JP4923332B2 - Method for producing electrode material composition for non-aqueous electrolyte secondary battery - Google Patents

Method for producing electrode material composition for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4923332B2
JP4923332B2 JP2001094486A JP2001094486A JP4923332B2 JP 4923332 B2 JP4923332 B2 JP 4923332B2 JP 2001094486 A JP2001094486 A JP 2001094486A JP 2001094486 A JP2001094486 A JP 2001094486A JP 4923332 B2 JP4923332 B2 JP 4923332B2
Authority
JP
Japan
Prior art keywords
silicon
carbon
carbon precursor
carbon material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001094486A
Other languages
Japanese (ja)
Other versions
JP2002298842A (en
Inventor
龍朗 佐々木
徹 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001094486A priority Critical patent/JP4923332B2/en
Publication of JP2002298842A publication Critical patent/JP2002298842A/en
Application granted granted Critical
Publication of JP4923332B2 publication Critical patent/JP4923332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高充放電容量を発揮することが可能なリチウムイオン二次電池等の非水電解質二次電池用電極材組成物の製造方法に関するものである。
【0002】
【従来の技術】
近年、電子技術の発達にはめざましいものがある。その中で、電子機器の小型化、軽量化が要求項目として挙げられる。それに伴い移動用電源としての電池に対しても益々小型、軽量かつ高エネルギー密度であることが求められるようになり、リチウムイオン二次電池の使用が拡大されてきた。
【0003】
上記に示したリチウムイオン二次電池の負極材用炭素材としては、特開平5−74457号公報記載の黒鉛を使用しているものが挙げられる。黒鉛は、サイクル性が非常によいことが特長であるが、理論充放電容量が372mAh/gであるため、これ以上の充放電容量は望めないという欠点がある。また、黒鉛材料以外では、特開平5−28996号公報、特開平7−73868号公報に示されるピッチコークスを使用した負極材が挙げられる。この材料は易黒鉛化炭素材であるが、焼成温度が2000℃を超える領域では黒鉛化が進行する。黒鉛になってしまうと充放電容量が決定されてしまう。また黒鉛化される前の温度域(1000〜1800℃)においては充放電容量の高い炭素材が得られている。しかしながら、サイクル性が乏しく、ピッチコークスは不純物を多く含んでおり、電池特性に悪影響を及ぼす。
【0004】
また、熱処理温度が500℃〜700℃程度の低温で処理された炭素負極は、次世代の高容量型炭素負極の有力候補の一つである。可逆容量で850mAh/gと、重量あたりの容量で黒鉛をこえる。また、低温処理であるため、エネルギーメリットも高い。しかしながら、電位が高く、充放電での電位のヒステリシスが大きいのが難点である。
炭素以外のリチウムイオン負極材として注目されているのが特開平5−166536号公報に示される金属酸化物含有炭素材、及び特開平6−290782号公報に示される窒素含有炭素材である。しかしながら、これらの炭素材では充放電容量800mAh/gと非常に大容量ではあるが、瞬間放電量が非常に高いことからその制御が困難であるとされている。
【0005】
また、リチウムイオンのインターカレーション能が非常に高い材料としてケイ素含有炭素材があり、その製法として、特開平7−315822に気相での化学蒸着による製法や、再表98/024135にケイ素粉末あるいはケイ素化合物と有機材料又は炭素材料を配合し炭化処理する製法が開示されている。しかしながら、特開平7−315822では、気相での化学蒸着法は製法及び原材料の安全性に問題があり、ケイ素含有量にバラツキが生じ、含有するケイ素量も少なく、充放電特性を向上することが難しい。また、再表98/024135では、不可逆容量が大きく、ケイ素の高容量が活かされていない。この理由は、この製法では直接ケイ素又はケイ素化合物を炭素前駆体に配合するためケイ素が炭素材の表面に露出する量が多くなるためと考えられる。
【0006】
【発明が解決しようとする課題】
本発明は、高充放電容量を発揮することができるリチウムイオン二次電池用電極材組成物に関し、高エネルギー密度で且つ安全性の高い電極材を提供することを目的とする。
上記目的を達成するために、本発明者らは鋭意研究を行った結果、ケイ素を含み炭素化できる炭素前駆体とケイ素を含まない炭素前駆体を配合し炭化処理することで得られるケイ素含有量が3〜25%のケイ素含有炭素材を負極材に用いることにより、高エネルギー密度で、かつ安全性の高いリチウムイオン二次電池の負極材が得られることを見出した。
【0007】
【課題を解決するための手段】
本発明は、
(1) ケイ素又はケイ素化合物と炭素前駆体又は炭素前駆体及び炭素材とを配合したものであるケイ素を含む炭素前駆体とケイ素を含まない炭素前駆体とを配合して炭化処理し、炭素材全体に対するケイ素含有量が3〜25重量%であるケイ素含有炭素材を得ることを特徴とする非水電解質二次電池用電極材組成物の製造方法、
(2) ケイ素を含む炭素前駆体が、炭化処理により炭化ケイ素を生成することが出来る炭素前駆体であることを特徴とする請求項1記載の非水電解質二次電池用電極材料組成物の製造方法、
である。
【0008】
【発明の実施の形態】
本発明のケイ素含有炭素材の製造方法は、ケイ素を含む炭素前駆体とケイ素を含まない炭素前駆体を配合し炭化処理することを特徴とするものである。
本発明で使用するケイ素を含む炭素前駆体とは炭化処理後ケイ素が確実に炭化物内に存在し、リチウムを吸蔵することができる炭素前駆体のことを言う。ケイ素を含む炭素前駆体の製法は種々あり限定はされない。例えば、ケイ素粉末をフェノール樹脂、エポキシ樹脂、ウレタン樹脂、不飽和ポリエステル、メラミン樹脂、尿素樹脂、アニリン樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂、ピッチ樹脂、ポリアクリロニトリル樹脂等から選ばれる単独あるいは2種以上を併用した樹脂と硬化剤等を粉砕混合し得たり、又、400℃の硬化処理をして得たケイ素を含む炭素前駆体や酸化ケイ素、ケイ酸ナトリウム等のケイ素化合物と上記記載樹脂類を溶融混合し得られるケイ素を含む炭素前駆体等である。
また、上記で得られたケイ素を含む炭素前駆体として、熱処理等することにより炭化ケイ素を生成するものを用いることもできる。
【0009】
本発明において、炭素前駆体とは、炭素含有物質で、炭素化処理して炭素材が得られるものであり、特に限定されないが、ピッチ、コークス、塩化ビニル樹脂、木材類、フェノール樹脂、フラン樹脂、イミド樹脂、ベンゾオキサジン樹脂、砂糖等の残炭率の高いものが好ましい。また、ケイ素を含まない炭素前駆体とは、前記炭素前駆体のうち、実質的にケイ素を含まないものをいう。炭素材とは、炭素、黒鉛等であり、通常の意味で使用されるが、前記炭素前駆体を炭化処理して得られたものも含まれる。これらの炭素前駆体及び炭素材は単独あるは二種以上併用し使用しても良い。
【0010】
本発明のケイ素を含む炭素前駆体とケイ素を含まない炭素前駆体との配合方法は種々あり、特に限定されるものではない。例えば、V型ブレンダー等の混合機にて均一混合する方法や、パルペライザー、ボールミル等の粉砕混合機にて粉砕しながら混合する方法、押し出し機や混練機を用い混練又は溶融混合する方法、あるいは、表面改質機、複合化機を用いケイ素を含む炭素前駆体をケイ素を含まない炭素前駆体表面の改質剤として混合する方法等がある。
【0011】
本発明の特徴であるケイ素を含む炭素前駆体とケイ素を含まない炭素前駆体とを配合すると、ケイ素が炭素表面に露出する量が少なく、ケイ素の特徴を発揮することができ充放電特性が向上する。
つまり、電極材としてケイ素とリチウムイオンとの相互作用を考えた場合、Siは通常Liを4個吸蔵し高充電容量となるが、実際、充放電効率は小さい。これは、SiはLiの吸蔵力が大きく、Liの放出が起こりにくいためと考えられる。従来のケイ素含有炭素材、即ち、気相でのケイ素の化学蒸着、あるいはケイ素粉末やケイ素化合物と有機材料又は炭素材料との配合による製造では、Siが炭化材料に覆われることが少なく、炭化物表面にSiが露出している量が多くなる。そのため、SiとLiが直接吸蔵反応を行う結果となり、充放電効率の低下を改善することは困難である。これに対し、本発明の製造方法では、予めSiと炭素前駆体との混合・反応等によりケイ素を含む炭素前駆体を調製し、これにケイ素を含まない炭素前駆体を配合し、混合・反応等の後、炭化処理することでケイ素含有炭素材を得る。このようにして得られたケイ素含有炭素材は、Siの周りを炭素材で覆うことで、SiがLiと直接吸蔵反応をする量を押さえ、炭素材がSiとLiとの緩衝域となる。このため、 Liの吸蔵・脱離が可逆的に行われることから、高い充電容量を保ったまま、充放電効率も向上するものと考えられる。
【0012】
本発明のケイ素含有炭素材のケイ素含有量は、充電容量が高く、不可逆容量が小さいために、炭素材全体に対して3〜25重量%であり、好ましくは8〜21重量%である。ケイ素含有量が3重量%より小さいとケイ素が炭素に覆われ、ケイ素本来の高充電容量特性が発揮されず、充放電容量特性が用いた炭素前駆体の炭素化後の性能と同程度で向上効果が小さい。25重量%より大きいとケイ素本来の高充電容量が得られるが、不可逆容量が増大する傾向がある。更に負極炭素材の膨張収縮が大きくなり、制御するのが難しくなるため、充放電容量のバラツキの大きい材料となる。
【0013】
本発明のケイ素を含む炭素前駆体作製時、あるいはケイ素含有炭素材作製時の炭素化処理前に、必要に応じて硬化工程を加えることができる。この硬化方法は炭素前駆体の種類により種々の方法があるが、例えば、ピッチ類の場合は空気中の熱酸化による架橋又はラジカル開始剤添加による架橋、フェノール系樹脂の場合は、熱硬化や酸硬化、エポキシ硬化、等が用いられ、硬化時、硬化剤として窒素含有物のイソシアネート、ヘキサメチレンテトラミン、エポキシ硬化時のアミン系硬化促進剤を用いても差し支えない。エポキシ系樹脂の場合、イミダゾール、酸無水物、フェノール樹脂等の硬化剤にて熱硬化させる。この時、硬化促進剤等を併用してもよい。ウレタン系樹脂の場合は、硬化剤として三級アミンや水、フェノール樹脂等を用いて熱又は常温にて硬化させる。
【0014】
