JP4248857B2 - Method for producing silver fine particles - Google Patents

Method for producing silver fine particles Download PDF

Info

Publication number
JP4248857B2
JP4248857B2 JP2002348441A JP2002348441A JP4248857B2 JP 4248857 B2 JP4248857 B2 JP 4248857B2 JP 2002348441 A JP2002348441 A JP 2002348441A JP 2002348441 A JP2002348441 A JP 2002348441A JP 4248857 B2 JP4248857 B2 JP 4248857B2
Authority
JP
Japan
Prior art keywords
silver
fine particles
organic solvent
solution
silver fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002348441A
Other languages
Japanese (ja)
Other versions
JP2004183009A (en
Inventor
恵美子 江草
浩太郎 黒田
茂彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2002348441A priority Critical patent/JP4248857B2/en
Publication of JP2004183009A publication Critical patent/JP2004183009A/en
Application granted granted Critical
Publication of JP4248857B2 publication Critical patent/JP4248857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は触媒、光学材料、電子材料、感圧材料などに用いられるナノサイズ金属微粒子の製造方法に関する。
【0002】
【従来の技術】
数十nm以下の粒径を有する貴金属の微粒子は、バルク金属には見られない微粒子に特有の性質を活かして、化学的に安定な着色剤、カラーフィルター、導電性ペースト、化学反応の触媒、透明導電膜等、その応用を拡大している。従来のリソグラフィー技術に基づいたLSIの高集積化の限界を打破する目的で研究が進められている単一電子デバイスにおいては、その一構成要素である量子ドットとして金属微粒子の利用も検討されている。
【0003】
このような金属微粒子を製造する方法として、気相法と液相法がある。気相法にはガス中蒸発法、スパッタリング法等があり、例えばガス中蒸発法では、不活性ガスを導入した真空容器内で金属を蒸発させ、有機溶剤で被覆した状態の金属微粒子が得られる。高濃度の金属微粒子分散液を製造可能である利点を有するが、金属微粒子の粒径分布を制御することは困難である。また、特別な装置を必要とするためコスト面の問題もある。
【0004】
一方、液相法は、金属イオン含有溶液に紫外光を照射あるいは還元剤を加えて金属イオンを還元することによって金属微粒子を得る方法である。なかでも還元剤を用いる方法は、特別な装置を必要とすることなく、比較的容易に粒径分布の狭い金属微粒子を製造することが可能であるといった特徴がある。このような手法として具体的には、保護ポリマーの存在下、金属塩を溶液中で還元してコロイド溶液を得る手法が古くから用いられており、これを応用した技術として、溶媒中に金属塩とアミンを溶解した溶液を還元することにより得られた溶液に、チオールまたはチオール溶液を添加することにより得られる表面がチオールで保護された金属超微粒子を作製する手法が開示されている。(特許文献1参照)
【0005】
更にこれら手法の他に、金属微粒子の製造方法としては、脂肪酸と水酸化ナトリウムを反応させ鹸化後、硝酸銀と反応させることにより脂肪酸塩銀を作製し、窒素存在下250℃で該金属塩を熱分解させることにより銀超微粒子を作製する技術も提案されている。(非特許文献1参照)
【0006】
【非特許文献1】
長澤浩、他5名、「金属錯体の固相熱分解法による銀超微粒子の合成と評価」、超微粒子とクラスター懇談会 第2回研究会公演予稿集、1998年4月22日、P45−48
【特許文献1】
特開平10−195505号公報
【0007】
【発明が解決しようとする課題】
しかし、液相法においても、一般的に粒径分布の狭い金属微粒子を得ることは非常に厳密な条件を必要とし、より厳密に制御された平均粒径及び粒径分布を有する金属微粒子を得ることは困難であるという問題があった。更に、副生成物が多く、安定な銀コロイドが作製できないといった問題も有するものであった。また、熱分解を行う方法においては、不活性ガスの存在下で熱分解を行うことが必要であるために大掛かりな装置を必要とし、また高温条件下で製造を行なう必要がある。本発明はこのような問題点に注目し、安定な微粒子を容易に製造することのできる微粒子の製造方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
すなわち本願請求項1記載の発明は、微粒子の製造方法において、(1)相間移動剤である安息香酸の存在下、塩水溶液と水と相溶しない有機溶媒を攪拌混合し、有機溶媒にイオンを相間移動させる工程、(2)ニトリル化合物もしくはアミン化合物から選ばれてなる保護剤の存在下、イオンを含有する有機溶媒と還元剤を攪拌混合し、微粒子コロイド溶液を作製する工程、(3)溶媒を除去し、表面保護された微粒子を得る工程、を含むことを特徴とする。
【0009】
【0010】
【0011】
請求項記載の発明は、請求項記載の微粒子の製造方法にあって、前記還元剤が水素化ホウ素ナトリウムである。
【0012】
請求項記載の発明は、請求項1乃至2のいずれかに記載の微粒子の製造方法にあって、前記保護剤がアミン化合物である。
【0013】
【発明の実施の形態】
以下、本発明の金属微粒子の製造方法について詳細に説明する。
本発明の製造方法は、(1)相間移動剤である安息香酸の存在下、塩水溶液と水と相溶しない有機溶媒を攪拌混合し、有機溶媒にイオンを相間移動させる工程、(2)アミン化合物から選ばれてなる保護剤の存在下、前記有機溶媒と還元剤を攪拌混合し、微粒子コロイド溶液を作製する工程、(3)溶媒を除去し、表面保護された微粒子を得る工程、を含むことを特徴とする。
【0014】
塩としては、硝酸銀、亜硝酸銀、塩化銀等が挙げられる。前記塩の水溶液は濃度0.1mM以上に調整されてなることが望ましい。
【0015】
まず(1)相間移動剤である安息香酸の存在下、前記塩水溶液と水と相溶しない有機溶媒を攪拌混合する。
相間移動剤である安息香酸は、イオンに配位して、有機相にイオンを移動させるものである。
【0016】
有機溶媒は特に限定されず、ノルマルヘキサン、シクロヘキサン、ノルマルペンタン、ノルマルヘプタン、トルエン、メチルイソブチルケトン、キシレン、ベンゼン、クロロホルム、四塩化炭素、メチルエチルケトン、酢酸エチル、酢酸ブチル、酢酸イソブチル、エチルベンゼン等が挙げられる。
【0017】
相間移動剤である安息香酸は、溶液に直接添加してもよいし、あらかじめ有機溶媒に溶解させていても良い。溶液中の安息香酸の濃度は、イオンに対して2〜100倍モル程度であることが望ましい。また相間移動時間としては、数時間程度でよい。
【0018】
続いて、(2)特定の保護剤の存在下、前記イオンを含有する有機溶媒と還元剤を攪拌混合し、微粒子コロイド溶液を作製する。
前記保護剤は、有機溶媒中で微粒子の凝集による二次粒子の生成を妨げ、微粒子を安定化するものであって、ニトリル化合物あるいはアミン化合物が好適に用いられる。具体的には、ニトリル化合物としてはデカンニトリル、ドデカンニトリルなどがある。アミン化合物としては、第1アミン類、第2アミン類、第3アミン類、ジアミン類、ポリアミン類、環式アミン類があげられ、なかでもプロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ペプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン等のアルキルアミンが好適に用いられる。これら保護剤はイオンに対して0.1〜10倍モル程度の量を滴下することによって添加する。これらは単独または2種以上を併用して用いることができる。
【0019】
還元剤は通常使用されるもので特に限定されず、水素化ホウ素ナトリウム、水素化ホウ素カリウムなどの水素化ホウ素金属塩、水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウム等の水素化アルミニウム塩、ヒドラジン化合物、クエン酸及びその塩、コハク酸及びその塩、アスコルビン酸及びその塩等がある。還元剤の添加方法としては、直接溶液中に還元剤を添加する方法、または予め還元剤を溶解させた溶液を添加する方法のどちらでもよいが、前記各種還元剤を水あるいはエタノール、プロパノール等のアルコールに溶解した状態で、前記イオンを含む有機溶媒に添加することが好ましい。
【0020】
前記混合物全体を、攪拌子等を用いて1時間以上混合攪拌した後静置することによって、微粒子に特有の色に着色した有機相を得る。この微粒子コロイド溶液は、420nm付近に特有の吸収を示し、それによって微粒子の生成が確認される。
【0021】
そして(3)溶媒を除去し、表面保護されたを微粒子を得る。
前記有機相のみを分離し、乾燥させることにより、保護剤によって表面保護された微粒子を得る。尚、有機相に貧溶媒(溶質に対して溶解度の小さい溶媒)を加えることで迅速に微粒子を沈殿せしめることができる。有機相のみを分離するには、分液ロートを用いる方法、有機相のみを吸引する方法、あるいは単純にデカンテーションによってもよい。この沈殿物を洗浄し、不純物を除去することにより、高濃度の微粒子を得ることができる。
また、得られた微粒子を別の有機溶媒に再分散させることにより、制御された平均粒径及び粒径分布を有する微粒子を得ることもできる。ここで再分散させる有機溶媒としては、例えばトルエン、イソオクタン、キシレン、ヘキサン、ジエチルベンゼン、テルピネオール、ヘキサデカン、あるいはシクロヘキサンが好ましい。
【0022】
【実施例】
以下、本発明の微粒子の製造方法について、実施例を示しさらに詳細に説明する。
硝酸銀水溶液(3.0×10−2mol/l)4mlに、表1の相間移動剤を溶解させたトルエン溶液(5.0×10−2mol/l)64mlを加えて、室温雰囲気下で10分間攪拌した後静置し、イオンの相間移動速度について評価した。尚、評価は静置してから5時間、24時間後の溶液に還元剤を滴下して銀微粒子が生成を観察することにより判断した。表1に結果を示す。
【0023】
【表1】

Figure 0004248857
【0024】
結果、安息香酸を相間移動剤として使用した場合は、銀イオンの相間移動速度が早いことが判明した。
【0025】
次に、硝酸銀水溶液(3.0×10−2mol/l)4mlに、相間移動剤を溶解させたトルエン溶液(5.0×10−2mol/l)64mlを加えて、室温雰囲気下で10分間攪拌した後、24時間静置した。続いて、保護剤を0.10g加えて10分間攪拌した後、水酸化ホウ素ナトリウム水溶液(0.4mol/l)を加え、3時間以上攪拌した。相間移動剤、保護剤は表2に示す組合せで使用し、得られた有機相の着色の有無を観測して銀微粒子コロイド生成状況を評価した。尚、銀微粒子コロイド溶液は茶黄色を呈することが知られており、結果を表2に併記する。
【0026】
【表2】
Figure 0004248857
【0027】
結果、アミン化合物、ニトリル化合物以外の化合物を保護剤として使用した試料では銀微粒子コロイドの生成がみられなかった。また保護剤としてニトリル化合物を使用した場合、銀微粒子コロイドは生成されるものの、有機相と水相の相間や壁面に副生成物が観察されることがあった。
【0028】
次に、上記コロイド溶液の有機相を分離し、エタノールを加えた後、吸引濾過により褐色の沈殿物を得た。この沈殿物をトルエンに再分散して、紫外可視吸収スペクトルを測定したところ、図1に示すように銀微粒子に起因すると考えられる波長433.5nmに極大値が見られた。また透過型電子顕微鏡により、図2に示すように粒子径2〜10nmの大きさの銀微粒子が観測された。これらの結果より、銀微粒子が合成できたことが確認できた。
【0029】
【発明の効果】
以上説明したように、本願請求項記載の発明は、微粒子の製造方法において、(1)相間移動剤である安息香酸の存在下、塩水溶液と水と相溶しない有機溶媒を攪拌混合し、有機溶媒にイオンを相間移動させる工程、(2)ニトリル化合物もしくはアミン化合物から選ばれてなる保護剤の存在下、イオンを含有する有機溶媒と還元剤を攪拌混合し、微粒子コロイド溶液を作製する工程、(3)溶媒を除去し、表面保護された微粒子を得る工程、を含むことを特徴とする微粒子の製造方法であって、簡易に安定な微粒子を高い生産性で製造することができる。更に特定の保護剤を用いることにより、副生成物が少なく、より安定な微粒子が得られることが判った。
【図面の簡単な説明】
【図1】 実施例により得られた沈殿物をトルエンに再分散させた物質の紫外可視吸収スペクトル(UV−VIS)である。
【図2】 実施例により得られた沈殿物をトルエンに再分散させた物質の透過型電子顕微鏡(TEM)像である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing nanosized metal fine particles used for catalysts, optical materials, electronic materials, pressure sensitive materials and the like.
[0002]
[Prior art]
Precious metal fine particles having a particle size of several tens of nanometers or less, utilizing the unique properties of fine particles not found in bulk metals, chemically stable colorants, color filters, conductive pastes, chemical reaction catalysts, The application of the transparent conductive film has been expanded. In single electronic devices that have been studied for the purpose of breaking the limits of high integration of LSI based on conventional lithography technology, the use of metal fine particles as quantum dots, which are one component, is also being considered. .
[0003]
As a method for producing such metal fine particles, there are a gas phase method and a liquid phase method. The gas phase method includes a gas evaporation method, a sputtering method, and the like. For example, in the gas evaporation method, metal is evaporated in a vacuum vessel into which an inert gas is introduced, and metal fine particles in a state of being coated with an organic solvent are obtained. . Although it has the advantage that a high-concentration metal fine particle dispersion can be produced, it is difficult to control the particle size distribution of the metal fine particles. There is also a problem of cost because a special device is required.
[0004]
On the other hand, the liquid phase method is a method for obtaining metal fine particles by reducing metal ions by irradiating a metal ion-containing solution with ultraviolet light or adding a reducing agent. Among these, the method using a reducing agent is characterized in that metal fine particles having a narrow particle size distribution can be produced relatively easily without requiring a special apparatus. Specifically, a technique for obtaining a colloidal solution by reducing a metal salt in a solution in the presence of a protective polymer has been used for a long time. As a technique to which this technique is applied, a metal salt in a solvent is used. And a method of producing ultrafine metal particles having a thiol-protected surface obtained by adding a thiol or a thiol solution to a solution obtained by reducing a solution in which amine is dissolved. (See Patent Document 1)
[0005]
In addition to these methods, metal fine particles can be produced by reacting a fatty acid with sodium hydroxide to saponify, and then reacting with silver nitrate to produce fatty acid salt silver, and heating the metal salt at 250 ° C. in the presence of nitrogen. A technique for producing ultrafine silver particles by decomposition is also proposed. (See Non-Patent Document 1)
[0006]
[Non-Patent Document 1]
Hiroshi Nagasawa and five others, “Synthesis and Evaluation of Silver Ultrafine Particles by Solid Phase Thermal Decomposition of Metal Complexes”, Ultrafine Particles and Cluster Roundtable Proceedings of the 2nd Workshop, April 22, 1998, P45- 48
[Patent Document 1]
Japanese Patent Laid-Open No. 10-195505
[Problems to be solved by the invention]
However, even in the liquid phase method, obtaining metal fine particles having a narrow particle size distribution generally requires very strict conditions, and obtains metal fine particles having a more strictly controlled average particle size and particle size distribution. There was a problem that it was difficult. Furthermore, there are many by-products, and there is a problem that a stable silver colloid cannot be produced. Moreover, in the method of performing thermal decomposition, since it is necessary to perform thermal decomposition in the presence of an inert gas, a large-scale apparatus is required, and manufacturing must be performed under high temperature conditions. The present invention pays attention to such a problem, and an object of the present invention is to provide a method for producing silver fine particles, which can easily produce stable silver fine particles.
[0008]
[Means for Solving the Problems]
That the invention of claim 1, wherein, in the method for producing fine silver particles, (1) the presence of benzoic acid, a phase transfer agent, an organic solvent incompatible with silver salt solution and water were mixed with stirring, in an organic solvent A step of transferring silver ions between phases, and (2) a step of preparing a silver fine particle colloidal solution by stirring and mixing an organic solvent containing silver ions and a reducing agent in the presence of a protective agent selected from a nitrile compound or an amine compound. (3) removing the solvent to obtain silver fine particles with surface protection.
[0009]
[0010]
[0011]
The invention according to claim 2 is the method for producing silver fine particles according to claim 1 , wherein the reducing agent is sodium borohydride.
[0012]
A third aspect of the present invention is the method for producing silver fine particles according to any one of the first to second aspects, wherein the protective agent is an amine compound.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method for producing metal fine particles of the present invention will be described in detail.
Production method of the present invention, (1) the presence of benzoic acid, a phase transfer agent, an organic solvent incompatible with water silver salt aqueous solution were mixed by stirring, the step of phase-transfer silver ion into the organic solvent, (2 ) A step of stirring and mixing the organic solvent and the reducing agent in the presence of a protective agent selected from amine compounds to produce a silver fine particle colloid solution; and (3) removing the solvent to obtain surface-protected silver fine particles. Including a process.
[0014]
The silver salt, silver nitrate, silver nitrite, silver chloride, and the like. The aqueous silver salt solution is preferably adjusted to a concentration of 0.1 mM or more.
[0015]
First (1) the presence of benzoic acid, a phase transfer agent, mixing and stirring an organic solvent incompatible said silver salt solution and water.
Benzoate a phase transfer agent is coordinated with silver ion, Ru der to move the silver ions in the organic phase.
[0016]
The organic solvent is not particularly limited, and includes normal hexane, cyclohexane, normal pentane, normal heptane, toluene, methyl isobutyl ketone, xylene, benzene, chloroform, carbon tetrachloride, methyl ethyl ketone, ethyl acetate, butyl acetate, isobutyl acetate, ethylbenzene, and the like. It is done.
[0017]
Benzoic acid , which is a phase transfer agent, may be added directly to the solution or may be dissolved in advance in an organic solvent. The concentration of benzoic acid in the solution is desirably about 2 to 100 times mol of silver ions. In addition, the phase transfer time may be about several hours.
[0018]
Subsequently, (2) an organic solvent containing silver ions and a reducing agent are stirred and mixed in the presence of a specific protective agent to prepare a silver fine particle colloidal solution.
The protective agent prevents the formation of secondary particles by aggregation of silver fine particles in an organic solvent and stabilizes the silver fine particles, and a nitrile compound or an amine compound is preferably used. Specifically, examples of the nitrile compound include decane nitrile and dodecane nitrile. Examples of amine compounds include primary amines, secondary amines, tertiary amines, diamines, polyamines, and cyclic amines. Among them, propylamine, butylamine, pentylamine, hexylamine, peptylamine, octyl Alkylamines such as amine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine and hexadecylamine are preferably used. These protective agents are added by dropping an amount of about 0.1 to 10 times mol with respect to silver ions. These can be used alone or in combination of two or more.
[0019]
The reducing agent is usually used and is not particularly limited. Metal borohydride such as sodium borohydride and potassium borohydride, lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, beryllium aluminum hydride And aluminum hydride salts such as magnesium aluminum hydride and calcium aluminum hydride, hydrazine compounds, citric acid and salts thereof, succinic acid and salts thereof, ascorbic acid and salts thereof, and the like. As a method for adding the reducing agent, either a method of adding the reducing agent directly into the solution or a method of adding a solution in which the reducing agent is dissolved in advance may be used, but the various reducing agents may be water, ethanol, propanol or the like. It is preferable to add to the organic solvent containing silver ions in a state dissolved in alcohol.
[0020]
The whole mixture is mixed and stirred for 1 hour or more using a stirrer or the like and then allowed to stand to obtain an organic phase colored in a color specific to silver fine particles. This silver fine particle colloid solution shows a specific absorption around 420 nm, thereby confirming the formation of silver fine particles.
[0021]
(3) The solvent is removed, and the surface-protected silver fine particles are obtained.
Only the organic phase is separated and dried to obtain silver fine particles whose surface is protected by a protective agent. In addition, silver fine particles can be rapidly precipitated by adding a poor solvent (a solvent having low solubility with respect to the solute) to the organic phase. In order to separate only the organic phase, a method using a separating funnel, a method of sucking only the organic phase, or simply decanting may be used. By washing the precipitate and removing impurities, high concentration silver fine particles can be obtained.
Furthermore, by re-dispersing the fine silver particles obtained in a separate organic solvent, it is also possible to obtain a fine silver particles having an average particle size and particle size distribution controlled. The organic solvent to be redispersed here is preferably, for example, toluene, isooctane, xylene, hexane, diethylbenzene, terpineol, hexadecane or cyclohexane.
[0022]
【Example】
Hereinafter, the method for producing silver fine particles of the present invention will be described in more detail with reference to examples.
To 4 ml of an aqueous silver nitrate solution (3.0 × 10 −2 mol / l), 64 ml of a toluene solution (5.0 × 10 −2 mol / l) in which the phase transfer agent shown in Table 1 was dissolved was added, The mixture was allowed to stand after stirring for 10 minutes, and the phase transfer speed of silver ions was evaluated. The evaluation was made by observing the formation of silver fine particles by dropping a reducing agent into the solution 5 hours and 24 hours after standing. Table 1 shows the results.
[0023]
[Table 1]
Figure 0004248857
[0024]
As a result, it was found that when benzoic acid was used as a phase transfer agent, the phase transfer rate of silver ions was fast.
[0025]
Next, 64 ml of a toluene solution (5.0 × 10 −2 mol / l) in which a phase transfer agent is dissolved is added to 4 ml of an aqueous silver nitrate solution (3.0 × 10 −2 mol / l). After stirring for 10 minutes, the mixture was allowed to stand for 24 hours. Subsequently, after adding 0.10 g of a protective agent and stirring for 10 minutes, an aqueous sodium borohydride solution (0.4 mol / l) was added and stirred for 3 hours or more. The phase transfer agent and the protective agent were used in combinations shown in Table 2, and the resulting organic phase was observed for coloration to evaluate the state of silver fine particle colloid formation. The silver fine particle colloidal solution is known to exhibit a brownish yellow color, and the results are also shown in Table 2.
[0026]
[Table 2]
Figure 0004248857
[0027]
As a result, in the sample using a compound other than the amine compound and the nitrile compound as a protective agent, no formation of silver fine particle colloid was observed. Further, when a nitrile compound is used as a protective agent, although a silver fine particle colloid is generated, a by-product may be observed between the organic phase and the aqueous phase or on the wall surface.
[0028]
Next, the organic phase of the colloidal solution was separated, ethanol was added, and a brown precipitate was obtained by suction filtration. When the precipitate was redispersed in toluene and an ultraviolet-visible absorption spectrum was measured, a maximum value was observed at a wavelength of 433.5 nm which is considered to be caused by silver fine particles as shown in FIG. Further, silver fine particles having a particle diameter of 2 to 10 nm were observed with a transmission electron microscope as shown in FIG. From these results, it was confirmed that silver fine particles could be synthesized.
[0029]
【The invention's effect】
As described above, the invention of claim, wherein, in the method for producing fine silver particles, (1) the presence of benzoic acid, a phase transfer agent, an organic solvent incompatible with silver salt solution and water were mixed and stirred A step of transferring silver ions to an organic solvent, (2) an organic solvent containing silver ions and a reducing agent are stirred and mixed in the presence of a protective agent selected from a nitrile compound or an amine compound, and a silver fine particle colloidal solution And (3) a step of removing the solvent to obtain surface-protected silver fine particles, which is a method for producing silver fine particles, which can easily produce stable silver fine particles with high productivity. Can be manufactured. Furthermore, it was found that by using a specific protective agent, more stable silver fine particles can be obtained with less by-products.
[Brief description of the drawings]
FIG. 1 is an ultraviolet-visible absorption spectrum (UV-VIS) of a material obtained by redispersing precipitates obtained in Examples in toluene.
FIG. 2 is a transmission electron microscope (TEM) image of a material obtained by redispersing precipitates obtained in Examples in toluene.

Claims (3)

微粒子の製造方法において、(1)相間移動剤である安息香酸の存在下、塩水溶液と水と相溶しない有機溶媒を攪拌混合し、有機溶媒にイオンを相間移動させる工程、(2)ニトリル化合物もしくはアミン化合物から選ばれてなる保護剤の存在下、イオンを含有する有機溶媒と還元剤を攪拌混合し、微粒子コロイド溶液を作製する工程、(3)溶媒を除去し、表面保護された微粒子を得る工程、を含むことを特徴とする微粒子の製造方法。In the method for manufacturing fine silver particles, (1) the presence of benzoic acid, a phase transfer agent, an organic solvent incompatible with water silver salt aqueous solution were mixed by stirring, the step of phase-transfer silver ion into the organic solvent, (2 ) nitrile compound or the presence of a protective agent comprising been selected from amine compounds, organic solvents reducing agent containing silver ions were mixed with stirring, the step of producing a silver particle colloidal solution to remove (3) a solvent, the surface method for producing fine silver particles, which comprises a step, to obtain a protected silver particles. 前記還元剤が水素化ホウ素ナトリウムである請求項記載の微粒子の製造方法。The process according to claim 1 silver microparticles wherein the reducing agent is sodium borohydride. 前記保護剤がアミン化合物である請求項1乃至2のいずれかに記載の微粒子の製造方法。Method for producing fine silver particles according to any one of claims 1 to 2 wherein the protective agent is an amine compound.
JP2002348441A 2002-11-29 2002-11-29 Method for producing silver fine particles Expired - Fee Related JP4248857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348441A JP4248857B2 (en) 2002-11-29 2002-11-29 Method for producing silver fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348441A JP4248857B2 (en) 2002-11-29 2002-11-29 Method for producing silver fine particles

Publications (2)

Publication Number Publication Date
JP2004183009A JP2004183009A (en) 2004-07-02
JP4248857B2 true JP4248857B2 (en) 2009-04-02

Family

ID=32751352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348441A Expired - Fee Related JP4248857B2 (en) 2002-11-29 2002-11-29 Method for producing silver fine particles

Country Status (1)

Country Link
JP (1) JP4248857B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4973186B2 (en) * 2004-03-10 2012-07-11 旭硝子株式会社 Metal-containing fine particles, metal-containing fine particle dispersions and conductive metal-containing materials
JP2006118010A (en) * 2004-10-22 2006-05-11 Toda Kogyo Corp Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
WO2006057467A1 (en) * 2004-11-26 2006-06-01 Seoul National University Industry Foundation Method for large-scale production of monodisperse nanoparticles
JP4706637B2 (en) * 2004-11-29 2011-06-22 Dic株式会社 Conductive paste and method for producing conductive paste
JP4284283B2 (en) * 2005-02-02 2009-06-24 Dowaエレクトロニクス株式会社 Silver particle powder manufacturing method
TWI285568B (en) 2005-02-02 2007-08-21 Dowa Mining Co Powder of silver particles and process
JP4660780B2 (en) * 2005-03-01 2011-03-30 Dowaエレクトロニクス株式会社 Method for producing silver particle powder
JP5176060B2 (en) * 2005-07-05 2013-04-03 Dowaエレクトロニクス株式会社 Method for producing silver particle dispersion
KR100790457B1 (en) 2006-07-10 2008-01-02 삼성전기주식회사 Method for producing metal nanoparticles
US7968008B2 (en) 2006-08-03 2011-06-28 Fry's Metals, Inc. Particles and inks and films using them
JP2008069374A (en) * 2006-09-12 2008-03-27 Nippon Shokubai Co Ltd Metallic nanoparticle dispersion and metallic film
US8382878B2 (en) * 2008-08-07 2013-02-26 Xerox Corporation Silver nanoparticle process
US8298314B2 (en) * 2008-08-18 2012-10-30 Xerox Corporation Silver nanoparticles and process for producing same
WO2010036114A2 (en) * 2008-09-29 2010-04-01 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and kit for manufacturing metal nanoparticles and metal-containing nanostructured composite materials
EP2281646A1 (en) * 2009-07-02 2011-02-09 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method and kit for manufacturing metal nanoparticles and metal-containing nanostructured composite materials
JP5064423B2 (en) * 2009-02-16 2012-10-31 Dowaエレクトロニクス株式会社 Silver particle powder and dispersion

Also Published As

Publication number Publication date
JP2004183009A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP4248857B2 (en) Method for producing silver fine particles
Bhattarai et al. Green synthesis of gold and silver nanoparticles: Challenges and opportunities
US6929675B1 (en) Synthesis metal nanoparticle
Ma et al. Preparation of inorganic materials using ionic liquids
Yamamoto et al. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine
TWI272983B (en) Silver powder and method of preparing the same
JP2021531955A (en) Nanoreactor for the synthesis of porous crystalline materials
JP5377962B2 (en) Electronic grade metal nanostructure
EP3508291A1 (en) Method for preparing solution containing ligand-bonded gold nanoclusters
Akhbari et al. Preparation of silver nanoparticles from silver (I) nano-coordination polymer
JP2008106315A (en) Metal nanoparticle and production method therefor
Jafari et al. Effect of preparation conditions on synthesis of Ag2Se nanoparticles by simple sonochemical method assisted by thiourea
JP2007138250A (en) Method for producing silver grain, silver grain-containing composition comprising the obtained silver grain and its use
KR20100092392A (en) Organoamine stabilized silver nanoparticles and process for producing same
Abutbul et al. ‘Beneficial impurities’ in colloidal synthesis of surfactant coated inorganic nanoparticles
Yamanoi et al. Detailed Structural Examinations of Covalently Immobilized Gold Nanoparticles onto Hydrogen‐Terminated Silicon Surfaces
WO2014119793A1 (en) Metallic silver separation method, coated silver fine particles, and thin, linear, coated metallic silver
Weber et al. Investigations on the growth of bismuth oxido clusters and the nucleation to give metastable bismuth oxide modifications
CN102858684A (en) Method for the mass production of silver nanoparticles having a uniform size
Kumar et al. Phase transfer of platinum nanoparticles from aqueous to organic solutions using fatty amine molecules
Feng et al. Converting ultrafine silver nanoclusters to monodisperse silver sulfide nanoparticles via a reversible phase transfer protocol
JP2004051997A (en) Dispersion liquid of metallic microparticles, preparation method therefor, transparent colored film and manufacturing method therefor
JPH10195505A (en) Metallic superfine particle and production thereof
JP2003193118A (en) Method of producing metallic fine particle
JP4705347B2 (en) Method for producing silver core-gold shell fine particles protected with water-insoluble polymer pigment dispersant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4248857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees