi
将 青柳
Masumi Asakawa
真澄 浅川
Toshimi Shimizu
敏美 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010277974A priority Critical patent/JP2012127016A/en
Publication of JP2012127016A publication Critical patent/JP2012127016A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an organic nanotube by creating a solid-solid configuration change from a plate-like to a nanotube-like shape in a semi-wet system, that is different from a conventional production method utilizing self assembling of organic molecules in a solution system or a solution-solid equilibrium system or a generally known production method utilizing a lipid phase transition temperature.SOLUTION: The hollow fiber-like organic nanotube is obtained by adding an alkali to a dry powder of a peptide lipid represented by the general formula RCO(NH-CHR'-CO)OH (in the formula, R represents a 6-24C hydrocarbon group, R' represents an amino acid side chain, and m represents an integer of 1-10) to wet and then adding an acid, or by adding an alkali to a dry powder of a peptide lipid represented by the general formula HCl H(NH-CHR'-CO)NHR (in the formula, R represents a 7-25C hydrocarbon group, R' represents an amino acid side chain, and m represents an integer of 1-10) to wet in order to create a configuration change in a wet substance.

Description

本発明は、高機能性材料、例えば、医薬・化成品分野における包接・分離用材料又は薬剤徐放材料として有用な中空繊維状の有機ナノチューブを、これまでに知られている溶液中ではなく、セミウェット系で製造することにより、これまで不可能であった100〜1000グラム/リットルの製造効率で極めて簡便に製造する方法に関する。   The present invention relates to a hollow fiber-like organic nanotube that is useful as a highly functional material, for example, a clathrate / separation material or a drug sustained-release material in the field of pharmaceuticals and chemicals, in a solution known so far. In addition, the present invention relates to a method for producing a semi-wet system very easily at a production efficiency of 100 to 1000 grams / liter, which has been impossible until now.

ナノテクノロジーを代表する材料として0.5〜500ナノメートル(以下nmと記す)の細孔を有するナノチューブ状材料が注目を集めている。本発明者らは長鎖炭化水素基に糖残基やペプチド残基を結合させた合成脂質を水中で自己集合させることにより、中空繊維状有機ナノチューブを合成することに成功している(特許文献1、特許文献2、非特許文献1)。自己集合させる溶媒をアルコールあるいはアルコールを含む混合溶媒に変えることにより、乾燥した無水有機ナノチューブを簡便・大量に製造する方法も見出した(特許文献3)。また、ペプチド脂質の水溶液に遷移金属の水溶液を加えることで、通常の有機ナノチューブとは異なる金属錯体から形成される金属錯体型有機ナノチューブが形成することも見出している(特許文献4、非特許文献2)。これらは通常よく知られている溶液系の自己集合によるナノ材料の製造技術であり、それぞれの合成脂質の溶媒への溶解度により、0.1〜70グラム/リットルの製造効率が限られる。   As a material representative of nanotechnology, a nanotube-like material having pores of 0.5 to 500 nanometers (hereinafter referred to as nm) has attracted attention. The present inventors have succeeded in synthesizing a hollow fiber-like organic nanotube by self-assembling a synthetic lipid in which a sugar residue or a peptide residue is bonded to a long-chain hydrocarbon group in water (Patent Literature). 1, Patent Document 2, Non-Patent Document 1). The present inventors have also found a method for producing dried anhydrous organic nanotubes simply and in large quantities by changing the self-assembling solvent to alcohol or a mixed solvent containing alcohol (Patent Document 3). It has also been found that by adding an aqueous solution of a transition metal to an aqueous solution of peptide lipid, a metal complex-type organic nanotube formed from a metal complex different from a normal organic nanotube is formed (Patent Document 4, Non-Patent Document). 2). These are usually well-known techniques for producing nanomaterials by solution-based self-assembly, and the production efficiency of 0.1 to 70 grams / liter is limited by the solubility of each synthetic lipid in a solvent.

また、本発明者らは、ペプチド脂質を水に溶解させるのではなく、アルコールおよびアルコールを含む混合溶媒に懸濁させ、金属塩の水溶液を加えることで、上記と同様な金属錯体型有機ナノチューブが得られることを見出している。この場合はペプチド脂質の溶解度に制限を受けないため、50〜500グラム/リットルと、先に示した水溶液中の製造法よりも10〜100倍の製造効率を達成している(特許文献5)。ペプチド脂質が常温のアルコールにわずかに溶けることにより、従来の溶液系の製造方法とは異なる溶液−固体の平衡系からなる新たな製造方法である。アルコールを用いることと、金属塩の水溶液を加えることが、金属錯体型有機ナノチューブ形成に必須である。   Moreover, the present inventors do not dissolve peptide lipids in water, but suspend them in a mixed solvent containing alcohol and alcohol, and add an aqueous solution of a metal salt to obtain a metal complex-type organic nanotube similar to the above. It has been found that it can be obtained. In this case, since the solubility of peptide lipids is not limited, the production efficiency of 50 to 500 grams / liter, 10 to 100 times that of the production method in an aqueous solution described above, is achieved (Patent Document 5). . This is a new production method comprising a solution-solid equilibrium system that is different from the conventional solution system production method, because the peptide lipid is slightly dissolved in alcohol at room temperature. Use of alcohol and addition of an aqueous solution of a metal salt are essential for forming a metal complex-type organic nanotube.