本発明でのケイ素含有炭素材を得る場合の炭化処理方法は特に限定されるものではない。例えば、ケイ素を含む炭素前駆体とケイ素を含まない炭素前駆体とを混合後、昇温速度10〜100℃/分あるいはこれ以上で1000℃程度まで昇温し、10時間以上ホールド処理し炭素材を得る。また、炭化処理時の雰囲気は窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下、又は一酸化炭素雰囲気下等であるが、特に限定されるものではない。
このように、本発明のケイ素含有炭素材の製造方法は、原材料、製法ともに安全性が高く、更に、ケイ素含有量も任意に制御することができる。
【0015】
ケイ素含有炭素材の製造時、本発明の目的に反しない範囲内において、硬化や炭化時に窒素含有熱可塑性樹脂や金属、あるいは炭素材料となり得る材料等で変性したり、顔料、滑剤、帯電防止剤、酸化防止剤等、他の重合体を添加しても差し支え無い。
【0016】
【実施例】
以下、本発明を実施例により説明する。しかし、本発明は実施例により限定されるものではない。また、実施例、比較例で示される「部」及び「%」は全て「重量部」及び「重量%」とする。
【0017】
実施例1
ケイ素粉末5部、ノボラック型フェノール樹脂(数平均分子量Mn=624)100部、ヘキサメチレンテトラミン10部を粉砕混合し、200℃にて3時間硬化処理を行いケイ素を含む炭素前駆体65部を得た。次に得られたケイ素を含む炭素前駆体100部にレゾール型フェノール樹脂(Mn=358)100部をメタノール中で溶液混合し、200℃にて5時間硬化処理を行った後、窒素雰囲気下にて100℃/時間で昇温し,1000℃にて3時間炭化処理を行いケイ素含有炭素材を得た。上記の方法で得られたケイ素含有炭素材のケイ素含有量は炭素材灰分が全てSiO2 となったと仮定し3.8%であった。
次に、得られたケイ素含有炭素材88重量部、結合剤としてテトラフルオロエチレン9重量部、及び導電剤としてアセチレンブラック3重量部からなる合剤を、20mmφに圧縮成形して負極ペレットを得た。
正極材料は、Li0.5Co0.5V0.5O2.5を84重量部、導電剤としてアセチレンブラック10重量部、結合剤としてテトラフルオロエチレン6重量部の混合比で用いた。これらを混合した合剤を乾燥後、圧縮成形して正極ペレット(20mmφ)を得た。電解液として1MのLiBF4 を用い、セパレーターとして微孔性のポリプロピレンを用い、前記電解液を含浸させリチウムイオン二次電池を作製した。
このリチウムイオン二次電池について、充放電を行い、1回目の放電容量測定を行った。充電条件は、電流25mA/gの低電流で1mVになるまで保持し、その後、1.25mAh/g以下に電流が減衰するまでとした。また、放電条件のカットオフ電位は1.5Vとした。
【0018】
実施例2
ケイ素を含む炭素前駆体A100部と軟化点120℃のピッチ20部を粉砕混合し、らいかい機にて混練した後、実施例1と同法で炭化処理した。得られたケイ素含有炭素材のケイ素含有量は13.2%であった。以下,実施例1と同様な方法で評価を行った。
【0019】
実施例3
ケイ素粉末40部と軟化点120℃のピッチ100部をニーダーにて混練してケイ素を含む炭素前駆体130部を得た。得られたケイ素を含む炭素前駆体100部と軟化点240℃のピッチ90部をニーダーにて溶融混練し粉砕した後、実施例1と同法で炭化処理しケイ素含有量24.4%のケイ素含有炭素材を得た。以下、実施例1と同様な方法で評価を行った。
【0020】
比較例1
ケイ素粉末30部と軟化点120℃のピッチ100部を粉砕混合した後、実施例1と同法にて炭化処理を行いケイ素含有量32.8%のケイ素含有炭素材を得た。以下、実施例1と同様な方法で評価を行った。
【0021】
比較例2
ケイ素粉末9部とノボラック型フェノール樹脂(Mn=624)100部とヘキサメチレンテトラミン10部を粉砕混合し200℃にて3時間硬化処理した後は実施例1と同法で炭化処理を行い炭素材を得た。以下、実施例1と同様な方法で評価を行った。
【0022】
比較例3
ノボラック型フェノール樹脂(Mn=624)100部とヘキサメチレンテトラミン10部を粉砕混合し200℃にて3時間硬化処理した後は実施例1と同法で炭化処理を行い炭素材を得た。以下、実施例1と同様な方法で評価を行った。
【0023】
各実施例及び比較例で得られた炭素材について、電極材としての評価結果を表1に示す。
【表1】

Figure 0004923332
【0024】
表1から明らかなように、ケイ素含有炭素材を主成分とする電極材は、ケイ素含有によりLiを吸蔵できることから高放電容量となっている。この中で、実施例で得られたケイ素含有炭素材は、放電容量が比較的大きく、充放電効率も優れている。これはケイ素を含む炭素前駆体とケイ素を含まない炭素前駆体とを配合しケイ素含有炭素材を得ているので、ケイ素の炭素材表面への露出が少ないためである。
一方、比較例1及び2は、炭素前駆体としてケイ素を含む炭素前駆体のみを使用したものである。比較例1はケイ素含有量が多いため放電容量は大きいが、炭素材料に覆われる部分が少なくケイ素の露出した部分が多くなるため充放電効率が大きく低下している。比較例2は、ケイ素含有量が実施例2と同程度であり、放電容量は実施例と同程度であるが、充放電効率は比較例1と同様に低下している。
比較例3はケイ素を含有していないため、放電容量が大きく低下している。
このように、実施例で得られた炭素材を使用することにより、優れた特性を有するリチウムイオン二次電池用電極材が得られた。
【0025】
【発明の効果】
以上の説明により明らかなように、本発明によるケイ素含有炭素材を用いた電極材は、ケイ素が充放電容量を向上させ、ケイ素を含む炭素前駆体とケイ素を含まない炭素前駆体とを配合して得られるケイ素含有炭素材であるためケイ素が炭素材から露出した部分が小さく炭素材が緩衝域となるため、充放電効率が向上する。従って、高エネルギー密度で、且つ充放電効率の高い電極材を得ることができることから、 リチウムイオン二次電池の負極炭素材に好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an electrode material composition for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery capable of exhibiting a high charge / discharge capacity.
[0002]
[Prior art]
In recent years, there has been a remarkable development in electronic technology. Among them, downsizing and weight reduction of electronic devices are listed as required items. As a result, batteries as mobile power sources are increasingly required to be small, light and high in energy density, and the use of lithium ion secondary batteries has been expanded.
[0003]
Examples of the carbon material for the negative electrode material of the lithium ion secondary battery described above include those using graphite described in JP-A-5-74457. Graphite is characterized by extremely good cycleability, but has a disadvantage that a charge / discharge capacity higher than this cannot be expected because the theoretical charge / discharge capacity is 372 mAh / g. Other than the graphite material, there can be mentioned negative electrode materials using pitch coke as disclosed in JP-A-5-28996 and JP-A-7-73868. This material is an easily graphitized carbon material, but graphitization proceeds in a region where the firing temperature exceeds 2000 ° C. If it becomes graphite, the charge / discharge capacity is determined. Moreover, in the temperature range (1000-1800 degreeC) before graphitizing, the carbon material with a high charging / discharging capacity | capacitance is obtained. However, the cycle performance is poor, and pitch coke contains a large amount of impurities, which adversely affects battery characteristics.
[0004]
Further, the carbon negative electrode processed at a low temperature of about 500 ° C. to 700 ° C. is one of the promising candidates for the next generation high capacity carbon negative electrode. Reversible capacity is 850 mAh / g, exceeding graphite by capacity per weight. Moreover, since it is a low-temperature treatment, energy merit is high. However, the potential is high and the hysteresis of the potential during charging / discharging is large.
As a lithium ion negative electrode material other than carbon, a metal oxide-containing carbon material disclosed in JP-A-5-166536 and a nitrogen-containing carbon material disclosed in JP-A-6-290782 are attracting attention. However, although these carbon materials have a very large charge / discharge capacity of 800 mAh / g, the instantaneous discharge amount is very high, so that the control thereof is difficult.
[0005]
Further, there is a silicon-containing carbon material as a material having a very high lithium ion intercalation ability. As its production method, Japanese Patent Application Laid-Open No. 7-315822 discloses a method by chemical vapor deposition in a gas phase, and Table 98/024135 describes a silicon powder. Alternatively, a manufacturing method in which a silicon compound and an organic material or a carbon material are mixed and carbonized is disclosed. However, in Japanese Patent Laid-Open No. 7-315822, the chemical vapor deposition method in the gas phase has a problem in the manufacturing method and safety of raw materials, the silicon content varies, the silicon content is small, and the charge / discharge characteristics are improved. Is difficult. In Table 98/024135, the irreversible capacity is large and the high capacity of silicon is not utilized. The reason for this is considered to be that the amount of silicon exposed to the surface of the carbon material increases because silicon or a silicon compound is directly blended with the carbon precursor in this production method.
[0006]
[Problems to be solved by the invention]
The present invention relates to an electrode material composition for a lithium ion secondary battery capable of exhibiting a high charge / discharge capacity, and an object thereof is to provide an electrode material having high energy density and high safety.
In order to achieve the above object, the present inventors have conducted intensive research, and as a result, silicon content obtained by blending and carbonizing a carbon precursor that contains silicon and can be carbonized and a carbon precursor that does not contain silicon. It was found that a negative electrode material for a lithium ion secondary battery having a high energy density and high safety can be obtained by using a silicon-containing carbon material of 3 to 25% as a negative electrode material.
[0007]
[Means for Solving the Problems]
The present invention
(1) Carbon material containing silicon and a carbon precursor not containing silicon, which is a mixture of silicon or a silicon compound and a carbon precursor or a carbon precursor and a carbon material, and carbonizing the carbon precursor A method for producing an electrode material composition for a non-aqueous electrolyte secondary battery, wherein a silicon-containing carbon material having a silicon content of 3 to 25% by weight relative to the whole is obtained,
(2) The production of an electrode material composition for a non-aqueous electrolyte secondary battery according to claim 1 , wherein the carbon precursor containing silicon is a carbon precursor capable of generating silicon carbide by carbonization treatment. Method,
It is.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a silicon-containing carbon material of the present invention is characterized in that a carbon precursor containing silicon and a carbon precursor not containing silicon are mixed and carbonized.
The carbon precursor containing silicon used in the present invention refers to a carbon precursor capable of occluding lithium by ensuring that silicon is present in the carbide after carbonization. There are various methods for producing a carbon precursor containing silicon, and the method is not limited. For example, silicon powder is selected from phenol resin, epoxy resin, urethane resin, unsaturated polyester, melamine resin, urea resin, aniline resin, bismaleimide resin, benzoxazine resin, pitch resin, polyacrylonitrile resin, etc. A resin containing the above and a curing agent can be pulverized and mixed, or a silicon-containing carbon precursor obtained by curing at 400 ° C., a silicon compound such as silicon oxide or sodium silicate, and the above-described resins. A carbon precursor containing silicon obtained by melt mixing.
Moreover, what produces | generates a silicon carbide by heat processing etc. can also be used as a carbon precursor containing the silicon obtained above.
[0009]
In the present invention, the carbon precursor is a carbon-containing substance that is carbonized to obtain a carbon material, and is not particularly limited, but is not limited to pitch, coke, vinyl chloride resin, woods, phenol resin, furan resin. High residual carbon ratios such as imide resin, benzoxazine resin and sugar are preferred. Moreover, the carbon precursor which does not contain silicon means the thing which does not contain silicon substantially among the said carbon precursor. The carbon material is carbon, graphite or the like, and is used in a normal sense, but also includes those obtained by carbonizing the carbon precursor. These carbon precursors and carbon materials may be used alone or in combination of two or more.
[0010]
There are various methods for blending the carbon precursor containing silicon and the carbon precursor not containing silicon of the present invention, and the method is not particularly limited. For example, a method of uniformly mixing with a mixer such as a V-type blender, a method of mixing while pulverizing with a pulverizer or a pulverizer such as a ball mill, a method of kneading or melt mixing using an extruder or a kneader, or There is a method of mixing a carbon precursor containing silicon as a modifier of the surface of a carbon precursor not containing silicon using a surface modifier or a compounding machine.
[0011]
When the carbon precursor containing silicon and the carbon precursor not containing silicon, which are the characteristics of the present invention, are blended, the amount of silicon exposed to the carbon surface is small, and the characteristics of silicon can be exhibited and the charge / discharge characteristics are improved. To do.
That is, when the interaction between silicon and lithium ions is considered as an electrode material, Si normally occludes four Li and has a high charge capacity, but in fact the charge / discharge efficiency is small. This is presumably because Si has a large Li occlusion force and Li is not easily released. In conventional silicon-containing carbon materials, that is, chemical vapor deposition of silicon in the gas phase, or production by mixing silicon powder or silicon compound with organic material or carbon material, Si is hardly covered with carbonized material, and the surface of the carbide The amount of Si exposed is increased. Therefore, Si and Li result in direct occlusion and it is difficult to improve the decrease in charge / discharge efficiency. On the other hand, in the production method of the present invention, a carbon precursor containing silicon is prepared in advance by mixing / reaction of Si and a carbon precursor, and a carbon precursor not containing silicon is added thereto, followed by mixing / reaction. After the above, carbonization treatment is performed to obtain a silicon-containing carbon material. The silicon-containing carbon material obtained in this way covers the periphery of Si with a carbon material, thereby suppressing the amount of Si directly occluded with Li, and the carbon material serves as a buffer region between Si and Li. For this reason, since insertion and extraction of Li are performed reversibly, it is considered that the charge and discharge efficiency is improved while maintaining a high charge capacity.
[0012]
The silicon content of the silicon-containing carbon material of the present invention is 3 to 25% by weight, preferably 8 to 21% by weight, based on the entire carbon material, because the charge capacity is high and the irreversible capacity is small. If the silicon content is less than 3% by weight, the silicon is covered with carbon and the high charge capacity characteristics inherent in silicon are not exhibited, and the charge / discharge capacity characteristics are improved to the same extent as the performance after carbonization of the carbon precursor used. Small effect. If it is greater than 25% by weight, the high charge capacity inherent in silicon can be obtained, but the irreversible capacity tends to increase. Furthermore, since the expansion and contraction of the negative electrode carbon material increase and it becomes difficult to control, the material has a large variation in charge / discharge capacity.
[0013]
A curing step can be added as necessary before the carbonization treatment for producing the silicon-containing carbon precursor of the present invention or the silicon-containing carbon material. There are various curing methods depending on the type of carbon precursor. For example, in the case of pitches, crosslinking by thermal oxidation in air or crosslinking by addition of a radical initiator, and in the case of phenolic resins, thermal curing or acid Curing, epoxy curing, and the like are used, and at the time of curing, nitrogen-containing isocyanate, hexamethylenetetramine, and an amine-based curing accelerator during epoxy curing may be used. In the case of an epoxy resin, it is thermally cured with a curing agent such as imidazole, acid anhydride, or phenol resin. At this time, a curing accelerator or the like may be used in combination. In the case of a urethane-based resin, it is cured at room temperature or normal temperature using a tertiary amine, water, a phenol resin, or the like as a curing agent.
[0014]
The carbonization method for obtaining the silicon-containing carbon material in the present invention is not particularly limited. For example, after mixing a carbon precursor containing silicon and a carbon precursor not containing silicon, the temperature is increased to about 1000 ° C. at a temperature increase rate of 10 to 100 ° C./min or higher, and hold treatment is performed for 10 hours or more. Get. The atmosphere during the carbonization treatment is an inert gas atmosphere such as nitrogen, helium, or argon, or a carbon monoxide atmosphere, but is not particularly limited.
Thus, the method for producing a silicon-containing carbon material of the present invention is highly safe for both raw materials and production methods, and the silicon content can be arbitrarily controlled.
[0015]
During the production of silicon-containing carbon materials, within the range not contrary to the object of the present invention, it is modified with nitrogen-containing thermoplastic resin or metal during carbonization or carbon, or a material that can be a carbon material, pigments, lubricants, antistatic agents. In addition, other polymers such as an antioxidant may be added.
[0016]
【Example】
Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to the examples. Further, “parts” and “%” shown in Examples and Comparative Examples are all “parts by weight” and “% by weight”.
[0017]
Example 1
5 parts of silicon powder, 100 parts of novolak type phenol resin (number average molecular weight Mn = 624) and 10 parts of hexamethylenetetramine are pulverized and mixed and cured at 200 ° C. for 3 hours to obtain 65 parts of carbon precursor containing silicon. It was. Next, 100 parts of a carbon precursor containing silicon and 100 parts of a resol-type phenol resin (Mn = 358) were mixed in methanol and subjected to curing treatment at 200 ° C. for 5 hours. The temperature was raised at 100 ° C./hour and carbonized at 1000 ° C. for 3 hours to obtain a silicon-containing carbon material. The silicon content of the silicon-containing carbon material obtained by the above method was 3.8% on the assumption that all the carbon material ash was SiO 2 .
Next, a mixture comprising 88 parts by weight of the obtained silicon-containing carbon material, 9 parts by weight of tetrafluoroethylene as a binder, and 3 parts by weight of acetylene black as a conductive agent was compression molded to 20 mmφ to obtain a negative electrode pellet. .
As the positive electrode material, Li0.5Co0.5V0.5O2.5 was used in a mixing ratio of 84 parts by weight, 10 parts by weight of acetylene black as a conductive agent, and 6 parts by weight of tetrafluoroethylene as a binder. The mixture obtained by mixing these was dried and then compression molded to obtain a positive electrode pellet (20 mmφ). A lithium ion secondary battery was fabricated by impregnating the electrolyte solution using 1M LiBF4 as the electrolyte solution and microporous polypropylene as the separator.
The lithium ion secondary battery was charged and discharged, and the first discharge capacity measurement was performed. The charging condition was maintained at 1 mV at a low current of 25 mA / g until the current was attenuated to 1.25 mAh / g or less. The cut-off potential under discharge conditions was 1.5V.
[0018]
Example 2
100 parts of a carbon precursor A containing silicon and 20 parts of a pitch having a softening point of 120 ° C. were pulverized and mixed, and kneaded with a coarse machine, and then carbonized in the same manner as in Example 1. The silicon content of the obtained silicon-containing carbon material was 13.2%. Hereinafter, evaluation was performed in the same manner as in Example 1.
[0019]
Example 3
40 parts of silicon powder and 100 parts of a pitch having a softening point of 120 ° C. were kneaded with a kneader to obtain 130 parts of a carbon precursor containing silicon. 100 parts of the carbon precursor containing silicon and 90 parts of pitch having a softening point of 240 ° C. were melt-kneaded and pulverized, and then carbonized in the same manner as in Example 1 to obtain silicon having a silicon content of 24.4%. A carbon material was obtained. Hereinafter, evaluation was performed in the same manner as in Example 1.
[0020]
Comparative Example 1
After 30 parts of silicon powder and 100 parts of a pitch having a softening point of 120 ° C. were pulverized and mixed, carbonization was performed in the same manner as in Example 1 to obtain a silicon-containing carbon material having a silicon content of 32.8%. Hereinafter, evaluation was performed in the same manner as in Example 1.
[0021]
Comparative Example 2
After 9 parts of silicon powder, 100 parts of novolac type phenolic resin (Mn = 624) and 10 parts of hexamethylenetetramine were pulverized and mixed at 200 ° C. for 3 hours, carbonized by the same method as in Example 1 to obtain a carbon material. Got. Hereinafter, evaluation was performed in the same manner as in Example 1.
[0022]
Comparative Example 3
After pulverizing and mixing 100 parts of novolak type phenolic resin (Mn = 624) and 10 parts of hexamethylenetetramine and curing at 200 ° C. for 3 hours, carbonization was performed in the same manner as in Example 1 to obtain a carbon material. Hereinafter, evaluation was performed in the same manner as in Example 1.
[0023]
Table 1 shows the evaluation results as electrode materials for the carbon materials obtained in the respective Examples and Comparative Examples.
[Table 1]
Figure 0004923332
[0024]
As is apparent from Table 1, the electrode material mainly composed of a silicon-containing carbon material has a high discharge capacity because it can occlude Li by containing silicon. Among these, the silicon-containing carbon material obtained in the examples has a relatively large discharge capacity and excellent charge / discharge efficiency. This is because a silicon-containing carbon material is obtained by blending a carbon precursor containing silicon and a carbon precursor not containing silicon, so that silicon is less exposed to the carbon material surface.
On the other hand, Comparative Examples 1 and 2 use only a carbon precursor containing silicon as a carbon precursor. In Comparative Example 1, since the silicon content is large, the discharge capacity is large. However, since the portion covered with the carbon material is small and the exposed portion of silicon is large, the charge / discharge efficiency is greatly reduced. In Comparative Example 2, the silicon content is about the same as that of Example 2, and the discharge capacity is about the same as that of the Example. However, the charge / discharge efficiency is lowered as in Comparative Example 1.
Since Comparative Example 3 does not contain silicon, the discharge capacity is greatly reduced.
Thus, the electrode material for lithium ion secondary batteries which has the outstanding characteristic was obtained by using the carbon material obtained by the Example.
[0025]
【Effect of the invention】
As is apparent from the above description, the electrode material using the silicon-containing carbon material according to the present invention has a silicon-improved charge / discharge capacity, and a carbon precursor containing silicon and a carbon precursor not containing silicon are blended. Since the silicon-containing carbon material is obtained, the portion where silicon is exposed from the carbon material is small, and the carbon material serves as a buffer region, so that the charge / discharge efficiency is improved. Therefore, since an electrode material having a high energy density and high charge / discharge efficiency can be obtained, it is suitable for a negative electrode carbon material of a lithium ion secondary battery.

Claims (2)

ケイ素又はケイ素化合物と炭素前駆体又は炭素前駆体及び炭素材とを配合したものであるケイ素を含む炭素前駆体とケイ素を含まない炭素前駆体とを配合して炭化処理し、炭素材全体に対するケイ素含有量が3〜25重量%であるケイ素含有炭素材を得ることを特徴とする非水電解質二次電池用電極材組成物の製造方法。 Silicon or silicon compound and carbon precursor or carbon precursor and carbon material are compounded with a carbon precursor containing silicon and a carbon precursor not containing silicon, and carbonized to form silicon for the entire carbon material. A method for producing an electrode material composition for a non-aqueous electrolyte secondary battery, wherein a silicon-containing carbon material having a content of 3 to 25% by weight is obtained. ケイ素を含む炭素前駆体が、炭化処理により炭化ケイ素を生成することが出来る炭素前駆体であることを特徴とする請求項1記載の非水電解質二次電池用電極材料組成物の製造方法。The method for producing an electrode material composition for a non-aqueous electrolyte secondary battery according to claim 1 , wherein the carbon precursor containing silicon is a carbon precursor capable of generating silicon carbide by carbonization treatment.
JP2001094486A 2001-03-29 2001-03-29 Method for producing electrode material composition for non-aqueous electrolyte secondary battery Expired - Fee Related JP4923332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001094486A JP4923332B2 (en) 2001-03-29 2001-03-29 Method for producing electrode material composition for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001094486A JP4923332B2 (en) 2001-03-29 2001-03-29 Method for producing electrode material composition for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002298842A JP2002298842A (en) 2002-10-11
JP4923332B2 true JP4923332B2 (en) 2012-04-25

Family

ID=18948670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001094486A Expired - Fee Related JP4923332B2 (en) 2001-03-29 2001-03-29 Method for producing electrode material composition for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4923332B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5058494B2 (en) * 2006-02-15 2012-10-24 株式会社クラレ Composite, method for producing the same, and electrode material for power storage device
JPWO2008081883A1 (en) * 2006-12-28 2010-04-30 東レ・ダウコーニング株式会社 Porous silicon-containing carbon-based composite material and electrode and battery comprising the same
JP5708198B2 (en) * 2011-04-21 2015-04-30 住友ベークライト株式会社 Carbon material for secondary battery and manufacturing method thereof
EP2573845B1 (en) * 2011-09-26 2018-10-31 VARTA Micro Innovation GmbH Structural active material for battery electrodes
KR102237829B1 (en) 2013-12-30 2021-04-08 삼성전자주식회사 Anode material for rechargeable lithium battery, manufacturing method thereof, and rechargeable lithium battery comprising the same
KR20160008041A (en) * 2014-07-11 2016-01-21 오씨아이 주식회사 Anode active material for lithium secondary battery and manufacturing mehtod of the same
HUE058174T2 (en) 2014-12-23 2022-07-28 Umicore Nv Powder, electrode and battery comprising such a powder
US10483529B2 (en) 2014-12-23 2019-11-19 Umicore Composite powder for use in an anode of a lithium ion battery, method of preparing such a composite powder and method for analysing such a composite powder
JP2015122316A (en) * 2015-01-07 2015-07-02 住友ベークライト株式会社 Carbonaceous material for secondary battery and production method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213012A (en) * 1995-02-03 1996-08-20 Mitsui Toatsu Chem Inc Electrode material and manufacture thereof
JPH10255791A (en) * 1997-03-11 1998-09-25 Mitsubishi Chem Corp Nonaqueous secondary battery
JPH11322323A (en) * 1998-05-12 1999-11-24 Matsushita Electric Ind Co Ltd Carbon compound and its production, and electrode for secondary battery
JP2000260428A (en) * 1999-03-11 2000-09-22 Mitsubishi Chemicals Corp Lithium secondary battery using nonaqueous cabon- coated negative electrode
JP4792618B2 (en) * 2000-05-31 2011-10-12 日立化成工業株式会社 Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery

Also Published As

Publication number Publication date
JP2002298842A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
JP4861120B2 (en) Negative electrode active material, production method thereof, and negative electrode and lithium battery employing the same
JP5291179B2 (en) Method for preparing lithium iron phosphate cathode material for lithium secondary battery
JP4040606B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20090125268A (en) Method for producing positive electrode material for secondary battery
KR102627149B1 (en) Negative active material and method of manufacturing the same
JP2004259475A (en) Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP2004185984A (en) Negative electrode material for lithium secondary battery, and lithium secondary battery using it
KR101705234B1 (en) Negative electrode active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
KR102191190B1 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, negative electrode paste, negative electrode sheet and lithium ion secondary battery
JP2003223892A (en) Lithium secondary battery and method for manufacturing negative electrode material therefor
JP4923332B2 (en) Method for producing electrode material composition for non-aqueous electrolyte secondary battery
JP2015076316A (en) Sulfide solid electrolytic material
WO1998024135A1 (en) Negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery
JP2004103405A (en) Raw material for carbonaceous material, silicon-containing carbonaceous material, negative electrode material of secondary battery, and lithium secondary battery
JP4660146B2 (en) Carbon material, secondary battery negative electrode material and non-aqueous electrolyte secondary battery
JP2003187798A (en) Lithium secondary battery
JP3091949B2 (en) Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles
JPH11354120A (en) Electrode material composition for lithium-ion secondary battery
CN1175098A (en) Accumulator with no water electrolytic solution
JP4087138B2 (en) Carbon material and silicon-containing carbon material using the same
JPH11191408A (en) Negative active material for lithium ion secondary battery, and negative electrode plate and lithium ion secondary battery using the same
JP3915072B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and battery using the same
JP4945862B2 (en) Carbon material and carbon material using the same
JP2005200276A (en) Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery
JP2006264991A (en) Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees