JP5933252B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP5933252B2
JP5933252B2 JP2011282969A JP2011282969A JP5933252B2 JP 5933252 B2 JP5933252 B2 JP 5933252B2 JP 2011282969 A JP2011282969 A JP 2011282969A JP 2011282969 A JP2011282969 A JP 2011282969A JP 5933252 B2 JP5933252 B2 JP 5933252B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
alloying material
average particle
alloying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011282969A
Other languages
Japanese (ja)
Other versions
JP2012059721A (en
Inventor
趙 金保
金保 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2011282969A priority Critical patent/JP5933252B2/en
Publication of JP2012059721A publication Critical patent/JP2012059721A/en
Application granted granted Critical
Publication of JP5933252B2 publication Critical patent/JP5933252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、充電によりリチウムと合金化することのできる元素およびその化合物より選ばれる少なくとも1種の合金化材料を負極に用いた非水二次電池に関するものである。   The present invention relates to a non-aqueous secondary battery using, as a negative electrode, at least one alloying material selected from an element that can be alloyed with lithium by charging and a compound thereof.

非水二次電池の高エネルギー密度化を達成するためには、活物質としてより大きなエネルギー密度を有する材料を用いることが有効である。前記高エネルギー密度化のために、最近、負極活物質として実用化されている黒鉛などの炭素材料に代えて、充電時にリチウムとの合金化反応によってリチウムの吸蔵を行うことができるAl、Sn、Siなどの元素や、これら元素を含む合金や酸化物などの化合物などの材料を用いることが提案され、種々の検討が行われている。   In order to achieve high energy density of the non-aqueous secondary battery, it is effective to use a material having a larger energy density as the active material. In order to increase the energy density, in place of a carbon material such as graphite that has recently been put to practical use as a negative electrode active material, Al, Sn, which can occlude lithium by an alloying reaction with lithium during charging, It has been proposed to use materials such as elements such as Si, and compounds such as alloys and oxides containing these elements, and various studies have been conducted.

充電によりリチウムと合金化することのできる元素を含むこのような材料(以下、合金化材料という)を負極活物質として用いると、高容量を期待することができるが、反面、充放電の繰り返しの際に、リチウムの吸蔵、放出に伴う材料の膨張・収縮が生じ、大きな体積変化を生じてしまう。例えば、SnやSiの薄膜を用いた負極の場合は、LiM(M:SnまたはSi)の組成式でx=4.4までLiを電気化学的に挿入すると、薄膜の体積が4倍にまで膨張してしまう。このため、負極活物質の微粉化や、負極集電体からの剥離を生じ、負極内の導電性が低下して、優れた充放電サイクル特性が得られないという問題が生じる。 When such a material containing an element that can be alloyed with lithium by charging (hereinafter referred to as an alloying material) is used as a negative electrode active material, a high capacity can be expected. At this time, the material expands and contracts due to insertion and extraction of lithium, and a large volume change occurs. For example, in the case of a negative electrode using a thin film of Sn or Si, when Li is electrochemically inserted up to x = 4.4 in the composition formula of Li x M (M: Sn or Si), the volume of the thin film is quadrupled. It will expand to. For this reason, pulverization of the negative electrode active material and peeling from the negative electrode current collector occur, resulting in a problem that the conductivity in the negative electrode is lowered and excellent charge / discharge cycle characteristics cannot be obtained.

上記問題を解決するために、CVD法、スパッタリング法、蒸着法、溶射法、またはめっき法により形成された合金薄膜を負極とすることが提案されている(例えば、特許文献1〜5参照。)。これらの方法により薄膜電極を形成すると、集電箔(集電体)と活物質層とがより強固に一体化し、充放電に伴う活物質の微粉化などが発生しても集電箔から活物質が脱落しにくく、サイクル特性の向上に一定の効果を得ることができる。   In order to solve the above problem, it has been proposed to use an alloy thin film formed by a CVD method, a sputtering method, a vapor deposition method, a thermal spraying method, or a plating method as a negative electrode (see, for example, Patent Documents 1 to 5). . When a thin film electrode is formed by these methods, the current collector foil (current collector) and the active material layer are more firmly integrated, and even if the active material is pulverized due to charge / discharge, the active material is activated from the current collector foil. It is difficult for the substance to fall off, and a certain effect can be obtained in improving the cycle characteristics.

しかし、集電箔と活物質との密着性が高くなると、Liの挿入・脱離に伴う活物質薄膜の体積変化の影響を電極自体が受けやすくなるため、電極の膨張、集電箔の皺寄れおよび活物質薄膜内部のクラックの発生が顕著に現れる。その結果、電極内の導電性が低下し、電池のサイクル特性が劣化することになる。また、このような合金化材料は非常に硬度が高く、応力が加わると破壊されやすいため、上記電極を捲回する際に、活物質薄膜にクラックが入りやすく、また、電極シートの裁断時に端面にバリが形成されやすく、これを用いた負極により作製される捲回体では、内部短絡が生じやすくなる。特に角型電池の場合、捲回体を金属缶に挿入する段階で、捲回体のプレスを行うのが一般的であるため、内部短絡がより生じやすくなる。   However, if the adhesion between the current collector foil and the active material is increased, the electrode itself is more susceptible to the volume change of the active material thin film due to the insertion / desorption of Li. The occurrence of cracks and cracks in the active material thin film appears remarkably. As a result, the conductivity in the electrode is lowered, and the cycle characteristics of the battery are deteriorated. In addition, since such an alloyed material is very hard and easily broken when stress is applied, the active material thin film is easily cracked when the electrode is wound, and the end face is cut when the electrode sheet is cut. As a result, burrs are likely to be formed, and an internal short circuit tends to occur in a wound body made of a negative electrode using the same. In particular, in the case of a prismatic battery, since it is common to press the wound body at the stage of inserting the wound body into a metal can, an internal short circuit is more likely to occur.

一方、従来の塗布電極と同様に、合金化材料を結着剤により負極集電体に付着させることも提案されている(例えば、特許文献6および7参照。)。特許文献6では、SiとCo、Mgなどとの合金化により、また、特許文献7では、合金化材料と黒鉛とを負極活物質とし、合金化材料と黒鉛との合計重量に占める黒鉛の割合を50〜95重量%とし、合金化材料の平均粒径と黒鉛の平均粒径との比(合金化材料の平均粒径/黒鉛の平均粒径)を0.15〜0.90の範囲とすることにより、それぞれ高容量でサイクル特性に優れた非水二次電池を構成している。   On the other hand, it has also been proposed to attach an alloying material to a negative electrode current collector with a binder, as in the case of conventional coated electrodes (see, for example, Patent Documents 6 and 7). In Patent Document 6, due to alloying of Si with Co, Mg, and the like, and in Patent Document 7, the ratio of graphite to the total weight of the alloyed material and graphite, using the alloyed material and graphite as a negative electrode active material. The ratio of the average particle size of the alloying material to the average particle size of graphite (average particle size of alloying material / average particle size of graphite) is in the range of 0.15 to 0.90. By doing so, a non-aqueous secondary battery having a high capacity and excellent cycle characteristics is formed.

特開2001−68094号公報JP 2001-68094 A 特開2001−256968号公報JP 2001-256968 A 特開2005−108523号公報JP 2005-108523 A 特開2003−7295号公報JP 2003-7295 A 国際公開第2001/31720号International Publication No. 2001/31720 特開2000−243389号公報JP 2000-243389 A 特開2006−164952号公報JP 2006-164952A

しかしながら、特許文献6および7における構成でも、充放電時の負極の膨張を十分に抑制することができず、サイクル特性の改善にはまだ検討の余地が残されていた。   However, even the configurations in Patent Documents 6 and 7 cannot sufficiently suppress the expansion of the negative electrode during charging and discharging, and there is still room for study in improving the cycle characteristics.

本発明は、上記課題を解決するためになされたものであり、高容量で、サイクル特性に優れた非水二次電池を提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a non-aqueous secondary battery having a high capacity and excellent cycle characteristics.

本発明の非水二次電池は、充電によりリチウムと合金化することのできる元素およびその化合物より選ばれる少なくとも1種の合金化材料と、黒鉛とを活物質とし、導電助剤を含む負極と、正極と、非水電解液とを備えた非水二次電池であって、前記合金化材料として、前記元素の酸化物を含み、前記合金化材料は前記導電助剤と複合化されており、前記合金化材料と前記黒鉛との総量における前記合金化材料の割合が1〜13質量%であり、前記合金化材料の平均粒径が、前記黒鉛の平均粒径の2/5以下であることを特徴とする。   The non-aqueous secondary battery according to the present invention includes at least one alloying material selected from an element that can be alloyed with lithium by charging and a compound thereof, a negative electrode that includes graphite as an active material, and includes a conductive auxiliary agent. A non-aqueous secondary battery comprising a positive electrode and a non-aqueous electrolyte, wherein the alloying material includes an oxide of the element, and the alloying material is combined with the conductive additive. The ratio of the alloying material in the total amount of the alloying material and the graphite is 1 to 13% by mass, and the average particle size of the alloying material is 2/5 or less of the average particle size of the graphite. It is characterized by that.

本発明によれば、充放電における負極の膨張・収縮を抑制し、高容量で、サイクル特性に優れた非水二次電池を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the non-aqueous secondary battery which suppressed the expansion | swelling / contraction of the negative electrode in charging / discharging, was high, and was excellent in cycling characteristics can be obtained.

本発明では、負極活物質を、充電によりリチウムと合金化することのできる元素およびその化合物より選ばれる少なくとも1種の合金化材料と、炭素材料との混合物とし、前記合金化材料と前記炭素材料との総量における前記合金化材料の割合を1〜30質量%とし、前記合金化材料の平均粒径を、前記炭素材料の平均粒径の2/5以下とする。前記平均粒径は、二次粒子の場合は二次粒子の平均粒径を表す。また、平均粒子径は、数平均粒子径を用いればよく、レーザー回折式粒度分布測定装置などを用い、水に分散させた試料を測定することにより求められる。ただし、粒子径が非常に小さい場合など、前記測定が困難な場合には、電子顕微鏡により観察される粒子径から平均値を求めるのであってもよい。   In the present invention, the negative electrode active material is a mixture of at least one alloying material selected from an element that can be alloyed with lithium by charging and a compound thereof, and a carbon material, and the alloying material and the carbon material The ratio of the alloying material in the total amount is 1 to 30% by mass, and the average particle diameter of the alloying material is 2/5 or less of the average particle diameter of the carbon material. In the case of secondary particles, the average particle size represents the average particle size of secondary particles. The average particle diameter may be a number average particle diameter, and is determined by measuring a sample dispersed in water using a laser diffraction particle size distribution measuring device or the like. However, when the measurement is difficult, such as when the particle size is very small, an average value may be obtained from the particle size observed with an electron microscope.

活物質の一部を炭素材料とすることにより、負極内部の導電性を高めることができる。また、合金化材料が膨張する際の緩衝材として機能させることもできる。   By using a part of the active material as a carbon material, the conductivity inside the negative electrode can be increased. It can also function as a buffer material when the alloying material expands.

前記炭素材料の効果を高めるためには、前記合金化材料と前記炭素材料との総量における前記合金化材料の割合を30質量%以下とする必要があり、20質量%以下とすることがより好ましい。一方、合金化材料による高容量化の効果を得るためには、合金化材料の割合を1質量%以上とする必要があり、5質量%以上とすることが好ましく、10質量%以上とすることがより好ましい。   In order to enhance the effect of the carbon material, the proportion of the alloying material in the total amount of the alloying material and the carbon material needs to be 30% by mass or less, and more preferably 20% by mass or less. . On the other hand, in order to obtain the effect of increasing the capacity by the alloying material, the proportion of the alloying material needs to be 1% by mass or more, preferably 5% by mass or more, and preferably 10% by mass or more. Is more preferable.

また、本発明では、できるだけ炭素材料の粒子間の空隙に合金化材料粒子を保持し、炭素材料の緩衝材としての機能を高めるため、合金化材料の平均粒径を、炭素材料の平均粒径の2/5以下とする。合金化材料の粒径を、炭素材料の粒径よりも十分に小さくすることにより、合金化材料の周囲が炭素材料で取り囲まれ、合金化材料の体積変化に対応することが可能になり、また、負極の導電性を良好に維持することも可能となる。合金化材料の平均粒径は、炭素材料の平均粒径の1/3以下とするのがより好ましい。   Further, in the present invention, in order to keep the alloying material particles in the gaps between the carbon material particles as much as possible and to enhance the function of the carbon material as a buffer material, the average particle size of the alloying material is changed to the average particle size of the carbon material. 2/5 or less. By making the particle size of the alloying material sufficiently smaller than the particle size of the carbon material, the periphery of the alloying material is surrounded by the carbon material, and the volume change of the alloying material can be accommodated. In addition, the conductivity of the negative electrode can be maintained well. The average particle size of the alloying material is more preferably 1/3 or less of the average particle size of the carbon material.

前記充電によりリチウムと合金化することのできる元素としては、Si、Sn、Ga、Ge、In、Alなどの元素を挙げることができる。負極活物質となる前記合金化材料としては、前記元素単体あるいは前記元素同士の合金のほか、前記元素とCo、Ni、Fe、Mn、Ti、Zrなどとの合金、前記元素の酸化物、窒化物、炭化物などの化合物を例示することができる。中でも、充電によりリチウムと合金化することのできる元素としては、SiまたはSnが好ましく、これら元素の単体、これら元素を含む合金、これら元素の酸化物が活物質として好ましく用いられる。   Examples of the element that can be alloyed with lithium by the charging include elements such as Si, Sn, Ga, Ge, In, and Al. Examples of the alloying material to be a negative electrode active material include the element alone or an alloy of the elements, an alloy of the element with Co, Ni, Fe, Mn, Ti, Zr, and the like, an oxide of the element, and nitriding. Compounds such as products and carbides. Among these, as an element that can be alloyed with lithium by charging, Si or Sn is preferable, and simple substances of these elements, alloys containing these elements, and oxides of these elements are preferably used as active materials.

合金化材料の平均粒径は、体積変化による微粉化や充電時のリチウムデンドライトの形成を防ぐために3μm以下とすることが好ましく、2μm以下とすることがより好ましく、一方、接触抵抗の増加を防ぐために0.1μm以上とすることが好ましい。   The average particle diameter of the alloying material is preferably 3 μm or less, more preferably 2 μm or less in order to prevent pulverization due to volume change and formation of lithium dendrite during charging, while preventing an increase in contact resistance. Therefore, the thickness is preferably 0.1 μm or more.

また、負極活物質となる前記炭素材料には、充放電によりリチウムを吸蔵・放出可能な黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などが用いられる。中でも、(002)面の面間隔:d002が0.340nm以下の黒鉛、特にd002が0.337nm以下の黒鉛が好ましく用いられる。このような活物質を用いることにより、電池の高容量化を実現できるからである。なお、d002の下限値は特に限定されないが、理論的には略0.335nmである。 In addition, the carbon material used as the negative electrode active material includes graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads capable of inserting and extracting lithium by charging and discharging. Carbon fiber, activated carbon, etc. are used. Among these, graphite having a (002) plane spacing of d 002 of 0.340 nm or less, particularly graphite having d 002 of 0.337 nm or less is preferably used. This is because the use of such an active material makes it possible to increase the capacity of the battery. The lower limit of d 002 is not particularly limited, it is theoretically substantially 0.335 nm.

また、上記黒鉛の結晶構造におけるc軸方向の結晶子の大きさ:Lcは、3nm以上が好ましく、8nm以上がより好ましく、25nm以上がさらに好ましい。この範囲であればリチウムの吸蔵・放出がより容易になるからである。Lcの上限は特に限定されないが、通常200nm程度である。   The c-axis direction crystallite size Lc in the graphite crystal structure is preferably 3 nm or more, more preferably 8 nm or more, and further preferably 25 nm or more. This is because, within this range, insertion and extraction of lithium becomes easier. The upper limit of Lc is not particularly limited, but is usually about 200 nm.

上記炭素材料の平均粒径は、活物質層の塗布厚みや単位面積あたりの容量にもよるが、負極内での良好な導電ネットワークを形成するために、40μm以下であることが好ましく、25μm以下であることがより好ましく、15μm以下であることがさらに好ましい。一方、不可逆容量を低減するために、1μm以上であることが好ましく、3μm以上であることがより好ましい。なお、炭素材料の平均粒径は、少なくとも負極活物質層の塗布厚みよりも小さくする必要がある。   The average particle diameter of the carbon material depends on the coating thickness of the active material layer and the capacity per unit area, but is preferably 40 μm or less, and preferably 25 μm or less in order to form a good conductive network in the negative electrode. It is more preferable that the thickness is 15 μm or less. On the other hand, in order to reduce the irreversible capacity, it is preferably 1 μm or more, and more preferably 3 μm or more. The average particle size of the carbon material needs to be smaller than at least the coating thickness of the negative electrode active material layer.

炭素材料の形状は特に限定されないが、合金化材料を粒子間の空隙に保持しやすくするために、球状とすることが望ましい。   The shape of the carbon material is not particularly limited, but it is desirable that the carbon material is spherical in order to easily hold the alloying material in the voids between the particles.

前記合金化材料と前記炭素材料は、必要に応じて導電助剤やバインダーなどとともに合剤とされ、銅箔等の集電体上に塗布され、帯状の成形体に形成されることにより負極とされる。導電助剤は、合金化材料の導電性の向上に寄与するため、特に電子伝導度の低い酸化物を活物質とする場合には、数質量%添加することが望ましい。導電助剤としては、比表面積が大きい材料が望ましく、例えばカーボンブラックが好適であり、なかでもアセチレンブラックやケッチレンブラックが好適である。また、炭素繊維、例えば、気相成長炭素繊維は、合金化材料の粒子間もしくは合金化材料と活物質である炭素材料との集電性の維持に寄与するため、少量の添加により電池の性能を向上させることができる。   The alloying material and the carbon material may be combined with a conductive auxiliary agent or a binder as necessary, applied onto a current collector such as a copper foil, and formed into a strip-shaped molded body to form a negative electrode. Is done. Since the conductive additive contributes to the improvement of the conductivity of the alloying material, it is desirable to add several mass% particularly when an oxide having a low electronic conductivity is used as an active material. As the conductive assistant, a material having a large specific surface area is desirable. For example, carbon black is preferable, and among them, acetylene black and ketylene black are preferable. In addition, carbon fiber, for example, vapor-grown carbon fiber contributes to maintaining the current collecting property between the particles of the alloying material or between the alloying material and the active carbon material. Can be improved.

負極合剤層の厚みは、合金薄膜を負極とする場合に比べて厚くすることができ、例えば30〜70μmとすることができる。   The thickness of the negative electrode mixture layer can be increased as compared with the case where the alloy thin film is used as the negative electrode, and can be, for example, 30 to 70 μm.

負極の導電性を向上させるためには、合金化材料と導電助剤とは、造粒法等の方法により一体化され複合化された粒子となっていてもよく、また、合金化材料の表面に、導電助剤である炭素の被覆層が形成されていてもよい。   In order to improve the electroconductivity of the negative electrode, the alloying material and the conductive auxiliary agent may be integrated and compounded by a method such as a granulation method, or the surface of the alloying material. In addition, a carbon coating layer, which is a conductive aid, may be formed.

また、バインダーとしては、負極の使用電位範囲において、Liに対して電気化学的に不活性であり、他の物質にできるだけ影響を及ぼさない材料が選択される。例えば、スチレン−ブタジエンゴム、ポリフッ化ビニリデン、カルボキシメチルセルロース、メチルセルロース、ポリイミド、ポリアミドイミド等がバインダーとして好適である。これらは単独で用いてもよく、複数を組み合わせて用いてもよい。   Further, as the binder, a material that is electrochemically inactive with respect to Li in the working potential range of the negative electrode and does not affect other substances as much as possible is selected. For example, styrene-butadiene rubber, polyvinylidene fluoride, carboxymethylcellulose, methylcellulose, polyimide, polyamideimide and the like are suitable as the binder. These may be used alone or in combination.

正極は、負極と同様の方法により作製される。正極活物質は、必要に応じて導電助剤やバインダーなどとともに合剤とされ、アルミ箔等の集電体上に塗布され、帯状の成形体に形成されることにより正極とされる。正極活物質は、特に限定されず、Li含有遷移金属酸化物など一般に用いることのできる活物質を使用すればよい。Li遷移金属酸化物の具体例としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo1−y、LiNi1−y、LiMnNiCo1−y−z、LiMn、LiMn2−y(前記の各構造式中、Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、Al、Ti、GeおよびCrよりなる群から選ばれる少なくとも1種の金属元素であり、0≦x≦1.1、0<y<1.0、z<1.0である)などが例示される。 The positive electrode is produced by the same method as the negative electrode. The positive electrode active material is mixed with a conductive additive, a binder, and the like as necessary, and is applied onto a current collector such as an aluminum foil and formed into a strip-shaped molded body to be a positive electrode. The positive electrode active material is not particularly limited, and a generally usable active material such as a Li-containing transition metal oxide may be used. Specific examples of the Li transition metal oxide include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O 2 , Li x Ni 1-y M y O 2, Li x Mn y Ni z Co 1-y-z O 2, Li x Mn 2 O 4, Li x Mn 2-y M y O 4 ( in the structural formula of the , M is at least one metal element selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, Al, Ti, Ge and Cr, and 0 ≦ x ≦ 1.1, 0 < y <1.0 and z <1.0).

電解液についても、特に限定はされず、下記の溶媒中に下記の無機イオン塩を溶解させることによって調製したものが例示される。   The electrolytic solution is not particularly limited, and examples thereof include those prepared by dissolving the following inorganic ion salt in the following solvent.

溶媒としては,例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒を、1種または2種以上用いることができる。   Examples of the solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1, 3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl Use one or more aprotic organic solvents such as ether and 1,3-propane sultone It can be.

無機イオン塩としては、Li塩、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、低級脂肪族カルボン酸Li、LiAlCl、LiCl、LiBr、LiI、クロロボランLi、四フェニルホウ酸Liなどを、1種または2種以上用いることができる。 As the inorganic ion salt, Li salt, for example, LiClO 4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, lower aliphatic carboxylic acids Li, LiAlCl 4 , LiCl, LiBr, LiI, chloroborane Li, Li tetraphenylborate, or the like can be used alone or in combination.

前記溶媒中に前記無機イオン塩が溶解された電解液の中でも、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネートおよびメチルエチルカーボネートよりなる群から選ばれる少なくとも1種と、エチレンカーボネートまたはプロピレンカーボネートとを含む溶媒に、LiClO、LiBF、LiPFおよびLiCFSOよりなる群から選ばれる少なくとも1種の無機イオン塩を溶解した電解液が好ましい。電解液中の無機イオン塩の濃度は、例えば、0.2〜3.0mol/dmが適当である。 Among the electrolytic solutions in which the inorganic ion salt is dissolved in the solvent, at least one selected from the group consisting of 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, ethylene carbonate or propylene carbonate, An electrolyte solution in which at least one inorganic ion salt selected from the group consisting of LiClO 4 , LiBF 4 , LiPF 6, and LiCF 3 SO 3 is dissolved in a solvent containing s is preferable. An appropriate concentration of the inorganic ion salt in the electrolytic solution is, for example, 0.2 to 3.0 mol / dm 3 .

本発明の非水二次電池の上記以外の構成については、従来より用いられているものを用いることができる。   As for the configuration other than the above of the nonaqueous secondary battery of the present invention, those conventionally used can be used.

(実施例1)
〔正極の作製〕
92質量部のLiCoOと、5質量部の鱗片状黒鉛を混合し、この混合物に、3質量部分のポリフッ化ビニリデンをN−メチル−2−ピロリドンに溶解させた溶液を加えて混合し、正極合剤ペーストを得た。この正極合剤ペーストをステンレス鋼製の網を通過させて凝集物を取り除いた後、厚み15μmのアルミニウム箔からなる正極集電材の片面に、乾燥後の正極合剤質量が単位面積当たり24.0mg/cmとなるように均一に塗布し、乾燥して正極合剤層を形成した後、ローラープレス機により1.4×10N/mの圧力で圧縮成形し、その後、40mm×25mmに切断し、リード体を溶接して正極を作製した。正極合剤層の厚みは69μmであり、Li電位に対して4.3Vまで充電した場合の容量は34mAhであった。
Example 1
[Production of positive electrode]
92 parts by mass of LiCoO 2 and 5 parts by mass of flaky graphite were mixed. To this mixture, a solution prepared by dissolving 3 parts by mass of polyvinylidene fluoride in N-methyl-2-pyrrolidone was added and mixed. A mixture paste was obtained. The positive electrode mixture paste was passed through a stainless steel net to remove aggregates, and then the positive electrode mixture mass after drying was 24.0 mg per unit area on one side of a positive electrode current collector made of aluminum foil having a thickness of 15 μm. / Cm 2 , uniformly applied and dried to form a positive electrode mixture layer, and then compression molded with a roller press at a pressure of 1.4 × 10 7 N / m 2 , and then 40 mm × 25 mm And the lead body was welded to produce a positive electrode. The thickness of the positive electrode mixture layer was 69 μm, and the capacity when charged to 4.3 V with respect to the Li potential was 34 mAh.

〔負極の作製〕
平均粒径が1.5μmのSi粉末を合金化材料とし、その表面に炭素を被覆することにより構成された複合化材料と、メソカーボンマイクロビーズ(MCMB)との混合物(質量比=20:80)を負極活物質として用いた。前記炭素の被覆はCVDにより行われ、メタンガスを原料として、Nガス中で1100℃で1〜5時間処理することにより炭素の被覆層を形成した。炭素の被覆量は、複合化材料全体の40質量%であり、形成された炭素は、導電性を有するものの充放電の容量はほとんど有しておらず、負極活物質としては作用しないものであった。また、MCMBは、d002が0.337nm、Lcが95.0nmで、平均粒径が8μmであり、Si粉末とMCMBの質量比は13:87であり、Si粉末の平均粒径とMCMBの平均粒径との比の値は0.19であった。
(Production of negative electrode)
A mixture of a composite material constituted by coating Si on the surface with Si powder having an average particle size of 1.5 μm, and mesocarbon microbeads (MCMB) (mass ratio = 20: 80) ) Was used as the negative electrode active material. The carbon coating was performed by CVD, and a carbon coating layer was formed by treating methane gas as a raw material at 1100 ° C. for 1 to 5 hours in N 2 gas. The coating amount of carbon is 40% by mass of the entire composite material, and the formed carbon has conductivity but has little charge / discharge capacity and does not act as a negative electrode active material. It was. MCMB has a d 002 of 0.337 nm, an Lc of 95.0 nm, an average particle size of 8 μm, and a mass ratio of Si powder to MCMB of 13:87. The ratio to the average particle size was 0.19.

前記混合物を、ポリフッ化ビニリデン(PVDF)を溶解したN−メチル−2−ピロリドン(NMP)溶液、カーボンブラックとともに混合し(前記混合物とPVDFとカーボンブラックの質量比は、90:9:1)、さらにNMP溶液を加えて混合して負極合剤ペーストとした。この負極合剤ペーストを、厚み10μmの電解銅箔の片面に、乾燥後の負極合剤質量が単位面積当たり5.6mg/cmとなるように均一に塗布し、加熱した乾燥機中で真空熱処理してNMPを除去した後、ローラープレス機により1.4×10N/mの圧力で2回圧縮成形し、その後、42mm×27mmに切断し、リード体を溶接して負極を作製した。負極合剤層の厚みは41μmであり、活物質全体の容量は821mAh/gであり、正極の容量の1.1倍となった。 The mixture is mixed with an N-methyl-2-pyrrolidone (NMP) solution in which polyvinylidene fluoride (PVDF) is dissolved and carbon black (the mass ratio of the mixture to PVDF and carbon black is 90: 9: 1), Further, an NMP solution was added and mixed to obtain a negative electrode mixture paste. This negative electrode mixture paste was uniformly applied to one side of an electrolytic copper foil having a thickness of 10 μm so that the negative electrode mixture mass after drying was 5.6 mg / cm 2 per unit area, and vacuum was applied in a heated dryer. After removing NMP by heat treatment, it is compression-molded twice with a roller press at a pressure of 1.4 × 10 7 N / m 2 , then cut to 42 mm × 27 mm, and the lead body is welded to produce a negative electrode did. The thickness of the negative electrode mixture layer was 41 μm, and the capacity of the entire active material was 821 mAh / g, which was 1.1 times the capacity of the positive electrode.

〔電池の作製〕
前記正極と前記負極の塗布面を向かい合わせ、厚みが20μm多孔質のポリエチレンセパレータ(50mm×35mm)を介して重ね、厚み110μmのアルミニウムラミネートフィルムからなる外装体に入れ、0.7mlの電解液を入れて真空に脱気した後封止し、非水二次電池を作製した。以上の作業は、ドライ雰囲気中で行った。また、電解液にはエチレンカーボネートとジエチルカーボネートの混合溶媒(体積比3:7)に1.0mol/lのLiPFを溶解させたものを使用した。なお、作製したセルを4.2Vまで充電したときの容量は、32.4mAhであった。
[Production of battery]
The coated surfaces of the positive electrode and the negative electrode face each other, overlap each other through a porous polyethylene separator (50 mm × 35 mm) having a thickness of 20 μm, put into an outer package made of an aluminum laminate film having a thickness of 110 μm, and 0.7 ml of electrolyte After putting in and degassing in vacuum, it was sealed to produce a nonaqueous secondary battery. The above operations were performed in a dry atmosphere. Further, the electrolyte solvent mixture of ethylene carbonate and diethyl carbonate (volume ratio 3: 7) were used those obtained by dissolving LiPF 6 in 1.0 mol / l to. In addition, the capacity | capacitance when charging the produced cell to 4.2V was 32.4 mAh.

〔電池の評価〕
上記のセルを、20℃において5mAの定電流で4.2Vになるまで充電し、更に4.2Vの定電圧で、充電の電流値が0.5mAに低下するまで充電し、この状態を満充電として充電容量を測定した。その後、放電電流を5mAとして3Vまで放電し、その際の放電容量を測定した。また、充電による電池の厚み変化を以下の式により求め、これが主として負極の膨張によると仮定して負極の膨張の程度を評価した。
〔電池の厚み変化〕
=〔充電前と充電後の電池の厚みの差〕÷〔充電前の電池の厚み〕×100%
[Battery evaluation]
The above cell was charged at 20 ° C. with a constant current of 5 mA until it reached 4.2 V, and further charged with a constant voltage of 4.2 V until the current value of charging decreased to 0.5 mA. The charging capacity was measured as charging. Thereafter, the discharge current was set to 5 mA and discharged to 3 V, and the discharge capacity at that time was measured. Further, the change in thickness of the battery due to charging was determined by the following equation, and the degree of expansion of the negative electrode was evaluated assuming that this was mainly due to expansion of the negative electrode.
[Battery thickness change]
= [Difference in battery thickness before and after charging] ÷ [Battery thickness before charging] x 100%

また、放電容量測定後の電池について、定電流充電時の電流値を17mAとした以外は、前記と同様の定電流−定電圧充電の条件として充放電を50サイクル繰り返し、1サイクル目の放電容量に対する50サイクル目の放電容量の割合を容量維持率(%)として評価した。作製した負極の構成および測定した電池の特性をそれぞれ表1および表2に示す。   In addition, for the battery after the discharge capacity measurement, charge and discharge were repeated 50 cycles as the constant current-constant voltage charge conditions as described above except that the current value during constant current charge was 17 mA. The ratio of the discharge capacity at the 50th cycle with respect to was evaluated as the capacity retention rate (%). Tables 1 and 2 show the configuration of the produced negative electrode and the measured battery characteristics, respectively.

(実施例2)
合金化材料として、平均粒径が2μmのSiO粉末を用い、その表面に炭素が被覆された複合化材料(炭素の被覆量は、複合化材料全体の23質量%)とし、MCMCの平均粒径を10μmとし、前記複合化材料とMCMBとの質量比を1:2とし、負極の容量が正極の容量の1.1倍となるよう負極合剤層の厚みを調整した以外は、実施例1と同様にして非水二次電池を作製した。なお、SiO粉末とMCMBの質量比は27.8:72.2であり、SiO粉末の平均粒径とMCMBの平均粒径との比の値は0.2であった。
(Example 2)
As an alloying material, a SiO powder having an average particle diameter of 2 μm is used, and a composite material in which carbon is coated on the surface (the coating amount of carbon is 23% by mass of the entire composite material) is used. Example 1 except that the thickness of the negative electrode mixture layer was adjusted to 10 μm, the mass ratio of the composite material to MCMB was 1: 2, and the negative electrode capacity was 1.1 times the positive electrode capacity. A non-aqueous secondary battery was produced in the same manner as described above. The mass ratio of SiO powder to MCMB was 27.8: 72.2, and the value of the ratio between the average particle diameter of SiO powder and the average particle diameter of MCMB was 0.2.

(実施例3〜6)
Si粉末の平均粒径を表1に示すように変え、負極の容量が正極の容量の1.1倍となるよう負極合剤層の厚みを調整した以外は、実施例1と同様にして非水二次電池を作製した。
(Examples 3 to 6)
The average particle size of the Si powder was changed as shown in Table 1, and the thickness of the negative electrode mixture layer was adjusted so that the negative electrode capacity was 1.1 times the positive electrode capacity. A water secondary battery was produced.

(実施例7〜9)
複合化材料とMCMBとの混合比(質量比)を変え、負極の容量が正極の容量の1.1倍となるよう負極合剤層の厚みを調整した以外は、実施例1と同様にして非水二次電池を作製した。
(Examples 7 to 9)
The same as in Example 1 except that the mixing ratio (mass ratio) of the composite material and MCMB was changed and the thickness of the negative electrode mixture layer was adjusted so that the capacity of the negative electrode was 1.1 times the capacity of the positive electrode. A non-aqueous secondary battery was produced.

(比較例1)
負極活物質として、MCMBのみを用い、負極の容量が正極の容量の1.1倍となるよう負極合剤層の厚みを調整した以外は、実施例1と同様にして非水二次電池を作製した。このときの負極合剤層の厚みは65μmであり、実施例1に比べて負極合剤層の体積は約1.6倍となった。
(Comparative Example 1)
A nonaqueous secondary battery was prepared in the same manner as in Example 1 except that only MCMB was used as the negative electrode active material and the thickness of the negative electrode mixture layer was adjusted so that the negative electrode capacity was 1.1 times the positive electrode capacity. Produced. The thickness of the negative electrode mixture layer at this time was 65 μm, and the volume of the negative electrode mixture layer was about 1.6 times that of Example 1.

(比較例2)
複合化材料とMCMBとの混合比(質量比)を50:50とし、Si粉末とMCMBとの質量比を37.5:62.5とし、負極の容量が正極の容量の1.1倍となるよう負極合剤層の厚みを調整した以外は、実施例1と同様にして非水二次電池を作製した。
(Comparative Example 2)
The mixing ratio (mass ratio) of the composite material and MCMB is 50:50, the mass ratio of Si powder and MCMB is 37.5: 62.5, and the capacity of the negative electrode is 1.1 times the capacity of the positive electrode. A nonaqueous secondary battery was produced in the same manner as in Example 1 except that the thickness of the negative electrode mixture layer was adjusted so as to be.

(比較例3)
Si粉末の平均粒径を4μmとして負極を作製した以外は、実施例1と同様にして非水二次電池を作製した。
(Comparative Example 3)
A non-aqueous secondary battery was produced in the same manner as in Example 1 except that the negative electrode was produced by setting the average particle size of the Si powder to 4 μm.

上記実施例2〜9および比較例1〜3についても、実施例1と同様にして電池の評価を行った。作製した負極の構成および測定した電池の特性をそれぞれ表1および表2に示す。   The batteries were evaluated in the same manner as in Example 1 for Examples 2 to 9 and Comparative Examples 1 to 3. Tables 1 and 2 show the configuration of the produced negative electrode and the measured battery characteristics, respectively.

Figure 0005933252
Figure 0005933252

Figure 0005933252
Figure 0005933252

本発明の非水二次電池では、充電によりリチウムと合金化することのできる元素およびその化合物より選ばれる少なくとも1種の合金化材料と、炭素材料とを負極活物質としたことにより、表2に示されるように、負極活物質の単位質量あたりの容量を大きくすることができ、炭素材料のみを負極活物質とする比較例1の非水二次電池に比べて負極合剤層の体積を減少させることができるので、電池の高容量化を図ることができる。   In the nonaqueous secondary battery of the present invention, at least one alloying material selected from an element that can be alloyed with lithium by charging and a compound thereof and a carbon material are used as the negative electrode active material. As shown in FIG. 5, the capacity per unit mass of the negative electrode active material can be increased, and the volume of the negative electrode mixture layer can be increased compared to the non-aqueous secondary battery of Comparative Example 1 using only the carbon material as the negative electrode active material. Since it can be reduced, the capacity of the battery can be increased.

また、合金化材料と炭素材料との総量における合金化材料の割合を1〜30質量%とし、合金化材料の平均粒径を、炭素材料の平均粒径の2/5以下としたことにより、充電による負極の膨張に起因する電池の厚み変化を抑制しながら、サイクル充放電による容量の低下を抑制し、サイクル特性に優れた非水二次電池を構成することができた。   Moreover, the ratio of the alloying material in the total amount of the alloying material and the carbon material is 1 to 30% by mass, and the average particle diameter of the alloying material is 2/5 or less of the average particle diameter of the carbon material, While suppressing changes in the thickness of the battery due to the expansion of the negative electrode due to charging, a decrease in capacity due to cycle charge / discharge was suppressed, and a nonaqueous secondary battery excellent in cycle characteristics could be constructed.

Claims (8)

充電によりリチウムと合金化することのできる元素およびその化合物より選ばれる少なくとも1種の合金化材料と、黒鉛粒子とを活物質とし、導電助剤を含む負極と、正極と、非水電解液とを備えた非水二次電池であって、
前記合金化材料として、前記元素の酸化物を含み、
前記合金化材料の表面に、前記導電助剤である炭素の被覆層が形成されており、
前記炭素の被覆層が形成された合金化材料は、前記黒鉛粒子と混合されており、
前記合金化材料と前記黒鉛粒子との総量における前記合金化材料の割合が1〜13質量%であり、
前記合金化材料の平均粒径が、前記黒鉛粒子の平均粒径の2/5以下であることを特徴とする非水二次電池。
At least one alloying material selected from an element that can be alloyed with lithium by charging and a compound thereof, graphite particles as an active material, a negative electrode including a conductive additive, a positive electrode, a non-aqueous electrolyte, A non-aqueous secondary battery comprising:
As the alloying material, containing an oxide of the element,
On the surface of the alloying material , a coating layer of carbon that is the conductive aid is formed ,
The alloying material on which the carbon coating layer is formed is mixed with the graphite particles,
The ratio of the alloying material in the total amount of the alloying material and the graphite particles is 1 to 13% by mass,
The non-aqueous secondary battery, wherein an average particle diameter of the alloying material is 2/5 or less of an average particle diameter of the graphite particles .
前記合金化材料としてSiまたはSnの酸化物を含む請求項1記載の非水二次電池。 The nonaqueous secondary battery according to claim 1 , wherein the alloying material includes an oxide of Si or Sn. 前記合金化材料と前記黒鉛粒子との総量における前記合金化材料の割合が5質量%以上である請求項1または2に記載の非水二次電池。 The non-aqueous secondary battery according to claim 1 or 2 , wherein a ratio of the alloying material in a total amount of the alloying material and the graphite particles is 5% by mass or more. 前記黒鉛粒子の平均粒径が25μm以下である請求項1〜3のいずれかに記載の非水二次電池。 Non-aqueous secondary battery according to any one of claims 1 to 3 mean particle size of the graphite particles is 25μm or less. 前記黒鉛粒子の平均粒径が8μm以上である請求項1〜のいずれかに記載の非水二次電池。 Non-aqueous secondary battery according to any one of claims 1 to 4 Average particle size of the graphite particles is 8μm or more. 前記合金化材料の平均粒径が0.1μm以上である請求項1〜のいずれかに記載の非水二次電池。 Non-aqueous secondary battery according to any one of claims 1 to 5 mean particle size of the alloying material is 0.1μm or more. 前記合金化材料の平均粒径が、前記黒鉛粒子の平均粒径の1/3以下である請求項1〜のいずれかに記載の非水二次電池。 Average particle size, nonaqueous secondary battery according to any one of claims 1 to 6 1/3 or less is an average particle size of the graphite particles of the alloying material. 前記黒鉛粒子の平均粒径に対する前記合金化材料の平均粒径の比が、0.013以上である請求項1〜のいずれかに記載の非水二次電池。 The nonaqueous secondary battery according to any one of claims 1 to 7 , wherein a ratio of an average particle diameter of the alloying material to an average particle diameter of the graphite particles is 0.013 or more.
JP2011282969A 2011-12-26 2011-12-26 Non-aqueous secondary battery Active JP5933252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011282969A JP5933252B2 (en) 2011-12-26 2011-12-26 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011282969A JP5933252B2 (en) 2011-12-26 2011-12-26 Non-aqueous secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008085462A Division JP5046302B2 (en) 2008-03-28 2008-03-28 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2012059721A JP2012059721A (en) 2012-03-22
JP5933252B2 true JP5933252B2 (en) 2016-06-08

Family

ID=46056535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011282969A Active JP5933252B2 (en) 2011-12-26 2011-12-26 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP5933252B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6078986B2 (en) * 2012-05-25 2017-02-15 日本電気株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5998870B2 (en) * 2012-11-16 2016-09-28 株式会社豊田自動織機 Negative electrode material for power storage device, negative electrode for power storage device and power storage device
JP6100610B2 (en) 2013-05-27 2017-03-22 信越化学工業株式会社 Negative electrode active material, non-aqueous electrolyte secondary battery, and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609612B2 (en) * 1998-04-28 2005-01-12 三洋電機株式会社 Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP5217083B2 (en) * 2005-11-15 2013-06-19 日立化成株式会社 Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4854289B2 (en) * 2005-12-14 2012-01-18 日立マクセルエナジー株式会社 Non-aqueous electrolyte secondary battery
JP2007242630A (en) * 2007-05-14 2007-09-20 Mitsubishi Chemicals Corp Nonaqueous secondary battery

Also Published As

Publication number Publication date
JP2012059721A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5046302B2 (en) Non-aqueous secondary battery
JP5101692B2 (en) Anode material with excellent conductivity and high-power secondary battery using the same
JP5150966B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
WO2013098962A1 (en) Nonaqueous secondary battery
JP7279757B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6279233B2 (en) Lithium secondary battery
JPWO2015152113A1 (en) Graphite negative electrode active material, negative electrode and lithium ion secondary battery
EP4220754A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
KR102460008B1 (en) Method of pre-lithiating anode and Anode obtained therefrom
WO2012144177A1 (en) Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2014225324A (en) Nonaqueous electrolyte secondary cell
WO2012029625A1 (en) Secondary battery
JP2014007010A (en) Lithium secondary battery
JP5216973B2 (en) Non-aqueous secondary battery and non-aqueous secondary battery system
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
KR101093242B1 (en) Mixed Cathode Material for Lithium Secondary Battery and High Power Lithium Secondary Battery Employed with the Same
JP2012164481A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
KR20180083432A (en) Negative electrode material for Li ion secondary battery and production method thereof, negative electrode for Li ion secondary battery and Li ion secondary battery
CN111697227B (en) Lithium ion secondary battery and method for manufacturing same
JP5933252B2 (en) Non-aqueous secondary battery
JP4775621B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160502

R150 Certificate of patent or registration of utility model

Ref document number: 5933252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250