これらの中空繊維状有機ナノチューブは、中空シリンダー部の内孔サイズが5〜400nmであり、5〜400nmのタンパク質、ウイルス、金属微粒子やその他の無機微粒子等をその中空シリンダー内部に捕捉できる可能性があり、その用途開発が期待されている(非特許文献3、4)。   These hollow fiber-like organic nanotubes have a hollow cylinder portion with an inner pore size of 5 to 400 nm, and may be able to trap proteins, viruses, metal fine particles, and other inorganic fine particles of 5 to 400 nm inside the hollow cylinder. Yes, its application development is expected (Non-Patent Documents 3 and 4).

特開2004−224717号公報JP 2004-224717 A 特開2008−031152号公報JP 2008-031152 A 特開2008−030185号公報JP 2008-030185 A 特開2004−250797号公報JP 2004-250797 A 特開2009−233825号公報JP 2009-233825 A

S.Kamiya,H.Minamikawa,J.H.Jung,Y.Bo,M.Masuda,T.Shimizu,Langmuir,2005,21,743S. Kamiya, H. Minamikawa, J. H. Jung, Y. Bo, M. Masuda, T. Shimizu, Langmuir, 2005, 21, 743 M.Kogiso,Z.Yong,T.Shimizu,Adv.Mater.,2007,19,242M. Kogiso, Z. Yong, T. Shimizu, Adv. Mater., 2007, 19, 242 N.Kameta,M.Masuda,H.Minamikawa,N.V.Goutev,J.A.Rim,J.H.Jung,T.Shimizu,Adv.Mater.,2005,17,2732.N.Kameta, M.Masuda, H.Minamikawa, N.V.Goutev, J.A.Rim, J.H.Jung, T.Shimizu, Adv.Mater., 2005,17,2732. Y.Bo,S.Kamiya,Y.Shimizu,N.Koshizaki,T.Shimizu,Chem.Mater.,2004,16,2826.Y. Bo, S. Kamiya, Y. Shimizu, N. Koshizaki, T. Shimizu, Chem. Mater., 2004, 16, 2826.

前述のとおり、従来の溶液系あるいは溶液−固体の平衡系における有機分子の自己集合を利用した製法は、溶媒を用いるか、或いは、アルコール及び金属塩の水溶液を加える、いわゆるウエット系であるために、単位溶媒量当たりの製造量がほとんどの場合で非常に少なく、特に水が存在する場合には乾燥に長い時間を要し、大量に製造するには不向きである。また、脂質の相移転温度を利用した製法もあるが、同様の問題点に加えて加熱操作が必要であり、簡便な方法とはいえない。   As described above, the conventional method using the self-assembly of organic molecules in a solution system or a solution-solid equilibrium system is a so-called wet system using a solvent or adding an aqueous solution of an alcohol and a metal salt. The production amount per unit amount of solvent is very small in most cases, and particularly when water is present, it takes a long time to dry and is unsuitable for production in large quantities. In addition, although there is a production method using the phase transition temperature of lipid, in addition to the same problems, a heating operation is necessary, and it cannot be said that it is a simple method.

本発明は、こうした従来の溶液系あるいは溶液−固体の平衡系における有機分子の自己集合を利用した製法や、一般的に知られる脂質の相転移温度を利用した製法でもない、セミウェット系において板状からナノチューブ状という固体−固体の形態変化を起こすことで、有機ナノチューブを簡便かつ極めて大量に製造する方法を提供することを目的とするものである。   The present invention is not a manufacturing method using the self-assembly of organic molecules in such a conventional solution system or a solution-solid equilibrium system, nor a manufacturing method using a generally known lipid phase transition temperature. It is an object of the present invention to provide a method for producing organic nanotubes simply and in an extremely large amount by causing a solid-solid shape change from a solid shape to a nanotube shape.

発明者らは、上記課題を解決するため鋭意検討した結果、ペプチド脂質にアルカリや酸を加えて湿潤させることだけで、一定の時間が経過後に有機ナノチューブへの形態変化が起こり、有機ナノチューブを簡便かつ極めて大量に製造できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors have changed the shape of organic nanotubes to organic nanotubes after a certain period of time simply by adding alkali or acid to peptide lipids and moistening them. And it discovered that it could manufacture in a very large quantity and came to complete this invention.

すなわち、本発明は、下記一般式(1)
RCO(NH−CHR’−CO)OH (1)
(式中、Rは炭素数6〜24の炭化水素基、R’はアミノ酸側鎖、mは1〜10の整数を表す。)で表わされるペプチド脂質の乾燥粉末を、アルカリを添加して常温で湿潤させる段階、酸を添加して中和する段階、湿潤物中で形態変化が起こり中空繊維状有機ナノチューブが形成する段階、湿潤物中に分散する中空繊維状有機ナノチューブを回収し、室温で風乾又は減圧加熱乾燥させる段階から成る、中空繊維状有機ナノチューブの製造方法、
又は、下記一般式(2)
HCl・H(NH−CHR’−CO)NHR (2)
(式中、Rは炭素数7〜25の炭化水素基、R’はアミノ酸側鎖、mは1〜10の整数を表す。)で表わされるペプチド脂質の乾燥粉末を、アルカリを添加して常温で湿潤させる段階、湿潤物中で形態変化が起こり中空繊維状有機ナノチューブが形成する段階、湿潤物中の中空繊維状有機ナノチューブを回収し、室温で風乾又は減圧加熱乾燥させる段階から成る、中空繊維状有機ナノチューブの製造方法、
を提供するものである。
That is, the present invention provides the following general formula (1)
RCO (NH—CHR′—CO) m OH (1)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, R ′ represents an amino acid side chain, and m represents an integer of 1 to 10). The step of wetting with water, the step of adding acid to neutralize, the step of changing the shape in the wet product to form hollow fiber-like organic nanotubes, and collecting the hollow fiber-like organic nanotubes dispersed in the wet product at room temperature A method for producing hollow fiber organic nanotubes, comprising air drying or drying under reduced pressure and heating,
Or the following general formula (2)
HCl · H (NH—CHR′—CO) m NHR (2)
(Wherein R represents a hydrocarbon group having 7 to 25 carbon atoms, R ′ represents an amino acid side chain, and m represents an integer of 1 to 10). A hollow fiber comprising a step of wetting in a wet product, a step in which a shape change occurs in a wet product to form a hollow fiber-like organic nanotube, and a step of recovering the hollow fiber-like organic nanotube in the wet product and air-drying or drying by heating under reduced pressure at room temperature Method for producing organic organic nanotubes,
Is to provide.

本発明の方法により製造された中空繊維状有機ナノチューブは、従来の溶液系あるいは溶液−固体の平衡系における有機分子の自己集合ではなく、アルカリや酸によって湿潤されただけのセミウェット系を用いることで、極めて簡便にこれまで不可能であった100〜1000グラム/リットルの製造効率を達成することが可能となる。   The hollow fiber-like organic nanotubes produced by the method of the present invention should use a semi-wet system that is only wetted with an alkali or an acid, not a self-assembly of organic molecules in a conventional solution system or a solution-solid equilibrium system. Thus, it becomes possible to achieve a production efficiency of 100 to 1000 grams / liter, which has been impossible so easily.

実施例3で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す図である。4 is a view showing a scanning electron microscope observation image (SEM) of an organic nanotube obtained in Example 3. FIG. 実施例4で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す図である。It is a figure which shows the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 4. FIG. 実施例5で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す図である。It is a figure which shows the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 5. FIG. 実施例6で得た有機ナノチューブの走査電子顕微鏡観察像(SEM)を示す図である。It is a figure which shows the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 6. FIG. 実施例7で得た有機ナノチューブの走査電子顕微鏡観察像(SEM)を示す図である。It is a figure which shows the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 7. FIG. 実施例8で得た有機ナノチューブの走査電子顕微鏡観察像(SEM)を示す図である。It is a figure which shows the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 8. FIG. 実施例9で得た有機ナノチューブの走査電子顕微鏡観察像(SEM)を示す図である。It is a figure which shows the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 9. FIG. 実施例10で得た有機ナノチューブの走査電子顕微鏡観察像(SEM)を示す図である。It is a figure which shows the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 10. FIG. 実施例11で得た有機ナノチューブの走査電子顕微鏡観察像(SEM)を示す図である。6 is a view showing a scanning electron microscope observation image (SEM) of an organic nanotube obtained in Example 11. FIG. 実施例12で得た有機ナノチューブの走査電子顕微鏡観察像(SEM)を示す図である。It is a figure which shows the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 12. FIG. 実施例13で得た有機ナノチューブの走査電子顕微鏡観察像(SEM)を示す図である。It is a figure which shows the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 13. FIG.

本発明のペプチド脂質は、長鎖炭化水素基を有するペプチド脂質、すなわち、下記の一般式(1)又は(2)で表わされるペプチド脂質である。
RCO(NH-CHR’-CO)OH (1)
HCl・H(NH-CHR’-CO)NHR (2)
この一般式(1)又は(2)中、R’はアミノ酸側鎖であり、このアミノ酸としては、天然及び非天然のアミノ酸が挙げられ、好ましくはグリシンである。より好ましくはグリシンが二つ以上連続した部分が一ヶ所以上あると良い。
上記一般式(1)中、Rは炭素数が6〜24の炭化水素基、好ましくは炭素数2以下の側鎖が付いてもよい直鎖炭化水素である。この炭化水素基は飽和であっても不飽和であってもよく。不飽和の場合には3個以下の二重結合を含むことが好ましい。Rの炭素数は6〜24、好ましくは10〜17、より好ましくは11もしくは13もしくは15もしくは17である。
また上記一般式(2)中、Rは炭素数が7〜25の炭化水素基、好ましくは炭素数2以下の側鎖が付いてもよい直鎖炭化水素である。この炭化水素基は飽和であっても不飽和であってもよく、不飽和の場合には3個以下の二重結合を含むことが好ましい。Rの炭素数は7〜25、好ましくは11〜18、より好ましくは12もしくは14もしくは16もしくは18である。
The peptide lipid of the present invention is a peptide lipid having a long-chain hydrocarbon group, that is, a peptide lipid represented by the following general formula (1) or (2).
RCO (NH—CHR′—CO) m OH (1)
HCl · H (NH—CHR′—CO) m NHR (2)
In the general formula (1) or (2), R ′ is an amino acid side chain, and examples of the amino acid include natural and non-natural amino acids, preferably glycine. More preferably, there should be one or more portions where two or more glycines are continuous.
In the general formula (1), R is a hydrocarbon group having 6 to 24 carbon atoms, preferably a linear hydrocarbon which may have a side chain having 2 or less carbon atoms. This hydrocarbon group may be saturated or unsaturated. In the case of unsaturated, it is preferable to contain 3 or less double bonds. The carbon number of R is 6 to 24, preferably 10 to 17, more preferably 11 or 13 or 15 or 17.
In the general formula (2), R is a hydrocarbon group having 7 to 25 carbon atoms, preferably a linear hydrocarbon which may have a side chain having 2 or less carbon atoms. This hydrocarbon group may be saturated or unsaturated, and when unsaturated, it preferably contains 3 or less double bonds. R has 7 to 25 carbon atoms, preferably 11 to 18 carbon atoms, and more preferably 12 or 14 or 16 or 18.

次に、このペプチド脂質を用いた中空繊維状有機ナノチューブの製造方法について述べる。
前記一般式(1)で表されるペプチド脂質を用いる場合、ペプチド脂質の乾燥粉末にアルカリを加えて湿潤させ、その後、酸を加えて中和することで、湿潤物中で形態変化が起こり、中空繊維状有機ナノチューブが得られる。
また、前記一般式(2)で表されるペプチド脂質を用いる場合、ペプチド脂質の乾燥粉末にアルカリを加えて湿潤させることで、湿潤物中で形態変化が起こり、中空繊維状有機ナノチューブが得られる。
Next, a method for producing hollow fiber organic nanotubes using this peptide lipid will be described.
When the peptide lipid represented by the general formula (1) is used, an alkali is added to the dried peptide lipid powder to wet it, and then an acid is added to neutralize, thereby causing a change in shape in the wet product, Hollow fiber-like organic nanotubes are obtained.
Further, when the peptide lipid represented by the general formula (2) is used, by adding an alkali to the dried peptide lipid powder and moistening, the shape change occurs in the wet product, and a hollow fiber-like organic nanotube is obtained. .

前記のアルカリとしては、0〜100℃で液体状態を取る有機アルカリ又は無機アルカリ溶液を用いることができるが、好ましくはトリエチルアミン、ジエチルアミン、シクロヘキシルアミン、エタノールアミン、又は水酸化ナトリウムか水酸化カリウムの有機溶媒溶液であり、より好ましくはトリエチルアミン又は水酸化カリウムのアルコール溶液である。アルカリは単独でもよいし、2種以上の混合であってもよい。   As the alkali, an organic alkali or an inorganic alkali solution that takes a liquid state at 0 to 100 ° C. can be used, but preferably an organic triethylamine, diethylamine, cyclohexylamine, ethanolamine, or sodium hydroxide or potassium hydroxide. A solvent solution, more preferably an alcohol solution of triethylamine or potassium hydroxide. The alkali may be used alone or in combination of two or more.

また、前記の酸としては、0〜100℃で液体状態を取る有機酸又は無機酸溶液を用いることができるが、好ましくは酢酸、プロパン酸、ブチル酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、又は塩化水素か臭化水素の有機溶媒溶液であり、より好ましくは酢酸である。酸は単独でもよいし、2種以上の混合であってもよい。   In addition, as the acid, an organic acid or inorganic acid solution that takes a liquid state at 0 to 100 ° C. can be used, but preferably acetic acid, propanoic acid, butyric acid, trifluoroacetic acid, trifluoromethanesulfonic acid, or An organic solvent solution of hydrogen chloride or hydrogen bromide, more preferably acetic acid. An acid may be individual and 2 or more types of mixtures may be sufficient as it.

本発明の中空繊維状有機ナノチューブの製造には理論的には溶媒が不要であるが、ろ過性など製造時の操作性を良くするため、このアルカリや酸に、アルコール類、芳香族炭化水素類、パラフィン類、塩化パラフィン類、塩化オレフィン類、塩化芳香族炭化水素類、エーテル類、ケトン類、エステル類、含窒素化合物の1種以上を混合して用いてもよい。ただし、特許文献5に記載された方法と大きく異なり、水を加えた場合には有機ナノチューブの収率は大きく落ちるか、ナノチューブへの形態変化が起こらない。   The production of the hollow fiber-like organic nanotubes of the present invention theoretically requires no solvent, but in order to improve the operability during production such as filterability, in addition to these alkalis and acids, alcohols and aromatic hydrocarbons are used. One or more of paraffins, chlorinated paraffins, chlorinated olefins, chlorinated aromatic hydrocarbons, ethers, ketones, esters, and nitrogen-containing compounds may be mixed and used. However, unlike the method described in Patent Document 5, when water is added, the yield of organic nanotubes is greatly reduced or the shape of the nanotubes does not change.

次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によって何ら限定されるものではない。
(実施例1)
[N−(グリシルグリシン)トリデカンカルボキサミドの合成]
グリシルグリシンベンジルエステル塩酸塩0.57g(2.2ミリモル)にトリエチルアミン0.31ml(2.2ミリモル)を加えエタノール10mlに溶解した。ここにトリデカンカルボン酸0.46g(2ミリモル)を含むクロロホルム溶液50mlを加えた。この混合溶液を−10℃で冷却しながら1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩0.42g(2.2ミリモル)を含むクロロホルム溶液20mlを加え、徐々に室温に戻しながら一昼夜撹拌した。反応溶液を10重量%クエン酸水溶液50ml、4重量%炭酸水素ナトリウム水溶液50ml、純水50mlで洗浄した後、減圧下で濃縮し白色固体(N−(グリシルグリシンベンジルエステル)トリデカンカルボキサミド)0.57g(収率65%)を得た。得られた化合物0.43g(1ミリモル)をジメチルホルムアミド100mlに溶解し、触媒として10重量%パラジウム/炭素を0.5g加え、接触水素還元を行った。6時間後、セライトろ過した後、減圧下で濃縮することにより、N−(グリシルグリシン)トリデカンカルボキサミド0.21g(収率60%)を得た。
融点:158℃
元素分析(C18H34N2O4
計算値(%)C63.13、H10.01、N8.18
実測値(%)C62.09、H9.65、N8.25
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these examples.
Example 1
[Synthesis of N- (glycylglycine) tridecane carboxamide]
To 0.57 g (2.2 mmol) of glycylglycine benzyl ester hydrochloride was added 0.31 ml (2.2 mmol) of triethylamine and dissolved in 10 ml of ethanol. 50 ml of chloroform solution containing 0.46 g (2 mmol) of tridecanecarboxylic acid was added thereto. While cooling this mixed solution at −10 ° C., 20 ml of a chloroform solution containing 0.42 g (2.2 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was added and gradually returned to room temperature. Stir all day and night. The reaction solution was washed with 50 ml of 10 wt% aqueous citric acid solution, 50 ml of 4 wt% aqueous sodium hydrogen carbonate solution and 50 ml of pure water, and then concentrated under reduced pressure to give a white solid (N- (glycylglycine benzyl ester) tridecane carboxamide). Obtained .57 g (yield 65%). 0.43 g (1 mmol) of the obtained compound was dissolved in 100 ml of dimethylformamide, and 0.5 g of 10 wt% palladium / carbon was added as a catalyst to perform catalytic hydrogen reduction. Six hours later, the mixture was filtered through celite and concentrated under reduced pressure to obtain 0.21 g (yield 60%) of N- (glycylglycine) tridecane carboxamide.
Melting point: 158 ° C
Elemental analysis (C 18 H 34 N 2 O 4 )
Calculated (%) C63.13, H10.01, N8.18
Actual value (%) C62.09, H9.65, N8.25

(実施例2)
[N−(グリシルグリシン)ヘキサデシルアミド塩酸塩の合成]
t−ブチルオキシカルボニル−グリシルグリシン0.51g(2.2ミリモル)にトリエチルアミン0.31ml(2.2ミリモル)を加えエタノール10mlに溶解した。ここにヘキサデシルアミン0.48g(2ミリモル)を含むクロロホルム溶液50mlを加えた。この混合溶液を−10℃で冷却しながら1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩0.42g(2.2ミリモル)を含むクロロホルム溶液20mlを加え、徐々に室温に戻しながら一昼夜撹拌した。反応溶液を10重量%クエン酸水溶液50ml、4重量%炭酸水素ナトリウム水溶液50ml、純水50mlで洗浄した後、減圧下で濃縮しオイル(N−(t−ブチルオキシカルボニル−グリシルグリシン)ヘキサデシルアミド)を得た。得られたオイルをクロロホルム100mlに溶解し、4N塩酸/酢酸エチル10mlを加えてペプチドの脱保護を行った。4時間後、減圧下で濃縮することにより、N−(t−ブチルオキシカルボニル−グリシルグリシン)ヘキサデシルアミド塩酸塩0.47g(収率60%)を得た。
融点:140℃
元素分析(C20H42N3O2Cl1・0.3H2O)
計算値(%)C60.44、H10.81、N10.58
実測値(%)C60.42、H10.73、N10.48
(Example 2)
[Synthesis of N- (glycylglycine) hexadecylamide hydrochloride]
To 0.51 g (2.2 mmol) of t-butyloxycarbonyl-glycylglycine, 0.31 ml (2.2 mmol) of triethylamine was added and dissolved in 10 ml of ethanol. To this was added 50 ml of a chloroform solution containing 0.48 g (2 mmol) of hexadecylamine. While cooling this mixed solution at −10 ° C., 20 ml of a chloroform solution containing 0.42 g (2.2 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was added and gradually returned to room temperature. Stir all day and night. The reaction solution was washed with 10% by weight citric acid aqueous solution (50 ml), 4% by weight sodium hydrogen carbonate aqueous solution (50 ml) and pure water (50 ml) and concentrated under reduced pressure to obtain oil (N- (t-butyloxycarbonyl-glycylglycine) hexadecyl. Amide). The obtained oil was dissolved in 100 ml of chloroform, and 10 ml of 4N hydrochloric acid / ethyl acetate was added to deprotect the peptide. After 4 hours, concentration under reduced pressure yielded 0.47 g (yield 60%) of N- (t-butyloxycarbonyl-glycylglycine) hexadecylamide hydrochloride.
Melting point: 140 ° C
Elemental analysis (C 20 H 42 N 3 O 2 Cl 1 · 0.3H 2 O)
Calculated value (%) C60.44, H10.81, N10.58
Actual value (%) C60.42, H10.73, N10.48

(実施例3)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド(3.42g、10ミリモル)にトリエチルアミン(4.2ml、30ミリモル)を加えて、撹拌棒などを用いて練り合わせた。その1時間後に酢酸(1.72ml、30ミリモル)を加えて練り合わせ、その後、ろ過、減圧乾燥することで平均外径が70nm程度の中空繊維状有機ナノチューブが形成した。
図1に、実施例3で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す。
(Example 3)
Triethylamine (4.2 ml, 30 mmol) was added to N- (glycylglycine) tridecane carboxamide (3.42 g, 10 mmol) obtained in Example 1, and kneaded using a stir bar or the like. One hour later, acetic acid (1.72 ml, 30 mmol) was added and kneaded, followed by filtration and drying under reduced pressure to form hollow fibrous organic nanotubes having an average outer diameter of about 70 nm.
In FIG. 1, the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 3 is shown.

(実施例4)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド(3.42g、10ミリモル)にトリエチルアミン(1.4ml、10ミリモル)を加えた。更にメタノール5mlを加えて、撹拌棒などを用いて練り合わせた。その1時間後に酢酸(0.57ml、10ミリモル)を加えて練り合わせ、その後、ろ過、減圧乾燥することで平均外径が70nm程度の中空繊維状有機ナノチューブが形成した。
図2に、実施例4で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す。
Example 4
Triethylamine (1.4 ml, 10 mmol) was added to N- (glycylglycine) tridecane carboxamide (3.42 g, 10 mmol) obtained in Example 1. Further, 5 ml of methanol was added and kneaded using a stir bar or the like. One hour later, acetic acid (0.57 ml, 10 mmol) was added and kneaded, followed by filtration and drying under reduced pressure to form hollow fiber-like organic nanotubes having an average outer diameter of about 70 nm.
In FIG. 2, the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 4 is shown.

(実施例5)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド(3.42g、10ミリモル)にトリエチルアミン(0.14ml、1ミリモル)を加えた。更にメタノール5mlを加えて、撹拌棒などを用いて練り合わせた。その3時間後に酢酸(0.06ml、1ミリモル)を加えて練り合わせ、その後、ろ過、減圧乾燥することで平均外径が70nm程度の中空繊維状有機ナノチューブが形成した。
図3に、実施例5で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す。
(Example 5)
Triethylamine (0.14 ml, 1 mmol) was added to N- (glycylglycine) tridecane carboxamide (3.42 g, 10 mmol) obtained in Example 1. Further, 5 ml of methanol was added and kneaded using a stir bar or the like. Three hours later, acetic acid (0.06 ml, 1 mmol) was added and kneaded, followed by filtration and drying under reduced pressure to form hollow fiber-like organic nanotubes having an average outer diameter of about 70 nm.
In FIG. 3, the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 5 is shown.

(実施例6)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド(3.42g、10ミリモル)にトリエチルアミン(1.4ml、10ミリモル)を加えた。更にアセトン5mlを加えて、撹拌棒などを用いて練り合わせた。その1時間後に酢酸(0.57ml、10ミリモル)を加えて練り合わせ、その後、ろ過、減圧乾燥することで平均外径が70nm程度の中空繊維状有機ナノチューブが形成した。
図4に、実施例6で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す。
(Example 6)
Triethylamine (1.4 ml, 10 mmol) was added to N- (glycylglycine) tridecane carboxamide (3.42 g, 10 mmol) obtained in Example 1. Further, 5 ml of acetone was added and kneaded using a stir bar or the like. One hour later, acetic acid (0.57 ml, 10 mmol) was added and kneaded, followed by filtration and drying under reduced pressure to form hollow fiber-like organic nanotubes having an average outer diameter of about 70 nm.
FIG. 4 shows a scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 6.

(実施例7)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド(3.42g、10ミリモル)にトリエチルアミン(1.4ml、10ミリモル)を加えた。更にオクタン5mlを加えて、撹拌棒などを用いて練り合わせた。その1時間後に酢酸(0.57ml、10ミリモル)を加えて練り合わせ、その後、ろ過、減圧乾燥することで平均外径が70nm程度の中空繊維状有機ナノチューブが形成した。
図5に、実施例7で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す。
(Example 7)
Triethylamine (1.4 ml, 10 mmol) was added to N- (glycylglycine) tridecane carboxamide (3.42 g, 10 mmol) obtained in Example 1. Further, 5 ml of octane was added and kneaded using a stir bar or the like. One hour later, acetic acid (0.57 ml, 10 mmol) was added and kneaded, followed by filtration and drying under reduced pressure to form hollow fiber-like organic nanotubes having an average outer diameter of about 70 nm.
In FIG. 5, the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 7 is shown.

(実施例8)
実施例1のトリデカンカルボン酸をデカンカルボン酸に変えただけで同様の合成法により得られたN−(グリシルグリシン)デカンカルボキサミド(3.14g、10ミリモル)にトリエチルアミン(1.4ml、10ミリモル)を加えた。更にノルマルブタノール3mlを加えて、撹拌棒などを用いて練り合わせた。その5時間後に酢酸(0.57ml、10ミリモル)を加えて練り合わせ、その後、ろ過、減圧乾燥することで平均外径が70nm程度の中空繊維状有機ナノチューブが形成した。
図6に、実施例8で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す。
(Example 8)
N- (glycylglycine) decane carboxamide (3.14 g, 10 mmol) obtained by the same synthesis method just by changing the tridecanecarboxylic acid of Example 1 to decanecarboxylic acid was added to triethylamine (1.4 ml, 10 ml). Mmol) was added. Further, 3 ml of normal butanol was added and kneaded using a stir bar or the like. Five hours later, acetic acid (0.57 ml, 10 mmol) was added and kneaded, followed by filtration and drying under reduced pressure to form hollow fibrous organic nanotubes having an average outer diameter of about 70 nm.
FIG. 6 shows a scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 8.

(実施例9)
実施例1のトリデカンカルボン酸をペンタデカンカルボン酸に変えただけで同様の合成法により得られたN−(グリシルグリシン)ペンタデカンカルボキサミド(3.70g、10ミリモル)にトリエチルアミン(1.4ml、10ミリモル)を加えた。更にメタノール5mlを加えて、撹拌棒などを用いて練り合わせた。その1時間後に酢酸(0.57ml、10ミリモル)を加えて練り合わせ、その後、ろ過、減圧乾燥することで平均外径が70nm程度の中空繊維状有機ナノチューブが形成した。
図7に、実施例9で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す。
Example 9
N- (glycylglycine) pentadecanecarboxamide (3.70 g, 10 mmol) obtained by the same synthesis method just by changing the tridecanecarboxylic acid of Example 1 to pentadecanecarboxylic acid was added to triethylamine (1.4 ml, 10 ml). Mmol) was added. Further, 5 ml of methanol was added and kneaded using a stir bar or the like. One hour later, acetic acid (0.57 ml, 10 mmol) was added and kneaded, followed by filtration and drying under reduced pressure to form hollow fiber-like organic nanotubes having an average outer diameter of about 70 nm.
In FIG. 7, the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 9 is shown.

(実施例10)
実施例1のトリデカンカルボン酸をペンタデカンカルボン酸に変えただけで同様の合成法により得られたN−(グリシルグリシン)ペンタデカンカルボキサミド(3.70g、10ミリモル)にトリエチルアミン(1.4ml、10ミリモル)を加えた。更にアセトン5mlを加えて、撹拌棒などを用いて練り合わせた。その1時間後に酢酸(0.57ml、10ミリモル)を加えて練り合わせ、その後、ろ過、減圧乾燥することで平均外径が70nm程度の中空繊維状有機ナノチューブが形成した
図8に、実施例10で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す。
(Example 10)
N- (glycylglycine) pentadecanecarboxamide (3.70 g, 10 mmol) obtained by the same synthesis method just by changing the tridecanecarboxylic acid of Example 1 to pentadecanecarboxylic acid was added to triethylamine (1.4 ml, 10 ml). Mmol) was added. Further, 5 ml of acetone was added and kneaded using a stir bar or the like. One hour later, acetic acid (0.57 ml, 10 mmol) was added and kneaded, followed by filtration and drying under reduced pressure to form hollow fibrous organic nanotubes having an average outer diameter of about 70 nm. The scanning electron microscope observation image (SEM) of the obtained organic nanotube is shown.

(実施例11)
実施例2で得られたN−(グリシルグリシン)ヘキサデシルアミド塩酸塩(3.92g、10ミリモル)にトリエチルアミン(1.4ml、10ミリモル)を加えた。更にメタノール5mlを加えて、撹拌棒などを用いて練り合わせた。その3時間後には平均外径が150nm程度の有機ナノチューブが形成した。
図9に、実施例11で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す。
(Example 11)
Triethylamine (1.4 ml, 10 mmol) was added to N- (glycylglycine) hexadecylamide hydrochloride (3.92 g, 10 mmol) obtained in Example 2. Further, 5 ml of methanol was added and kneaded using a stir bar or the like. Three hours later, organic nanotubes having an average outer diameter of about 150 nm were formed.
In FIG. 9, the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 11 is shown.

(実施例12)
実施例2で得られたN−(グリシルグリシン)ヘキサデシルアミド塩酸塩(3.92g、10ミリモル)に水酸化カリウムのメタノール溶液(1M、10ml)を加えて、撹拌棒などを用いて練り合わせた。その1時間後には平均外径が150nm程度の有機ナノチューブが形成した。
図10に、実施例12で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す。
(Example 12)
A solution of potassium hydroxide in methanol (1M, 10 ml) was added to N- (glycylglycine) hexadecylamide hydrochloride (3.92 g, 10 mmol) obtained in Example 2 and kneaded using a stir bar or the like. It was. One hour later, organic nanotubes having an average outer diameter of about 150 nm were formed.
In FIG. 10, the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 12 is shown.

(実施例13)
実施例2で得られたN−(グリシルグリシン)ヘキサデシルアミド塩酸塩(3.92g、10ミリモル)にトリエチルアミン(1.4ml、10ミリモル)を加えた。更にアセトン5mlを加えて、撹拌棒などを用いて練り合わせた。その1時間後には平均外径が150nm程度の有機ナノチューブが形成した。
図11に、実施例13で得た有機ナノチューブの走査型電子顕微鏡観察像(SEM)を示す。
(Example 13)
Triethylamine (1.4 ml, 10 mmol) was added to N- (glycylglycine) hexadecylamide hydrochloride (3.92 g, 10 mmol) obtained in Example 2. Further, 5 ml of acetone was added and kneaded using a stir bar or the like. One hour later, organic nanotubes having an average outer diameter of about 150 nm were formed.
In FIG. 11, the scanning electron microscope observation image (SEM) of the organic nanotube obtained in Example 13 is shown.

Claims (7)

下記一般式(1)
RCO(NH−CHR’−CO)OH (1)
(式中、Rは炭素数6〜24の炭化水素基、R’はアミノ酸側鎖、mは1〜10の整数を表す。)で表わされるペプチド脂質の乾燥粉末を、アルカリを添加して常温で湿潤させる段階、酸を添加して中和する段階、湿潤物中で形態変化が起こり中空繊維状有機ナノチューブが形成する段階、湿潤物中に分散する中空繊維状有機ナノチューブを回収し、室温で風乾又は減圧加熱乾燥させる段階から成る、中空繊維状有機ナノチューブの製造方法。
The following general formula (1)
RCO (NH—CHR′—CO) m OH (1)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, R ′ represents an amino acid side chain, and m represents an integer of 1 to 10). The step of wetting with water, the step of adding acid to neutralize, the step of changing the shape in the wet product to form hollow fiber-like organic nanotubes, and collecting the hollow fiber-like organic nanotubes dispersed in the wet product at room temperature A method for producing hollow fiber-like organic nanotubes, comprising air drying or drying under reduced pressure.
下記一般式(2)
HCl・H(NH−CHR’−CO)NHR (2)
(式中、Rは炭素数7〜25の炭化水素基、R’はアミノ酸側鎖、mは1〜10の整数を表す。)で表わされるペプチド脂質の乾燥粉末を、アルカリを添加して常温で湿潤させる段階、湿潤物中で形態変化が起こり中空繊維状有機ナノチューブが形成する段階、湿潤物中の中空繊維状有機ナノチューブを回収し、室温で風乾又は減圧加熱乾燥させる段階から成る、中空繊維状有機ナノチューブの製造方法。
The following general formula (2)
HCl · H (NH—CHR′—CO) m NHR (2)
(Wherein R represents a hydrocarbon group having 7 to 25 carbon atoms, R ′ represents an amino acid side chain, and m represents an integer of 1 to 10). A hollow fiber comprising a step of wetting in a wet product, a step in which a shape change occurs in a wet product to form a hollow fiber-like organic nanotube, and a step of recovering the hollow fiber-like organic nanotube in the wet product and air-drying or drying by heating under reduced pressure at room temperature For producing organic organic nanotubes.
前記一般式(1)中のRが、炭素数11、13、15、17の炭化水素基を表すか、又は前記一般式(2)中のRが、炭素数12、14、16、18の炭化水素基を表す、請求項1又は2に記載の中空繊維状有機ナノチューブの製造方法。   R in the general formula (1) represents a hydrocarbon group having 11, 13, 15, 17 carbon atoms, or R in the general formula (2) has 12, 12, 16, 18 carbon atoms. The manufacturing method of the hollow fiber-like organic nanotube of Claim 1 or 2 showing a hydrocarbon group. 前記一般式(1)又は(2)中のmが、2又は3である、請求項1又は2に記載の中空繊維状有機ナノチューブの製造方法。   The manufacturing method of the hollow fiber-like organic nanotube of Claim 1 or 2 whose m in the said General formula (1) or (2) is 2 or 3. 前記一般式(1)又は(2)中のR’がHである、請求項1又は2に記載の中空繊維状有機ナノチューブの製造方法。   The manufacturing method of the hollow fiber-like organic nanotube of Claim 1 or 2 whose R 'in the said General formula (1) or (2) is H. 前記アルカリがトリエチルアミン又は水酸化カリウム溶液である請求項1又は2に記載の中空繊維状有機ナノチューブの製造方法。   The method for producing hollow fiber organic nanotubes according to claim 1 or 2, wherein the alkali is triethylamine or potassium hydroxide solution. 前記酸が酢酸である請求項1又は2に記載の中空繊維状有機ナノチューブの製造方法。   The method for producing a hollow fiber-like organic nanotube according to claim 1 or 2, wherein the acid is acetic acid.
JP2010277974A 2010-12-14 2010-12-14 Method for producing hollow fiber-like organic nanotube in semi-wet system Pending JP2012127016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010277974A JP2012127016A (en) 2010-12-14 2010-12-14 Method for producing hollow fiber-like organic nanotube in semi-wet system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010277974A JP2012127016A (en) 2010-12-14 2010-12-14 Method for producing hollow fiber-like organic nanotube in semi-wet system

Publications (1)

Publication Number Publication Date
JP2012127016A true JP2012127016A (en) 2012-07-05

Family

ID=46644356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010277974A Pending JP2012127016A (en) 2010-12-14 2010-12-14 Method for producing hollow fiber-like organic nanotube in semi-wet system

Country Status (1)

Country Link
JP (1) JP2012127016A (en)

Similar Documents

Publication Publication Date Title
Wang et al. A structure–gelation ability study in a short peptide-based ‘Super Hydrogelator’system
Shao et al. Aqueous Self‐Assembly of L‐Lysine‐Based Amphiphiles into 1D n‐Type Nanotubes
Zhan et al. Self-assembled helical spherical-nanotubes from an L-glutamic acid based bolaamphiphilic low molecular mass organogelator
JP4815586B2 (en) Selective mass synthesis method of Au25 cluster
Govindaraju Spontaneous self-assembly of aromatic cyclic dipeptide into fibre bundles with high thermal stability and propensity for gelation
JP2008030185A (en) Hollow-fiber-like organic nanotube and process for production thereof
González et al. Effect of Cu on Ni nanoparticles used for the generation of carbon nanotubes by catalytic cracking of methane
Pellach et al. Molecular engineering of self-assembling diphenylalanine analogues results in the formation of distinctive microstructures
Maity et al. Sonication-responsive organogelation of a tripodal peptide and optical properties of embedded Tm 3+ nanoclusters
JP3699086B2 (en) Fine hollow fiber
Kameta et al. Glycolipid-based nanostructures with thermal-phase transition behavior functioning as solubilizers and refolding accelerators for protein aggregates
Ochi et al. Design of peptide-based bolaamphiphiles exhibiting heat-set hydrogelation via retro-Diels–Alder reaction
JP5158805B2 (en) Silver nanocluster-containing fine hollow fiber organic nanotube and method for producing the same
JP2012127016A (en) Method for producing hollow fiber-like organic nanotube in semi-wet system
JP5207359B2 (en) Mass production method of metal coordination type organic nanotube
EP1894890B1 (en) Transition metal oxide nano-tube
JP5354591B2 (en) AMIDE COMPOUND HAVING PHOTOISOMERIZATION GROUP, ORGANIC NANOTUBE COMPRISING SELF-ASSEMBLING THE COMPOUND, AND METHOD FOR PRODUCING THE SAME
KR101613339B1 (en) Supported-catalyst for synthesizing carbon nanostructures, method for preparing thereof, and method for preparing secondary structures of carbon nanostructures using same
JP5062737B2 (en) Method for producing hollow fiber organic nanotube
Song et al. New anthracene–tetrathiafulvalene derivative-encapsulated SWNT nanocomposite and its application for biosensing
JP5702248B2 (en) Nanofiber, method for forming nanofiber, and method for forming nanofiber aggregate
JP2011167627A (en) Peroxo complex forming stable nanotube-like structure in atmosphere and catalyst for oxidation reaction using the same
JP2010005706A (en) Organic nanotube combined with substance having hydrophobic moiety and production method for the same
WO2013135894A1 (en) Versatile functionalization of carbon nanostructures
JP5531084B2 (en) Novel method for the synthesis of ivabradine and its addition salts with pharmaceutically acceptable acids