JP4792618B2 - Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery - Google Patents

Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP4792618B2
JP4792618B2 JP2000163262A JP2000163262A JP4792618B2 JP 4792618 B2 JP4792618 B2 JP 4792618B2 JP 2000163262 A JP2000163262 A JP 2000163262A JP 2000163262 A JP2000163262 A JP 2000163262A JP 4792618 B2 JP4792618 B2 JP 4792618B2
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
negative electrode
silicon
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000163262A
Other languages
Japanese (ja)
Other versions
JP2001345100A (en
Inventor
康一 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2000163262A priority Critical patent/JP4792618B2/en
Publication of JP2001345100A publication Critical patent/JP2001345100A/en
Application granted granted Critical
Publication of JP4792618B2 publication Critical patent/JP4792618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池負極用炭素質粒子とその製造方法、それを用いたリチウム二次電池用負極及びリチウム二次電池に関する。
【0002】
【従来の技術】
近年、ポータブル機器、電気自動車、電力貯蔵用として、小型、軽量で高エネルギー密度を有する二次電池に対する要望が高まっている。このような要望に対し、非水系電解液二次電池、特にリチウムイオン二次電池はとりわけ高電圧、高エネルギー密度を有する電池として注目を集めている。
【0003】
リチウムイオン二次電池の負極材料としては、金属リチウム、低黒鉛化炭素粒子、高黒鉛化炭素粒子等が使用されている。金属リチウムは高い充放電容量を実現可能であるが、その高い反応性のため、充放電サイクルの経過と共に電解液中の溶媒と反応し容量が低下する。また、樹枝状の金属リチウムが生成しやすく、正・負極間に設けられるセパレータを貫通し短絡を引き起こしやすいという問題点を有している。低黒鉛化炭素質材料は、電解液との反応性が低い、樹枝状金属リチウムが生成しずらいという特徴を有するが、充放電容量が一般に低く、また真密度が低いため体積当たりの充放電容量が低いという難点を有している。一方、高黒鉛化炭素粒子は、低黒鉛化炭素粒子と比較して高い充放電容量を有し、金属リチウムと比較して電解液との反応性が低く、樹枝状金属リチウムが生成しずらく、放電電圧が高く且つ平坦であるという特徴を有することから、近年、負極用材料として盛んに検討がなされるようになってきている。
【0004】
しかしながら、高黒鉛化炭素粒子は、その放電容量がリチウムと形成する層間化合物(LiC6)によって制限(372mAh/g)されるという課題を有している。この理論容量を超える容量を有する高黒鉛化炭素材料の開発が様々な部署で検討されているが、作業性、サイクル特性を両立したものは未だ見出されていない。
【0005】
上記以外の負極材として、ポリカルボシランやポリジシラザンなどの有機珪素高分子化合物や、シリコンアルコキシド等の有機珪素化合物とフェノール樹脂等の炭素前駆体の混合物を焼成して得られる珪素含有炭素質粒子が、500Ah/kg以上の高い放電容量を示すことが報告されている。しかしながら、前者では不可逆容量が大きく、また、前駆体である珪素含有有機高分子化合物が極めて高価な材料であり、負極材のコスト増加を引き起こす等の問題があり、後者では不可逆容量が大きく、サイクル特性が悪い等の問題がある。
【0006】
【発明が解決しようとする課題】
本発明は、高い放電容量が期待できる珪素含有炭素質粒子に関し、低コスト化が可能な有機珪素化合物と炭素前駆体との混合物を焼成して作製される珪素含有炭素質粒子であって、不可逆容量が小さく、充放電効率及びサイクル特性が改善された材料を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、下記に示すリチウム二次電池負極用炭素質粒子とその製造方法、それを用いたリチウム二次電池用負極及びリチウム二次電池を提供する。
(1)珪素含有炭素質粒子と、この珪素含有炭素質粒子を被覆している実質的に珪素を含まない炭素質層とからなることを特徴とするリチウム二次電池負極用炭素質粒子。
(2)珪素含有炭素質粒子の珪素含有量が15〜45重量%であり、リチウム二次電池負極用炭素質粒子中の炭素質層の量が10〜50重量%である(1)記載のリチウム二次電池負極用炭素質粒子。
(3)炭素前駆体と珪素前駆体の混合物を焼成、粉砕して珪素含有炭素質粒子を作製し、次いでこの珪素含有炭素質粒子の表面を炭素前駆体で被覆し、次いでその炭素前駆体を焼成により炭素化して炭素質層を形成することを特徴とする(1)記載のリチウム二次電池負極用炭素質粒子の製造方法。
(4)(1)記載のリチウム二次電池負極用炭素質粒子及び有機高分子結着剤を含有するリチウム二次電池用負極。
(5)リチウム二次電池負極用炭素質粒子100重量部に対して有機高分子結着剤0.1〜30重量部を含有する(4)記載のリチウム二次電池用負極。
(6)リチウム二次電池負極用炭素質粒子及び有機高分子結着剤からなる混合物の成形体である(4)記載のリチウム二次電池用負極。
(7)集電体と、集電体を被覆しているリチウム二次電池負極用炭素質粒子及び有機高分子結着剤からなる混合物とからなる(4)記載のリチウム二次電池用負極。
(8)(4)記載のリチウム二次電池用負極と正極とが、リチウム塩を含有する電解液を介して対向して配置されていることを特徴とするリチウム二次電池。
(9)リチウム二次電池用負極と正極とが、電解液を保持しているセパレータを介して対向して配置されている(8)記載のリチウム二次電池。
【0008】
【発明の実施の形態】
以下に本発明について詳述する。
【0009】
本発明のリチウム二次電池負極用炭素質粒子(以下、炭素質粒子と呼ぶ)は、珪素含有炭素質粒子と、この珪素含有炭素質粒子を被覆している実質的に珪素を含まない炭素質層(以下、炭素質層と呼ぶことがある)とからなることを特徴とする。珪素含有炭素質粒子が珪素不含有炭素で被覆されていない場合、初回充放電時の不可逆容量が大きくなり、また著しいサイクル劣化が生ずる。なお、本発明の炭素質粒子は、炭素質層で被覆された1個の珪素含有炭素質粒子であってもよく、或は、各々が炭素質層で被覆された珪素含有炭素質粒子が複数子集まって1つの粒子を形成しているものであってもよい。また、実質的に珪素を含まない炭素質層とは、炭素質層を形成する際の原料として珪素含有化合物を用いずに形成された炭素質層を意味し、異物としての珪素、例えば、原料中に不純物として痕跡量含まれていた珪素などは含まれていてもよい。
【0010】
珪素含有炭素質粒子中の珪素含有量については、本発明では特に制限を設けないが、高い放電容量が得られるという点で15〜45重量%が好ましく、25〜40重量%がより好ましい。珪素含有量が少ない場合には、十分な放電容量が得られなくなる傾向があり、珪素含有量が多すぎる場合にも放電容量が低下する傾向がある。この珪素含有量は、例えば蛍光X線分析によって求めることができる。
【0011】
上記の実質的に珪素を含まない炭素質層で被覆された珪素含有炭素質粒子は、例えば、本発明の方法により、炭素前駆体と珪素前駆体の混合物を焼成、粉砕して珪素含有炭素質粒子を作製し、次いでこの珪素含有炭素質粒子の表面を炭素前駆体で被覆し、次いでその炭素前駆体を焼成により炭素化して炭素質層を形成することにより作製することができる。
【0012】
即ち、まず、炭素前駆体と珪素前駆体を混合、焼成して珪素を含有する炭素とし、これを粉砕して珪素含有炭素質粒子を作製する。次いで、得られた珪素含有炭素質粒子と炭素前駆体を混合し、焼成、必要に応じて解砕して所望の粒度とする。
【0013】
本発明で用いる珪素前駆体としては、例えば、シリコンアルコキシド及び/又はその部分縮重合物を用いることができる。シリコンアルコキシドとしてはテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、トリメトキシメチルシラン、トリエトキシメチルシラン等を用いることができる。部分縮重合物は、一般に、酸触媒存在下で上記のシリコンアルコキシドを部分加水分解、重縮合させて作製されるものであり、例えばテトラメトキシシラン、テトラエトキシシランの部分縮重合物が容易に入手でき、使用できる。
【0014】
本発明で用いる炭素前駆体としては、石油系、石炭系及び合成ピッチ、タール類、フェノール樹脂、フラン樹脂、ポリアクリロニトリル、ポリ(α−ハロゲン化アクリロニトリル)などのアクリル樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹脂などを用いることができる。
【0015】
珪素前駆体と炭素前駆体の混合物の作製方法については特に制限しないが、特性の優れる負極材料とするためには、両者を均一に混合することが重要である。このため、両者を溶解する適当な溶媒を用いてもよい。使用し得る溶媒としては、例えば、エチレングリコール、テトラヒドロフラン、アセトン等のケトン類、メタノール、エタノール等のアルコール類、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。また、両者を単に物理的に混合するだけでなく、両者の間に化学反応を生じさせてもよい。また、珪素前駆体としてシリコンアルコキシド及び/又はその部分縮重合物を用いる場合には、珪素前駆体と炭素前駆体に更にp−トルエンスルホン酸等の酸触媒を添加して混合した後、加熱して珪素前駆体を重合させ、混合物を硬化させてもよい。加熱の温度は、通常室温〜170℃が好ましく、50〜150℃がより好ましい。
【0016】
得られた珪素前駆体と炭素前駆体との混合物を焼成し、珪素を含有する炭素とする。焼成に先立って混合物を粉砕してもよい。焼成は炭素及び珪素が実質的に酸化されないような低酸素含有雰囲気下で行うことが好ましく、窒素、アルゴン、ヘリウム等の不活性雰囲気、減圧雰囲気が使用できる。焼成温度は500℃〜1400℃とすることが好ましく、900℃〜1380℃とすることがより好ましい。焼成温度が低すぎる場合には、得られた珪素含有炭素質粒子の粉砕が困難となる傾向があり好ましくない。一方、高すぎる場合には、珪素前駆体分解生成物と炭素前駆体分解生成物との反応が著しく起こり、広角X線回折図には炭化珪素の回折線が認められるようになり、負極材料として用いた場合、充放電容量が著しく低下する傾向がある。焼成時間は、0.1〜10時間とすることが好ましく、0.5〜2時間とすることがより好ましい。
【0017】
また、炭素前駆体として熱硬化性樹脂を用いた場合には、500℃〜1400℃での焼成前に、珪素前駆体と炭素前駆体との混合物を、100〜200℃、より好ましくは120〜180℃で、0.1〜10時間、より好ましくは0.5〜2時間加熱することが好ましい。この加熱により、炭素前駆体の硬化が促進され、焼成時の炭素化収率が向上する。
【0018】
焼成後、得られた珪素を含有する炭素を粉砕、更に必要に応じて分級する。この粉砕には公知の機械的粉砕装置を用いることができる。作製される珪素含有炭素質粒子の平均粒子径は、1〜30μmの範囲とすることが好ましく、2〜20μmの範囲とすることがより好ましい。平均粒子径が30μmを超えると、最終的に得られる負極用炭素質粒子の粒子が粗大となり電極表面に凹凸が発生しやすくなる。一方平均粒子径が1μm未満であると、最終的に得られる負極用炭素質粒子も微細となり、電極作製時の作業性が悪化することがあり好ましくない。
【0019】
次いで、珪素含有炭素質粒子と炭素前駆体を混合し、珪素含有炭素質粒子表面を炭素前駆体で被覆する。炭素前駆体としては石油系、石炭系及び合成ピッチ、タール類、フェノール樹脂、フラン樹脂、ポリアクリロニトリル、ポリ(α−ハロゲン化アクリロニトリル)などのアクリル樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹脂等が使用できる。混合に際して、これらの炭素前駆体を溶解する溶媒を用いてもよい。溶媒としては、例えば、テトラヒドロフラン、アセトン等のケトン類、メタノール、エタノール等の各種アルコール類、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、トルエン、キシレン、ベンゼン等の炭化水素類などが挙げられる。混合に溶媒を用いた場合には、焼成前に、50〜150℃の温度で、好ましくは減圧下で混合物を加熱することにより、溶媒を除去する。混合物が凝集して部分的に又は全体が塊状になっている場合には、必要に応じて、混合物を解砕する。
【0020】
得られた炭素前駆体で被覆された珪素含有炭素質粒子を焼成し、炭素前駆体を炭素化して炭素質層で被覆された珪素含有炭素質粒子とする。炭素質層を構成する被覆炭素の量は、負極用炭素質粒子の総量の10〜50重量%とすることが好ましく、15〜30重量%とすることがより好ましい。10重量%未満ではサイクル特性、充放電効率の改善が不十分となることがあり、一方、50重量%を超えると放電容量が低下する傾向がある。焼成の際の雰囲気は炭素が実質的に酸化されないような低酸素含有雰囲気が好ましく、窒素、アルゴン、ヘリウム等の不活性雰囲気、減圧雰囲気が使用できる。焼成温度は900〜1400℃とすることが好ましく、1100〜1380℃とすることがより好ましい。900℃未満では、被覆した炭素による不可逆容量が大きくなる傾向がある。一方、1400℃を超えると、珪素含有炭素質粒子において珪素と炭素との著しい反応が起こり、充放電容量が低下する傾向がある。
【0021】
焼成により得られる負極用炭素質粒子が、部分的に又は全体が塊状になっている場合には、必要に応じて、解砕する。本発明の負極用炭素質粒子の平均粒子径は、10〜50μmの範囲とすることが好ましく、15〜40μmの範囲とすることがより好ましい。平均粒子径が50μmを超えると、電極表面に凹凸が発生しやすくなる。一方平均粒子径が10μm未満であると、電極作製時の作業性が悪化することがあり好ましくない。
【0022】
本発明の負極用炭素質粒子は、例えば以下のようにしてリチウム二次電池用電極成形体とすることができる。
【0023】
本発明の負極用炭素質粒子は、有機高分子結着剤と混合し、次いで電極の形状に成形される。有機高分子結着剤としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、芳香族ポリイミド、セルロース、ポリ弗化ビニリデン、ポリテトラフルオロエチレン、テトラフルオロエチレンを含む共重合フッ素ポリマーなどの樹枝状高分子材料;スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子材料、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹枝状高分子材料;ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエピクロロヒドリン、ポリファゼン、ポリ弗化ビニリデン、ポリアクロニトリル等の有機高分子材料;などのイオン導電性高分子材料を用いることができる。なお、これらのイオン導電性高分子材料にリチウム塩又はリチウムを主体とするアルカリ金属塩を複合化することにより、イオン導電性を向上させたものを用いることもできる。
【0024】
これらの有機高分子結着剤の他に、粘度調整剤としてカルボキシメチルセルロース、ポリアクリル酸ソーダ、その他のアクリル系ポリマー等を添加してもよい。これらの有機高分子結着剤と本発明の負極用炭素質粒子との混合割合は、負極用炭素質粒子100重量部に対して結着剤が、通常、0.1〜30重量部、より好ましくは0.5〜20重量部、さらに好ましくは1〜15重量部である。
【0025】
本発明の負極用炭素質粒子を上記の有機高分子結着剤と混合し、そのままロール成形、圧縮成形などの方法で電極の形状に成形して、負極を作製することができる。また、本発明の負極用炭素質粒子と上記の有機高分子結着剤の混合物を溶媒中に分散させ、スラリーとし、これを金属製の集電体等に塗布、乾燥し、負極用炭素質粒子と有機高分子結着剤との混合物からなる層で集電体等を被覆してもよい。溶媒としては、特に制限はなく、例えば、N−メチル−2−ピロリドン、ジメチルホルムアミド、イソプロパノール、水などが用いられる。その量も特に制限はなく、所望の粘度に調製できればよいが、通常、固形分濃度が30〜50重量%となる量で使用される。
【0026】
集電体としては、圧延銅箔、電解銅箔、パンチング銅箔、ニッケル箔、ニッケル銅箔、チタン箔、ステンレス箔、これら金属のメッシュ等が用いられる。負極の形状は、シート状、ペレット状等、任意に設定できる。
【0027】
このようにして得られた負極を用いて電池を組み立てるが、これに先立って或いは組み立ての際に活物質であるリチウム金属を負極に担持させてもよい。これにより初回充電時の不可逆容量が大幅に低減できる。この担持方法としては化学的方法、物理的方法、電気化学的方法があり、例えばリチウムイオン含有電解液に負極を浸漬し、対極に金属リチウムを用いて電気含浸する方法、負極作製時に金属リチウム粉末を混合する方法、金属リチウムと負極を電気的に接触させる方法等がある。
【0028】
以上のようにして作製した負極と正極とを、リチウム塩を含有する電解液を介して対向して配置することにより、本発明のリチウム二次電池が得られる。本発明のリチウム二次電池においては、正極と負極と電解液の他に、両極の接触を防止し、かつ電解液を保持し、リチウムイオンを通過できる機能を有するセパレータと、電極材を保持して集電する機能を有する上記の集電体とを組み合わせて用いることが好ましい。
【0029】
正極材としては、特に限定しないが、例えばバナジウム酸化物、バナジウム硫化物、モリブデン酸化物、モリブデン硫化物、マンガン酸化物、マンガン硫化物、クロム酸化物、クロム硫化物、チタン酸化物、チタン硫化物、これらの複合酸化物、複合硫化物等の金属カルコゲン化合物、リチウムコバルト酸化物(LiCoO2)、リチウムニッケル酸化物(LiNiO2)、リチウムマンガン酸化物(LiMn24、LiMnO3)、リチウムニッケルコバルト酸化物{LixNiyCo(1-y)2}等の複合酸化物、これらに他の金属元素(Al、Fe、Mn、Mg、Co等)を添加した複合酸化物等を用いることができる。また、ポリアニリン、ポリピロール等の導電性ポリマーを用いることもできる。これらのうち、リチウムを含有しない材料を用いる場合には、予め、負極に所定量のリチウムを吸蔵させるか、又は所定量のリチウム圧着させて使用することもできる。
【0030】
正極は、例えば、上記正極材を、必要に応じて配合される導電剤、及び結着剤と混合し、そのままロール成形、圧縮成形などの方法で電極の形状に成形して、正極を作製することができる。導電剤としては、例えば、黒鉛粉末等を使用することができる。結着剤としては、例えば、先に負極について説明した有機高分子結着剤を使用することができる。また、上記正極材と必要に応じて用いられる導電剤及び結着剤の混合物を溶媒中に分散させ、スラリーとし、これを金属製の正極集電体等に塗布、乾燥して正極に成形してもよい。溶媒としては、例えば、N−メチル−2−ピロリドン等が用いられる。正極の形状は、シート状、ペレット状等、任意に設定できる。
【0031】
電解液としては、通常、非水系溶媒に電解質となるリチウム塩を溶解したものを用いる。電解質としては、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、LiN(SO2CF32等のリチウム金属塩、テトラアルキルアンモニウム塩等を用いることができる。リチウム塩の濃度は0.2〜2mol/lが好ましく、より好ましくは0.3〜1.9mol/lである。非水系溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン等の環状エステル類、ジエチルカーボネート等の鎖状エステル類、メチルエチルケトン等のケトン類、1,2−ジメトキシエタン、ジオキソラン、テトラヒドロフラン、1,2−ジメチルテトラヒドロフラン、クラウンエーテル等のエーテル類を用いることができる。また、上記塩類をポリエチレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリアクリロニトリル、ポリエチレンスルフィド等やこれらの誘導体、混合物、複合体等に混合して得られる固体電解質を用いることもできる。この場合、固体電解質はセパレータを兼ねることもでき、セパレータは不要となる。
【0032】
負極と正極を分離し、電解液を保持するセパレータとしては、ポリエチレン、ポリプロピレン、ポリプロピレン/ポリプロピレン複合系、ポリプロピレン/フッ素樹脂複合系等の微多孔質膜、不織布、織布等を使用することができる。セパレータの厚さは20〜200μm程度が好ましい。
【0033】
本発明のリチウム二次電池は、円筒型、箱型、コイン型、ボタン型、ペーパー型、カード型など、様々な形状とすることができる。
【0034】
図1に、本発明のリチウム二次電池の一態様である円筒型リチウム二次電池の部分断面正面図を示す。このリチウム二次電池は、例えば、以下のようにして製造することができる。金属箔からなる集電体を、両端を除いて正極材(必要に応じ、導電剤、結着剤等の添加剤を含む)で被覆して正極1を作製し、集電体の一方の端の露出部分に正極タブ4を超音波結合によって圧着する。金属箔からなる集電体を、両端を除いて本発明の負極用炭素質粒子と有機高分子結着剤の混合物で被覆して負極2を作製し、集電体の一方の端の露出部分に負極タブ5を超音波接合により圧着する。正極1、微多孔質膜のセパレータ3、負極2及びセパレータ3の順で重ね合わせ、これを捲回して電極群とする。これを電池缶に挿入し、負極タブ5を缶底溶接し、正極蓋6を加締めるための絞り部を設け、ガスケット8を取りつける。その後、電解液を電池缶7に注入した後、正極タブ4を正極蓋6に溶接する。正極蓋6を加締めて、リチウム二次電池を得る。
【0035】
【実施例】
以下、本発明の実施例及びその比較例を示して、その効果を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0036】
実施例1
フラン樹脂(日立化成工業(株)製、HQRVF303)100重量部、ポリメトキシシラン(多摩化学工業製、M−シリケート51、テトラメトキシシランの部分縮重合物)100重量部、パラトルエンスルホン酸・エチレングリコール溶液(50重量%)1重量部を室温で1時間混合した。次いで、10℃/hで120℃まで昇温し、120℃で1時間加熱して混合物を硬化させた。得られた硬化物をカッターミルで粉砕し、窒素中、20℃/hで160℃まで昇温、10時間保持し、次いで20℃/hで900℃まで昇温、1時間保持して珪素含有炭素質粒子とした。得られた珪素含有炭素質粒子をカッターミルで粉砕し、平均粒子径15μmとした。蛍光X線分析によって測定された珪素含有量は25%であった。
【0037】
上記の珪素含有炭素質粒子100重量部を、コールタールピッチ40重量部を溶解したテトラヒドロフラン(200重量部)に分散、混合し、次いでロータリーエバポレータを用いてテトラヒドロフランを除去、100℃で3時間真空乾燥し、コールタールピッチで被覆された珪素含有炭素質粒子を得た。これをカッターミルで解砕、窒素中、20℃/hで1300℃まで昇温し、1時間保持し、コールタールピッチを炭素化した。得られた炭素で被覆された珪素含有炭素質粒子をカッターミルで解砕し、平均粒子径22μmとした。重量減少率から求められた被覆炭素量は20重量%であった。
【0038】
得られた炭素で被覆された珪素含有炭素質粒子に対し、10重量%のポリ弗化ビニリデン(N−メチル−2−ピロリドン溶液、呉羽化学(株)製、商品名:#1120)を添加、混練し、スラリーとした。このスラリーを厚み100μmの電解銅箔にφ9mm、厚さ200μmに塗布し、110℃で2時間、次いで150℃で8時間真空乾燥し、試料電極を作製した。
【0039】
作製した試料電極を用いて3端子法による定電流充放電を行い、リチウム二次電池用負極としての評価を行った。図2は、実験に用いたリチウム二次電池の概略図である。ガラスセル9に電解液10として1MのLiPF6を溶解したエチレンカーボネート・ジエチルカーボネート混合溶液(体積比1/2)を入れ、試料電極11、セパレータ12及び対極13を積層して配置し、更に参照電極14を上部から吊した。対極13及び参照電極14には、金属リチウム(厚み:0.5mm、φ20mm)を使用し、セパレータ12にはポリエチレン微孔膜(厚み:200μm)を使用した。充放電電流0.2mA、0〜1.5Vで40サイクルまで充放電を行った。初回の充電容量、放電容量はそれぞれ790Ah/kg、490Ah/kgであった。図3に放電容量のサイクル変化を示す。
【0040】
比較例1
実施例1と同様にして作製した珪素含有炭素質粒子を用い、実施例1と同様にして電極を作製、充放電特性を測定した。初回の充電容量、放電容量はそれぞれ910Ah/kg、256Ah/kgであった。図3に放電容量のサイクル変化を示す。
【0041】
【発明の効果】
炭素で被覆しない場合と比較して、本発明の炭素で被覆した珪素含有炭素質粒子は、充放電効率、サイクル特性が改善され、且つ大きな放電容量を有する。本発明の負極用炭素質粒子を用いることにより、高い放電容量を有し、サイクル特性の良好なリチウム二次電池を作製できる。
【図面の簡単な説明】
【図1】本発明のリチウム二次電池の一態様を示す部分断面正面図。
【図2】実験に用いたリチウム二次電池の概略図。
【図3】実施例及び比較例の炭素質粒子を用いて作製した電極の放電容量のサイクル変化を示すグラフ。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 正極タブ
5 負極タブ
6 正極蓋
7 電池缶
8 ガスケット
9 ガラスセル
10 電解液
11 試料電極
12 セパレータ
13 対極
14 参照極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbonaceous particle for a lithium secondary battery negative electrode, a method for producing the same, a negative electrode for a lithium secondary battery and a lithium secondary battery using the same.
[0002]
[Prior art]
In recent years, there has been a growing demand for secondary batteries that are small, lightweight, and have a high energy density for portable devices, electric vehicles, and power storage. In response to such a demand, non-aqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, are attracting attention as batteries having high voltage and high energy density.
[0003]
As a negative electrode material for a lithium ion secondary battery, metallic lithium, low graphitized carbon particles, highly graphitized carbon particles, and the like are used. Metallic lithium can achieve a high charge / discharge capacity, but due to its high reactivity, it reacts with the solvent in the electrolyte solution as the charge / discharge cycle progresses, resulting in a decrease in capacity. In addition, dendritic metallic lithium is easily generated and has a problem that it easily causes a short circuit through a separator provided between the positive and negative electrodes. Low graphitized carbonaceous materials are characterized by low reactivity with electrolytes and difficulty in forming dendritic metallic lithium, but charge / discharge capacity per volume due to generally low charge / discharge capacity and low true density. The capacity is low. On the other hand, highly graphitized carbon particles have a high charge / discharge capacity compared to low graphitized carbon particles, and are less reactive with the electrolyte than metallic lithium, making it difficult to form dendritic metallic lithium. In recent years, it has been actively studied as a negative electrode material because of its high discharge voltage and flatness.
[0004]
However, highly graphitized carbon particles have a problem that their discharge capacity is limited (372 mAh / g) by an intercalation compound (LiC 6 ) formed with lithium. Development of highly graphitized carbon materials having capacities exceeding the theoretical capacity has been studied in various departments, but no one having both workability and cycle characteristics has been found yet.
[0005]
As other negative electrode materials, silicon-containing carbonaceous particles obtained by firing a mixture of an organic silicon polymer compound such as polycarbosilane or polydisilazane, or an organic silicon compound such as silicon alkoxide and a carbon precursor such as a phenol resin are used. , It is reported to show a high discharge capacity of 500 Ah / kg or more. However, the former has a large irreversible capacity, and the silicon-containing organic polymer compound as a precursor is an extremely expensive material, which causes a problem such as an increase in the cost of the negative electrode material. There are problems such as poor characteristics.
[0006]
[Problems to be solved by the invention]
The present invention relates to a silicon-containing carbonaceous particle that can be expected to have a high discharge capacity, and is a silicon-containing carbonaceous particle produced by firing a mixture of an organic silicon compound and a carbon precursor capable of reducing costs, and is irreversible. An object of the present invention is to provide a material having a small capacity and improved charge / discharge efficiency and cycle characteristics.
[0007]
[Means for Solving the Problems]
The present invention provides the following carbonaceous particles for a negative electrode of a lithium secondary battery, a production method thereof, a negative electrode for a lithium secondary battery and a lithium secondary battery using the same.
(1) A carbonaceous particle for a lithium secondary battery negative electrode comprising a silicon-containing carbonaceous particle and a carbonaceous layer substantially covering no silicon covering the silicon-containing carbonaceous particle.
(2) The silicon content of the silicon-containing carbonaceous particles is 15 to 45% by weight, and the amount of the carbonaceous layer in the carbonaceous particles for a lithium secondary battery negative electrode is 10 to 50% by weight. Carbonaceous particles for negative electrodes of lithium secondary batteries.
(3) A mixture of a carbon precursor and a silicon precursor is fired and pulverized to produce silicon-containing carbonaceous particles, and then the surface of the silicon-containing carbonaceous particles is coated with the carbon precursor, and then the carbon precursor is coated The method for producing carbonaceous particles for a lithium secondary battery negative electrode according to (1), wherein carbonization is performed by firing to form a carbonaceous layer.
(4) A negative electrode for a lithium secondary battery comprising the carbonaceous particles for a lithium secondary battery negative electrode according to (1) and an organic polymer binder.
(5) The negative electrode for a lithium secondary battery according to (4), comprising 0.1 to 30 parts by weight of an organic polymer binder with respect to 100 parts by weight of carbonaceous particles for a lithium secondary battery negative electrode.
(6) The negative electrode for a lithium secondary battery according to (4), which is a molded product of a mixture comprising carbonaceous particles for a lithium secondary battery negative electrode and an organic polymer binder.
(7) The negative electrode for a lithium secondary battery according to (4), comprising a current collector and a mixture comprising a carbonaceous particle for a lithium secondary battery negative electrode covering the current collector and an organic polymer binder.
(8) A lithium secondary battery, wherein the negative electrode for a lithium secondary battery and the positive electrode according to (4) are arranged to face each other with an electrolytic solution containing a lithium salt.
(9) The lithium secondary battery according to (8), wherein the negative electrode for a lithium secondary battery and the positive electrode are arranged to face each other with a separator holding an electrolytic solution.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0009]
The carbonaceous particles for a negative electrode of a rechargeable lithium battery of the present invention (hereinafter referred to as carbonaceous particles) are silicon-containing carbonaceous particles and carbonaceous materials substantially free of silicon covering the silicon-containing carbonaceous particles. It is characterized by comprising a layer (hereinafter sometimes referred to as a carbonaceous layer). When the silicon-containing carbonaceous particles are not covered with silicon-free carbon, the irreversible capacity at the first charge / discharge increases, and significant cycle deterioration occurs. The carbonaceous particles of the present invention may be a single silicon-containing carbonaceous particle coated with a carbonaceous layer, or a plurality of silicon-containing carbonaceous particles each coated with a carbonaceous layer. It may be one in which the children gather to form one particle. Moreover, the carbonaceous layer substantially free of silicon means a carbonaceous layer formed without using a silicon-containing compound as a raw material when forming the carbonaceous layer, and silicon as a foreign material, for example, a raw material Silicon or the like that is included in the trace amount as an impurity may be contained therein.
[0010]
The silicon content in the silicon-containing carbonaceous particles is not particularly limited in the present invention, but is preferably 15 to 45% by weight and more preferably 25 to 40% by weight in that a high discharge capacity can be obtained. When the silicon content is low, there is a tendency that a sufficient discharge capacity cannot be obtained, and when the silicon content is too high, the discharge capacity tends to decrease. This silicon content can be determined, for example, by fluorescent X-ray analysis.
[0011]
The silicon-containing carbonaceous particles coated with the substantially silicon-free carbonaceous layer are obtained by, for example, firing and pulverizing a mixture of a carbon precursor and a silicon precursor by the method of the present invention. The particles can be prepared, and then the surface of the silicon-containing carbonaceous particles can be coated with a carbon precursor, and then the carbon precursor is carbonized by firing to form a carbonaceous layer.
[0012]
That is, first, a carbon precursor and a silicon precursor are mixed and fired to obtain silicon-containing carbon, which is pulverized to produce silicon-containing carbonaceous particles. Next, the obtained silicon-containing carbonaceous particles and a carbon precursor are mixed, fired, and crushed as necessary to obtain a desired particle size.
[0013]
As the silicon precursor used in the present invention, for example, silicon alkoxide and / or a partially condensed polymer thereof can be used. As the silicon alkoxide, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, trimethoxymethylsilane, triethoxymethylsilane, or the like can be used. Partially condensed polymers are generally prepared by partial hydrolysis and polycondensation of the above silicon alkoxide in the presence of an acid catalyst. For example, partial condensed polymers of tetramethoxysilane and tetraethoxysilane are easily available. Can be used.
[0014]
Examples of the carbon precursor used in the present invention include petroleum-based, coal-based and synthetic pitches, tars, phenol resins, furan resins, polyacrylonitrile, poly (α-halogenated acrylonitrile) acrylic resins, polyamideimide resins, polyamide resins. Polyimide resin or the like can be used.
[0015]
The method for producing the mixture of the silicon precursor and the carbon precursor is not particularly limited, but in order to obtain a negative electrode material having excellent characteristics, it is important to uniformly mix the two. For this reason, you may use the suitable solvent which melt | dissolves both. Examples of the solvent that can be used include ketones such as ethylene glycol, tetrahydrofuran, and acetone, alcohols such as methanol and ethanol, dimethylformamide, dimethylacetamide, and the like. Moreover, not only physically mixing both, but a chemical reaction may be caused between them. When silicon alkoxide and / or a partially condensed polymer thereof is used as the silicon precursor, an acid catalyst such as p-toluenesulfonic acid is further added to and mixed with the silicon precursor and the carbon precursor, and then heated. The silicon precursor may be polymerized to cure the mixture. The heating temperature is usually preferably from room temperature to 170 ° C, more preferably from 50 to 150 ° C.
[0016]
The obtained mixture of silicon precursor and carbon precursor is fired to obtain silicon-containing carbon. Prior to firing, the mixture may be crushed. Firing is preferably performed in a low oxygen-containing atmosphere in which carbon and silicon are not substantially oxidized, and an inert atmosphere such as nitrogen, argon, helium, or a reduced pressure atmosphere can be used. The firing temperature is preferably 500 ° C to 1400 ° C, and more preferably 900 ° C to 1380 ° C. When the firing temperature is too low, it is not preferable because the obtained silicon-containing carbonaceous particles tend to be difficult to grind. On the other hand, if it is too high, the reaction between the silicon precursor decomposition product and the carbon precursor decomposition product occurs remarkably, and the diffraction lines of silicon carbide are recognized in the wide-angle X-ray diffraction diagram. When used, the charge / discharge capacity tends to decrease significantly. The firing time is preferably 0.1 to 10 hours, and more preferably 0.5 to 2 hours.
[0017]
Moreover, when using a thermosetting resin as a carbon precursor, before baking at 500 to 1400 degreeC, the mixture of a silicon precursor and a carbon precursor is 100 to 200 degreeC, More preferably, 120 to It is preferable to heat at 180 ° C. for 0.1 to 10 hours, more preferably 0.5 to 2 hours. This heating accelerates the curing of the carbon precursor and improves the carbonization yield during firing.
[0018]
After firing, the obtained carbon containing silicon is pulverized and further classified as necessary. A known mechanical grinding device can be used for this grinding. The average particle diameter of the produced silicon-containing carbonaceous particles is preferably in the range of 1 to 30 μm, and more preferably in the range of 2 to 20 μm. When the average particle diameter exceeds 30 μm, the finally obtained carbonaceous particles for negative electrode are coarse, and unevenness is likely to occur on the electrode surface. On the other hand, if the average particle diameter is less than 1 μm, the carbonaceous particles for the negative electrode finally obtained are also fine, and the workability at the time of electrode preparation may be deteriorated.
[0019]
Next, the silicon-containing carbonaceous particles and the carbon precursor are mixed, and the surface of the silicon-containing carbonaceous particles is coated with the carbon precursor. Carbon precursors include petroleum-based, coal-based and synthetic pitches, tars, phenolic resins, furan resins, polyacrylonitrile, poly (α-halogenated acrylonitrile) and other acrylic resins, polyamideimide resins, polyamide resins, polyimide resins, etc. Can be used. In mixing, a solvent that dissolves these carbon precursors may be used. Examples of the solvent include ketones such as tetrahydrofuran and acetone, various alcohols such as methanol and ethanol, amides such as dimethylformamide and dimethylacetamide, and hydrocarbons such as toluene, xylene, and benzene. When a solvent is used for mixing, the solvent is removed by heating the mixture at a temperature of 50 to 150 ° C., preferably under reduced pressure, before firing. If the mixture is agglomerated and partially or wholly agglomerated, the mixture is crushed as necessary.
[0020]
The obtained silicon-containing carbonaceous particles coated with the carbon precursor are fired to carbonize the carbon precursor to obtain silicon-containing carbonaceous particles coated with the carbonaceous layer. The amount of the covering carbon constituting the carbonaceous layer is preferably 10 to 50% by weight, more preferably 15 to 30% by weight, based on the total amount of the carbonaceous particles for the negative electrode. If it is less than 10% by weight, the cycle characteristics and the charge / discharge efficiency may be insufficiently improved. On the other hand, if it exceeds 50% by weight, the discharge capacity tends to decrease. The atmosphere during firing is preferably an atmosphere containing low oxygen so that carbon is not substantially oxidized, and an inert atmosphere such as nitrogen, argon or helium, or a reduced pressure atmosphere can be used. The firing temperature is preferably 900 to 1400 ° C, more preferably 1100 to 1380 ° C. Below 900 ° C., the irreversible capacity due to the coated carbon tends to increase. On the other hand, when the temperature exceeds 1400 ° C., a significant reaction between silicon and carbon occurs in the silicon-containing carbonaceous particles, and the charge / discharge capacity tends to decrease.
[0021]
If the carbonaceous particles for negative electrode obtained by firing are partially or wholly agglomerated, they are crushed as necessary. The average particle diameter of the carbonaceous particles for negative electrode of the present invention is preferably in the range of 10 to 50 μm, and more preferably in the range of 15 to 40 μm. When the average particle diameter exceeds 50 μm, irregularities are likely to occur on the electrode surface. On the other hand, if the average particle size is less than 10 μm, the workability at the time of electrode preparation may deteriorate, which is not preferable.
[0022]
The carbonaceous particles for negative electrode of the present invention can be made into an electrode molded body for a lithium secondary battery, for example, as follows.
[0023]
The carbonaceous particles for negative electrode of the present invention are mixed with an organic polymer binder and then formed into the shape of an electrode. Organic polymer binders include dendritic polymers such as polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, aromatic polyimide, cellulose, polyvinylidene fluoride, polytetrafluoroethylene, and copolymerized fluoropolymers including tetrafluoroethylene. Molecular materials: Rubber-like polymer materials such as styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber, soft dendritic polymer materials such as ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer Ion-conductive polymer materials such as organic polymer materials such as polyethylene oxide, polypropylene oxide, polyepichlorohydrin, polyphazene, polyvinylidene fluoride, and polyacrylonitrile can be used. In addition, it is also possible to use a material in which ion conductivity is improved by combining a lithium salt or an alkali metal salt mainly composed of lithium with these ion conductive polymer materials.
[0024]
In addition to these organic polymer binders, carboxymethyl cellulose, polysodium acrylate, other acrylic polymers, and the like may be added as viscosity modifiers. The mixing ratio of these organic polymer binder and the carbonaceous particles for negative electrode of the present invention is such that the binder is usually 0.1 to 30 parts by weight with respect to 100 parts by weight of the carbonaceous particles for negative electrode. Preferably it is 0.5-20 weight part, More preferably, it is 1-15 weight part.
[0025]
The carbonaceous particles for negative electrode of the present invention can be mixed with the organic polymer binder described above and directly formed into the shape of an electrode by a method such as roll molding or compression molding to produce a negative electrode. Further, the mixture of the carbonaceous particles for negative electrode of the present invention and the organic polymer binder described above is dispersed in a solvent to form a slurry, which is applied to a metal current collector and dried, and then the carbonaceous material for negative electrode. The current collector or the like may be covered with a layer made of a mixture of particles and an organic polymer binder. There is no restriction | limiting in particular as a solvent, For example, N-methyl- 2-pyrrolidone, a dimethylformamide, isopropanol, water etc. are used. The amount is not particularly limited as long as it can be adjusted to a desired viscosity. Usually, the solid content is used in an amount of 30 to 50% by weight.
[0026]
As the current collector, rolled copper foil, electrolytic copper foil, punched copper foil, nickel foil, nickel copper foil, titanium foil, stainless steel foil, mesh of these metals, and the like are used. The shape of the negative electrode can be arbitrarily set such as a sheet shape or a pellet shape.
[0027]
A battery is assembled using the negative electrode thus obtained, but prior to this or when assembling, lithium metal as an active material may be supported on the negative electrode. Thereby, the irreversible capacity | capacitance at the time of first charge can be reduced significantly. This supporting method includes a chemical method, a physical method, and an electrochemical method. For example, a method in which a negative electrode is immersed in a lithium ion-containing electrolytic solution and electroimpregnation is performed using metallic lithium as a counter electrode. And a method of electrically contacting metal lithium and the negative electrode.
[0028]
The lithium secondary battery of the present invention can be obtained by disposing the negative electrode and the positive electrode manufactured as described above so as to face each other with an electrolytic solution containing a lithium salt. In the lithium secondary battery of the present invention, in addition to the positive electrode, the negative electrode, and the electrolytic solution, a separator having a function of preventing contact between both electrodes and holding the electrolytic solution and allowing lithium ions to pass through, and an electrode material are held. It is preferable to use in combination with the above current collector having a function of collecting current.
[0029]
Although it does not specifically limit as a positive electrode material, For example, vanadium oxide, vanadium sulfide, molybdenum oxide, molybdenum sulfide, manganese oxide, manganese sulfide, chromium oxide, chromium sulfide, titanium oxide, titanium sulfide These metal oxides, metal chalcogen compounds such as composite sulfides, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 , LiMnO 3 ), lithium nickel A composite oxide such as a cobalt oxide {Li x Ni y Co (1-y) O 2 } or a composite oxide obtained by adding other metal elements (Al, Fe, Mn, Mg, Co, etc.) to these is used. be able to. Moreover, electroconductive polymers, such as polyaniline and polypyrrole, can also be used. Among these, when using a material that does not contain lithium, a predetermined amount of lithium can be occluded in advance in the negative electrode, or a predetermined amount of lithium can be pressure-bonded.
[0030]
For the positive electrode, for example, the positive electrode material is mixed with a conductive agent and a binder that are blended as necessary, and then directly molded into the shape of the electrode by a method such as roll molding or compression molding to produce a positive electrode. be able to. As the conductive agent, for example, graphite powder or the like can be used. As the binder, for example, the organic polymer binder described above for the negative electrode can be used. Also, a mixture of the positive electrode material and a conductive agent and a binder used as necessary is dispersed in a solvent to form a slurry, which is applied to a metal positive electrode current collector, etc., dried and formed into a positive electrode. May be. As the solvent, for example, N-methyl-2-pyrrolidone or the like is used. The shape of the positive electrode can be arbitrarily set such as a sheet shape or a pellet shape.
[0031]
As the electrolytic solution, a solution obtained by dissolving a lithium salt serving as an electrolyte in a non-aqueous solvent is usually used. As the electrolyte, lithium metal salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , tetraalkylammonium salts, and the like can be used. The concentration of the lithium salt is preferably 0.2 to 2 mol / l, more preferably 0.3 to 1.9 mol / l. Non-aqueous solvents include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, cyclic esters such as γ-butyrolactone, chain esters such as diethyl carbonate, ketones such as methyl ethyl ketone, 1,2-dimethoxyethane, dioxolane. , Tetrahydrofuran, 1,2-dimethyltetrahydrofuran, and ethers such as crown ether can be used. In addition, a solid electrolyte obtained by mixing the above salts with polyethylene oxide, polyphosphazene, polyaziridine, polyacrylonitrile, polyethylene sulfide or the like, derivatives, mixtures or composites thereof can also be used. In this case, the solid electrolyte can also serve as a separator, and the separator becomes unnecessary.
[0032]
As a separator for separating the negative electrode and the positive electrode and holding the electrolytic solution, a microporous film such as polyethylene, polypropylene, polypropylene / polypropylene composite system, polypropylene / fluororesin composite system, nonwoven fabric, woven fabric, or the like can be used. . The thickness of the separator is preferably about 20 to 200 μm.
[0033]
The lithium secondary battery of the present invention can have various shapes such as a cylindrical shape, a box shape, a coin shape, a button shape, a paper shape, and a card shape.
[0034]
FIG. 1 shows a partial cross-sectional front view of a cylindrical lithium secondary battery which is an embodiment of the lithium secondary battery of the present invention. This lithium secondary battery can be manufactured as follows, for example. A current collector made of a metal foil is covered with a positive electrode material (including additives such as a conductive agent and a binder as necessary) except for both ends to produce a positive electrode 1, and one end of the current collector The positive electrode tab 4 is pressure-bonded to the exposed portion by ultrasonic bonding. A current collector made of a metal foil is coated with a mixture of the carbonaceous particles for a negative electrode of the present invention and an organic polymer binder except for both ends to produce a negative electrode 2, and an exposed portion at one end of the current collector The negative electrode tab 5 is pressure-bonded by ultrasonic bonding. The positive electrode 1, the microporous membrane separator 3, the negative electrode 2, and the separator 3 are stacked in this order, and are wound to form an electrode group. This is inserted into a battery can, the negative electrode tab 5 is welded to the bottom of the can, a throttle part for crimping the positive electrode lid 6 is provided, and the gasket 8 is attached. Then, after pouring electrolyte solution into the battery can 7, the positive electrode tab 4 is welded to the positive electrode lid 6. The positive electrode lid 6 is caulked to obtain a lithium secondary battery.
[0035]
【Example】
EXAMPLES Hereinafter, examples of the present invention and comparative examples thereof will be shown to specifically explain the effects, but the present invention is not limited to the following examples.
[0036]
Example 1
100 parts by weight of furan resin (manufactured by Hitachi Chemical Co., Ltd., HQRVF 303), 100 parts by weight of polymethoxysilane (manufactured by Tama Chemical Industries, M-silicate 51, partial condensation polymer of tetramethoxysilane), p-toluenesulfonic acid / ethylene 1 part by weight of a glycol solution (50% by weight) was mixed at room temperature for 1 hour. Next, the temperature was raised to 120 ° C. at 10 ° C./h, and the mixture was cured by heating at 120 ° C. for 1 hour. The obtained cured product was pulverized with a cutter mill, heated to 160 ° C. at 20 ° C./h in nitrogen, held for 10 hours, then heated to 900 ° C. at 20 ° C./h and held for 1 hour to contain silicon. Carbonaceous particles were used. The obtained silicon-containing carbonaceous particles were pulverized with a cutter mill to an average particle size of 15 μm. The silicon content measured by X-ray fluorescence analysis was 25%.
[0037]
100 parts by weight of the above silicon-containing carbonaceous particles are dispersed and mixed in tetrahydrofuran (200 parts by weight) in which 40 parts by weight of coal tar pitch is dissolved, and then the tetrahydrofuran is removed using a rotary evaporator, followed by vacuum drying at 100 ° C. for 3 hours. Thus, silicon-containing carbonaceous particles coated with coal tar pitch were obtained. This was crushed by a cutter mill, heated to 1300 ° C. at 20 ° C./h in nitrogen, and held for 1 hour to carbonize the coal tar pitch. The obtained silicon-containing carbonaceous particles coated with carbon were pulverized with a cutter mill to an average particle size of 22 μm. The amount of coated carbon determined from the weight reduction rate was 20% by weight.
[0038]
10% by weight of polyvinylidene fluoride (N-methyl-2-pyrrolidone solution, manufactured by Kureha Chemical Co., Ltd., trade name: # 1120) was added to the carbon-containing silicon-containing particles coated with the obtained carbon. It knead | mixed and it was set as the slurry. This slurry was applied to an electrolytic copper foil with a thickness of 100 μm to a diameter of 9 mm and a thickness of 200 μm, and vacuum dried at 110 ° C. for 2 hours and then at 150 ° C. for 8 hours to prepare a sample electrode.
[0039]
The prepared sample electrode was used for constant current charge / discharge by the three-terminal method, and evaluated as a negative electrode for a lithium secondary battery. FIG. 2 is a schematic diagram of a lithium secondary battery used in the experiment. An ethylene carbonate / diethyl carbonate mixed solution (volume ratio 1/2) in which 1M LiPF 6 is dissolved as an electrolytic solution 10 is placed in a glass cell 9, and a sample electrode 11, a separator 12 and a counter electrode 13 are stacked and arranged. The electrode 14 was suspended from the top. For the counter electrode 13 and the reference electrode 14, metallic lithium (thickness: 0.5 mm, φ20 mm) was used, and for the separator 12, a polyethylene microporous film (thickness: 200 μm) was used. Charge / discharge was performed up to 40 cycles at a charge / discharge current of 0.2 mA and 0 to 1.5V. The initial charge capacity and discharge capacity were 790 Ah / kg and 490 Ah / kg, respectively. FIG. 3 shows the cycle change of the discharge capacity.
[0040]
Comparative Example 1
Using silicon-containing carbonaceous particles produced in the same manner as in Example 1, electrodes were produced in the same manner as in Example 1, and charge / discharge characteristics were measured. The initial charge capacity and discharge capacity were 910 Ah / kg and 256 Ah / kg, respectively. FIG. 3 shows the cycle change of the discharge capacity.
[0041]
【The invention's effect】
Compared with the case where it is not coated with carbon, the silicon-containing carbonaceous particles coated with carbon of the present invention have improved charge / discharge efficiency and cycle characteristics, and a large discharge capacity. By using the carbonaceous particles for negative electrode of the present invention, a lithium secondary battery having a high discharge capacity and good cycle characteristics can be produced.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional front view showing one embodiment of a lithium secondary battery of the present invention.
FIG. 2 is a schematic view of a lithium secondary battery used in the experiment.
FIG. 3 is a graph showing the cycle change of the discharge capacity of an electrode produced using the carbonaceous particles of Examples and Comparative Examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode tab 5 Negative electrode tab 6 Positive electrode lid 7 Battery can 8 Gasket 9 Glass cell 10 Electrolytic solution 11 Sample electrode 12 Separator 13 Counter electrode 14 Reference electrode

Claims (8)

珪素含有炭素質粒子と、この珪素含有炭素質粒子を被覆している実質的に珪素を含まない炭素質層とからなるリチウム二次電池負極用炭素質粒子の製造方法であって、炭素前駆体と珪素前駆体の混合物を焼成、粉砕して珪素含有炭素質粒子を作製し、次いでこの珪素含有炭素質粒子の表面を炭素前駆体で被覆し、次いでその炭素前駆体を焼成により炭素化して炭素質層を形成することを特徴とするリチウム二次電池負極用炭素質粒子の製造方法。 A carbon precursor for a lithium secondary battery negative electrode comprising a silicon-containing carbonaceous particle and a substantially silicon-free carbonaceous layer covering the silicon-containing carbonaceous particle, the carbon precursor A silicon-containing carbonaceous particle is produced by firing and pulverizing a mixture of silicon and a silicon precursor, and then coating the surface of the silicon-containing carbonaceous particle with a carbon precursor, and then carbonizing the carbon precursor by firing to obtain carbon. A method for producing carbonaceous particles for a negative electrode of a lithium secondary battery, comprising forming a porous layer. 珪素含有炭素質粒子の珪素含有量が15〜45重量%であり、リチウム二次電池負極用炭素質粒子中の炭素質層の量が10〜50重量%である請求項1記載のリチウム二次電池負極用炭素質粒子の製造方法2. The lithium secondary according to claim 1, wherein the silicon content of the silicon-containing carbonaceous particles is 15 to 45% by weight, and the amount of the carbonaceous layer in the carbonaceous particles for a lithium secondary battery negative electrode is 10 to 50% by weight. A method for producing carbonaceous particles for battery negative electrodes. 請求項1記載の方法によって得られたリチウム二次電池負極用炭素質粒子及び有機高分子結着剤を含有するリチウム二次電池用負極。The negative electrode for lithium secondary batteries containing the carbonaceous particle for lithium secondary battery negative electrodes obtained by the method of Claim 1, and an organic polymer binder. リチウム二次電池負極用炭素質粒子100重量部に対して有機高分子結着剤0.1〜30重量部を含有する請求項記載のリチウム二次電池用負極。The negative electrode for a lithium secondary battery according to claim 3, comprising 0.1 to 30 parts by weight of an organic polymer binder with respect to 100 parts by weight of carbonaceous particles for a lithium secondary battery negative electrode. リチウム二次電池負極用炭素質粒子及び有機高分子結着剤からなる混合物の成形体である請求項記載のリチウム二次電池用負極。The negative electrode for a lithium secondary battery according to claim 3 , wherein the negative electrode is a mixture of carbonaceous particles for a lithium secondary battery negative electrode and an organic polymer binder. 集電体と、集電体を被覆しているリチウム二次電池負極用炭素質粒子及び有機高分子結着剤からなる混合物とからなる請求項記載のリチウム二次電池用負極。4. The negative electrode for a lithium secondary battery according to claim 3, comprising a current collector, and a mixture comprising a carbonaceous particle for a lithium secondary battery negative electrode and an organic polymer binder covering the current collector. 請求項記載のリチウム二次電池用負極と正極とが、リチウム塩を含有する電解液を介して対向して配置されていることを特徴とするリチウム二次電池。The lithium secondary battery according to claim 3 , wherein the negative electrode for a lithium secondary battery and the positive electrode are disposed to face each other with an electrolyte containing a lithium salt. リチウム二次電池用負極と正極とが、電解液を保持しているセパレータを介して対向して配置されている請求項記載のリチウム二次電池。The lithium secondary battery according to claim 7 , wherein the negative electrode for the lithium secondary battery and the positive electrode are arranged to face each other with a separator holding an electrolytic solution.
JP2000163262A 2000-05-31 2000-05-31 Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery Expired - Lifetime JP4792618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000163262A JP4792618B2 (en) 2000-05-31 2000-05-31 Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000163262A JP4792618B2 (en) 2000-05-31 2000-05-31 Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001345100A JP2001345100A (en) 2001-12-14
JP4792618B2 true JP4792618B2 (en) 2011-10-12

Family

ID=18667046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000163262A Expired - Lifetime JP4792618B2 (en) 2000-05-31 2000-05-31 Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4792618B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923332B2 (en) * 2001-03-29 2012-04-25 住友ベークライト株式会社 Method for producing electrode material composition for non-aqueous electrolyte secondary battery
JP2003282054A (en) * 2002-03-20 2003-10-03 Osaka Gas Co Ltd Manufacturing method of negative electrode material for lithium secondary battery and lithium secondary battery
JP4965790B2 (en) * 2002-10-28 2012-07-04 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US8092940B2 (en) 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
JP3995050B2 (en) * 2003-09-26 2007-10-24 Jfeケミカル株式会社 Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4715125B2 (en) * 2004-08-11 2011-07-06 三菱化学株式会社 Slurry for lithium secondary battery electrode and method for producing lithium secondary battery electrode
KR101483123B1 (en) * 2006-05-09 2015-01-16 삼성에스디아이 주식회사 Anode active material comprising metal nanocrystal composite, method of preparing the same, and anode and lithium battery having the material
WO2008081883A1 (en) 2006-12-28 2008-07-10 Dow Corning Toray Co., Ltd. Porous silicon-containing carbon-based composite material, electrode composed of the same and battery
KR101093705B1 (en) 2009-04-29 2011-12-19 삼성에스디아이 주식회사 Rechargeable lithium battery
US20150064553A1 (en) * 2012-03-30 2015-03-05 Toda Kogyo Corp. Negative electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery
JP2015011870A (en) * 2013-06-28 2015-01-19 Jsr株式会社 Electrode active material, electrode and power storage device
JP6274032B2 (en) * 2013-08-19 2018-02-07 Jsr株式会社 Method for manufacturing electrode material, electrode and power storage device
WO2020196610A1 (en) * 2019-03-27 2020-10-01 昭和電工株式会社 Composite particles and negative electrode material for lithium ion secondary batteries
WO2020213627A1 (en) * 2019-04-18 2020-10-22 昭和電工株式会社 Composite carbon particle, method for manufacturing same, and use thereof
CN110294479A (en) * 2019-07-23 2019-10-01 中国恩菲工程技术有限公司 The preparation facilities of carbon-silicon composite material
CN114614000B (en) * 2022-04-12 2023-08-18 浙江极氪智能科技有限公司 Negative electrode active material, negative electrode for battery, and battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3369589B2 (en) * 1992-04-07 2003-01-20 三菱化学株式会社 Electrode material
JP3091949B2 (en) * 1995-02-24 2000-09-25 旭有機材工業株式会社 Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles
JPH1140158A (en) * 1997-05-19 1999-02-12 Toyo Tanso Kk Carbon material for negative electrode of lithium ion secondary battery, and lithium ion secondary battery using the carbon material for negative electrode
JPH11322323A (en) * 1998-05-12 1999-11-24 Matsushita Electric Ind Co Ltd Carbon compound and its production, and electrode for secondary battery
JP3960691B2 (en) * 1998-09-10 2007-08-15 三菱化学株式会社 Anode active material for non-aqueous carbon-coated lithium secondary battery
JP2000090926A (en) * 1998-09-11 2000-03-31 Mitsubishi Chemicals Corp Nonaqueous secondary battery
JP4103285B2 (en) * 1999-01-14 2008-06-18 日立化成工業株式会社 Lithium battery and manufacturing method thereof
JP2000268879A (en) * 1999-03-18 2000-09-29 Hitachi Ltd Lithium secondary battery

Also Published As

Publication number Publication date
JP2001345100A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
JP3573102B2 (en) Negative electrode active material and non-aqueous electrolyte secondary battery
JP3956384B2 (en) Secondary battery
JP4040381B2 (en) Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2004001880A1 (en) Electrode and cell comprising the same
JP4792618B2 (en) Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
JP2002093464A (en) Secondary battery
JP2000203818A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP3965567B2 (en) battery
JPH10189044A (en) Nonaqueous electrolytic secondary battery
JP3779461B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP2007048717A (en) Battery
JP4150202B2 (en) battery
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP4417037B2 (en) Lithium ion secondary battery electrolyte and lithium ion secondary battery using the same
JP3732654B2 (en) Graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP3651225B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP2001085016A (en) Non-aqueous electrolyte battery
JP2002198036A (en) Negative electrode, nonaqueous electrolyte cell and their manufacturing method
WO2002073731A1 (en) Battery
KR19990030823A (en) Anode active material for lithium ion secondary battery, negative electrode plate and lithium ion secondary battery manufactured using same
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
JP2002157996A (en) Negative electrode and battery using it
JP4224731B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JP2004356092A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R151 Written notification of patent or utility model registration

Ref document number: 4792618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term