JP5124822B2 - Method for producing composite metal powder and dispersion thereof - Google Patents

Method for producing composite metal powder and dispersion thereof Download PDF

Info

Publication number
JP5124822B2
JP5124822B2 JP2005207990A JP2005207990A JP5124822B2 JP 5124822 B2 JP5124822 B2 JP 5124822B2 JP 2005207990 A JP2005207990 A JP 2005207990A JP 2005207990 A JP2005207990 A JP 2005207990A JP 5124822 B2 JP5124822 B2 JP 5124822B2
Authority
JP
Japan
Prior art keywords
silver
composite metal
particles
metal powder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005207990A
Other languages
Japanese (ja)
Other versions
JP2007026911A (en
Inventor
王高 佐藤
孝造 尾木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2005207990A priority Critical patent/JP5124822B2/en
Publication of JP2007026911A publication Critical patent/JP2007026911A/en
Application granted granted Critical
Publication of JP5124822B2 publication Critical patent/JP5124822B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は銀と銀以外の貴金属類(実際には標準電極電位E0が0.80V以上の銀以外の金属X)との微細な複合金属粉体の製造法、およびその複合金属粉体の分散液の製造法に関する。 The present invention relates to a method for producing a fine composite metal powder of silver and a noble metal other than silver (actually, a metal X other than silver having a standard electrode potential E 0 of 0.80 V or more), and a method for producing the composite metal powder. It relates to a process for the preparation of the dispersion.

固体物質の大きさがnmオーダー(ナノメートルオーダー)になると比表面積が非常に大きくなるために、固体でありながら気体や液体の界面が極端に大きくなる。したがって、その表面の特性が固体物質の性質を大きく左右する。金属粒子粉末の場合は、融点がバルク状態のものに比べ劇的に低下することが知られており、そのためにμmオーダーの粒子に比べて微細な配線の描画が可能になり、しかも低温焼結できる等の利点を具備するようになる。金属粒子粉末の中でも銀粒子粉末は、低抵抗でかつ高い耐候性をもち、金属の価格も他の貴金属と比較して安価であることから、微細な配線幅をもつ次世代の配線材料として特に期待されている。   When the size of the solid substance is in the order of nm (on the order of nanometers), the specific surface area becomes very large, so that the interface between the gas and the liquid becomes extremely large while being solid. Therefore, the properties of the surface greatly influence the properties of the solid substance. In the case of metal particle powder, it is known that the melting point is drastically lower than that in the bulk state, which makes it possible to draw fine wiring compared to particles on the order of μm, and low temperature sintering. It has advantages such as being able to do so. Among the metal particle powders, the silver particle powder has low resistance and high weather resistance, and the price of the metal is low compared with other noble metals, so it is particularly useful as a next-generation wiring material with a fine wiring width. Expected.

しかし、銀粒子粉末を導電材とするさいには次のような問題が指摘されている。
(a)インクジェット法等の手法を用いて銀粒子の分散液によって配線を形成した場合には、回路の集積度向上に伴う配線間隔狭小化につれて、配線間でのエレクトロマイグレーションによる回路短絡が起こり易くなる。
(b)銀粒子の分散液またはペーストによって電気的接点を形成した場合には、めっきを行う際にめっき液の浸透により基材が侵食を受ける。
(c)同様に、半田付けを行う際に半田による電気的接点部の銀の拡散が起こることによる回路配線や電気的接点の信頼性低下する。
However, the following problems have been pointed out when using silver particle powder as a conductive material.
(A) When wiring is formed by a dispersion of silver particles using a technique such as an ink jet method, a short circuit due to electromigration between wirings is likely to occur as the wiring interval is narrowed due to improvement in circuit integration. Become.
(B) When an electrical contact is formed with a silver particle dispersion or paste, the substrate is eroded by the penetration of the plating solution during plating.
(C) Similarly, the reliability of circuit wiring and electrical contacts is reduced due to the diffusion of silver in the electrical contact portions due to solder when soldering.

回路配線のエレクトロマイグレーションを抑制する手段としては、銀のエレクトロマイグレーション性を向上させるパラジウムやチタン等を含有させる方法(例えば、特許文献1)、酸化銅ナノ粒子で配線を形成した後、還元性気体の存在下において生起されるプラズマ雰囲気中で配線を銅に還元する方法(例えば、特許文献2)、さらにはインク中にアルカリ金属元素、アルカリ土類金属元素を含まないことによりエレクトロマイグレーションを回避する方法(例えば、特許文献3)等が提案されている。
特開2001−35255号公報 特開2004−119686号公報 特開2004−35255号公報
As a means for suppressing electromigration of circuit wiring, a method of containing palladium, titanium, or the like that improves silver electromigration (for example, Patent Document 1), after forming wiring with copper oxide nanoparticles, reducing gas A method of reducing wiring to copper in a plasma atmosphere generated in the presence of water (for example, Patent Document 2), and further avoiding electromigration by not containing an alkali metal element or alkaline earth metal element in the ink A method (for example, Patent Document 3) has been proposed.
JP 2001-35255 A JP 2004-119686 A JP 2004-35255 A

特許文献1は、ヘリウム等の不活性ガス雰囲気でかつ0.5Torr程度の低圧中で金属を蒸発させる方法(いわゆる蒸発法)を開示しており、この方法で得られる銀粒子はエレクトロマイグレーション性が改善されるとされている。得られる粒子は粒径が10nm以下で分散液中の分散性が良好であるが、粒子生成にあたり特別な装置が必要である。このため産業用の銀ナノ粒子を大量に合成するには難があることに加えて、ナノ粒子の収率が低く、この方法で得られるナノ粒子粉末は高価となる。   Patent Document 1 discloses a method (so-called evaporation method) for evaporating a metal in an inert gas atmosphere such as helium and a low pressure of about 0.5 Torr. Silver particles obtained by this method have electromigration properties. It is said that it will be improved. The obtained particles have a particle size of 10 nm or less and good dispersibility in the dispersion, but a special apparatus is required for the particle generation. For this reason, in addition to difficulty in synthesizing industrial silver nanoparticles in large quantities, the yield of nanoparticles is low, and the nanoparticle powder obtained by this method is expensive.

特許文献2では、ヘリウム等の不活性ガス雰囲気でかつ0.5Torr程度の低圧中で金属を蒸発させる方法(いわゆる蒸発法)で得た酸化銅粒子で配線形成をした後、還元性気体存在下において生起されるプラズマ雰囲気中で銅まで還元して銅系配線を形成している。蒸発法で得られる粒子は粒径が10nm以下で分散液中の分散性が良好であるが、特許文献1と同様に粒子生成にあたり特別な装置が必要である。このため産業用の酸化銅ナノ粒子を大量に合成するには難があることに加えて、酸化銅粒子の収率が低く、この方法で得られる粒子粉末は高価となる。また雰囲気調整をしない大気中での焼成ができず、還元性雰囲気かつプラズマ雰囲気を必要とするので焼成にも特別な装置が必要である。   In Patent Document 2, after wiring is formed with copper oxide particles obtained by a method (so-called evaporation method) of evaporating a metal in an inert gas atmosphere such as helium in a low pressure of about 0.5 Torr, in the presence of a reducing gas. The copper-based wiring is formed by reducing to copper in the plasma atmosphere generated in FIG. The particles obtained by the evaporation method have a particle size of 10 nm or less and good dispersibility in the dispersion. However, as in Patent Document 1, a special apparatus is required for particle generation. Therefore, in addition to the difficulty in synthesizing industrial copper oxide nanoparticles in large quantities, the yield of copper oxide particles is low, and the particle powder obtained by this method is expensive. In addition, firing in the air without adjusting the atmosphere is impossible, and a reducing atmosphere and a plasma atmosphere are required. Therefore, a special apparatus is also required for firing.

特許文献3では出発原料を限定し、クエン酸のアンモニウム塩を保護剤とすることにより、インク中にアルカリ金属、アルカリ土類金属を含まないようにしている。しかし、出発原料や還元剤に塩素や硫黄が含まれており、配線やその他電子部品を腐食させる原因となるため好ましくない。また、インク化前に粒子を乾燥させているが、乾燥により粒子が凝集するため分散性が悪化する。   In Patent Document 3, starting materials are limited, and an ammonium salt of citric acid is used as a protective agent so that the ink does not contain alkali metal or alkaline earth metal. However, it is not preferable because the starting material and the reducing agent contain chlorine and sulfur and cause corrosion of wiring and other electronic components. In addition, the particles are dried before being made into ink, but the particles are aggregated by drying, so that dispersibility is deteriorated.

このように、ナノ粒子粉末によって微細な配線や電気的接点形成を目的とした場合に、a)耐エレクトロマイグレーション性、b)耐めっき性、c)耐半田喰われ性を同時に改善し、しかも安価で多量生産に適した金属粉末を得ることは容易ではなかった。本発明はこの要求を満たすことを課題としたものである。   Thus, when the purpose is to form fine wiring and electrical contacts with nanoparticle powder, a) electromigration resistance, b) plating resistance, and c) solder erosion resistance are simultaneously improved and inexpensive. Therefore, it was not easy to obtain metal powder suitable for mass production. The present invention aims to satisfy this requirement.

本発明は、銀と銀以外の貴金属類(標準電極電位E0が0.80V以上の銀以外の金属X)との微細な複合金属粉体を構成することによって前記の課題の解決を図ったものである。 The present invention has solved the above-mentioned problems by constituting a fine composite metal powder of silver and a noble metal other than silver (a metal X other than silver having a standard electrode potential E 0 of 0.80 V or more). Is.

すなわち、本発明は、下記(A)の複合金属粉体の製造法を提供する。
(A)銀と、標準電極電位E0が0.80V以上の銀以外の金属Xとの合金の粒子からなり、金属Xの重量割合が1〜80wt%である複合金属粉体であって、当該合金粒子は平均粒径(DTEM)が20nm以下で且つ結晶粒子径(Dx)が20nm以下である複合金属粉体(合金粉体)
That is, this invention provides the manufacturing method of the composite metal powder of the following (A).
And (A) silver, a standard electrode potential E 0 is particles of an alloy of the metal X except more silver 0.80 V, the weight ratio of the metal X is a complex metal powder is 1-80 wt%, The alloy particles are composite metal powder (alloy powder) having an average particle diameter (D TEM ) of 20 nm or less and a crystal particle diameter (Dx) of 20 nm or less .

また本発明は、上記(A)の複合金属粉体を液状有機媒体に分散させてなる複合金属粉体分散液の製造法を提供する。 The present invention also provides a method for producing a composite metal powder dispersion obtained by dispersing the composite metal powder (A) in a liquid organic medium.

具体的には上記(A)の複合金属粉体の有利な製造法として、還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で銀イオンと金属Xイオンを銀粒子と金属X粒子に還元処理するさいに、その還元反応の条件を制御することにより、上記(A)の複合金属粉体を製造する方法を提供する。そのさい、還元処理にあたっては、1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物の共存下で還元する。 Specifically, as an advantageous production method of the composite metal powder of the above (A), silver ions and metal X ions are converted into silver particles and metal in one or more liquids of alcohol or polyol that functions as a reducing agent. Provided is a method for producing the composite metal powder of the above (A) by controlling the reduction reaction conditions when reducing the X particles. Thereof the, when reduction treatment, you reduced in the presence of an amine compound having a molecular weight of 100 to 1000 having one or more unsaturated bonds in one molecule.

また、該複合金属粉体の分散液の製造法として、還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で銀イオンと金属Xイオンを銀粒子と金属X粒子に還元処理するさいに、1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物の共存下においてその還元反応の条件を制御することにより、上記(A)の複合金属粉体を製造し、得られた複合金属粉体を沸点60〜300℃の非極性もしくは極性の小さい液状有機媒体に分散させる複合金属粉体分散液の製造法を提供する。 Further, as a method for producing a dispersion of the composite metal powder, silver ions and metal X ions are reduced to silver particles and metal X particles in one or more liquids of alcohol or polyol that function as a reducing agent. At the same time, by controlling the conditions for the reduction reaction in the presence of an amine compound having a molecular weight of 100 to 1000 having at least one unsaturated bond in one molecule, the composite metal powder of the above (A) is obtained. prepared to provide the resulting preparation of double coupling metal powder component dispersion liquid Ru composite metal powder is dispersed in a non-polar or less polar liquid organic medium having a boiling point of 60 to 300 ° C..

本発明の複合金属粉体およびその分散液またはペーストは、大気雰囲気中で低温焼結が可能であり、回路配線や電気的接点として用いた場合のa)耐エレクトロマイグレーション性、b)耐めっき性、およびc)耐半田喰われ性が良好である。このため、微細な配線や電気的接点形成に適する。   The composite metal powder and its dispersion or paste of the present invention can be sintered at low temperature in the air atmosphere, and when used as circuit wiring or electrical contact, a) electromigration resistance, b) plating resistance And c) Good resistance to solder erosion. For this reason, it is suitable for fine wiring and electrical contact formation.

本発明は、基本的には平均粒径DTEMが20nm以下のナノ粒子分野において、銀と銀以外の金属Xとの複合化を行うことによって、銀粉末を回路配線に用いた場合のマイグレーションの問題の解決を図ったものであり、加えて、電気的接点として使用した場合の耐めっき性、および耐半田喰われ性の向上を図ったものである。ここで、金属Xは標準電極電位E0が0.80V以上の銀以外の金属を意味し、これを本明細書では金属Xと呼ぶ。金属Xには種々の金属元素が存在するが、本発明の複合金属粉体の用途を考慮すると、白金、パラジウム、金等が挙げられる。複合化のための金属Xの配合量としては、いずれの態様においても、金属Xの重量割合が1〜80wt%の範囲であればよい。 In the nanoparticle field where the average particle diameter D TEM is 20 nm or less, the present invention basically performs migration when silver powder is used for circuit wiring by combining silver and a metal X other than silver. This is intended to solve the problem and, in addition, to improve the plating resistance and solder erosion resistance when used as an electrical contact. Here, the metal X means a metal other than silver having a standard electrode potential E 0 of 0.80 V or more, and this is called a metal X in this specification. Various metal elements exist in the metal X, and platinum, palladium, gold and the like can be mentioned in consideration of the use of the composite metal powder of the present invention. As a compounding amount of the metal X for compounding, the weight ratio of the metal X may be in the range of 1 to 80 wt% in any embodiment.

ナノ銀粒子に金属Xを複合化する第一の態様として、まずナノ金属X粒子を混合する態様がある。この場合には、ナノ銀粒子とナノ金属X粒子を有利に製造できることが必要である。本発明者はナノ銀粒子と貴金属類のナノ粒子を液相法によって有利に製造できることを見い出した。まず、この点について説明する。   As a first aspect of compositing metal X with nanosilver particles, there is an aspect in which nanometal X particles are first mixed. In this case, it is necessary to be able to advantageously produce nano silver particles and nano metal X particles. The present inventor has found that nano silver particles and noble metal nanoparticles can be advantageously produced by a liquid phase method. First, this point will be described.

本発明者は液相法で銀の粒子粉末を製造する試験を重ねてきたが、沸点が85〜150℃のアルコール中で、硝酸銀を、85〜150℃の温度で(蒸発したアルコールを液相に還流させながら)、例えば分子量100〜400のアミン化合物からなる保護剤の共存下で還元処理すると、粒径の揃った球状の銀のナノ粒子粉末が得られることを知見し、特願2005−26805号明細書および図面に記載した。また、沸点が85℃以上のアルコールまたはポリオール中で、銀化合物(代表的には炭酸銀または酸化銀)を、85℃以上の温度で、例えば分子量100〜400の脂肪酸からなる保護剤の共存下で還元処理すると、腐食性化合物の少ない粒径の揃った球状の銀の粒子粉末が得ることを知見し、特願2005−26866号明細書および図面に記載した。いずれの場合にも、その銀粒子粉末を非極性もしくは極性の小さな液状有機媒体に分散させることによって銀粒子の分散液を得ることができ、この分散液から遠心分離等で粗粒子を除くと粒径のバラツキの少ない(CV値=標準偏差σ/個数平均粒子の百分率が40%未満の)銀粒子が単分散した分散液を得ることができる。   The present inventor has repeatedly conducted tests for producing silver particle powder by a liquid phase method. In an alcohol having a boiling point of 85 to 150 ° C., silver nitrate is heated at a temperature of 85 to 150 ° C. (evaporated alcohol is liquid phase). For example, when a reduction treatment is performed in the presence of a protective agent composed of an amine compound having a molecular weight of 100 to 400, a spherical silver nanoparticle powder having a uniform particle size can be obtained. This is described in the specification of No. 26805 and the drawings. Further, in an alcohol or polyol having a boiling point of 85 ° C. or higher, a silver compound (typically silver carbonate or silver oxide) is mixed with a protective agent comprising a fatty acid having a molecular weight of 100 to 400, for example, at a temperature of 85 ° C. or higher. It was found that when the reduction treatment was performed, spherical silver particle powder having a uniform particle size with few corrosive compounds was obtained and described in Japanese Patent Application No. 2005-26866 and drawings. In either case, a dispersion of silver particles can be obtained by dispersing the silver particle powder in a non-polar or small polar liquid organic medium. When coarse particles are removed from the dispersion by centrifugation or the like, A dispersion in which silver particles having a small variation in diameter (CV value = standard deviation σ / percentage of number average particles is less than 40%) are monodispersed can be obtained.

しかし、これら方法では、反応温度を高くすると、液中の銀イオンが効率よく還元されるが、粒子の焼結が起こって粗粒子化し、50nm以下の銀粒子粉末が得られ難くなり、反面、反応温度を低くすれば焼結は抑制できるが、液中の銀イオンの還元効率が低下してしまって収率が下がる等のことから、効率よく50nm以下の銀粒子粉末の作製を行うにはさらなる改善を必要とした。   However, in these methods, when the reaction temperature is increased, the silver ions in the liquid are efficiently reduced, but the particles are sintered and coarsened, making it difficult to obtain a silver particle powder of 50 nm or less. Sintering can be suppressed by lowering the reaction temperature, but the reduction efficiency of silver ions in the solution decreases and the yield decreases. For this reason, to efficiently produce silver particle powder of 50 nm or less Further improvement was needed.

この課題に対し、有機保護剤として分子量500以上のものを使用すると、反応温度を高くしても、焼結を抑制でき、その結果、高い還元率で50nm以下の銀粒子粉末を高効率で得ることができることがわかった。しかし、分子量の大きい有機保護剤を用いると、その銀粒子分散液を配線形成用材料とした場合に、300℃以下の低温での焼結性が著しく低下するという別の問題が現れることがわかった。基板に有機フィルム等を用いた回路等では、300℃以上の温度で焼成することは実質的にできないので、該分散液の用途に制限を受けることになるし、その他の材料を用いる回路基板でも低温で焼結性がよいことは当該銀粒子分散液の価値を高めることになる。このため、高分子量の有機保護剤を用いたのでは、50nm以下の銀粒子粉末を高収率で得ることと、その銀粒子分散液の低温焼結性とを両立させることはできない。   For this problem, when an organic protective agent having a molecular weight of 500 or more is used, sintering can be suppressed even when the reaction temperature is increased, and as a result, a silver particle powder having a high reduction rate of 50 nm or less can be obtained with high efficiency. I found out that I could do it. However, when an organic protective agent having a large molecular weight is used, another problem appears that the sinterability at a low temperature of 300 ° C. or lower remarkably deteriorates when the silver particle dispersion is used as a wiring forming material. It was. In a circuit using an organic film or the like on the substrate, firing at a temperature of 300 ° C. or more is substantially impossible, so the use of the dispersion is limited, and even a circuit substrate using other materials Good sinterability at low temperatures increases the value of the silver particle dispersion. For this reason, when a high molecular weight organic protective agent is used, it is impossible to achieve both high yield of silver particle powder of 50 nm or less and low temperature sinterability of the silver particle dispersion.

そこで、さらに研究を重ねた結果、1分子中に2重結合等の不飽和結合を1個以上持つアミン化合物を有機保護剤として用いると、前記の両立ができることを見出した。さらに、当該還元処理において、反応温度を段階的にあげて、多段反応温度で還元する処方を採用したり、得られた粒子懸濁液の洗浄および粗粒子除去の操作を高度に組み立てることによって、一層有利に前記の両立ができ、銀ナノ粒子が高度に分散した低温焼結性のよい銀粒子分散液を高収率で製造できることがわかった。   As a result of further research, it was found that the above-mentioned compatibility can be achieved by using an amine compound having at least one unsaturated bond such as a double bond in one molecule as an organic protective agent. Furthermore, in the reduction treatment, by increasing the reaction temperature step by step, adopting a formulation that reduces at a multistage reaction temperature, or by highly assembling the operations of washing the resulting particle suspension and removing coarse particles, It has been found that the above-mentioned compatibility can be achieved more advantageously, and a silver particle dispersion having a high degree of low-temperature sinterability in which silver nanoparticles are highly dispersed can be produced in a high yield.

銀以外の標準電極電位E0が0.80V以上の金属Xについても、前記した銀と実質的に同様の液相法によってそのナノ金属X粒子を製造できる。その場合も、1分子中に2重結合等の不飽和結合を1個以上持つアミン化合物を有機保護剤として用いると、銀の場合と同様に、前記の両立ができる。さらに、当該還元処理において、反応温度を段階的にあげて、多段反応温度で還元する処方を採用したり、還元助剤を添加したり、得られた粒子懸濁液の洗浄および粗粒子除去の操作を高度に組み立てることによって、一層有利に前記の両立ができ、金属Xのナノ粒子が高度に分散した低温焼結性のよい金属粒子分散液を高収率で製造できることがわかった。 With respect to the metal X having a standard electrode potential E 0 other than silver of 0.80 V or more, the nanometal X particles can be produced by a liquid phase method substantially the same as that of silver described above. Even in that case, when an amine compound having at least one unsaturated bond such as a double bond in one molecule is used as an organic protective agent, the above-mentioned compatibility can be achieved as in the case of silver. Furthermore, in the reduction treatment, the reaction temperature is raised stepwise and a formulation that reduces at a multistage reaction temperature is adopted, a reduction aid is added, the resulting particle suspension is washed and coarse particles are removed. It has been found that the above-described compatibility can be achieved more advantageously by highly assembling the operation, and a metal particle dispersion having good low-temperature sinterability in which the metal X nanoparticles are highly dispersed can be produced in a high yield.

したがって、ナノ銀粒子とナノ金属X粒子の混合粉は、それぞれ前記の液相法で得られたものを混合することによって得ることができる。場合によっては、還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で銀イオンと金属Xイオンを銀粒子と金属X粒子に還元処理するさいに、1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物の共存下においてその還元反応の条件を制御することにより、銀粒子と金属X粒子が混合された複合金属粉体を製造することができる。またこの混合された複合金属粉体を沸点60〜300℃の非極性もしくは極性の小さい液状有機媒体に分散させることによって複合金属粉体の分散液を製造することができる。   Therefore, the mixed powder of nano silver particles and nano metal X particles can be obtained by mixing those obtained by the liquid phase method. In some cases, at least one per molecule when reducing silver ions and metal X ions to silver particles and metal X particles in one or more liquids of alcohol or polyol that functions as a reducing agent. A composite metal powder in which silver particles and metal X particles are mixed can be produced by controlling the conditions of the reduction reaction in the presence of an amine compound having an unsaturated bond and having a molecular weight of 100 to 1000. Further, a dispersion of the composite metal powder can be produced by dispersing the mixed composite metal powder in a non-polar or low-polar liquid organic medium having a boiling point of 60 to 300 ° C.

ナノ銀粒子に金属Xを複合化する第二の態様として、銀と金属Xとを合金化し、この合金のナノ粒子とする態様があるが、このナノ合金粒子の製造も、前記と同様の液相法で製造することができる。すなわち、還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で銀イオンと金属Xイオンを銀粒子と金属X粒子に還元処理するさいに、1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物の共存下においてその還元反応の条件を制御することにより、銀粒子と金属X粒子が合金化された複合金属粉体を製造することができる。またこの合金化された複合金属粉体を沸点60〜300℃の非極性もしくは極性の小さい液状有機媒体に分散させることによって合金化された複合金属粉体の分散液を製造することができる。本発明ではこの第二の態様を対象とする。 As a second aspect of compositing metal X with nano silver particles, there is an aspect in which silver and metal X are alloyed to form nanoparticles of this alloy. It can be manufactured by the phase method. That is, when reducing silver ions and metal X ions into silver particles and metal X particles in one or more liquids of alcohol or polyol that function as a reducing agent, at least one or more in one molecule. By controlling the conditions of the reduction reaction in the presence of an amine compound having an unsaturated bond and a molecular weight of 100 to 1,000, a composite metal powder in which silver particles and metal X particles are alloyed can be produced. Further, a dispersion of the alloyed composite metal powder can be produced by dispersing the alloyed composite metal powder in a non-polar or small-polar liquid organic medium having a boiling point of 60 to 300 ° C. The present invention is directed to this second aspect.

ナノ銀粒子のコアに金属Xのシェルを形成する(あるいはその逆の)コア−シェル構造の態様、銀粒子に金属X粒子を担持させるか金属X粒子に銀粒子を担持させる担持構造の態様においても、これらの構造のナノ粒子も前記と同様の液相法で製造できる。すなわち、還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で銀イオンと金属Xイオンを銀粒子と金属X粒子に還元処理するさいに、1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物の共存下においてその還元反応の条件を制御することにより、これらの態様の構造の複合金属粉体を製造することができる。またこの構造の複合金属粉体を沸点60〜300℃の非極性もしくは極性の小さい液状有機媒体に分散させることによって合金化された複合金属粉体の分散液を製造することができる。   In a core-shell structure embodiment in which a metal X shell is formed on the core of nano silver particles (or vice versa), in a support structure embodiment in which metal X particles are supported on silver particles or silver particles are supported on metal X particles In addition, nanoparticles having these structures can also be produced by the same liquid phase method as described above. That is, when reducing silver ions and metal X ions into silver particles and metal X particles in one or more liquids of alcohol or polyol that function as a reducing agent, at least one or more in one molecule. By controlling the conditions of the reduction reaction in the presence of an amine compound having an unsaturated bond and a molecular weight of 100 to 1000, a composite metal powder having the structure of these embodiments can be produced. Further, a dispersion of alloyed composite metal powder can be produced by dispersing the composite metal powder having this structure in a liquid organic medium having a boiling point of 60 to 300 ° C., which is nonpolar or small in polarity.

これらの分散液については、低温焼結性や分散性等を損なわない範囲で各種添加剤を添加することもできる。例えば増粘剤、沈降防止剤、色分かれ防止剤、消泡剤、レベリング剤等のこの分野で既知の添加材を使用することができる。それらの添加量は当該分散液の重量に対して0.01〜10重量%とするのが良い。0.01重量%未満では添加剤の効果が少なく、10重量%より多くても添加剤の効果が飽和するばかりか、低温焼結性や分散性等を悪化させるためである。   About these dispersion liquids, various additives can also be added in the range which does not impair low temperature sinterability, dispersibility, etc. For example, additives known in this field such as thickeners, anti-settling agents, anti-color separation agents, antifoaming agents, and leveling agents can be used. The addition amount thereof is preferably 0.01 to 10% by weight with respect to the weight of the dispersion. If the amount is less than 0.01% by weight, the effect of the additive is small, and if it exceeds 10% by weight, the effect of the additive is not only saturated, but also low-temperature sinterability and dispersibility are deteriorated.

また、前記いずれの態様の複合金属粉体のペーストを得るには、前記のようにして得た各態様の複合金属粉体に、分子量1000〜100000の高分子有機保護剤を添加した後、沸点が60〜300℃の液状有機媒体に分散させるか、或いは、該複合金属粉体を沸点が60〜300℃の液状有機媒体に分散させた後に分子量1000〜100000の高分子有機保護剤を添加することによってペースト化すればよい。高分子有機保護剤の添加は複合金属分散液の300℃以下での低温焼結性を悪化させるが、このような高分子量の有機保護剤を用いると、分散液の粘度を高くすることができ、ペーストとして使用するのに適した粘性を付与させることができる。   Moreover, in order to obtain the composite metal powder paste of any of the above embodiments, after adding a polymer organic protective agent having a molecular weight of 1000 to 100,000 to the composite metal powder of each embodiment obtained as described above, the boiling point Is dispersed in a liquid organic medium having a molecular weight of 1000 to 100,000 after the composite metal powder is dispersed in a liquid organic medium having a boiling point of 60 to 300 ° C. It can be made into a paste. Although the addition of the polymer organic protective agent deteriorates the low temperature sintering property of the composite metal dispersion at 300 ° C. or lower, the viscosity of the dispersion can be increased by using such a high molecular weight organic protective agent. A viscosity suitable for use as a paste can be imparted.

以下に本発明で特定する事項を説明する。
〔平均粒径DTEM
本発明の複合金属粒子粉末は、TEM(透過電子顕微鏡)観察により測定される平均粒径(DTEMと記す)が50nm以下、好ましくは30nm以下、さらに好ましくは20nm以下である。このため、本発明の複合金属粒子粉末分散液および複合金属粒子粉末ペーストは微細な配線を形成するのに適する。TEM観察では60万倍に拡大した画像から重なっていない独立した粒子300個の径を測定して平均値を求める。
The matters specified by the present invention will be described below.
[Average particle diameter D TEM ]
Composite metal particles of the present invention, TEM (referred to as D TEM) average particle size measured by (transmission electron microscope) observation 50nm or less, preferably 30nm or less, more preferably 20nm or less. For this reason, the composite metal particle powder dispersion and composite metal particle powder paste of the present invention are suitable for forming fine wiring. In TEM observation, the average value is obtained by measuring the diameter of 300 independent particles that are not overlapped from an image magnified 600,000 times.

〔X線結晶粒径Dx〕
本発明の複合金属粒子粉末は、結晶粒子径(Dxと記す)が20nm以下である。複合金属粒子粉末のX線結晶粒径はX線回折結果から Scherrer の式を用いて求めることができる。その求め方は、次のとおりである。
Scherrer の式は、次の一般式で表現される。
Dx=K・λ/β COSθ
式中、K:Scherrer定数、Dx:結晶粒子径、λ:測定X線波長、β:X線回折で得られたピークの半価幅、θ:回折線のブラッグ角をそれぞれ表す。Kは0.94の値を採用し、X線の管球はCuを用いると、前式は下式のように書き換えられる。
Dx=0.94×1.5405/β COSθ
[X-ray crystal grain size Dx]
The composite metal particle powder of the present invention has a crystal particle diameter (denoted as Dx) of 20 nm or less. The X-ray crystal grain size of the composite metal particle powder can be determined from the X-ray diffraction result using the Scherrer equation. How to find it is as follows.
Scherrer's formula is expressed by the following general formula.
Dx = K · λ / β COSθ
In the formula, K: Scherrer constant, Dx: crystal particle diameter, λ: measured X-ray wavelength, β: half width of peak obtained by X-ray diffraction, θ: Bragg angle of diffraction line. If K adopts a value of 0.94 and the X-ray tube uses Cu, the previous equation can be rewritten as the following equation.
Dx = 0.94 × 1.5405 / β COSθ

〔標準電極電位E0が0.80V以上の金属X〕
標準電極電位E0が0.80V以上の銀以外の金属Xとして、白金(標準電極電位E0=1.19V)、パラジウム(標準電極電位E0=0.915V)、金(標準電極電位E0=1.68V)等を例示できるが、これらの金属Xは焼成時に銀と合金を形成することにより耐エレクトロマイグレーション性を改善し、また耐めっき性、耐半田喰われ性を向上させる。配線部や電気的接点での合金組成は部分的な斑がないことが好ましく、混合態様の本発明の複合金属粉体でもこれらの効果を示す。しかし、予め合金化もしくはコア−シェル構造もしくは担持構造を形成させた態様の方が、耐エレクトロマイグレーション性や耐めっき性や耐半田喰われ性を一層確実なものとすることができる。なお、金属Xの出発原料や還元剤等に硫黄や塩素を含むものは、生成した金属粉体に硫黄や塩素が残存し、配線腐食の原因となるので好ましくない。
[Metal X with standard electrode potential E 0 of 0.80V or more]
As the standard electrode potential E 0 is metal X except more silver 0.80 V, platinum (standard electrode potential E 0 = 1.19V), palladium (standard electrode potential E 0 = 0.915V), gold (standard electrode potential E 0 = 1.68V) and the like, but these metals X improve the electromigration resistance by forming an alloy with silver at the time of firing, and also improve the plating resistance and solder erosion resistance. It is preferable that the alloy composition in the wiring part and the electrical contact is free from partial spots, and the mixed metal powder of the present invention in the mixed mode also exhibits these effects. However, the aspect in which the alloying, the core-shell structure, or the supporting structure is formed in advance can further ensure the electromigration resistance, the plating resistance, and the solder erosion resistance. It is not preferable that the starting material for metal X, the reducing agent, etc. contain sulfur or chlorine, since sulfur or chlorine remains in the generated metal powder, causing wiring corrosion.

〔有機保護剤〕
本発明においては、表面が有機保護剤で覆われた複合金属粉体を液状有機媒体に分散させることによって複合金属粉体の分散液とする。この有機保護剤としては、1分子中に少なくとも1個以上の不飽和結合を有し、分子量100〜1000、好ましくは100〜400のアミン化合物を使用する。このような不飽和結合をもつアミン化合物を有機保護剤として使用することによって、液相法による還元反応において金属核を一斉に発生させると共に析出した金属核の成長を全体的に均斉に抑制する現象が起きるのではないかと推測されるが、前記のように20nm以下の金属粒子粉末を高収率で得ることができ、しかもこのアミン化合物は比較的低温で分解するのでその金属粒子分散液の低温焼結性を確保することができる。本発明で使用できる代表的なアミン化合物として、例えばトリアリルアミン、オレイルアミン、ジオレイルアミン、オレイルプロピレンジアミンを例示できる。なお、有機保護剤に硫黄や塩素を含むものは配線腐食の原因となるので好ましくない。
[Organic protective agent]
In the present invention, a composite metal powder having a surface covered with an organic protective agent is dispersed in a liquid organic medium to obtain a composite metal powder dispersion. As the organic protective agent, an amine compound having at least one unsaturated bond in one molecule and having a molecular weight of 100 to 1000, preferably 100 to 400 is used. Phenomenon that suppresses the growth of precipitated metal nuclei as a whole by generating metal nuclei simultaneously in the reduction reaction by the liquid phase method by using such an amine compound having an unsaturated bond as an organic protective agent. As described above, it is possible to obtain a metal particle powder of 20 nm or less in a high yield, and this amine compound decomposes at a relatively low temperature, so that the low temperature of the metal particle dispersion is low. Sinterability can be ensured. Examples of typical amine compounds that can be used in the present invention include triallylamine, oleylamine, dioleylamine, and oleylpropylenediamine. An organic protective agent containing sulfur or chlorine is not preferable because it causes wiring corrosion.

〔高分子量有機保護剤〕
高分子量の有機保護剤を用いると、銀粒子分散液の粘度を高くすることができ、ペーストとして使用するのに適した粘性を付与させることができる。高分子量の有機保護剤は分子量1000〜100000の有機化合物を使用する。本発明で使用できる代表的な有機化合物として、例えばエポキシ樹脂、ウレタン樹脂、シリコーン樹脂、アクリル樹脂、ポリエステル樹脂、エチルセルロース樹脂、ポリビニルピロリドン樹脂、ポリビニルアルコール樹脂、ヒドロキシプロプルメチルセルロースフタレート樹脂等のポリマーや脂肪族系多価カルボン酸、高分子ポリエステルのアミン塩、長鎖ポリアミノアマイドと高分子酸ポリエステルの塩、特殊アクリル系重合物、特殊シリコーン系重合物等の界面活性剤を例示できる。なお、高分子量有機保護剤に硫黄や塩素を含むものは配線腐食の原因となるので好ましくない。
[High molecular weight organic protective agent]
When a high molecular weight organic protective agent is used, the viscosity of the silver particle dispersion can be increased, and a viscosity suitable for use as a paste can be imparted. As the high molecular weight organic protective agent, an organic compound having a molecular weight of 1,000 to 100,000 is used. Examples of typical organic compounds that can be used in the present invention include polymers such as epoxy resins, urethane resins, silicone resins, acrylic resins, polyester resins, ethyl cellulose resins, polyvinyl pyrrolidone resins, polyvinyl alcohol resins, hydroxypropyl methyl cellulose phthalate resins, and fats. Examples include surfactants such as aliphatic polycarboxylic acids, amine salts of high molecular polyesters, salts of long-chain polyaminoamides and high molecular acid polyesters, special acrylic polymers, and special silicone polymers. A high molecular weight organic protective agent containing sulfur or chlorine is not preferable because it causes wiring corrosion.

〔液状有機媒体〕
前記の有機保護剤で覆われた複合金属粉体を分散させる液状有機媒体としては、沸点が60〜300℃の非極性もしくは極性の小さい液状有機媒体を用いる。ここで、「非極性もしくは極性の小さい」というのは25℃での比誘電率が15以下であることを指し、より好ましく5以下である。比誘電率が15を超える場合、複合金属粉体の分散性が悪化し沈降することがあり、好ましくない。分散液の用途に応じて各種の液状有機媒体が使用できるが、炭化水素系が好適に使用でき、とくに、イソオクタン、n−デカン、イソドデカン、イソヘキサン、n−ウンデカン、n−テトラデカン、n−ドデカン、トリデカン、ヘキサン、ヘプタン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン、エチルベンゼン、デカリン、テトラリン等の芳香族炭化水素等が使用できる。これらの液状有機媒体は1種類または2種類以上を使用することができ、ケロシンのような混合物であっても良い。更に、極性を調整するために、混合後の液状有機媒体の25℃での比誘電率が15以下となる範囲でアルコール系、ケトン系、エーテル系、エステル系等の極性有機媒体を添加しても良い。
[Liquid organic medium]
As the liquid organic medium in which the composite metal powder covered with the organic protective agent is dispersed, a nonpolar or small polarity liquid organic medium having a boiling point of 60 to 300 ° C. is used. Here, “non-polar or low polarity” means that the relative dielectric constant at 25 ° C. is 15 or less, more preferably 5 or less. When the relative dielectric constant exceeds 15, the dispersibility of the composite metal powder may deteriorate and settle, which is not preferable. Various liquid organic media can be used depending on the use of the dispersion, but hydrocarbons can be preferably used. In particular, isooctane, n-decane, isododecane, isohexane, n-undecane, n-tetradecane, n-dodecane, Aliphatic hydrocarbons such as tridecane, hexane and heptane, and aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, decalin and tetralin can be used. These liquid organic media may be used alone or in combination of two or more, and may be a mixture such as kerosene. Further, in order to adjust the polarity, polar organic media such as alcohols, ketones, ethers, esters, etc. are added within a range where the relative permittivity at 25 ° C. of the mixed liquid organic media is 15 or less. Also good.

〔アルコールまたはポリオール〕
本発明では還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で銀や金属Xの化合物(銀イオンや金属Xイオン)を還元するが、このようなアルコールとしては、プロピルアルコール、イソプロピルアルコール、n−ブタノール、イソブタノール、sec−ブチルアルコール、tert−ブチルアルコール、アリルアルコール、クロチルアルコール、シクロペンタノール等が使用できる。またポリオールとしては、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等が使用できる。
[Alcohol or polyol]
In the present invention, a compound of silver or metal X (silver ion or metal X ion) is reduced in one or more liquids of alcohol or polyol that functions as a reducing agent. Such alcohol includes propyl alcohol. Isopropyl alcohol, n-butanol, isobutanol, sec-butyl alcohol, tert-butyl alcohol, allyl alcohol, crotyl alcohol, cyclopentanol and the like can be used. As the polyol, diethylene glycol, triethylene glycol, tetraethylene glycol, or the like can be used.

〔還元反応〕
本発明の複合金属粉体は、アルコールまたはポリオール中で、銀もしくは金属Xの化合物(各種の金属塩や銀酸化物等)を、有機保護剤の共存下で、85℃〜150℃の温度で還元処理することによって製造することができる。有機保護剤としては前記のとおり1分子中に1個以上の不飽和結合を有する分子量100〜1000のアミン化合物を使用する。アルコールまたはポリオールは、銀もしくは金属Xの化合物の還元剤として、また反応系の液状有機媒体として機能するものである。還元反応は加熱下でこの液状有機媒体兼還元剤の蒸発と凝縮を繰り返す還流条件下で行なわせるのがよい。還元に供する銀もしくは金属Xの化合物としては、銀もしくは金属Xの酸化物、硝酸塩、炭酸塩、脂肪酸塩等がある。工業的観点から硝酸塩が好ましいが、硝酸塩に限定されるものではない。ただし、出発原料である銀もしくは金属Xの化合物(各種の金属塩や銀酸化物等)に硫黄や塩素を含むものは配線腐食の原因となるので好ましくない。本発明法では反応時の液中の銀もしくは金属Xのイオン濃度は50mmol/L以上で行うことができる。還元処理にあたっては、反応温度を段階的にあげて、多段反応温度で還元処理する方法も有利である。
[Reduction reaction]
The composite metal powder of the present invention is a compound of silver or metal X (various metal salts, silver oxides, etc.) in alcohol or polyol at a temperature of 85 ° C. to 150 ° C. in the presence of an organic protective agent. It can manufacture by carrying out a reduction process. As described above, an amine compound having a molecular weight of 100 to 1000 and having one or more unsaturated bonds in one molecule is used as the organic protective agent. The alcohol or polyol functions as a reducing agent for the silver or metal X compound and as a liquid organic medium for the reaction system. The reduction reaction is preferably performed under reflux conditions in which the liquid organic medium / reducing agent is repeatedly evaporated and condensed under heating. Examples of silver or metal X compounds to be used for reduction include silver or metal X oxides, nitrates, carbonates and fatty acid salts. Although nitrate is preferable from an industrial viewpoint, it is not limited to nitrate. However, silver or metal X compounds (various metal salts, silver oxides, etc.) containing sulfur or chlorine as starting materials are not preferable because they cause wiring corrosion. In the method of the present invention, the ion concentration of silver or metal X in the solution during the reaction can be performed at 50 mmol / L or more. In the reduction treatment, a method of raising the reaction temperature stepwise and carrying out reduction treatment at a multistage reaction temperature is also advantageous.

この還元反応において、反応温度、昇温速度、反応物の仕込量や量比、還元助剤の添加、その他の還元反応を律速する因子をコントロールしたり、出発原料種類を選択することにより、銀と金属Xとの複合金属粉体の形態制御、すなわち混合物形態、コア−シェル構造形態、担持形態等の態様のものを得ることができる。   In this reduction reaction, by controlling the reaction temperature, the rate of temperature rise, the amount and ratio of reactants added, the addition of a reduction aid, other factors that limit the reduction reaction, or by selecting the starting material type, It is possible to obtain the form control of the composite metal powder of the metal X and the metal X, that is, the mixture form, the core-shell structure form, the support form and the like.

〔反応後の処理〕
反応後の銀もしくは金属X、または複合金属粉体の懸濁液(反応直後のスラリー)は、洗浄・分散・分級・混合等の工程を経て、本発明に従う複合金属粉体の分散液とすることができるが、それら工程の代表例(後記の実施例で用いた例)を挙げると次のとおりである。
[Processing after reaction]
The silver or metal X after the reaction or the suspension of the composite metal powder (slurry immediately after the reaction) is subjected to washing, dispersion, classification, mixing, and the like to obtain a dispersion of the composite metal powder according to the present invention. However, typical examples of these steps (examples used in the examples described later) are as follows.

〔洗浄工程〕
(1) 反応後のスラリー40mLを遠心分離器(日立工機株式会社製のCF7D2)を用いて3000rpmで30分固液分離を実施し、上澄みを廃棄する。
(2) 沈殿物に「極性の大きい液状有機媒体」40mLを加えて超音波分散機で分散させる。
(3) 前記の(1) →(2) を3回繰り返す。
(4) 前記の(1) を実施して上澄み廃棄し沈殿物を得る。
[Washing process]
(1) 40 mL of the slurry after the reaction is subjected to solid-liquid separation at 3000 rpm for 30 minutes using a centrifuge (CF7D2 manufactured by Hitachi Koki Co., Ltd.), and the supernatant is discarded.
(2) Add 40 mL of “polar organic liquid medium having a large polarity” to the precipitate and disperse with an ultrasonic disperser.
(3) Repeat (1) → (2) three times.
(4) Carry out the above (1) and discard the supernatant to obtain a precipitate.

〔分散工程〕
(1) 前記の洗浄工程を得た沈殿物に「非極性もしくは極性の小さい液状有機媒体」40mL添加する。
(2) 次いで超音波分散機にかける。
[Dispersing process]
(1) Add 40 mL of “non-polar or low-polar liquid organic medium” to the precipitate obtained in the washing step.
(2) Then apply to an ultrasonic disperser.

〔分級工程〕
(1) 分散工程を経た銀もしくは金属Xもしくは複合金属粒子と「非極性もしくは極性の小さい液状有機媒体の混濁液」40mLを前記と同様の遠心分離器を用いて3000rpmで30分間固液分離を実施する。
(2) 上澄み液を回収する。この上澄み液が銀もしくは金属Xもしくは複合金属粒子粉末分散液となる。
[Classification process]
(1) Silver / metal X or composite metal particles that have undergone the dispersion process and 40 mL of “a turbid liquid of a nonpolar or small polar liquid organic medium” are subjected to solid-liquid separation at 3000 rpm for 30 minutes using a centrifuge similar to the above. carry out.
(2) Collect the supernatant. This supernatant becomes silver, metal X, or composite metal particle powder dispersion.

前記の洗浄工程では液状有機媒体としては「極性の大きい液状有機媒体」を用いる。「極性の大きい」というのは25℃での比誘電率が15より大きいことを指す。比誘電率が15以下の場合、銀もしくは金属Xもしくは複合金属粒子の分散性が良好すぎるため、洗浄工程での洗浄効率が悪化する。極性の大きい液状有機媒体としては各種のものが使用できるが、アルコール系とケトン系が好適に使用でき、アルコール系としては、とくに、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール等が、ケトン系としてはアセトン、アセチルアセトン等が使用できる。これらの極性の大きい液状有機媒体は1種類または2種類以上を使用することができ、混合物であっても良い。   In the washing step, a “liquid organic medium having a large polarity” is used as the liquid organic medium. “Large polarity” means that the relative dielectric constant at 25 ° C. is larger than 15. When the relative dielectric constant is 15 or less, the dispersibility of silver, metal X, or composite metal particles is too good, so that the cleaning efficiency in the cleaning step is deteriorated. Various types of liquid organic media having a large polarity can be used, but alcohols and ketones can be preferably used. As alcohols, methanol, ethanol, propyl alcohol, isopropyl alcohol, etc. are particularly preferred as ketones. Acetone, acetylacetone, etc. can be used. These liquid organic media having a large polarity can be used alone or in combination of two or more, and may be a mixture.

また、次の分散工程では「非極性もしくは極性の小さい液状有機媒体」を用いる。「非極性もしくは極性の小さい」というのは、既に説明したとおり、25℃での比誘電率が15以下であることを指し、より好ましく5以下であって、前掲例示の非極性もしくは極性の小さい液状有機媒体を使用することができる。   In the next dispersion step, a “nonpolar or small polarity liquid organic medium” is used. “Nonpolar or low polarity” means that the relative dielectric constant at 25 ° C. is 15 or less as described above, more preferably 5 or less, and the nonpolarity or low polarity exemplified above. Liquid organic media can be used.

〔耐マイグレーション性〕
耐マイグレーション性は次のようにして評価する。本発明による複合金属粒子分散液もしくは複合金属粒子分散ペーストをアルミナ基板上に塗布し、大気雰囲気中250℃で60分焼成し、電極幅1mm、電極間距離1mmの電極を作製し、7.5Vの直流電圧を印加した電極の間に純水を1滴滴下してから、抵抗の両端電圧が2Vになるまでの時間を測定する。この時間をマイグレーション時間とする。
[Migration resistance]
The migration resistance is evaluated as follows. The composite metal particle dispersion or composite metal particle dispersion paste according to the present invention is applied onto an alumina substrate and baked at 250 ° C. for 60 minutes in an air atmosphere to produce an electrode having an electrode width of 1 mm and an interelectrode distance of 1 mm. After a drop of pure water is dropped between the electrodes to which the direct current voltage is applied, the time until the voltage across the resistor reaches 2 V is measured. This time is set as the migration time.

〔耐半田喰われ性〕
耐半田喰われ性は次のようにして評価する。本発明による複合金属粉体分散液もしくは複合金属粉体ペーストをアルミナ基板上に塗布し、大気雰囲気中250℃で60分焼成し、2mm角の電極を作製する。電極をフラックスに2秒浸漬し引き上げた後、過剰なフラックスを除去し、230℃の半田槽に5秒間浸漬し引き上げる。表面をアセトンで洗浄してから半田喰われを目視により確認する。
[Solder erosion resistance]
Solder erosion resistance is evaluated as follows. The composite metal powder dispersion or the composite metal powder paste according to the present invention is applied onto an alumina substrate and fired at 250 ° C. for 60 minutes in an air atmosphere to produce a 2 mm square electrode. After the electrode is dipped in the flux for 2 seconds and then pulled up, the excess flux is removed, and dipped in a solder bath at 230 ° C. for 5 seconds and pulled up. After the surface is washed with acetone, the solder bite is visually confirmed.

〔本発明の複合金属粉体の用途〕
本発明の複合金属粉体は、微細な回路パターンを形成するための配線形成用材料例えばインクジェット法による配線形成用材料として好適である。また本発明の複合金属粉体はLSI基板の配線やFPD(フラットパネルディスプレイ)の電極、配線用途、さらには微細なトレンチ、ビアホール、コンタクトホールの埋め込み等の配線形成材料としても好適である。さらに本発明の複合金属粉体は車の塗装等の色材としても適用でき、医療・診断・バイオテクノロジー分野において生化学物質等を吸着させるキャリヤーにも適用できる。さらに本発明の複合金属粉体は低温焼成が可能であるからフレキシブルなフィルム上への電極形成材料として適用でき、エレクトロニクス実装に於いては接合材として用いることも出来る。さらには、導電性皮膜として電磁波シールド膜や、透明導電膜等の分野での光学特性を利用した赤外線反射シールド等にも適用できる。さらに、低温焼結性と導電性を利用して、ガラス基板上へ印刷・焼成し、自動車ウインドウの防曇用熱線等にも好適である。一方、分散液としては、液体(分散媒)とほぼ同様の挙動を示すため、上に挙げたインクジェット法に限らず、スピンコート、ディッピング、ブレードコート等各種塗布方法に適用可能で、スクリーン印刷等にも適用可能である。
[Use of the composite metal powder of the present invention]
The composite metal powder of the present invention is suitable as a wiring forming material for forming a fine circuit pattern, for example, a wiring forming material by an ink jet method. The composite metal powder of the present invention is also suitable as a wiring forming material for LSI substrate wiring, FPD (flat panel display) electrodes, wiring applications, and for embedding fine trenches, via holes, and contact holes. Furthermore, the composite metal powder of the present invention can be applied as a coloring material for car paints and the like, and can also be applied to a carrier that adsorbs biochemical substances and the like in the medical, diagnostic, and biotechnology fields. Furthermore, since the composite metal powder of the present invention can be fired at a low temperature, it can be applied as an electrode forming material on a flexible film, and can also be used as a bonding material in electronic packaging. Further, the present invention can be applied to an electromagnetic wave shielding film as a conductive film, an infrared reflection shield using optical characteristics in the field of a transparent conductive film, and the like. Furthermore, using low-temperature sintering and electrical conductivity, printing and baking on a glass substrate is suitable for antifogging heat rays for automobile windows. On the other hand, since the dispersion exhibits almost the same behavior as the liquid (dispersion medium), it is applicable not only to the above-described ink jet method but also to various coating methods such as spin coating, dipping, blade coating, screen printing, etc. It is also applicable to.

参考例1〕
液媒体兼還元剤としてのイソブタノール140mLに、有機保護剤として不飽和結合を分子中に1個有するオレイルアミン185.8mLと、銀化合物として硝酸銀結晶19.2gとを添加し、マグネットスターラーにて攪拌して硝酸銀を分散させる。この液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該液をマグネットスターラーにより100rpmの回転速度で撹拌しつつ加熱し、100℃の温度で2時間30分の還流を行った。その後、108℃まで温度を上げ、2時間30分の還流を行い、反応を終了した。そのさい100℃および108℃に至るまでの昇温速度はいずれも2℃/minとした。
[ Reference Example 1]
Add 185.8 mL of oleylamine having one unsaturated bond in the molecule as an organic protective agent and 19.2 g of silver nitrate crystals as a silver compound to 140 mL of isobutanol as a liquid medium and reducing agent, and stir with a magnetic stirrer. To disperse the silver nitrate. This liquid is transferred to a container equipped with a reflux device and placed in an oil bath, and the liquid is stirred at a rotational speed of 100 rpm by a magnetic stirrer while blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min. The mixture was heated and refluxed at a temperature of 100 ° C. for 2 hours and 30 minutes. Thereafter, the temperature was raised to 108 ° C., refluxing was performed for 2 hours and 30 minutes, and the reaction was completed. At that time, the heating rate up to 100 ° C. and 108 ° C. was set to 2 ° C./min.

反応終了後のスラリーについて本文に記載した洗浄、分散および分級の工程を実施し、本文に記載した方法で諸特性の評価を行なった。液状有機媒体として、洗浄工程では極性の大きいメタノールを、分散工程では極性の小さいケロシンを使用した。その結果、得られた銀粒子粉末は平均粒径DTEM=12.3nmで、結晶粒子径Dx=15.0nmであった。 The slurry after the reaction was subjected to the washing, dispersing and classification steps described in the text, and various properties were evaluated by the methods described in the text. As the liquid organic medium, methanol having a high polarity was used in the washing step, and kerosene having a low polarity was used in the dispersion step. As a result, the obtained silver particle powder had an average particle diameter D TEM = 12.3 nm and a crystal particle diameter Dx = 15.0 nm.

液媒体兼還元剤としてのイソブタノール200mLに、有機保護剤としてオレイルアミンを132.7mLと、白金化合物としてのアセチルアセトナート白金を15.9g添加し、マグネットスターラーにて攪拌してアセチルアセトナート白金を分散させる。この液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該液をマグネットスターラーにより200rpmの回転速度で撹拌しつつ加熱し、100℃の温度で1 時間30分の還流を行った。その後、108℃まで温度を上げ、2時間30分の還流を行い、反応を終了した。そのさい100℃および108℃に至るまでの昇温速度はいずれも2℃/minとした。   Add 132.7 mL of oleylamine as an organic protective agent and 15.9 g of acetylacetonate platinum as a platinum compound to 200 mL of isobutanol as a liquid medium and reducing agent, and stir with a magnetic stirrer to add acetylacetonate platinum. Disperse. This liquid is transferred to a container equipped with a reflux device and placed in an oil bath, and the liquid is stirred at a rotational speed of 200 rpm by a magnetic stirrer while blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min. The mixture was heated and refluxed at a temperature of 100 ° C. for 1 hour and 30 minutes. Thereafter, the temperature was raised to 108 ° C., refluxing was performed for 2 hours and 30 minutes, and the reaction was completed. At that time, the heating rate up to 100 ° C. and 108 ° C. was set to 2 ° C./min.

反応終了後のスラリーについて本文に記載した洗浄、分散および分級の工程を実施し、本文に記載した方法で諸特性の評価を行なった。液状有機媒体として、洗浄工程では極性の大きいメタノールを、分散工程では極性の小さいケロシンを使用した。その結果、得られた白金粒子は平均粒径DTEM=9.0nmで結晶粒子径Dx=7.8nmであった。 The slurry after the reaction was subjected to the washing, dispersing and classification steps described in the text, and various properties were evaluated by the methods described in the text. As the liquid organic medium, methanol having a high polarity was used in the washing step, and kerosene having a low polarity was used in the dispersion step. As a result, the obtained platinum particles had an average particle diameter D TEM = 9.0 nm and a crystal particle diameter Dx = 7.8 nm.

前記方法で得られた銀粒子分散液と、前記方法で得られた白金粒子分散液とを混合し、複合金属粉体および複合金属粉体分散液を得た。混合にあたっては、銀粒子分散液と白金粒子分散液を、複合金属粉体中の白金粒子粉末の重量割合が40wt%となるように分取し、マグネットスターラーにより100rpmの回転速度で室温において撹拌混合した。   The silver particle dispersion obtained by the above method and the platinum particle dispersion obtained by the above method were mixed to obtain a composite metal powder and a composite metal powder dispersion. In mixing, the silver particle dispersion and the platinum particle dispersion are separated so that the weight ratio of the platinum particle powder in the composite metal powder is 40 wt%, and stirred and mixed at room temperature with a magnetic stirrer at a rotation speed of 100 rpm. did.

得られた複合金属粉体は銀粒子粉末と白金粒子粉末の混合物であり、複合金属粉体中の銀粒子粉末の平均粒径DTEM=12.3nmで結晶粒子径Dx=15.0nmであり、白金粒子粉末の平均粒径DTEM=9.0nmで結晶粒子径Dx=7.8nmであって、複合金属粉体中の白金粒子粉末の重量割合が40wt%であった。この混合物からなる複合金属粉体について、本文に記載した方法で特性の評価を行った。その結果、エレクトロマイグレーション時間は5秒であり、耐半田喰われ性が良好であることが目視で確認された。 The obtained composite metal powder is a mixture of silver particle powder and platinum particle powder, and the average particle diameter D TEM = 12.3 nm of the silver particle powder in the composite metal powder and the crystal particle diameter Dx = 15.0 nm. The average particle diameter D TEM of the platinum particle powder was 9.0 nm, the crystal particle diameter was Dx = 7.8 nm, and the weight ratio of the platinum particle powder in the composite metal powder was 40 wt%. The composite metal powder composed of this mixture was evaluated for characteristics by the method described in the text. As a result, the electromigration time was 5 seconds, and it was visually confirmed that the solder erosion resistance was good.

〔実施例
液媒体兼還元剤としてのイソブタノール140mLに、有機保護剤として不飽和結合を分子中に1個有するオレイルアミン185.8mLと、銀化合物として硝酸銀結晶19.2gと、パラジウム化合物として硝酸パラジウム結晶11.2gとを添加し、マグネットスターラーにて攪拌して硝酸銀と硝酸パラジウム分散させる。この液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該液をマグネットスターラーにより100rpmの回転速度で撹拌しつつ加熱し、100℃の温度で2時間30分の還流を行った。その後、110℃まで温度を上げ4時間の還流を行い、反応を終了した。そのさい100℃および110℃に至るまでの昇温速度はいずれも2℃/minとした。
[Example 1 ]
140 mL of isobutanol as a liquid medium and reducing agent, 185.8 mL of oleylamine having one unsaturated bond in the molecule as an organic protective agent, 19.2 g of silver nitrate crystals as a silver compound, and palladium nitrate crystals as a palladium compound. 2 g is added and stirred with a magnetic stirrer to disperse silver nitrate and palladium nitrate. This liquid is transferred to a container equipped with a reflux device and placed in an oil bath, and the liquid is stirred at a rotational speed of 100 rpm by a magnetic stirrer while blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min. The mixture was heated and refluxed at a temperature of 100 ° C. for 2 hours and 30 minutes. Thereafter, the temperature was raised to 110 ° C. and refluxed for 4 hours to complete the reaction. At that time, the rate of temperature increase until reaching 100 ° C. and 110 ° C. was 2 ° C./min.

反応終了後のスラリーについて本文に記載した洗浄、分散および分級の工程を実施し、本文に記載した方法で諸特性の評価を行なった。液状有機媒体として、洗浄工程では極性の大きいメタノールを、分散工程では極性の小さいケロシンを使用した。その結果、得られた複合金属粉体は、パラジウム含有量が30重量%で銀含有量が70重量%の銀−パラジウム合金の粒子からなり、この合金粒子は平均粒径DTEM=9.5nmで結晶粒子径Dx=8.9nmであった。この複合金属粉体を本文に記載した方法で特性評価を行ったところ、エレクトロマイグレーション時間は8秒であり、耐半田喰われ性が良好であることが目視で確認された。 The slurry after the reaction was subjected to the washing, dispersing and classification steps described in the text, and various properties were evaluated by the methods described in the text. As the liquid organic medium, methanol having a high polarity was used in the washing step, and kerosene having a low polarity was used in the dispersion step. As a result, the obtained composite metal powder was composed of particles of a silver-palladium alloy having a palladium content of 30% by weight and a silver content of 70% by weight. The alloy particles had an average particle diameter D TEM = 9.5 nm. The crystal particle diameter Dx was 8.9 nm. When this composite metal powder was characterized by the method described in the text, the electromigration time was 8 seconds, and it was confirmed visually that the solder erosion resistance was good.

参考
液媒体兼還元剤としてのイソブタノール140mLに、有機保護剤として不飽和結合を分子中に1個有するオレイルアミン185.8mLと、銀化合物として酸化銀19.2gと、パラジウム化合物として硝酸パラジウム結晶1.4gとを添加し、マグネットスターラーにて攪拌して酸化銀と硝酸パラジウムを分散させる。この液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該液をマグネットスターラーにより200rpmの回転速度で撹拌しつつ加熱し、100℃の温度で2時間30分の還流を行った。その後、108℃まで温度を上げ、2時間30分の還流を行い、反応を終了した。そのさい100℃および108℃に至るまでの昇温速度はいずれも2℃/minとした。
[ Reference Example 2 ]
140 mL of isobutanol as a liquid medium and reducing agent, 185.8 mL of oleylamine having one unsaturated bond in the molecule as an organic protective agent, 19.2 g of silver oxide as a silver compound, and palladium nitrate crystals as a palladium compound. 4 g is added and stirred with a magnetic stirrer to disperse silver oxide and palladium nitrate. This liquid is transferred to a container equipped with a reflux device and placed in an oil bath, and the liquid is stirred at a rotational speed of 200 rpm by a magnetic stirrer while blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min. The mixture was heated and refluxed at a temperature of 100 ° C. for 2 hours and 30 minutes. Thereafter, the temperature was raised to 108 ° C., refluxing was performed for 2 hours and 30 minutes, and the reaction was completed. At that time, the heating rate up to 100 ° C. and 108 ° C. was set to 2 ° C./min.

反応終了後のスラリーについて本文に記載した洗浄、分散および分級の工程を実施し、本文に記載した方法で諸特性の評価を行なった。液状有機媒体として、洗浄工程では極性の大きいメタノールを、分散工程では極性の小さいケロシンを使用した。その結果、得られた複合金属粉体は、パラジウムをコアとし、銀をシェルとしたコア−シェル構造のものであり、平均粒径DTEM=6.7nmであった。 The slurry after the reaction was subjected to the washing, dispersing and classification steps described in the text, and various properties were evaluated by the methods described in the text. As the liquid organic medium, methanol having a high polarity was used in the washing step, and kerosene having a low polarity was used in the dispersion step. As a result, the obtained composite metal powder had a core-shell structure with palladium as a core and silver as a shell, and had an average particle diameter D TEM = 6.7 nm.

液媒体兼還元剤としてのイソブタノール200mLに、有機保護剤としてオレイルアミンを132.7mLと、白金化合物としてのアセチルアセトナート白金(白金の標準電極電位E0=1.19V)を15.9g添加し、マグネットスターラーにて攪拌してアセチルアセトナート白金を分散させる。この液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該液をマグネットスターラーにより200rpmの回転速度で撹拌しつつ加熱し、100℃の温度で1 時間30分の還流を行った。その後、108℃まで温度を上げ、2時間30分の還流を行い、反応を終了した。そのさい100℃および108℃に至るまでの昇温速度はいずれも2℃/minとした。 To 200 mL of isobutanol as a liquid medium and reducing agent, 132.7 mL of oleylamine as an organic protecting agent and 15.9 g of acetylacetonate platinum (platinum standard electrode potential E 0 = 1.19 V) as a platinum compound were added. Then, stir with a magnetic stirrer to disperse the acetylacetonate platinum. This liquid is transferred to a container equipped with a reflux device and placed in an oil bath, and the liquid is stirred at a rotational speed of 200 rpm by a magnetic stirrer while blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min. The mixture was heated and refluxed at a temperature of 100 ° C. for 1 hour and 30 minutes. Thereafter, the temperature was raised to 108 ° C., refluxing was performed for 2 hours and 30 minutes, and the reaction was completed. At that time, the heating rate up to 100 ° C. and 108 ° C. was set to 2 ° C./min.

反応終了後のスラリーについて本文に記載した洗浄、分散および分級の工程を実施し、本文に記載した方法で諸特性の評価を行なった。液状有機媒体として、洗浄工程では極性の大きいメタノールを、分散工程では極性の小さいケロシンを使用した。その結果、得られた白金粒子粉末は、平均粒径DTEM=9.0nm、結晶粒子径Dx=7.8nmであった。 The slurry after the reaction was subjected to the washing, dispersing and classification steps described in the text, and various properties were evaluated by the methods described in the text. As the liquid organic medium, methanol having a high polarity was used in the washing step, and kerosene having a low polarity was used in the dispersion step. As a result, the obtained platinum particle powder had an average particle diameter D TEM = 9.0 nm and a crystal particle diameter Dx = 7.8 nm.

前記方法で得られたパラジウムをコア、銀をシェルとしたコア−シェル構造の複合金属粉体分散液と、前記方法で得られた白金粒子分散液とを混合することにより該コア−シェル構造の複合金属粒子粉末と白金粉末粒子とが混合された複合金属粉体および複合金属粉体分散液を得た。混合にあたっては、パラジウムをコア、銀をシェルとしたコア−シェル構造の複合金属粉体分散液と白金粉末分散液とを、パラジウム:銀:白金の重量割合が3:57:40となるように分取し、マグネットスターラーによりにより100rpmの回転速度で室温において撹拌混合した。   A core-shell structure composite metal powder dispersion using the palladium obtained by the above method as a core and silver as a shell, and the platinum particle dispersion obtained by the above method are mixed to mix the core-shell structure. A composite metal powder and a composite metal powder dispersion in which composite metal particle powder and platinum powder particles were mixed were obtained. In mixing, a core-shell structure composite metal powder dispersion with palladium as a core and silver as a shell and a platinum powder dispersion are mixed so that the weight ratio of palladium: silver: platinum is 3:57:40. The sample was collected and stirred and mixed at room temperature with a magnetic stirrer at a rotation speed of 100 rpm.

混合して得られた複合金属粉体は、該コア−シェル構造の複合金属粉体と白金粒子との混合物であり、この混合物中のコア−シェル構造の複合金属粉体は平均粒径DTEM=7.7nmであり、白金粒子は平均粒径DTEM=9.0nmで結晶粒子径Dx=7.8nmであり、混合物中のパラジウムと白金を合計した重量割合が43wt%であった。この混合された複合金属粉体について、本文に記載した方法で特性の評価を行ったところ、エレクトロマイグレーション時間は5秒であり、耐半田喰われ性が良好であることが目視で確認された。 The composite metal powder obtained by mixing is a mixture of the composite metal powder having the core-shell structure and the platinum particles, and the composite metal powder having the core-shell structure in the mixture has an average particle diameter D TEM. = 7.7 nm, the platinum particles had an average particle diameter D TEM = 9.0 nm and a crystal particle diameter Dx = 7.8 nm, and the total weight ratio of palladium and platinum in the mixture was 43 wt%. When this mixed composite metal powder was evaluated for characteristics by the method described herein, it was confirmed by visual observation that the electromigration time was 5 seconds and the solder erosion resistance was good.

〔比較例1〕
液媒体兼還元剤としてのイソブタノール200mLに、有機保護剤としてオレイルアミンを132.7mLと、銀化合物としての硝酸銀結晶を13.7g添加し、マグネットスターラーにて攪拌して硝酸銀を分散させる。この液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該液をマグネットスターラーにより200rpmの回転速度で撹拌しつつ加熱し、100℃の温度で3時間の還流を行い、反応を終了した。そのさい100℃に至るまでの昇温速度は2℃/min とした。
[Comparative Example 1]
To 200 mL of isobutanol as a liquid medium and reducing agent, 132.7 mL of oleylamine as an organic protective agent and 13.7 g of silver nitrate crystals as a silver compound are added, and stirred with a magnetic stirrer to disperse the silver nitrate. This liquid is transferred to a container equipped with a reflux device and placed in an oil bath, and the liquid is stirred at a rotational speed of 200 rpm by a magnetic stirrer while blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min. The mixture was heated and refluxed at a temperature of 100 ° C. for 3 hours to complete the reaction. At that time, the rate of temperature increase up to 100 ° C. was 2 ° C./min.

反応後のスラリーについて本文に記載した洗浄、分散および分級を実施した後、銀粒子粉末分散液を得た。液状有機媒体として、洗浄工程では極性の大きいメタノールを、分散工程では極性の小さいケロシンを使用した。その結果、得られた銀粒子は、平均粒径DTEM=10.3nmであった。この銀粒子粉末を本文に記載した方法で特性の評価を行ったところ、エレクトロマイグレーション時間は1秒であり、耐半田喰われ性が不良であることが確認された。 The slurry after the reaction was washed, dispersed and classified as described in the text, and then a silver particle powder dispersion was obtained. As the liquid organic medium, methanol having a high polarity was used in the washing step, and kerosene having a low polarity was used in the dispersion step. As a result, the resulting silver particles had an average particle diameter D TEM = 10.3 nm. When the characteristics of this silver particle powder were evaluated by the method described herein, it was confirmed that the electromigration time was 1 second and the solder erosion resistance was poor.

Claims (2)

還元剤として機能するアルコールまたはポリオールの1種または2種以上の液状有機媒体中で銀イオンと金属Xイオンを銀粒子と金属X粒子に還元処理するさいに、1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物の共存下においてその還元反応の条件を制御することにより、下記(A)の複合金属粉体を得る複合金属粉体の製造法。
(A)銀と、標準電極電位E0が0.80V以上の銀以外の金属Xとの合金の粒子からなり、金属Xの重量割合が1〜80wt%である複合金属粉体であって、当該合金粒子は平均粒径(DTEM)が20nm以下で且つ結晶粒子径(Dx)が20nm以下である複合金属粉体。
When reducing silver ions and metal X ions into silver particles and metal X particles in one or more liquid organic media of alcohol or polyol that functions as a reducing agent , at least one or more in one molecule A method for producing a composite metal powder that obtains a composite metal powder of the following (A) by controlling the conditions for the reduction reaction in the presence of an amine compound having an unsaturated bond and a molecular weight of 100 to 1000 .
(A) A composite metal powder comprising particles of an alloy of silver and a metal X other than silver having a standard electrode potential E 0 of 0.80 V or more, wherein the weight ratio of the metal X is 1 to 80 wt% , The alloy particles are composite metal powders having an average particle diameter (D TEM ) of 20 nm or less and a crystal particle diameter (Dx) of 20 nm or less.
還元剤として機能するアルコールまたはポリオールの1種または2種以上の液状有機媒体中で銀イオンと金属Xイオンを銀粒子と金属X粒子に還元処理するさいに、1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物の共存下においてその還元反応の条件を制御することにより、下記(A)の複合金属粉体を製造し、得られた複合金属粉体を沸点60〜300℃の非極性もしくは極性の小さい液状有機媒体に分散させる複合金属粉体分散液の製造法。
(A)銀と、標準電極電位E0が0.80V以上の銀以外の金属Xとの合金の粒子からなり、金属Xの重量割合が1〜80wt%である複合金属粉体であって、当該合金粒子は平均粒径(DTEM)が20nm以下で且つ結晶粒子径(Dx)が20nm以下である複合金属粉体。
In the reduction treatment of silver ions and metal X ions into silver particles and metal X particles in one or more liquid organic mediums of alcohol or polyol functioning as a reducing agent, at least one or more in one molecule By controlling the conditions of the reduction reaction in the presence of an amine compound having an unsaturated bond and a molecular weight of 100 to 1000, a composite metal powder of the following (A) is produced, and the resulting composite metal powder has a boiling point of 60 A method for producing a composite metal powder dispersion liquid which is dispersed in a non-polar or small-polar liquid organic medium at ˜300 ° C.
(A) A composite metal powder comprising particles of an alloy of silver and a metal X other than silver having a standard electrode potential E 0 of 0.80 V or more, wherein the weight ratio of the metal X is 1 to 80 wt% , The alloy particles are composite metal powders having an average particle diameter (D TEM ) of 20 nm or less and a crystal particle diameter (Dx) of 20 nm or less.
JP2005207990A 2005-07-19 2005-07-19 Method for producing composite metal powder and dispersion thereof Expired - Fee Related JP5124822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207990A JP5124822B2 (en) 2005-07-19 2005-07-19 Method for producing composite metal powder and dispersion thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207990A JP5124822B2 (en) 2005-07-19 2005-07-19 Method for producing composite metal powder and dispersion thereof

Publications (2)

Publication Number Publication Date
JP2007026911A JP2007026911A (en) 2007-02-01
JP5124822B2 true JP5124822B2 (en) 2013-01-23

Family

ID=37787423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207990A Expired - Fee Related JP5124822B2 (en) 2005-07-19 2005-07-19 Method for producing composite metal powder and dispersion thereof

Country Status (1)

Country Link
JP (1) JP5124822B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226293B2 (en) * 2007-12-25 2013-07-03 Dowaエレクトロニクス株式会社 Method for producing silver conductive film
JP5077886B2 (en) * 2008-02-08 2012-11-21 独立行政法人産業技術総合研究所 SERS particles comprising noble metal nanoparticle composite and method for producing the same
JP5912888B2 (en) * 2012-06-07 2016-04-27 大阪瓦斯株式会社 Method for producing alloy particles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1104012C (en) * 1996-06-11 2003-03-26 住友大阪水泥株式会社 Transparent conductive film, low-reflection transparent conductive film, and display
JP3402214B2 (en) * 1998-09-14 2003-05-06 三菱マテリアル株式会社 Method for producing metal fine particle dispersion
JP3900248B2 (en) * 2001-03-30 2007-04-04 ハリマ化成株式会社 Multilayer wiring board and method for forming the same
JP2002334614A (en) * 2001-05-07 2002-11-22 Kawakado Kimiko Conductive particles
JP4233834B2 (en) * 2002-10-09 2009-03-04 日揮触媒化成株式会社 NOVEL METAL PARTICLE AND METHOD FOR PRODUCING THE PARTICLE
JP2004256757A (en) * 2003-02-27 2004-09-16 Asahi Glass Co Ltd Electrically conductive ink for inkjet printer and process for preparing the same
JP2005154453A (en) * 2003-11-20 2005-06-16 Sumitomo Metal Mining Co Ltd Coating liquid for forming transparent conductive layer and transparent conductive base material
US20050136638A1 (en) * 2003-12-18 2005-06-23 3M Innovative Properties Company Low temperature sintering nanoparticle compositions

Also Published As

Publication number Publication date
JP2007026911A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP5139659B2 (en) Silver particle composite powder and method for producing the same
JP5164239B2 (en) Silver particle powder, dispersion thereof, and method for producing silver fired film
JP4756163B2 (en) Dispersion and paste of composite particle powder and method for producing silver particle powder used therefor
JP4674375B2 (en) Method for producing silver particle powder
US8293144B2 (en) Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
JP4973830B2 (en) Conductive composition, conductive paste and conductive film
TWI277469B (en) Silver particle powder and its production method
JP6349310B2 (en) Metal bonding composition
KR101375488B1 (en) Fine particle dispersion and method for producing fine particle dispersion
KR101371269B1 (en) Process for producing silver powder
JP5377483B2 (en) Composition containing fine metal particles and method for producing the same
JP5761483B2 (en) Silver fine particles and production method thereof, and conductive paste, conductive film and electronic device containing the silver fine particles
JPWO2018190246A1 (en) Copper particle mixture and method for producing the same, copper particle mixture dispersion, copper particle mixture-containing ink, method for storing copper particle mixture, and method for sintering copper particle mixture
JP5176060B2 (en) Method for producing silver particle dispersion
JP5162383B2 (en) Method for producing silver-coated copper fines
JP4279329B2 (en) Fine particle dispersion and method for producing fine particle dispersion
JP5830237B2 (en) Silver particle-containing composition, dispersion and method for producing paste
JP5124822B2 (en) Method for producing composite metal powder and dispersion thereof
JP4674376B2 (en) Method for producing silver particle powder
JP5232016B2 (en) Wiring forming material
JP6626572B2 (en) Metal bonding material, method of manufacturing the same, and method of manufacturing metal bonded body using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121011

R150 Certificate of patent or registration of utility model

Ref document number: 5124822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees