JP4854289B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4854289B2
JP4854289B2 JP2005359687A JP2005359687A JP4854289B2 JP 4854289 B2 JP4854289 B2 JP 4854289B2 JP 2005359687 A JP2005359687 A JP 2005359687A JP 2005359687 A JP2005359687 A JP 2005359687A JP 4854289 B2 JP4854289 B2 JP 4854289B2
Authority
JP
Japan
Prior art keywords
negative electrode
sio
active material
carbon
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005359687A
Other languages
Japanese (ja)
Other versions
JP2007165108A (en
JP2007165108A5 (en
Inventor
將之 山田
橋 石
内冨  和孝
浩 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2005359687A priority Critical patent/JP4854289B2/en
Publication of JP2007165108A publication Critical patent/JP2007165108A/en
Publication of JP2007165108A5 publication Critical patent/JP2007165108A5/ja
Application granted granted Critical
Publication of JP4854289B2 publication Critical patent/JP4854289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、充放電サイクル特性と重負荷放電特性に優れた非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics and heavy load discharge characteristics.

非水電解質二次電池は高電圧・高容量であることから、その発展に対して大きな期待が寄せられている。従来、非水電解質二次電池の負極活物質には、Li(リチウム)またはLi合金が用いられてきた。しかし、充電時にデンドライト状のLiが析出するため内部短絡が起こり易いという問題があった。また、析出したデンドライト状のLiは高比表面積で活性が高く、安全性に欠けるという問題があった。さらに、デンドライト状のLiの表面と電解液中の有機溶媒とが反応してLi表面に電子導電性を欠いた界面皮膜が形成されるため電池の内部抵抗が高くなり、結果として充放電サイクル特性が劣化するという問題があった。   Since non-aqueous electrolyte secondary batteries have high voltage and high capacity, great expectations are placed on their development. Conventionally, Li (lithium) or a Li alloy has been used as a negative electrode active material of a non-aqueous electrolyte secondary battery. However, since dendritic Li is deposited during charging, there is a problem that an internal short circuit easily occurs. In addition, the deposited dendritic Li has a problem that it has a high specific surface area, high activity, and lacks safety. Furthermore, the internal resistance of the battery is increased because the dendritic Li surface reacts with the organic solvent in the electrolyte to form an interface film lacking electronic conductivity on the Li surface, resulting in charge / discharge cycle characteristics. There was a problem of deterioration.

このような事情を受けて、現在では、LiやLi合金に代えて、Liイオンを挿入および脱離可能な、天然または人造の黒鉛系炭素材料を負極材料として用いることにより、非水電解質二次電池の充放電サイクル特性の劣化を抑制している。   Under such circumstances, at present, a non-aqueous electrolyte secondary material can be obtained by using, as a negative electrode material, a natural or artificial graphite-based carbon material that can insert and desorb Li ions instead of Li or Li alloy. Deterioration of the charge / discharge cycle characteristics of the battery is suppressed.

ところで、小型化および多機能化した携帯機器用の電池について更なる高容量化が望まれるにつれて、低結晶性炭素、Si(シリコン)、Sn(錫)などのように、より多くのLiを収容可能な材料が負極材料(以下、「高容量負極材料」ともいう)として注目を集めている。そして、例えば、LiSi(0≦t≦5)を負極活物質として用いた非水電解質二次電池も開示されている(例えば、特許文献1)。 By the way, as the battery for portable devices having a smaller size and more functions is desired to have a higher capacity, it accommodates more Li such as low crystalline carbon, Si (silicon), Sn (tin), etc. Possible materials are attracting attention as negative electrode materials (hereinafter also referred to as “high capacity negative electrode materials”). Then, for example, Li t Si (0 ≦ t ≦ 5) also a non-aqueous electrolyte secondary battery using as a negative electrode active material has been disclosed (e.g., Patent Document 1).

また、携帯機器などの先端機器用の電池においては、高容量であることに加えて重負荷放電特性が優れていること(放電電流密度が大きいこと)も求められている。高容量負極材料について、重負荷放電特性を向上させる最も簡便な方法としては、高容量負極材料を微粉化すること、すなわち、高容量負極材料の反応面積を大きくすることが考えられている(例えば、非特許文献1)。   In addition, batteries for advanced devices such as portable devices are required to have high capacity and excellent heavy load discharge characteristics (high discharge current density). For the high-capacity negative electrode material, the simplest method for improving the heavy load discharge characteristics is to pulverize the high-capacity negative electrode material, that is, to increase the reaction area of the high-capacity negative electrode material (for example, Non-Patent Document 1).

上記のような負極材料を用いた負極としては、例えば、この負極材料と、バインダなどを含有するペースト状やスラリー状の塗料(負極合剤含有組成物)を調製し、これを集電体となる金属箔などに塗布し、該組成物中の溶媒(分散媒)を乾燥除去するなどして負極合剤層を形成することで得られるものが一般的である。   As the negative electrode using the negative electrode material as described above, for example, a paste-like or slurry-like paint (a negative electrode mixture-containing composition) containing this negative electrode material and a binder is prepared, and this is used as a current collector. It is generally obtained by forming a negative electrode mixture layer by applying to a metal foil or the like, and drying and removing the solvent (dispersion medium) in the composition.

ところが、上記のように微粉化された負極材料をそのまま用いて上記の組成物を調製する場合、負極材料の比表面積が大きいために多量のバインダが必要であり、また、多量のバインダを用いても、形成後の負極合剤層の集電体に対する接着性が悪く、その結果、充放電サイクル特性などの特性に悪影響を及ぼしていた。   However, when the above composition is prepared using the finely divided negative electrode material as described above, a large amount of binder is required because the specific surface area of the negative electrode material is large, and a large amount of binder is used. However, the adhesion of the negative electrode mixture layer after formation to the current collector was poor, and as a result, it adversely affected characteristics such as charge / discharge cycle characteristics.

そこで,Siの超微粒子がSiO中に分散した構造を持つSiOを負極材料に用いることが注目されている。この材料を負極活物質として用いると、Liと反応するSiが微粒子であるために充放電がスムーズに行われる一方で、その粒子自体はSiOであり表面積が小さく、塗料とした際の塗料性や負極合剤層の集電体に対する接着性にも問題はない。 Accordingly, attention has been focused on using SiO x having a structure in which ultrafine particles of Si are dispersed in SiO 2 as a negative electrode material. When this material is used as the negative electrode active material, since the Si that reacts with Li is a fine particle, charging / discharging is performed smoothly. On the other hand, the particle itself is SiO x and has a small surface area. There is also no problem with the adhesion of the negative electrode mixture layer to the current collector.

なお、SiOは導電性の低い酸化物であるため、これを用いて負極を構成する際には、導電助剤との混合、分散を十分に達成する必要がある。特許文献2や特許文献3には、SiOxの表面を炭素で被覆して、その導電性を高めた上で負極を構成する技術が開示されている。 Since SiO x is an oxide having low conductivity, when it is used to form a negative electrode, it is necessary to sufficiently achieve mixing and dispersion with a conductive aid. Patent Documents 2 and 3 disclose a technique in which the surface of SiOx is covered with carbon to increase the conductivity and then the negative electrode is configured.

特開平7−29602号公報Japanese Patent Laid-Open No. 7-29602 特開2004−47404号公報JP 2004-47404 A 特開2005−259697号公報Japanese Patent Laid-Open No. 2005-259697 J.O.Besenhard,Journal of Power Sources,1997年,第68巻,p.87J. et al. O. Besenhard, Journal of Power Sources, 1997, Vol. 68, p. 87

ところが、本発明者らの検討によると、SiOを負極材料に用いた非水電解質二次電池においても、期待に反して良好な充放電サイクル特性が確保できないことが判明した。 However, according to the study by the present inventors, it was found that even in a nonaqueous electrolyte secondary battery using SiO x as a negative electrode material, good charge / discharge cycle characteristics could not be ensured against expectations.

本発明は上記事情に鑑みてなされたものであり、その目的は、充放電サイクル特性と重負荷放電特性に優れた非水電解質二次電池を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the nonaqueous electrolyte secondary battery excellent in charging / discharging cycling characteristics and heavy load discharge characteristics.

上記目的を達成し得た本発明の非水電解質二次電池は、層状構造を有するリチウム含有遷移金属酸化物を正極活物質として含有する正極、負極、および非水電解質を備えたものであって、上記負極は、組成式SiOで表される材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である。以下、当該材料を「SiO」と略記する場合がある。)の表面が炭素で被覆された負極活物質、または上記組成式SiOで表される材料と炭素材料との複合体の表面が炭素で被覆された負極活物質を含有しており、上記非水電解質は、ビニレンカーボネートを含有しており、上記正極における正極活物質の質量Pと上記負極における負極活物質の質量Nとの比P/Nが、3.7〜6.8であることを特徴とするものである。
The non-aqueous electrolyte secondary battery of the present invention that has achieved the above object comprises a positive electrode, a negative electrode, and a non-aqueous electrolyte containing a lithium-containing transition metal oxide having a layered structure as a positive electrode active material. The negative electrode is a material represented by the composition formula SiO x (provided that the atomic ratio x of O to Si is 0.5 ≦ x ≦ 1.5. Hereinafter, the material is abbreviated as “SiO x ”. A negative electrode active material whose surface is coated with carbon, or a negative electrode active material whose surface of a composite of the material represented by the composition formula SiO x and the carbon material is coated with carbon. The non-aqueous electrolyte contains vinylene carbonate, and the ratio P / N of the mass P of the positive electrode active material in the positive electrode to the mass N of the negative electrode active material in the negative electrode is 3.7 to 6.8. It is characterized by being.

本発明者らは、SiOを負極活物質として含有する負極を有する非水電解質二次電池において、充放電サイクル特性が劣化する原因を究明すべく鋭意検討を重ねた結果、その機構が、以下のようではないかと考えた。SiOは、例えば、非晶質のSiOマトリックス中に、微細なSiが分散している構造を有しているが、電池の充放電が繰り返し行われると、Siが膨張収縮を繰り返すことで、SiOマトリックスが破壊されてSiOの微粉化が生じる。この際、SiOマトリックス中に存在する高活性なSiが露出することになるが、この露出したSiが非水電解質と接触することで非水電解質の分解などを引き起こし、これが電池の充放電サイクル特性が劣化する原因の主要因の一つと推測されるのである。 In the non-aqueous electrolyte secondary battery having a negative electrode containing SiO x as a negative electrode active material, the present inventors have conducted intensive studies to investigate the cause of deterioration of charge / discharge cycle characteristics. I thought that it might be. For example, SiO x has a structure in which fine Si is dispersed in an amorphous SiO 2 matrix. However, when the battery is repeatedly charged and discharged, Si repeatedly expands and contracts. , The SiO 2 matrix is destroyed, and SiO x is finely pulverized. At this time, highly active Si present in the SiO 2 matrix is exposed, but this exposed Si comes into contact with the non-aqueous electrolyte to cause decomposition of the non-aqueous electrolyte, and this is the charge / discharge cycle of the battery. It is presumed to be one of the main causes of the deterioration of characteristics.

そこで、本発明では、電池の有する正極活物質と負極活物質の質量比を特定値にすることで、電池の充放電に伴う負極活物質であるSiOの体積膨張収縮量を制限し、SiO粒子の粉砕などを抑制した。 Therefore, in the present invention, by setting the mass ratio of the positive electrode active material and the negative electrode active material of the battery to a specific value, the volume expansion and contraction amount of SiO x that is the negative electrode active material accompanying charge / discharge of the battery is limited. The crushing of x particles was suppressed.

更に、負極活物質粒子の粉砕などが多少生じて、高活性なSiが露出したとしても、非水電解質中に存在するビニレンカーボネートによって、Si露出部を含む負極活物質粒子表面に、Siと非水電解質との反応を防止するための被膜を形成させて、電池の充放電に伴う非水電解質の分解も抑制した。   Furthermore, even if pulverization of the negative electrode active material particles occurs to some extent, and highly active Si is exposed, the surface of the negative electrode active material particles including the Si exposed portion is not allowed to contain Si and non-oxide due to vinylene carbonate present in the nonaqueous electrolyte. A coating for preventing reaction with the water electrolyte was formed, and decomposition of the non-aqueous electrolyte accompanying charging / discharging of the battery was also suppressed.

このように本発明では、上記構成を採用することによって、SiOを含有する負極活物質を用いることによる良好な重負荷放電特性の確保に加えて、SiO粒子の破壊の抑制、およびSiO粒子の破壊に伴う非水電解質の分解の抑制を達成して、優れた充放電サイクル特性の確保にも成功した。 As described above, in the present invention, by adopting the above-described configuration, in addition to ensuring good heavy load discharge characteristics by using a negative electrode active material containing SiO x , it is possible to suppress the destruction of SiO x particles, and SiO x We succeeded in securing excellent charge / discharge cycle characteristics by suppressing the decomposition of the non-aqueous electrolyte accompanying particle destruction.

本発明によれば、充放電サイクル特性と重負荷放電特性に優れた非水電解質二次電池を提供できる。   According to the present invention, a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics and heavy load discharge characteristics can be provided.

本発明の非水電解質二次電池に係る負極は、負極活物質として、組成式SiOで表される材料[ただし、Si(シリコン)に対するO(酸素)の原子比xは、0.5≦x≦1.5である]の表面が炭素で被覆された材料、または上記組成式SiOで表される材料と炭素材料との複合体の表面が炭素で被覆された材料を含有している。上記SiOは、Siの微結晶または非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶または非晶質相のSiを含めた比率となる。
The negative electrode according to the nonaqueous electrolyte secondary battery of the present invention is a material represented by the composition formula SiO x as a negative electrode active material [wherein the atomic ratio x of O (oxygen) to Si (silicon) is 0.5 ≦ the surface of x ≦ 1.5] is coated with carbon, or the surface of the composite of the material represented by the compositional formula SiO x and the carbon material is coated with carbon. . The SiO x may contain a microcrystalline or amorphous phase of Si. In this case, the atomic ratio of Si and O is a ratio including Si microcrystalline or amorphous Si.

すなわち、上記の化合物には、非晶質のSiOマトリックス中に、Si(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質のSiOと、その中に分散しているSiを合わせて、上記の原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質のSiOマトリックス中に、Siが分散した構造で、SiOとSiのモル比が1:1の化合物の場合、x=1であるので、構造式としてはSiOで表記される。このような構造の化合物の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。 That is, the above-mentioned compounds, the SiO 2 matrix of amorphous Si (e.g., microcrystalline Si) is include the dispersed structure, the SiO 2 of the amorphous, dispersed therein It is sufficient that the atomic ratio x satisfies 0.5 ≦ x ≦ 1.5 in combination with Si. For example, in the case of a compound in which Si is dispersed in an amorphous SiO 2 matrix and the molar ratio of SiO 2 to Si is 1: 1, x = 1, so that the structural formula is represented by SiO. The In the case of a compound having such a structure, for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si Can be confirmed.

そして、上記化合物SiOは、その表面が炭素で被覆されている。上記の通り、SiOは導電性が乏しいため、これを負極活物質として用いる際には、良好な電池特性確保の観点から、導電助剤を使用し、負極内におけるSiOと導電助剤との混合・分散を良好にして、優れた導電ネットワークを形成する必要がある。しかし、本発明では、SiOの表面が炭素で被覆されているため、例えば、単にSiOと炭素材料からなる導電助剤とを混合して得られた材料を用いた場合よりも、負極における導電ネットワークが良好に形成される。 The surface of the compound SiO x is covered with carbon. As described above, since SiO x has poor conductivity, when using it as a negative electrode active material, from the viewpoint of securing good battery characteristics, a conductive assistant is used, and SiO x and conductive assistant in the negative electrode are used. Therefore, it is necessary to form an excellent conductive network by mixing and dispersing the particles. However, in the present invention, since the surface of SiO x is coated with carbon, for example, in the negative electrode, compared to the case of using a material obtained by simply mixing SiO x and a conductive auxiliary composed of a carbon material. A conductive network is well formed.

また、上記の、炭素で被覆されたSiOと、導電助剤として機能する炭素材料とを複合化した複合体として用いることで、負極において更に良好な導電ネットワークの形成が可能となるため、より高容量で、充放電サイクル特性に優れた非水電解質二次電池の実現が可能となる。炭素で被覆されたSiOと炭素材料との複合体としては、例えば、炭素で被覆されたSiOと炭素材料との混合物や、この混合物を更に造粒した造粒体などが挙げられる。 In addition, by using a composite of the above-described SiO x coated with carbon and a carbon material functioning as a conductive additive, it becomes possible to form a better conductive network in the negative electrode. A non-aqueous electrolyte secondary battery having a high capacity and excellent charge / discharge cycle characteristics can be realized. The complex of the SiO x and the carbon material coated with carbon, for example, or a mixture of SiO x and the carbon material coated with carbon, and the like The mixture is further granulated granule.

更に、SiOとそれよりも比抵抗値が小さい導電性材料との造粒体の表面が炭素で被覆されてなるものも、好ましく用いることができる。上記造粒体内部でSiOと導電性材料が分散した状態であると、より良好な導電ネットワークを形成できるため、これを負極活物質として含有する負極を有する非水電解質二次電池において、重負荷放電特性など電池特性を更に向上させることができる。
Furthermore, it is possible to preferably use a material in which the surface of a granulated body of SiO x and a conductive material having a smaller specific resistance value is coated with carbon. When SiO x and the conductive material are dispersed in the granule, a better conductive network can be formed. Therefore, in a non-aqueous electrolyte secondary battery having a negative electrode containing this as a negative electrode active material, Battery characteristics such as load discharge characteristics can be further improved.

SiOとの造粒体の形成に用い得る上記導電性材料としては、例えば、黒鉛、低結晶性炭素、カーボンナノチューブ、気相成長炭素繊維などの炭素材料が好ましいものとして挙げられる。 Preferred examples of the conductive material that can be used for forming a granulated body with SiO x include carbon materials such as graphite, low crystalline carbon, carbon nanotubes, and vapor grown carbon fibers.

上記導電性材料の詳細としては、繊維状またはコイル状の炭素材料、繊維状またはコイル状の金属、カーボンブラック(アセチレンブラック、ケッチェンブラックを含む)、人造黒鉛、易黒鉛化炭素および難黒鉛化炭素よりなる群から選ばれる少なくとも1種の材料が好ましい。繊維状またはコイル状の炭素材料や、繊維状またコイル状の金属は、導電ネットワークを形成し易く、かつ表面積の大きい点において好ましい。カーボンブラック(アセチレンブラック,ケッチェンブラックを含む)、人造黒鉛、易黒鉛化炭素および難黒鉛化炭素は、高い電気伝導性、高い保液性を有しており、さらに、SiO粒子が膨張収縮しても、その粒子との接触を保持し易い性質を有している点において好ましい。 Details of the conductive material include a fibrous or coiled carbon material, a fibrous or coiled metal, carbon black (including acetylene black and ketjen black), artificial graphite, graphitizable carbon and non-graphitizable. At least one material selected from the group consisting of carbon is preferred. A fibrous or coiled carbon material or a fibrous or coiled metal is preferable in that it easily forms a conductive network and has a large surface area. Carbon black (including acetylene black and ketjen black), artificial graphite, graphitizable carbon, and non-graphitizable carbon have high electrical conductivity and high liquid retention, and SiO x particles expand and contract. However, it is preferable in that it has a property of easily maintaining contact with the particles.

上記例示の導電性材料の中でも、繊維状の炭素材料が特に好ましい。繊維状の炭素材料は、その形状が細い糸状であり柔軟性が高いためにSiOの膨張収縮に追従でき、また、嵩密度が大きいために、SiO粒子と多くの接合点を持つことができるからである。繊維状の炭素としては、例えば、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、カーボンナノチューブなどが挙げられ、これらの何れを用いてもよい。 Among the conductive materials exemplified above, a fibrous carbon material is particularly preferable. The fibrous carbon material has a thin thread shape and high flexibility so that it can follow the expansion and contraction of SiO x , and because of its high bulk density, it can have many junctions with SiO x particles. Because it can. Examples of the fibrous carbon include polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, and carbon nanotube, and any of these may be used.

なお、繊維状の炭素材料や繊維状の金属は、例えば、気相法にてSiO粒子の表面に形成することもできる。 In addition, a fibrous carbon material and a fibrous metal can also be formed on the surface of SiO x particles by, for example, a vapor phase method.

SiOの比抵抗値が、通常、10〜10kΩcmであるのに対して、上記例示の導電性材料の比抵抗値は、通常、10−5〜10kΩcmである。 The specific resistance value of SiO x is usually 10 3 to 10 7 kΩcm, whereas the specific resistance value of the above-described conductive material is usually 10 −5 to 10 kΩcm.

なお、上記例示の導電性材料のうち、各種炭素材料は、上述の、炭素で被覆されたSiOとの複合体を構成するための炭素材料としても使用できる。 Among the above-exemplified conductive material, various carbon materials, described above, can also be used as a carbon material for constituting a complex with SiO x coated with carbon.

また、本発明に係る上記負極活物質は、粒子表面の炭素被覆層を覆う材料層(難黒鉛化炭素を含む材料層)を更に有していてもよい。   The negative electrode active material according to the present invention may further include a material layer (a material layer containing non-graphitizable carbon) that covers the carbon coating layer on the particle surface.

本発明に係る上記負極活物質は、例えば下記の方法によって得ることができる。   The negative electrode active material according to the present invention can be obtained, for example, by the following method.

まず、SiOを複合化する場合の作製方法について説明する。SiOが分散媒に分散した分散液を用意し、それを噴霧し乾燥して、複数の粒子を含む複合粒子を作製する。分散媒としては、例えば、エタノールなどを用いることができる。分散液の噴霧は、通常、50〜300℃の雰囲気内で行うことが適当である。上記の方法以外にも、振動型や遊星型のボールミルやロッドミルなどを用いた機械的な方法による造粒方法においても、同様の複合粒子を作製することができる。 First, a manufacturing method in the case of combining SiO x will be described. A dispersion liquid in which SiO x is dispersed in a dispersion medium is prepared, and sprayed and dried to produce composite particles including a plurality of particles. For example, ethanol or the like can be used as the dispersion medium. It is appropriate to spray the dispersion in an atmosphere of 50 to 300 ° C. In addition to the above method, similar composite particles can be produced also by a granulation method by a mechanical method using a vibration type or planetary type ball mill or rod mill.

なお、SiOと、SiOよりも比抵抗値の小さい導電性材料との造粒体を作製する場合には、SiOが分散媒に分散した分散液中に上記導電性材料を添加し、この分散液を用いて、SiOを複合化する場合と同様の手法によって複合粒子(造粒体)とすればよい。また、上記と同様の機械的な方法による造粒方法によっても、SiOと導電性材料との造粒体を作製することができる。 Incidentally, the SiO x, in the case of manufacturing a granulated body with small conductive material resistivity value than SiO x is, SiO x is adding the conductive material dispersion obtained by dispersing in a dispersion medium, Using this dispersion, composite particles (granulated body) may be formed by the same technique as that for combining SiO x . Further, by granulation method according to the similar mechanical method, it is possible to produce a granular material of SiO x and a conductive material.

次に、SiO粒子(SiO複合粒子、またはSiOと導電性材料との造粒体)と炭化水素系ガスとを気相中にて加熱して、炭化水素系ガスの熱分解により生じた炭素を、粒子の表面上に堆積させる。このように、気相成長(CVD)法によれば、炭化水素系ガスが複合粒子の隅々にまで行き渡り、粒子の表面や表面の空孔内に、導電性を有する炭素を含む薄くて均一な皮膜(炭素被覆層)を形成できることから、少量の炭素によってSiO粒子に均一性よく導電性を付与できる。 Next, the SiO x particles (SiO x composite particles, or a granulated body of SiO x and a conductive material) and a hydrocarbon gas are heated in a gas phase, and are generated by thermal decomposition of the hydrocarbon gas. Carbon is deposited on the surface of the particles. As described above, according to the vapor deposition (CVD) method, the hydrocarbon-based gas spreads to every corner of the composite particle, and the surface of the particle and the pores on the surface are thin and uniform containing conductive carbon. Since a thin film (carbon coating layer) can be formed, the SiO x particles can be imparted with good conductivity with a small amount of carbon.

炭素で被覆された、SiOまたはSiOと導電性材料との造粒体の製造において、気相成長(CVD)法の処理温度(雰囲気温度)については、炭化水素系ガスの種類によっても異なるが、通常、600〜1200℃が適当であるが、中でも、700℃以上であることが好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い炭素を含む被覆層を形成できるからである。
In the production of granules coated with carbon-coated SiO x or SiO x and a conductive material, the processing temperature (atmospheric temperature) of the vapor deposition (CVD) method varies depending on the type of hydrocarbon gas. However, usually, 600 to 1200 ° C is suitable, but among them, 700 ° C or higher is preferable, and 800 ° C or higher is more preferable. This is because the higher the treatment temperature, the less the remaining impurities, and the formation of a coating layer containing carbon having high conductivity.

炭化水素系ガスの液体ソースとしては、トルエン、ベンゼン、キシレン、メシチレンなどを用いることができるが、取り扱い易いトルエンが特に好ましい。これらを気化させる(例えば、窒素ガスでバブリングする)ことにより炭化水素系ガスを得ることができる。また、メタンガスやアセチレンガスなどを用いることもできる。   As the liquid source of the hydrocarbon-based gas, toluene, benzene, xylene, mesitylene and the like can be used, but toluene that is easy to handle is particularly preferable. A hydrocarbon-based gas can be obtained by vaporizing them (for example, bubbling with nitrogen gas). Moreover, methane gas, acetylene gas, etc. can also be used.

また、気相成長(CVD)法にてSiO粒子(SiO複合粒子、またはSiOと導電性材料との造粒体)の表面を炭素で覆った後に、石油系ピッチ、石炭系のピッチ、熱硬化製樹脂、およびナフタレンスルホン酸塩とアルデヒド類との縮合物よりなる群から選択される少なくとも1種の有機化合物を、炭素を含む被覆層に付着させた後、上記有機化合物が付着した粒子を焼成してもよい。 In addition, after the surface of SiO x particles (SiO x composite particles, or a granulated body of SiO x and a conductive material) is covered with carbon by a vapor deposition (CVD) method, petroleum-based pitch or coal-based pitch is used. At least one organic compound selected from the group consisting of a thermosetting resin and a condensate of naphthalene sulfonate and aldehyde is attached to a coating layer containing carbon, and then the organic compound is attached. The particles may be fired.

具体的には、炭素で被覆されたSiO粒子(SiO複合粒子、またはSiOと導電性材料との造粒体)と、上記有機化合物とが分散媒に分散した分散液を用意し、この分散液を噴霧し乾燥して、有機化合物によって被覆された粒子を形成し、その有機化合物によって被覆された粒子を焼成する。 Specifically, a dispersion liquid in which carbon-coated SiO x particles (SiO x composite particles or a granulated body of SiO x and a conductive material) and the organic compound are dispersed in a dispersion medium is prepared, The dispersion is sprayed and dried to form particles coated with the organic compound, and the particles coated with the organic compound are fired.

上記ピッチとしては等方性ピッチを、熱硬化製樹脂としてはフェノール樹脂、フラン樹脂、フルフラール樹脂などを用いることができる。ナフタレンスルホン酸塩とアルデヒド類との縮合物としては、ナフタレンスルホン酸ホルムアルデヒド縮合物を用いることができる。   An isotropic pitch can be used as the pitch, and a phenol resin, a furan resin, a furfural resin, or the like can be used as the thermosetting resin. As the condensate of naphthalene sulfonate and aldehydes, naphthalene sulfonic acid formaldehyde condensate can be used.

炭素で被覆された、SiO粒子またはSiOと導電性材料との造粒体と上記有機化合粒子を分散させるための分散媒としては、例えば、水、アルコール類(エタノールなど)を用いることができる。分散液の噴霧は、通常、50〜300℃の雰囲気内で行うことが適当である。焼成温度は、通常、600〜1200℃が適当であるが、中でも700℃以上が好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い良質な炭素材料を含む被覆層を形成できるからである。ただし、処理温度はSiOの融点以下であることを要する。
As a dispersion medium for dispersing the granulated body of SiO x particles or SiO x and a conductive material coated with carbon and the organic compound particles, for example, water, alcohols (ethanol or the like) may be used. it can. It is appropriate to spray the dispersion in an atmosphere of 50 to 300 ° C. The firing temperature is usually 600 to 1200 ° C., preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the processing temperature, the less the remaining impurities, and the formation of a coating layer containing a high-quality carbon material with high conductivity. However, the processing temperature needs to be lower than the melting point of SiO x .

本発明に係る負極は、上記の負極活物質と、バインダ(結着剤)などとを含む混合物(負極合剤)に,適当な溶媒(分散媒)を加えて十分に混練して得たペースト状やスラリー状の負極合剤含有組成物を、集電体に塗布し、乾燥などにより溶媒(分散媒)を除去して、所定の厚みおよび密度を有する負極合剤層を形成することによって得ることができる。なお、本発明に係る負極は、上記の製法により得られたものに限られず、他の製法で製造したものであってもよい。   The negative electrode according to the present invention is a paste obtained by sufficiently kneading a mixture (negative electrode mixture) containing the above negative electrode active material, a binder (binder), and the like with an appropriate solvent (dispersion medium). And a slurry-like negative electrode mixture-containing composition is applied to a current collector, and the solvent (dispersion medium) is removed by drying or the like to form a negative electrode mixture layer having a predetermined thickness and density. be able to. In addition, the negative electrode which concerns on this invention is not restricted to what was obtained by said manufacturing method, The thing manufactured by the other manufacturing method may be used.

バインダとしては、通常、でんぷん、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロースなどの多糖類やそれらの変成体;ポリビニルクロリド、ポリビニルピロリドン、ポリテトラフルオロエチレン、ポリ弗化ビニリデン、ポリエチレン、ポリプロピレンなどの熱可塑性樹脂やそれらの変成体;エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシドなどのゴム状弾性を有するポリマーやそれらの変成体;などが挙げられ、これらの1種または2種以上を用いることができる。   As the binder, polysaccharides such as starch, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose and their modified products; polyvinyl chloride, polyvinyl pyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene , Thermoplastic resins such as polypropylene and their modified products; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber, butadiene rubber, polybutadiene, fluorine rubber, polyethylene oxide and other polymers having rubbery elasticity Or a modified product thereof, and the like, and one or more of these can be used.

上記負極合剤には、さらに導電助剤を添加してもよい。導電助剤としては、非水電解質二次電池内において化学変化を起こさない電子伝導性材料であれば特に限定されない。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉(銅、ニッケル、アルミニウム、銀など)、金属繊維、ポリフェニレン誘導体(特開昭59−20971号公報に記載のもの)など材料を、1種または2種以上用いることができる。   A conductive additive may be further added to the negative electrode mixture. The conductive auxiliary agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the nonaqueous electrolyte secondary battery. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder (copper, nickel, aluminum, silver, etc.), metal fiber, One or more materials such as polyphenylene derivatives (described in JP-A-59-20971) can be used.

なお、上記負極に係る負極合剤層においては、負極活物質の含有量が、例えば、10〜90質量%であり、バインダの含有量が、例えば、1〜20質量%であることが好ましい。また、導電助剤を用いる場合には、負極合剤層中における導電助剤の含有量が、例えば、1〜90質量%であることが好ましい。   In addition, in the negative mix layer concerning the said negative electrode, it is preferable that content of a negative electrode active material is 10-90 mass%, for example, and content of binder is 1-20 mass%, for example. Moreover, when using a conductive support agent, it is preferable that content of the conductive support agent in a negative mix layer is 1-90 mass%, for example.

本発明に係る正極としては、正極活物質と導電助剤とバインダとを含む混合物(正極合剤)に、適当な溶媒(分散媒)を加えて十分に混練して得たペースト状やスラリー状の正極合剤含有組成物を、集電体に塗布し、所定の厚みおよび密度を有する正極合剤層を形成することによって得ることができる。なお、本発明に係る正極、上記の製法により得られたものに限られず、他の製法で製造したものであってもよい。   As the positive electrode according to the present invention, a paste or slurry obtained by adding an appropriate solvent (dispersion medium) to a mixture (positive electrode mixture) containing a positive electrode active material, a conductive additive, and a binder and kneading the mixture sufficiently. The positive electrode mixture-containing composition can be applied to a current collector to form a positive electrode mixture layer having a predetermined thickness and density. The positive electrode according to the present invention is not limited to the one obtained by the above-described production method, and may be produced by another production method.

正極活物質としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo1−y、LiNi1−y、LiMnNiCo1−y−z、(上記の各構造式中、Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、Al、Ti、GeおよびCrよりなる群から選ばれる少なくとも1種の金属元素であり、0≦x≦1.1、0<y<1.0、2.0<z<1.0である)などの層状構造を有するリチウム含有遷移金属酸化物が挙げられる。 Examples of the positive electrode active material include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O 2 , and Li x Ni 1-1. y M y O 2, Li x Mn y Ni z Co 1-y-z O 2, ( in each formula mentioned above, M represents, Mg, Mn, Fe, Co , Ni, Cu, Zn, Al, Ti, A layered structure such as at least one metal element selected from the group consisting of Ge and Cr, and 0 ≦ x ≦ 1.1, 0 <y <1.0, and 2.0 <z <1.0) And lithium-containing transition metal oxides.

正極に係るバインダとしては、負極用のものとして例示した上記の各バインダを用いることができる。また、正極に係る導電助剤についても、負極用のものとして例示した上記の各導電助剤を使用できる。   As the binder related to the positive electrode, each of the above-described binders exemplified for the negative electrode can be used. Moreover, each of the above-described conductive aids exemplified for the negative electrode can also be used for the conductive aid related to the positive electrode.

なお、上記正極に係る正極合剤層においては、正極活物質の含有量が、例えば、80〜99質量%であり、バインダの含有量が、例えば、0.5〜20質量%であり、導電助剤の含有量が、例えば、0.5〜20質量%であることが好ましい。   In addition, in the positive electrode mixture layer according to the positive electrode, the content of the positive electrode active material is, for example, 80 to 99% by mass, the content of the binder is, for example, 0.5 to 20% by mass, It is preferable that content of auxiliary agent is 0.5-20 mass%, for example.

本発明の電池では、上記正極における正極活物質の質量Pと、上記負極における負極活物質の質量Nとの比「P/N」が、3.7以上、好ましくは4.5以上であって、6.8以下、好ましくは6.6以下に制御されている必要がある。   In the battery of the present invention, the ratio “P / N” of the mass P of the positive electrode active material in the positive electrode and the mass N of the negative electrode active material in the negative electrode is 3.7 or more, preferably 4.5 or more. 6.8 or less, preferably 6.6 or less.

正極活物質であるリチウム含有遷移金属酸化物として、例えば、高容量の層状化合物LiM’O(M’:Co、Mn、Niから選ばれる少なくとも1種の金属元素)を用いると、その正極活物質の単位質量当たりの理論容量は160〜220mAh/gとなる。このとき、上記P/Nが上記特定値を満たすとすると、負極活物質では、炭素で被覆された、組成式SiOで表される材料や該材料と炭素材料との複合体において、その放電容量が、理論容量(充電)の半分以下、具体的には、SiO中のSi:1モル当たりに換算して、70Ah/mol以下に制限されることになる。 As the lithium-containing transition metal oxide that is the positive electrode active material, for example, when a high-capacity layered compound LiM′O 2 (M ′: at least one metal element selected from Co, Mn, and Ni) is used, the positive electrode active material is used. The theoretical capacity per unit mass of the substance is 160-220 mAh / g. At this time, if the P / N satisfies the specific value, the negative electrode active material is discharged in a material coated with carbon and represented by a composition formula SiO x or a composite of the material and the carbon material. The capacity is limited to half or less of the theoretical capacity (charging), specifically, 70 Ah / mol or less in terms of Si per mole of SiO x .

このように電池充電時での負極活物質の容量が制限されることで、充放電時における負極活物質の体積膨張収縮量が制限される。ちなみに、上記の充電状態での負極活物質の一般式を、Li(a+b)SiOと書けるとすると(bは不可逆容量分)、1.35≦a≦2.65となる。このように充放電における体積膨張収縮量が制限されることで、負極活物質粒子の粉砕などが起こりにくいため、高容量を維持したまま充放電サイクル特性に優れたものとなり、また、負極活物質中に高活性なSi微粒子を含むことも可能となるため、重負荷放電特性などの負荷特性も良好なものとなる。 Thus, the capacity | capacitance of the negative electrode active material at the time of battery charge is restrict | limited, The volume expansion / contraction amount of the negative electrode active material at the time of charging / discharging is restrict | limited. Incidentally, if the general formula of the negative electrode active material in the above charged state can be written as Li (a + b) 2 SiO x (b is the irreversible capacity), 1.35 ≦ a ≦ 2.65. By limiting the volume expansion / contraction amount during charging / discharging in this way, the negative electrode active material particles are less likely to be crushed, so that the charge / discharge cycle characteristics are maintained while maintaining a high capacity. Since it is possible to contain highly active Si fine particles, load characteristics such as heavy load discharge characteristics are also improved.

なお、P/Nが大きすぎると、SiOの粉砕頻度が大幅に増加し、充放電サイクル特性の劣化が生じてしまう(詳しくは、後記の非水電解質に係るビニレンカーボネートの説明において述べる)。また、P/Nが小さすぎると、負極の利用容量が小さくなり、電池とした際の容量が小さくなりすぎるため、高容量電池を構成できない。 In addition, when P / N is too large, the pulverization frequency of SiO x is significantly increased, and the charge / discharge cycle characteristics are deteriorated (details will be described in the description of vinylene carbonate relating to the nonaqueous electrolyte described later). On the other hand, if P / N is too small, the capacity of the negative electrode is reduced, and the capacity of the battery becomes too small, so that a high capacity battery cannot be constructed.

本発明に係る非水電解質としては、下記の溶媒中に下記の無機イオン塩を溶解させることによって調製した電解液が使用できる。   As the nonaqueous electrolyte according to the present invention, an electrolytic solution prepared by dissolving the following inorganic ion salt in the following solvent can be used.

溶媒としては,例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒を、1種または2種以上用いることができる。   Examples of the solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate, diethyl carbonate (DEC), methyl ethyl carbonate (MEC), γ-butyrolactone, and 1,2-dimethoxyethane. , Tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, 3 Non-prototypes such as methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, diethyl ether, 1,3-propane sultone Sex organic solvents may be used alone or in combination.

無機イオン塩としては,Li塩、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、低級脂肪族カルボン酸Li、LiAlCl、LiCl、LiBr、LiI、クロロボランLi、四フェニルホウ酸Liなどを、1種または2種以上用いることができる。 As the inorganic ion salt, Li salt, for example, LiClO 4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, lower aliphatic carboxylic acids Li, LiAlCl 4 , LiCl, LiBr, LiI, chloroborane Li, Li tetraphenylborate, or the like can be used alone or in combination.

上記溶媒中に上記無機イオン塩が溶解された電解液の中でも、1,2−ジメトキシエタン,ジエチルカーボネートおよびメチルエチルカーボネートよりなる群から選ばれる少なくとも1種と,エチレンカーボネートまたはプロピレンカーボネートとを含む溶媒に、LiClO、LiBF、LiPF、およびLiCFSOよりなる群から選ばれる少なくとも1種の無機イオン塩を溶解した電解液が好ましい。電解液中の無機イオン塩の濃度は、例えば、0.2〜3.0mol/dmが適当である。 Among the electrolytic solutions in which the inorganic ion salt is dissolved in the solvent, a solvent containing at least one selected from the group consisting of 1,2-dimethoxyethane, diethyl carbonate, and methyl ethyl carbonate, and ethylene carbonate or propylene carbonate In addition, an electrolytic solution in which at least one inorganic ion salt selected from the group consisting of LiClO 4 , LiBF 4 , LiPF 6 , and LiCF 3 SO 3 is dissolved is preferable. An appropriate concentration of the inorganic ion salt in the electrolytic solution is, for example, 0.2 to 3.0 mol / dm 3 .

なお、本発明に係る非水電解質は、上記の溶媒および無機イオン塩の他に、ビニレンカーボネート(VC)を含有している。正極活物質と負極活物質の質量比率「P/N」を上記特定値に制限、すなわち、SiOの単位質量あたりの放電容量をSiO中のSi:1モル当たりに換算して70Ah/mol以下に制限することに加えて、VCを含有する非水電解質を用いることで、電池の充放電による膨張収縮に伴うSiOの粉砕、およびそれに伴う充放電サイクル特性の劣化を、更に抑制することができる。これは、上記の通り、SiOの粉砕によって生じた新生面にVCが被膜を形成することにより、高活性なSiと非水電解質(電解液)との直接の反応を抑制できるためである。 In addition, the nonaqueous electrolyte which concerns on this invention contains vinylene carbonate (VC) other than said solvent and inorganic ion salt. Limiting the mass ratio of the cathode active material and the anode active material to "P / N" in the specific value, i.e., the discharge capacity per unit mass of SiO x in SiO x Si: in terms of per mole 70 Ah / mol In addition to limiting to the following, by using a non-aqueous electrolyte containing VC, further suppression of SiO x pulverization associated with expansion and contraction due to charging / discharging of the battery, and deterioration of charging / discharging cycle characteristics associated therewith can be further suppressed. Can do. This is because, as described above, VC forms a film on the new surface generated by grinding SiO x , thereby suppressing a direct reaction between highly active Si and the nonaqueous electrolyte (electrolytic solution).

他方、上記P/Nが大きすぎて、負極活物質に係るSi:1モル当たりに換算した放電容量が、70Ah/molを超える状況で充放電を行うと、SiOの粉砕頻度が大幅に増加し、VCの被膜形成が頻繁になりすぎて、それに伴うガス発生や過剰な被膜による内部抵抗増大によって電池の充放電サイクル特性の劣化が著しくなり、VCを添加しない系よりも充放電サイクル特性は悪いものとなってしまう。そのため、本発明では、VCを含有する非水電解質を用いると共に、上記P/Nを上記特定値に制御している。 On the other hand, when P / N is too large and the charge capacity is 70 Ah / mol when the discharge capacity converted to 1 mol of Si related to the negative electrode active material is charged and discharged, the frequency of grinding SiO x significantly increases. However, the formation of a VC film becomes too frequent, and the resulting deterioration of the charge / discharge cycle characteristics of the battery due to the generation of gas and the increase in internal resistance due to excessive film, the charge / discharge cycle characteristics are more than in the system without adding VC. It will be bad. Therefore, in the present invention, a non-aqueous electrolyte containing VC is used, and the P / N is controlled to the specific value.

なお、本発明の電池に用いる非水電解質におけるVCの含有量は、5質量%以上10質量%以下であることが好ましい。非水電解質中のVCの含有量が少なすぎると、VC添加による電池の充放電サイクル特性の劣化抑制効果が不十分となる。また、非水電解質中のVCの含有量が多すぎると、VCによる被膜形成に伴うガス発生量が増大するなどして、VC添加による電池の充放電サイクル特性の劣化抑制効果が小さくなることがある。   In addition, it is preferable that content of VC in the nonaqueous electrolyte used for the battery of this invention is 5 mass% or more and 10 mass% or less. If the content of VC in the non-aqueous electrolyte is too small, the effect of suppressing the deterioration of the charge / discharge cycle characteristics of the battery due to the addition of VC will be insufficient. In addition, if the content of VC in the non-aqueous electrolyte is too large, the amount of gas generation accompanying the formation of a film by VC increases, and the effect of suppressing deterioration of charge / discharge cycle characteristics of the battery due to the addition of VC is reduced. is there.

本発明の非水電解質二次電池は、上記の負極、上記の正極、および上記の非水電解質を備えていればよく、その他の構成要素や構造については特に制限は無く、従来公知の非水電解質二次電池で採用されている各種構成要素、構造を適用することができる。   The non-aqueous electrolyte secondary battery of the present invention is only required to include the above-described negative electrode, the above-described positive electrode, and the above-described non-aqueous electrolyte. Various components and structures employed in the electrolyte secondary battery can be applied.

セパレータとしては、強度が十分で且つ電解液を多く保持できるものがよく、そのような観点から、厚さが10〜50μmで開口率が30〜70%の、ポリエチレン、ポリプロピレン、またはエチレン−プロピレン共重合体を含む微多孔フィルムや不織布などが好ましい。   As the separator, it is preferable that the separator has sufficient strength and can hold a large amount of the electrolytic solution. From such a viewpoint, a polyethylene, polypropylene, or ethylene-propylene copolymer having a thickness of 10 to 50 μm and an aperture ratio of 30 to 70% is used. A microporous film or a nonwoven fabric containing a polymer is preferable.

また、本発明の非水電解質二次電池では、その形状などについても特に制限はない。例えば、コイン形、ボタン形、シート形、積層形、円筒形、偏平形、角形、電気自動車などに用いる大型のものなど、いずれであってもよい。   Moreover, in the nonaqueous electrolyte secondary battery of this invention, there is no restriction | limiting in particular also about the shape. For example, any of a coin shape, a button shape, a sheet shape, a laminated shape, a cylindrical shape, a flat shape, a square shape, a large size used for an electric vehicle, etc. may be used.

本発明の非水電解質二次電池は、優れた重負荷放電特性および充放電サイクル特性を生かして、小型で多機能な携帯機器の電源を始めとして、従来公知の非水電解質二次電池が適用されている各種用途に好ましく用いることができる。   The non-aqueous electrolyte secondary battery of the present invention can be applied to conventionally known non-aqueous electrolyte secondary batteries, including power supplies for small and multifunctional portable devices, taking advantage of excellent heavy load discharge characteristics and charge / discharge cycle characteristics. It can be preferably used for various applications.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。なお、以下の実施例において、複合粒子の平均粒径は、マイクロトラック社製「MICROTRAC HRA(Model:9320−X100)」を用いて、レーザー回折式粒度分布測定法により測定した体積平均値である。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention. In the following examples, the average particle size of the composite particles is a volume average value measured by a laser diffraction particle size distribution measurement method using “MICROTRAC HRA (Model: 9320-X100)” manufactured by Microtrack. .

実施例1
SiO(平均粒径1.0μm)を原料とし、撹拌式の転動造粒機(ホソカワミクロン社製「アグロマスタ」)を用いて複合粒子を作製した。その複合粒子の平均粒径は20μmであった。続いて、上記複合粒子10gを沸騰床反応器中で約1000℃に加熱し、加熱された複合粒子にベンゼンと窒素ガスとからなる25℃の混合ガスを接触させ、1000℃で60分間CVD処理を行った。このようにして、上記混合ガスが熱分解して生じた炭素(以下「CVD炭素」ともいう)を複合粒子に堆積させて被覆層を形成し、負極材料を得た。
Example 1
Composite particles were prepared using SiO (average particle size: 1.0 μm) as a raw material and using a stirring type rolling granulator (“Agromaster” manufactured by Hosokawa Micron Corporation). The average particle size of the composite particles was 20 μm. Subsequently, 10 g of the composite particles are heated to about 1000 ° C. in a boiling bed reactor, a mixed gas of 25 ° C. composed of benzene and nitrogen gas is brought into contact with the heated composite particles, and CVD treatment is performed at 1000 ° C. for 60 minutes. Went. In this manner, carbon produced by thermal decomposition of the mixed gas (hereinafter also referred to as “CVD carbon”) was deposited on the composite particles to form a coating layer, thereby obtaining a negative electrode material.

次に、上記負極材料を用いて、コイン形の非水電解質二次電池を作製した。まず、上記負極材料60質量%(固形分全量中の含有量、以下同じ)と、黒鉛30質量%と、導電助剤としてケッチェンブラック(平均粒径0.05μm)2質量%と、バインダとしてポリフッ化ビニリデン8質量%と、脱水N−メチルピロリドンとを混合して得たスラリーを、銅箔からなる集電体に塗布し、乾燥後プレスして、集電体の一方の面に厚み35μmの負極合剤層を形成した。   Next, a coin-shaped non-aqueous electrolyte secondary battery was produced using the negative electrode material. First, 60% by mass of the negative electrode material (content in the total solid content, hereinafter the same), 30% by mass of graphite, 2% by mass of ketjen black (average particle size 0.05 μm) as a conductive assistant, and as a binder A slurry obtained by mixing 8% by mass of polyvinylidene fluoride and dehydrated N-methylpyrrolidone was applied to a current collector made of copper foil, dried and pressed, and a thickness of 35 μm was formed on one surface of the current collector. The negative electrode mixture layer was formed.

その後、負極合剤層を形成した集電体を直径16mmに打ち抜き、真空で24時間乾燥させて、円盤状の負極を得た。負極合剤層の銅箔に対する接着性は良好であり、裁断や折り曲げによっても、負極合剤層は銅箔から剥がれることはなかった。   Thereafter, the current collector on which the negative electrode mixture layer was formed was punched to a diameter of 16 mm and dried in vacuum for 24 hours to obtain a disc-shaped negative electrode. The adhesion of the negative electrode mixture layer to the copper foil was good, and the negative electrode mixture layer was not peeled off from the copper foil even by cutting or bending.

また、正極は以下のようにして作製した。まず、正極活物質LiCoOを96質量%(固形分全量中の含有量、以下同じ)と、導電助剤としてケッチェンブラック(平均粒径0.05μm)2質量%と、バインダとしてポリフッ化ビニリデン2質量%と、脱水N−メチルピロリドンとを混合して得たスラリーを、アルミニウム箔からなる集電体に塗布し、乾燥後プレスして、集電体の一方の面に厚み85μmの正極合剤層を形成した。バインダとケッチェンブラックの質量を差し引いた活物質質量は、それぞれ正極56.8mg、負極8.75mgであり、活物質質量比率(P/N)は6.49であった。 Moreover, the positive electrode was produced as follows. First, 96% by mass of the positive electrode active material LiCoO 2 (content in the total solid content, the same shall apply hereinafter), 2% by mass of ketjen black (average particle size 0.05 μm) as a conductive additive, and polyvinylidene fluoride as a binder A slurry obtained by mixing 2% by mass and dehydrated N-methylpyrrolidone was applied to a current collector made of aluminum foil, dried and pressed, and a positive electrode composite having a thickness of 85 μm was formed on one surface of the current collector. An agent layer was formed. The active material masses obtained by subtracting the masses of the binder and ketjen black were 56.8 mg of the positive electrode and 8.75 mg of the negative electrode, respectively, and the active material mass ratio (P / N) was 6.49.

次に、ステンレス鋼製の収納容器に導電性接着剤を用いて上記負極を接着し、負極の上にセパレータと正極とをこの順序で配置した後、EC:DEC=1:2(体積比)の溶媒に1molのLiPFを溶解させた溶液に、VCを3質量%溶解させて調製した電解液(非水電解質)0.3mlを収納容器内に注入し、ガスケット付きの封口体にて収納容器内を密閉して、コイン形非水電解質二次電池を得た。なお、セパレータには微孔性ポリエチレンフィルムを用いた。 Next, the negative electrode is bonded to a stainless steel storage container using a conductive adhesive, and a separator and a positive electrode are arranged in this order on the negative electrode, and then EC: DEC = 1: 2 (volume ratio). An electrolyte solution (non-aqueous electrolyte) 0.3 ml prepared by dissolving 3% by mass of VC in a solution of 1 mol of LiPF 6 in the above solvent was injected into a storage container and stored in a sealing body with a gasket. The inside of the container was sealed to obtain a coin-type nonaqueous electrolyte secondary battery. A microporous polyethylene film was used as the separator.

実施例2
SiO(平均粒径1μm)と、繊維状炭素(平均長さ2μm、平均直径0.08μm)と,ポリビニルピロリドン10gとを,エタノール1L中にて混合し、これらを更に湿式のジェットミルにて混合してスラリーを得た。このスラリーの調製に用いたSiOと繊維状炭素(CF)との総質量は100gとし、質量比は、SiO:CF=80:20とした。次に、上記スラリーを用いてスプレードライ法(雰囲気温度200℃)にてSiOとCFの複合粒子を作製した。複合粒子の平均粒径は10μmであった。続いて、上記複合粒子10gを沸騰床反応器中で約1000℃に加熱し、加熱された複合粒子にベンゼンと窒素ガスとからなる25℃の混合ガスを接触させ、1000℃で60分間CVD処理を行った。このようにして,上記混合ガスが熱分解して生じた炭素を複合粒子に堆積させて被覆層を形成し、負極材料を得た。
Example 2
SiO (average particle diameter 1 μm), fibrous carbon (average length 2 μm, average diameter 0.08 μm), and polyvinylpyrrolidone 10 g are mixed in 1 L of ethanol, and these are further mixed in a wet jet mill. Thus, a slurry was obtained. The total mass of SiO and fibrous carbon (CF) used for the preparation of this slurry was 100 g, and the mass ratio was SiO: CF = 80: 20. Next, composite particles of SiO and CF were produced using the slurry by a spray drying method (atmosphere temperature 200 ° C.). The average particle size of the composite particles was 10 μm. Subsequently, 10 g of the composite particles are heated to about 1000 ° C. in a boiling bed reactor, a mixed gas of 25 ° C. composed of benzene and nitrogen gas is brought into contact with the heated composite particles, and CVD treatment is performed at 1000 ° C. for 60 minutes. Went. In this way, carbon produced by the thermal decomposition of the mixed gas was deposited on the composite particles to form a coating layer, and a negative electrode material was obtained.

被覆層形成前後の質量変化から上記負極材料の組成を算出したところ、SiO:CF:CVD炭素=68:17:15(質量比)であった。   When the composition of the negative electrode material was calculated from the mass change before and after the coating layer was formed, it was SiO: CF: CVD carbon = 68: 17: 15 (mass ratio).

次に、上記負極材料75質量%(固形分全量中の含有量、以下同じ)と、黒鉛15質量%と,導電助剤としてケッチェンブラック(平均粒径0.05μm)2質量%と、バインダとしてポリフッ化ビニリデン8質量%と、脱水N−メチルピロリドンとを混合して得たスラリーを、銅箔からなる集電体に塗布し、乾燥後プレスして,集電体の一方の面に厚み38μmの負極合剤層を形成した。   Next, 75% by mass of the negative electrode material (content in the total solid content, hereinafter the same), 15% by mass of graphite, 2% by mass of ketjen black (average particle size 0.05 μm) as a conductive auxiliary agent, binder A slurry obtained by mixing 8% by mass of polyvinylidene fluoride and dehydrated N-methylpyrrolidone is applied to a current collector made of copper foil, dried and then pressed, and a thickness is applied to one surface of the current collector. A negative electrode mixture layer having a thickness of 38 μm was formed.

その後、負極合剤層を形成した集電体を直径16mmに打ち抜き、真空で24時間乾燥させて、円盤状の負極を得た。負極合剤層の銅箔に対する接着性は良好であり,裁断や折り曲げによっても、負極合剤層は銅箔から剥がれることはなかった。   Thereafter, the current collector on which the negative electrode mixture layer was formed was punched to a diameter of 16 mm and dried in vacuum for 24 hours to obtain a disc-shaped negative electrode. The adhesion of the negative electrode mixture layer to the copper foil was good, and the negative electrode mixture layer was not peeled off from the copper foil even by cutting or bending.

上記の負極を用いた以外は、実施例1と同様にして、コイン形非水電解質二次電池を作製した。なお、正負極におけるバインダとケッチェンブラックの質量を差し引いた活物質質量は、それぞれ正極56.8mg、負極8.68mgであり、活物質質量比率(P/N)は6.54であった。   A coin-type nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the above negative electrode was used. The active material mass obtained by subtracting the masses of the binder and the ketjen black in the positive and negative electrodes was 56.8 mg for the positive electrode and 8.68 mg for the negative electrode, respectively, and the active material mass ratio (P / N) was 6.54.

実施例3
SiO(平均粒径1μm)と、黒鉛(平均粒径3μm)と、ポリビニルピロリドン10gとを,エタノール1L中にて混合し、これらを更に湿式のジェットミルにて混合してスラリーを得た。このスラリーの調製に用いたSiOと黒鉛との総質量は100gとし、質量比は,SiO:黒鉛=70:30とした。次に、上記スラリーを用いてスプレードライ法(雰囲気温度200℃)にて、SiOと黒鉛との複合粒子を作製した。この複合粒子の平均粒径は15μmであった。続いて、上記複合粒子10gを沸騰床反応器中で約1000℃に加熱し、加熱された複合粒子にベンゼンと窒素ガスとからなる25℃の混合ガスを接触させ、1000℃で60分間CVD処理を行った。このようにして、上記混合ガスが熱分解して生じた炭素を上記複合粒子に堆積させて被覆層を形成し、炭素被覆層によって覆われた複合粒子を得た。
Example 3
SiO (average particle size 1 μm), graphite (average particle size 3 μm), and polyvinylpyrrolidone 10 g were mixed in 1 L of ethanol, and these were further mixed in a wet jet mill to obtain a slurry. The total mass of SiO and graphite used for the preparation of this slurry was 100 g, and the mass ratio was SiO: graphite = 70: 30. Next, composite particles of SiO and graphite were produced by the spray drying method (atmospheric temperature 200 ° C.) using the slurry. The average particle size of the composite particles was 15 μm. Subsequently, 10 g of the composite particles are heated to about 1000 ° C. in a boiling bed reactor, a mixed gas of 25 ° C. composed of benzene and nitrogen gas is brought into contact with the heated composite particles, and CVD treatment is performed at 1000 ° C. for 60 minutes. Went. In this way, carbon generated by thermal decomposition of the mixed gas was deposited on the composite particles to form a coating layer, and composite particles covered with the carbon coating layer were obtained.

続いて、炭素被覆層によって覆われた上記複合粒子100gと、フェノール樹脂40gとをエタノール1L中に分散し、その分散液を噴霧し乾燥して(雰囲気温度200℃)、炭素被覆層によって覆われた複合粒子の表面をフェノール樹脂にてコーティングした。その後、コーティングされた上記複合粒子を1000℃で焼成して、炭素被覆層を覆う難黒鉛化炭素を含む材料層を形成し、負極材料を得た。   Subsequently, 100 g of the composite particles covered with the carbon coating layer and 40 g of phenol resin are dispersed in 1 L of ethanol, and the dispersion is sprayed and dried (atmosphere temperature 200 ° C.) to be covered with the carbon coating layer. The surface of the composite particles was coated with a phenol resin. Thereafter, the coated composite particles were fired at 1000 ° C. to form a material layer containing non-graphitizable carbon covering the carbon coating layer, thereby obtaining a negative electrode material.

炭素被覆層形成前後および難黒鉛化炭素を含む材料層形成前後の質量変化から、上記負極材料の組成を算出したところ、SiO:黒鉛:CVD炭素:難黒鉛化炭素=50:20:15:15(質量比)であった。   The composition of the negative electrode material was calculated from the mass change before and after the formation of the carbon coating layer and before and after the formation of the material layer containing non-graphitizable carbon. SiO: graphite: CVD carbon: non-graphitizable carbon = 50: 20: 15: 15 (Mass ratio).

次に、上記負極材料90質量%(固形分全量中の含有量、以下同じ)と,導電助剤としてケッチェンブラック(平均粒径0.05μm)2質量%と、バインダとしてポリフッ化ビニリデン8質量%と、脱水N−メチルピロリドンとを混合して得たスラリーを、銅箔からなる集電体に塗布し、乾燥後プレスして,集電体の一方の面に厚み40μmの負極合剤層を形成した。   Next, 90% by mass of the negative electrode material (content in the total solid content, the same applies hereinafter), 2% by mass of ketjen black (average particle size 0.05 μm) as a conductive additive, and 8% of polyvinylidene fluoride as a binder % And a slurry obtained by mixing dehydrated N-methylpyrrolidone were applied to a current collector made of copper foil, dried and pressed, and a negative electrode mixture layer having a thickness of 40 μm on one surface of the current collector Formed.

その後、負極合剤層を形成した集電体を直径16mmに打ち抜き、真空で24時間乾燥させて、円盤状の負極を得た。負極合剤層の銅箔に対する接着性は良好であり、裁断や折り曲げによっても、負極合剤層は銅箔から剥がれることはなかった。   Thereafter, the current collector on which the negative electrode mixture layer was formed was punched to a diameter of 16 mm and dried in vacuum for 24 hours to obtain a disc-shaped negative electrode. The adhesion of the negative electrode mixture layer to the copper foil was good, and the negative electrode mixture layer was not peeled off from the copper foil even by cutting or bending.

上記の負極を用いた以外は、実施例1と同様にして、コイン形非水電解質二次電池を作製した。なお、正負極におけるバインダとケッチェンブラックの質量を差し引いた活物質質量は、それぞれ正極56.8mg、負極9.02mgであり、活物質質量比率(P/N)は6.30であった。   A coin-type nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the above negative electrode was used. In addition, the active material mass which deducted the mass of the binder in a positive electrode and a ketjen black was 56.8 mg of positive electrodes, 9.02 mg of negative electrodes, respectively, and the active material mass ratio (P / N) was 6.30.

実施例4
SiO(平均粒径1μm)200gと、黒鉛(平均粒径3μm)60gと、バインダのポリエチレン樹脂粒子30gを4Lのステンレス鋼製容器に入れ、更にステンレス鋼製のボールを入れて振動ミルにて3時間混合、粉砕、造粒を行った。その結果、平均粒径20μmの複合粒子(SiOと黒鉛の複合粒子)を作製できた。続いて、上記複合粒子10gを沸騰床反応器中で約950℃に加熱し、加熱された複合粒子にトルエンと窒素ガスとからなる25℃の混合ガスを接触させ、950℃で60分間CVD処理を行った。このようにして、上記混合ガスが熱分解して生じた炭素を上記複合粒子に堆積させて被覆層を形成し、負極材料を得た。
Example 4
200 g of SiO (average particle size 1 μm), 60 g of graphite (average particle size 3 μm), and 30 g of polyethylene resin particles of a binder are placed in a 4 L stainless steel container, and further a stainless steel ball is placed in a vibration mill. Time mixing, grinding, and granulation were performed. As a result, composite particles (composite particles of SiO and graphite) having an average particle diameter of 20 μm could be produced. Subsequently, 10 g of the composite particles are heated to about 950 ° C. in a boiling bed reactor, a mixed gas of 25 ° C. composed of toluene and nitrogen gas is brought into contact with the heated composite particles, and CVD processing is performed at 950 ° C. for 60 minutes. Went. In this way, carbon produced by thermal decomposition of the mixed gas was deposited on the composite particles to form a coating layer, and a negative electrode material was obtained.

炭素被覆層形成前後の質量変化から、負極材料の組成を算出したところ、SiO:黒鉛:CVD炭素=60:25:15(質量比)であった。   When the composition of the negative electrode material was calculated from the mass change before and after the carbon coating layer was formed, it was SiO: graphite: CVD carbon = 60: 25: 15 (mass ratio).

次に、上記負極材料80質量%(固形分全量中の含有量、以下同じ)と、黒鉛10質量%と、導電助剤としてケッチェンブラック(平均粒径0.05μm)2質量%と,バインダとしてポリフッ化ビニリデン8質量%と、脱水N−メチルピロリドンとを混合して得たスラリーを、銅箔からなる集電体に塗布し、乾燥後プレスして、集電体の一方の面に厚み38μmの負極合剤層を形成した。   Next, 80% by mass of the negative electrode material (content in the total solid content, the same shall apply hereinafter), 10% by mass of graphite, 2% by mass of ketjen black (average particle size 0.05 μm) as a conductive auxiliary agent, binder The slurry obtained by mixing 8% by mass of polyvinylidene fluoride and dehydrated N-methylpyrrolidone was applied to a current collector made of copper foil, dried and pressed, and then the thickness was applied to one surface of the current collector. A negative electrode mixture layer having a thickness of 38 μm was formed.

その後、負極合剤層を形成した集電体を直径16mmに打ち抜き、真空で24時間乾燥させて、円盤状の負極を得た。負極合剤層の銅箔に対する接着性は良好であり、裁断や折り曲げによっても、負極合剤層は銅箔から剥がれることはなかった。   Thereafter, the current collector on which the negative electrode mixture layer was formed was punched to a diameter of 16 mm and dried in vacuum for 24 hours to obtain a disc-shaped negative electrode. The adhesion of the negative electrode mixture layer to the copper foil was good, and the negative electrode mixture layer was not peeled off from the copper foil even by cutting or bending.

上記の負極を用いた以外は、実施例1と同様にして、コイン形非水電解質二次電池を作製した。なお、正負極におけるバインダとケッチェンブラックの質量を差し引いた活物質質量は、それぞれ正極56.8mg、負極9.20mgであり、活物質質量比率(P/N)は6.17であった。   A coin-type nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the above negative electrode was used. The active material mass obtained by subtracting the masses of the binder and ketjen black in the positive and negative electrodes was 56.8 mg for the positive electrode and 9.20 mg for the negative electrode, respectively, and the active material mass ratio (P / N) was 6.17.

実施例5
SiOを沸騰床反応器中で約950℃に加熱し、加熱されたSiO粒子にトルエンと窒素ガスとからなる25℃の混合ガスを接触させ、950℃で60分間CVD処理を行った炭素被覆SiO(平均粒径8μm)150gと黒鉛(平均粒径3μm)150gを4Lのアルミナ製容器に入れ、さらにアルミナ製のボールを入れて振動ミルにて1時間混合を行った。その結果、平均粒径が10μmの負極材料が得られた。上記負極材料の組成は、SiO:黒鉛:CVD炭素=40:50:10(質量比)であった。
Example 5
The carbon-coated SiO was heated to about 950 ° C. in a boiling bed reactor, a mixed gas of 25 ° C. composed of toluene and nitrogen gas was brought into contact with the heated SiO particles, and CVD treatment was performed at 950 ° C. for 60 minutes. 150 g (average particle size: 8 μm) and 150 g of graphite (average particle size: 3 μm) were placed in a 4 L alumina container, and further an alumina ball was added and mixed in a vibration mill for 1 hour. As a result, a negative electrode material having an average particle size of 10 μm was obtained. The composition of the negative electrode material was SiO: graphite: CVD carbon = 40: 50: 10 (mass ratio).

次に、上記負極材料90質量%(固形分全量中の含有量、以下同じ)と、導電助剤としてケッチェンブラック(平均粒径0.05μm)2質量%と、バインダとしてポリフッ化ビニリデン8質量%と、脱水N−メチルピロリドンとを混合して得たスラリーを、銅箔からなる集電体に塗布し、乾燥後プレスして、集電体の一方の面に厚み33μmの負極合剤層を形成した。   Next, 90% by mass of the negative electrode material (content in the total solid content, the same shall apply hereinafter), 2% by mass of Ketjen black (average particle size 0.05 μm) as a conductive additive, and 8% of polyvinylidene fluoride as a binder % And a slurry obtained by mixing dehydrated N-methylpyrrolidone was applied to a current collector made of copper foil, dried and pressed, and a negative electrode mixture layer having a thickness of 33 μm on one surface of the current collector. Formed.

その後、負極合剤層を形成した集電体を直径16mmに打ち抜き、真空で24時間乾燥させて、円盤状の負極を得た。負極合剤層の銅箔に対する接着性は良好であり、裁断や折り曲げによっても、負極合剤層は銅箔から剥がれることはなかった。   Thereafter, the current collector on which the negative electrode mixture layer was formed was punched to a diameter of 16 mm and dried in vacuum for 24 hours to obtain a disc-shaped negative electrode. The adhesion of the negative electrode mixture layer to the copper foil was good, and the negative electrode mixture layer was not peeled off from the copper foil even by cutting or bending.

上記の負極を用いた以外は、実施例1と同様にして、コイン形非水電解質二次電池を作製した。なお、正負極におけるバインダとケッチェンブラックの質量を差し引いた活物質質量は、それぞれ正極56.8mg、負極9.68mgであり、活物質質量比率(P/N)は5.87であった。   A coin-type nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the above negative electrode was used. The mass of the active material obtained by subtracting the mass of the binder and the ketjen black in the positive and negative electrodes was 56.8 mg for the positive electrode and 9.68 mg for the negative electrode, respectively, and the active material mass ratio (P / N) was 5.87.

実施例6
正極活物質を、LiCoOからLi[Mn1/3Ni1/3Co1/3]Oに変更した以外は、実施例5と同様にして、コイン形非水電解質二次電池を作製した。なお、負極合剤層の厚みは38μm、正極合剤層の厚みは90μmであり、正負極におけるバインダとケッチェンブラックの質量を差し引いた活物質質量は、それぞれ正極56.8mg、負極10.1mgであり、活物質質量比率(P/N)は5.62であった。
Example 6
A coin-type nonaqueous electrolyte secondary battery was produced in the same manner as in Example 5 except that the positive electrode active material was changed from LiCoO 2 to Li [Mn 1/3 Ni 1/3 Co 1/3 ] O 2 . . The thickness of the negative electrode mixture layer was 38 μm, the thickness of the positive electrode mixture layer was 90 μm, and the active material mass obtained by subtracting the binder and ketjen black masses in the positive and negative electrodes was 56.8 mg for the positive electrode and 10.1 mg for the negative electrode, respectively. The active material mass ratio (P / N) was 5.62.

実施例7
負極材料の組成を、SiO:黒鉛:CVD炭素=30:60:10(質量比)に変更した以外は、実施例5と同様にして、コイン形非水電解質二次電池を作製した。なお、負極合剤層の厚みは49μm、正極合剤層の厚みは85μmであり、正負極におけるバインダとケッチェンブラックの質量を差し引いた活物質質量は、それぞれ正極56.8mg、負極13.1mgであり、活物質質量比率(P/N)は4.34であった。
Example 7
A coin-type non-aqueous electrolyte secondary battery was produced in the same manner as in Example 5 except that the composition of the negative electrode material was changed to SiO: graphite: CVD carbon = 30: 60: 10 (mass ratio). The thickness of the negative electrode mixture layer was 49 μm, the thickness of the positive electrode mixture layer was 85 μm, and the active material mass obtained by subtracting the masses of the binder and the ketjen black in the positive and negative electrodes was 56.8 mg for the positive electrode and 13.1 mg for the negative electrode, respectively. The active material mass ratio (P / N) was 4.34.

比較例1
負極における負極活物質の質量を7.07mgとした以外は、実施例4とすべて同じ条件でコイン形非水電解質二次電池を作製した。比較例1の電池における活物質質量比率(P/N)は8.03であった。
Comparative Example 1
A coin-type non-aqueous electrolyte secondary battery was manufactured under the same conditions as in Example 4 except that the mass of the negative electrode active material in the negative electrode was 7.07 mg. The active material mass ratio (P / N) in the battery of Comparative Example 1 was 8.03.

比較例2
電解液(非水電解質)を、EC:DEC=1:2(体積比)の溶媒に1molのLiPFを溶解させ、VCを添加せずに調製した溶液に変えた以外は、比較例1とすべて同じ条件でコイン形非水電解質二次電池を作製した。
Comparative Example 2
Comparative Example 1 except that the electrolytic solution (nonaqueous electrolyte) was changed to a solution prepared by dissolving 1 mol of LiPF 6 in a solvent of EC: DEC = 1: 2 (volume ratio) and not adding VC. A coin-type non-aqueous electrolyte secondary battery was manufactured under the same conditions.

比較例3
実施例4と同様にして作製したSiOと黒鉛の複合粒子を、沸騰床反応器中で約950℃に加熱し焼成する際に、トルエンなどの炭素源と接触させずに窒素中で加熱した。このようにして得られた複合粒子を負極材料として用いた以外は、実施例4とすべて同じ条件でコイン形非水電解質二次電池を作製した。
Comparative Example 3
When the composite particles of SiO and graphite produced in the same manner as in Example 4 were heated to about 950 ° C. and calcined in a boiling bed reactor, they were heated in nitrogen without contacting with a carbon source such as toluene. A coin-type nonaqueous electrolyte secondary battery was manufactured under the same conditions as in Example 4 except that the composite particles obtained in this manner were used as the negative electrode material.

比較例4
電解液(非水電解質)を、EC:DEC=1:2(体積比)の溶媒に1molのLiPFを溶解させ、VCを添加せずに調製した溶液に変えた以外は、実施例4とすべて同じ条件でコイン形非水電解質二次電池を作製した。
Comparative Example 4
Except that the electrolytic solution (nonaqueous electrolyte) was changed to a solution prepared by dissolving 1 mol of LiPF 6 in a solvent of EC: DEC = 1: 2 (volume ratio) and not adding VC, Example 4 A coin-type non-aqueous electrolyte secondary battery was manufactured under the same conditions.

上記の実施例1〜7および比較例1〜4の電池について、初回の充放電効率、充放電 2サイクル目の放電容量、充放電100サイクル目の容量維持率、および重負荷放電特性を測定した。結果を表1に示す。   For the batteries of Examples 1 to 7 and Comparative Examples 1 to 4, the initial charge / discharge efficiency, the discharge capacity at the second charge / discharge cycle, the capacity retention at the 100th charge / discharge cycle, and the heavy load discharge characteristics were measured. . The results are shown in Table 1.

なお、電池の充放電は、以下の方法により行った。充電(負極材料側のLiを挿入する)は、電流密度を0.5mA/cmとして定電流で行い、充電電圧が4.2Vに達した後、電流密度が1/10となるまで定電圧で行った。放電は、電流密度を0.5mA/cmとして定電流で行い、放電終止電圧は2.5Vとした。2サイクル目の放電容量、および100サイクル目容量維持率の測定においては、この充放電を1サイクルとした。なお、100サイクル目の容量維持率は下記式により算出した。
容量維持率(%)=(100サイクル目の放電容量/2サイクル目の放電容量)×100
The battery was charged and discharged by the following method. Charging (inserting Li on the negative electrode material side) is performed at a constant current with a current density of 0.5 mA / cm 2 , and after the charging voltage reaches 4.2 V, the constant voltage is maintained until the current density reaches 1/10. I went there. The discharge was performed at a constant current with a current density of 0.5 mA / cm 2 , and the final discharge voltage was 2.5V. In the measurement of the discharge capacity at the second cycle and the capacity maintenance rate at the 100th cycle, this charge / discharge was defined as one cycle. The capacity retention rate at the 100th cycle was calculated by the following formula.
Capacity retention rate (%) = (discharge capacity at the 100th cycle / discharge capacity at the second cycle) × 100

また、重負荷放電特性は、上記の充放電方法に従って2サイクル目の放電容量(放電容量1とする)を求め、上記の充放電方法において、放電時の電流密度0.5mA/cmを5mA/cmとした場合の2サイクル目の放電容量(放電容量2とする)を求め、下記式により算出した。この値が大きいほど、大電流時の放電特性がよいこと(すなわち、重負荷放電特性がよいこと)を示している。
重負荷放電特性(%)=(放電容量1/放電容量2)×100
Moreover, the heavy load discharge characteristics, determine the above-mentioned charge-discharge process in accordance with the second cycle of the discharge capacity (a discharge capacity 1), 5 mA in the charge-discharge process, the current density of 0.5 mA / cm 2 at the time of discharge The discharge capacity at the second cycle (referred to as discharge capacity 2) in the case of / cm 2 was obtained and calculated by the following formula. The larger this value is, the better the discharge characteristic at a large current (that is, the better the heavy load discharge characteristic).
Heavy load discharge characteristics (%) = (discharge capacity 1 / discharge capacity 2) × 100

Figure 0004854289
Figure 0004854289

なお、表1における「負極容量」とは、上記の「2サイクル目の放電容量」を意味している。   The “negative electrode capacity” in Table 1 means the “discharge capacity at the second cycle” described above.

表1に示すように、実施例1〜7のコイン形非水電解質二次電池では、比較例1および比較例2のコイン形非水電解質二次電池よりも、100サイクル目の容量維持率、重負荷放電特性などの電池特性が優れていることが確認できた。この結果は、実施例1〜7の電池に係る負極では、正極活物質と負極活物質の質量比率の制御によって、SiOの容量が制御されているので、充放電によるSiOの微粉化が抑制されたことに起因しているものと考えられる。   As shown in Table 1, in the coin-type non-aqueous electrolyte secondary batteries of Examples 1 to 7, the capacity retention rate at the 100th cycle is higher than that of the coin-type non-aqueous electrolyte secondary batteries of Comparative Example 1 and Comparative Example 2. It was confirmed that battery characteristics such as heavy load discharge characteristics were excellent. As a result, in the negative electrodes according to the batteries of Examples 1 to 7, the SiO capacity was controlled by controlling the mass ratio of the positive electrode active material and the negative electrode active material, so that the pulverization of SiO due to charge / discharge was suppressed. This is considered to be caused by this.

比較例3のコイン形非水電解質二次電池は、正極活物質と負極活物質の質量比率の制御によってSiOの容量が制御されているにも関わらず、実施例1〜7のコイン形非水電解質二次電池よりも充放電サイクル特性が悪い。これは、比較例3の電池に係る負極材料では、複合粒子の表面が気相成長(CVD)法にて形成された炭素被覆層によって覆われておらず、導電ネットワークがうまく形成されていないためであると考えられる。なお、比較例3の電池では、表1では重負荷放電特性を一応40%と示しているが、実際には、充放電サイクル特性の劣化が著しいため、重負荷放電特性が良好に測定できなかった。   The coin-type non-aqueous electrolyte secondary battery of Comparative Example 3 has the coin-type non-aqueous batteries of Examples 1 to 7 although the capacity of SiO is controlled by controlling the mass ratio of the positive electrode active material and the negative electrode active material. Charge / discharge cycle characteristics are worse than electrolyte secondary batteries. This is because in the negative electrode material according to the battery of Comparative Example 3, the surface of the composite particles is not covered with the carbon coating layer formed by the vapor deposition (CVD) method, and the conductive network is not formed well. It is thought that. In the battery of Comparative Example 3, the heavy load discharge characteristic is shown as 40% in Table 1 for the time being. However, since the deterioration of the charge / discharge cycle characteristic is remarkable, the heavy load discharge characteristic cannot be measured well. It was.

また、VCを含有しない非水電解質を用いた比較例4のコイン形非水電解質二次電池では、正極活物質と負極活物質との質量比率が不適であったり、表面を炭素で被覆していない負極材料を用いたりしている比較例1〜3のコイン形非水電解質二次電池に比べると、充放電サイクル特性、重負荷放電特性のいずれもが良好であるものの、実施例1〜7の非水電解質二次電池に比べると、これらの両特性が劣っている。   In the coin-type nonaqueous electrolyte secondary battery of Comparative Example 4 using a nonaqueous electrolyte that does not contain VC, the mass ratio between the positive electrode active material and the negative electrode active material is inappropriate, or the surface is coated with carbon. As compared with the coin-type nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 3 using no negative electrode material, both the charge / discharge cycle characteristics and the heavy load discharge characteristics are good, but Examples 1 to 7 Both of these characteristics are inferior to the nonaqueous electrolyte secondary battery.

なお、比較例1の電池と比較例2の電池を比較すると、充放電サイクル特性に効果があるはずのVCを添加した比較例2の方が、実際には充放電サイクル特性が劣っている。これは、正極活物質と負極活物質の質量比率が大きすぎる状態で充放電を行うと、SiOの粉砕頻度が大幅に増加し、VCの被膜形成が頻繁になりすぎて、それに伴うガス発生や過剰な被膜による内部抵抗増大によって充放電サイクル特性の劣化が著しくなり、VCを添加しない系(比較例2)よりも充放電サイクル特性が悪化したと考えられる。   In addition, when the battery of the comparative example 1 and the battery of the comparative example 2 are compared, the direction of the comparative example 2 which added VC which should be effective in charging / discharging cycling characteristics is actually inferior in charging / discharging cycling characteristics. This is because if the charge / discharge is performed in a state where the mass ratio of the positive electrode active material and the negative electrode active material is too large, the pulverization frequency of SiO is greatly increased, and the formation of the VC film becomes too frequent. It is considered that charge / discharge cycle characteristics deteriorated remarkably due to an increase in internal resistance due to excessive coating, and the charge / discharge cycle characteristics deteriorated as compared with the system not added with VC (Comparative Example 2).

Claims (6)

層状構造を有するリチウム含有遷移金属酸化物を正極活物質として含有する正極、負極、および非水電解質を備えた非水電解質二次電池であって、
上記負極は、組成式SiO で表される材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である)の表面が炭素で被覆された負極活物質含有しており、
上記非水電解質は、ビニレンカーボネートを含有しており、
上記正極における正極活物質の質量Pと上記負極における負極活物質の質量Nとの比P/Nが、3.7〜6.8であることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte containing a lithium-containing transition metal oxide having a layered structure as a positive electrode active material,
The above negative electrode material expressed by a composition formula SiO x (where the atomic ratio x of O to Si is 0.5 ≦ x ≦ 1.5) containing an anode active material whose surface is coated with carbon in And
The non-aqueous electrolyte contains vinylene carbonate,
The nonaqueous electrolyte secondary battery, wherein a ratio P / N of a mass P of the positive electrode active material in the positive electrode and a mass N of the negative electrode active material in the negative electrode is 3.7 to 6.8.
組成式SiO で表される材料を被覆している上記炭素が、炭化水素系ガスを気相中で加熱した際に、該炭化水素系ガスの熱分解により生じたものである請求項1に記載の非水電解質二次電池。 2. The carbon coating the material represented by the composition formula SiO x is generated by thermal decomposition of the hydrocarbon gas when the hydrocarbon gas is heated in a gas phase. The nonaqueous electrolyte secondary battery as described. 上記負極活物質更に炭素材料との複合体を形成している請求項1または2に記載の非水電解質二次電池。 The negative electrode active material, further non-aqueous electrolyte secondary battery according to claim 1 or 2 to form a complex with the carbon material. 層状構造を有するリチウム含有遷移金属酸化物を正極活物質として含有する正極、負極、および非水電解質を備えた非水電解質二次電池であって、
上記負極は、組成式SiO で表される材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である)と炭素材料との複合体の表面が炭素で被覆された負極活物質を含有しており、
上記非水電解質は、ビニレンカーボネートを含有しており、
上記正極における正極活物質の質量Pと上記負極における負極活物質の質量Nとの比P/Nが、3.7〜6.8であることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte containing a lithium-containing transition metal oxide having a layered structure as a positive electrode active material,
In the negative electrode, the surface of the composite of the material represented by the composition formula SiO x (where the atomic ratio x of O to Si is 0.5 ≦ x ≦ 1.5) and the carbon material is coated with carbon. Negative electrode active material,
The non-aqueous electrolyte contains vinylene carbonate,
The nonaqueous electrolyte secondary battery, wherein a ratio P / N of a mass P of the positive electrode active material in the positive electrode and a mass N of the negative electrode active material in the negative electrode is 3.7 to 6.8.
ビニレンカーボネートを0.5〜10質量%含有する非水電解質を使用する請求項1〜4のいずれかに記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein a nonaqueous electrolyte containing 0.5 to 10% by mass of vinylene carbonate is used. 組成式SiOComposition formula SiO x で表される材料が、Siの微結晶または非晶質相を含んでいる請求項1〜5のいずれかに記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the material represented by the formula (1) contains a microcrystalline or amorphous phase of Si.
JP2005359687A 2005-12-14 2005-12-14 Non-aqueous electrolyte secondary battery Active JP4854289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359687A JP4854289B2 (en) 2005-12-14 2005-12-14 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359687A JP4854289B2 (en) 2005-12-14 2005-12-14 Non-aqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2007165108A JP2007165108A (en) 2007-06-28
JP2007165108A5 JP2007165108A5 (en) 2009-01-22
JP4854289B2 true JP4854289B2 (en) 2012-01-18

Family

ID=38247798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359687A Active JP4854289B2 (en) 2005-12-14 2005-12-14 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4854289B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522820B2 (en) 2014-11-27 2019-12-31 Murata Manufacturing Co., Ltd. Secondary battery-use active material, secondary battery-use electrode, secondary battery, electric vehicle, and electronic apparatus

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297109B2 (en) * 2008-03-12 2013-09-25 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP5046302B2 (en) * 2008-03-28 2012-10-10 日立マクセルエナジー株式会社 Non-aqueous secondary battery
JP4986166B2 (en) * 2008-05-08 2012-07-25 日立マクセルエナジー株式会社 Lithium secondary battery
WO2010038609A1 (en) * 2008-09-30 2010-04-08 住友ベークライト株式会社 Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery, lithium secondary battery and method for producing carbon material for negative electrode of lithium secondary battery
JP5390336B2 (en) * 2009-10-22 2014-01-15 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011113863A (en) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd Nonaqueous secondary battery
GB201009519D0 (en) * 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
US8900749B2 (en) 2010-07-20 2014-12-02 Osaka Titanium Technologies Co., Ltd. Negative electrode material powder for lithium ion secondary battery, negative electrode for lithium ion secondary battery, negative electrode for capacitor, lithium ion secondary battery, and capacitor
KR101485382B1 (en) 2010-07-29 2015-01-26 히다치 막셀 가부시키가이샤 Lithium secondary battery
EP2618406B1 (en) * 2010-09-14 2016-06-22 Hitachi Maxell, Ltd. Nonaqueous secondary cell
JP6048407B2 (en) * 2011-09-13 2016-12-21 日本電気株式会社 Negative electrode active material and method for producing the same
TWI597878B (en) * 2011-09-29 2017-09-01 Hitachi Maxell Lithium battery
JP5933252B2 (en) * 2011-12-26 2016-06-08 日立マクセル株式会社 Non-aqueous secondary battery
JP2012169300A (en) * 2012-06-06 2012-09-06 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
KR101637068B1 (en) * 2012-11-30 2016-07-06 주식회사 엘지화학 Composite for anode active material and manufacturing method thereof
US9806335B2 (en) 2012-11-30 2017-10-31 Lg Chem, Ltd. Composite including conductive material and binder on surface of (semi) metal oxide and method of preparing anode slurry including the same
WO2014084610A1 (en) * 2012-11-30 2014-06-05 주식회사 엘지화학 Composite for cathode active material and method for manufacturing same
US9590238B2 (en) 2012-11-30 2017-03-07 Lg Chem, Ltd. Composite for anode active material and method of preparing the same
JP2015005353A (en) * 2013-06-19 2015-01-08 株式会社豊田自動織機 Power storage device
FR3011234B1 (en) * 2013-09-30 2015-10-02 Renault Sa ELECTRODE FOR ELECTRIC ENERGY STORAGE BATTERY COMPRISING A GRAPHITE COMPOSITE MATERIAL / SILICON / CARBON FIBERS
JP2016100178A (en) * 2014-11-20 2016-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. Anode active material for lithium ion secondary battery, method of manufacturing anode active material for lithium ion secondary battery, lithium ion secondary battery, and method of charging lithium ion secondary battery
JP2015115138A (en) * 2013-12-10 2015-06-22 三星精密化学株式会社Samsung Fine Chemicals Co., Ltd. Negative electrode active material for lithium ion secondary batteries, method for manufacturing negative electrode active material for lithium ion secondary batteries, lithium ion secondary battery, and method for charging lithium ion secondary battery
JP2016100179A (en) * 2014-11-20 2016-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. Anode active material for lithium ion secondary battery, method of manufacturing anode active material for lithium ion secondary battery, lithium ion secondary battery, and method of charging lithium ion secondary battery
JPWO2015098024A1 (en) * 2013-12-25 2017-03-23 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the negative electrode active material
JP6531652B2 (en) * 2014-01-31 2019-06-19 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery
JP6396343B2 (en) * 2014-02-04 2018-09-26 三井化学株式会社 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, composite paste for negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP6372823B2 (en) 2015-02-18 2018-08-15 株式会社日立製作所 Lithium secondary battery, electrolyte solution for lithium secondary battery, and additive for electrolyte solution of lithium secondary battery
JP6753069B2 (en) * 2016-02-19 2020-09-09 株式会社Gsユアサ Non-aqueous electrolyte secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752992B2 (en) * 2001-06-15 2011-08-17 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery
JP2004063433A (en) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd Conductive silicon oxide powder, its manufacturing method, and negative electrode material for nonaqueous secondary battery using the same
JP4288455B2 (en) * 2002-04-19 2009-07-01 信越化学工業株式会社 Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP4965790B2 (en) * 2002-10-28 2012-07-04 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2004071542A (en) * 2002-06-14 2004-03-04 Japan Storage Battery Co Ltd Negative electrode active material, negative electrode using same, nonaqueous electrolyte battery using same, and manufacture of negative electrode active material
JP4635409B2 (en) * 2003-04-14 2011-02-23 株式会社Gsユアサ Non-aqueous electrolyte battery
JP4171897B2 (en) * 2003-04-24 2008-10-29 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery and method for producing the same
JP2005149957A (en) * 2003-11-17 2005-06-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2005057715A1 (en) * 2003-12-15 2005-06-23 Nec Corporation Secondary battery
CN100547830C (en) * 2004-03-08 2009-10-07 三星Sdi株式会社 The negative electrode active material of chargeable lithium cell and method for making thereof and the chargeable lithium cell that comprises it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522820B2 (en) 2014-11-27 2019-12-31 Murata Manufacturing Co., Ltd. Secondary battery-use active material, secondary battery-use electrode, secondary battery, electric vehicle, and electronic apparatus

Also Published As

Publication number Publication date
JP2007165108A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP4854289B2 (en) Non-aqueous electrolyte secondary battery
JP5165258B2 (en) Nonaqueous electrolyte secondary battery
JP5464653B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP5008180B2 (en) Non-aqueous secondary battery
JP3992708B2 (en) Non-aqueous secondary battery electrode material, method for producing the same, and non-aqueous secondary battery using the same
JP5615926B2 (en) Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP5046302B2 (en) Non-aqueous secondary battery
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP7279757B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102419885B1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2008112710A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP5489353B2 (en) Non-aqueous electrolyte secondary battery
JP2011113863A (en) Nonaqueous secondary battery
JP6059019B2 (en) Nonaqueous electrolyte secondary battery
JP2008117761A (en) Nonaqueous electrolyte battery
JP2012003997A (en) Nonaqueous electrolyte secondary cell
JP2012009457A (en) Nonaqueous electrolyte secondary battery
KR20130129819A (en) Lithium ion secondary battery
JP2013178913A (en) Nonaqueous electrolyte secondary battery
JP2013145669A (en) Nonaqueous electrolyte secondary battery
JP2013187016A (en) Composite material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
KR20180083432A (en) Negative electrode material for Li ion secondary battery and production method thereof, negative electrode for Li ion secondary battery and Li ion secondary battery
KR20140041312A (en) Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery system
WO2017188021A1 (en) Electrochemical element electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4854289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250