JP4715125B2 - Slurry for lithium secondary battery electrode and method for producing lithium secondary battery electrode - Google Patents

Slurry for lithium secondary battery electrode and method for producing lithium secondary battery electrode Download PDF

Info

Publication number
JP4715125B2
JP4715125B2 JP2004234407A JP2004234407A JP4715125B2 JP 4715125 B2 JP4715125 B2 JP 4715125B2 JP 2004234407 A JP2004234407 A JP 2004234407A JP 2004234407 A JP2004234407 A JP 2004234407A JP 4715125 B2 JP4715125 B2 JP 4715125B2
Authority
JP
Japan
Prior art keywords
slurry
water
secondary battery
lithium secondary
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004234407A
Other languages
Japanese (ja)
Other versions
JP2006054096A (en
Inventor
孝裕 米山
健悟 岡西
佐恵子 倉知
尚登 榎島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Toyota Motor Corp
Original Assignee
Mitsubishi Chemical Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Toyota Motor Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004234407A priority Critical patent/JP4715125B2/en
Publication of JP2006054096A publication Critical patent/JP2006054096A/en
Application granted granted Critical
Publication of JP4715125B2 publication Critical patent/JP4715125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池の電極形成のために使用される電極用スラリーと、この電極用スラリーを用いたリチウム二次電池電極の製造方法に関する。   The present invention relates to an electrode slurry used for forming an electrode of a lithium secondary battery, and a method for producing a lithium secondary battery electrode using the electrode slurry.

従来、リチウム二次電池の電極の製造方法として、電極活物質と結着剤と水とを含む電極用スラリー(以下単に「スラリー」と称することがある)を集電体上に塗布した後、乾燥する方法が知られている。   Conventionally, as a method for producing an electrode of a lithium secondary battery, an electrode slurry containing an electrode active material, a binder, and water (hereinafter sometimes simply referred to as “slurry”) is applied on a current collector, A method of drying is known.

特許文献1には、リチウム二次電池の負極活物質として、黒鉛質粉末を非晶質材料で被覆したものを用い、これと水溶性の高分子結着剤とを水に分散・溶解してなるスラリーを銅箔等の集電体基板上に塗布後、乾燥することによって、リチウム二次電池用の負極が得られることが記載されている。   In Patent Document 1, as a negative electrode active material for a lithium secondary battery, a graphite powder coated with an amorphous material is used, and this and a water-soluble polymer binder are dispersed and dissolved in water. It is described that a negative electrode for a lithium secondary battery can be obtained by applying the resulting slurry onto a current collector substrate such as a copper foil and then drying.

特許文献2には、リチウムイオンを挿入・脱離する活物質を水溶性有機溶媒に分散させた後、水を添加して分散し、更にスチレン・ブタジエン共重合体等の非水溶性結着剤を添加して分散する手順で調製された分散液を、金属箔に塗布し、乾燥して、電池用電極を製造する方法が記載されている。そして、当該水溶性有機溶媒の一つとして、N−メチルピロリドンを含有するものが記載されている。
特開平2003−272627号公報 特開2003−142082号公報
In Patent Document 2, an active material that inserts and desorbs lithium ions is dispersed in a water-soluble organic solvent, and then dispersed by adding water, and further a water-insoluble binder such as a styrene-butadiene copolymer. A method for producing a battery electrode is described in which a dispersion prepared by adding and dispersing is applied to a metal foil and dried. And what contains N-methylpyrrolidone is described as one of the said water-soluble organic solvents.
Japanese Patent Laid-Open No. 2003-272627 JP 2003-142082 A

昨今のリチウム二次電池の需要拡大に伴い、その生産量は急速に伸びてきており、その部材である電極の製造においても、生産性を更に向上させることが求められてきている。このような状況において、上記スラリー塗布、乾燥による電極の製造にあたり、スラリー塗布後の乾燥速度を速めることができれば、効率的な生産が可能となる。   Along with the recent increase in demand for lithium secondary batteries, the production volume thereof has been increasing rapidly, and it has been demanded to further improve the productivity in the production of the electrode as the member. Under such circumstances, efficient production is possible if the drying speed after slurry application can be increased in the production of the electrode by slurry application and drying.

しかしながら、特許文献1に記載された、黒鉛質粉末を非晶質材料で被覆してなる電極活物質と水溶性の高分子結着剤とを水に分散・溶解したスラリーでは、後述する比較例1に示すように、塗布後、高速で乾燥を行った場合、集電体基板と乾燥後の塗膜との接着強度が低いものとなるため、高速乾燥を行うことができない。一方、特許文献2に記載の分散液は、本発明におけるように、結着剤としてカルボキシメチルセルロース及び非水溶性結着剤の双方を含むものではなく、非水溶性結着剤しか含まないものであるが、この分散液であっても、後述する比較例2に示すように、塗布後、高速で乾燥を行った場合に、集電体基板と乾燥後の塗膜との接着強度が低く、膜剥離の問題があるため、高速乾燥を行った上で良好な接着強度を得ることはできない。   However, in the slurry described in Patent Document 1 in which an electrode active material obtained by coating graphite powder with an amorphous material and a water-soluble polymer binder are dispersed and dissolved in water, a comparative example to be described later As shown in FIG. 1, when drying is performed at a high speed after coating, the adhesive strength between the current collector substrate and the coating film after drying is low, so that high-speed drying cannot be performed. On the other hand, the dispersion described in Patent Document 2 does not contain both carboxymethylcellulose and a water-insoluble binder as a binder as in the present invention, but only contains a water-insoluble binder. However, even in this dispersion, as shown in Comparative Example 2 described later, when the coating is dried at a high speed, the adhesive strength between the current collector substrate and the dried coating film is low, Since there is a problem of film peeling, good adhesive strength cannot be obtained after high-speed drying.

このようなことから、高速で乾燥を行っても、良好な塗膜接着強度を得ることができる技術の開発が望まれていた。   For these reasons, it has been desired to develop a technique capable of obtaining good coating strength even when drying at high speed.

従って、本発明は、塗布後、高速乾燥を行うことができ、これによりリチウム二次電池電極を効率的に製造することができる電極用スラリーと、このスラリーを用いて、リチウム二次電池電極を高い生産性で製造する方法を提供することを目的とする。   Accordingly, in the present invention, after application, high-speed drying can be performed, whereby an electrode slurry that can efficiently produce a lithium secondary battery electrode, and a lithium secondary battery electrode using the slurry. It aims at providing the method of manufacturing with high productivity.

本発明者らは、上記課題を解決するために鋭意検討した結果、黒鉛質粉末を非晶質材料で被覆してなる電極活物質と、結着剤としてカルボキシメチルセルロース及び非水溶性結着剤と水とを含む電極用スラリーに、更に、150℃以上の沸点を有する水溶性有機化合物を存在させることによって、高速乾燥でも高い集電体基板−塗膜接着強度を得ることができ、電極の生産効率を向上させつつ、良好な電池性能を確保できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have found that an electrode active material obtained by coating graphite powder with an amorphous material, carboxymethylcellulose and a water-insoluble binder as a binder, By making a water-soluble organic compound having a boiling point of 150 ° C. or higher present in an electrode slurry containing water, high current collector substrate-coating bond strength can be obtained even at high speed drying, and electrode production The present inventors have found that good battery performance can be ensured while improving efficiency.

即ち、本発明は、黒鉛質粉末を非晶質炭素材料で被覆してなる電極活物質と、結着剤と水とを含有するリチウム二次電池電極用スラリーにおいて、該結着剤としてカルボキシメチルセルロース及び非水溶性結着剤を含み、更に150℃以上の沸点を有する水溶性有機化合物を含有することを特徴とするリチウム二次電池電極用スラリー、に存する。 That is, the present invention provides a lithium secondary battery electrode slurry containing an electrode active material obtained by coating a graphite powder with an amorphous carbon material, a binder and water, and carboxymethyl cellulose as the binder. And a water-soluble organic compound having a boiling point of 150 ° C. or higher, and a non-water-soluble binder.

本発明において、150℃以上の沸点を有する水溶性有機化合物(以下「高沸点有機化合物」と称す場合がある。)は、N−メチルピロリドンであることが好ましく、その含有量は、電極活物質に対して0.1〜40重量%であることが好ましい。   In the present invention, the water-soluble organic compound having a boiling point of 150 ° C. or higher (hereinafter sometimes referred to as “high-boiling organic compound”) is preferably N-methylpyrrolidone, and the content thereof is an electrode active material. It is preferable that it is 0.1 to 40 weight% with respect to.

また、本発明は、このような本発明のリチウム二次電池電極用スラリーを集電体上に塗布した後乾燥する工程を有するリチウム二次電池電極の製造方法において、該乾燥条件として、JIS K 5500で規定される半硬化乾燥状態に到達するまでの水と水溶性有機化合物の蒸発速度を、該集電体の片面1m当たりの平均で100g/分以上として乾燥することを特徴とするリチウム二次電池電極の製造方法、に存する。 In addition, the present invention provides a method for producing a lithium secondary battery electrode comprising a step of applying the slurry for a lithium secondary battery electrode of the present invention on a current collector and then drying the slurry. Lithium, characterized in that drying is performed with an evaporation rate of water and a water-soluble organic compound until reaching a semi-cured dry state specified by 5500 at an average of 100 g / min or more per 1 m 2 of one surface of the current collector A method of manufacturing a secondary battery electrode.

本発明のスラリーを集電体基板に塗布後、高速乾燥しても、集電体基板と乾燥後の塗膜との接着強度を十分に得ることができる理由の詳細は未だ十分明らかではないが、次のように推定される。即ち、従来、黒鉛質粉末を非晶質材料で被覆してなる電極活物質と、非水溶性結着剤とを含有する水スラリーでは、量産塗工時、例えば塗布したスラリーの膜に温風を強く直接吹き付ける等による乾燥の過程で、水分が塗膜表面から蒸発するにつれ、塗膜内部の活物質粒子間で毛管現象による分散媒の上昇が生じ、これによって、非水溶性結着剤も塗膜表面に上昇しやすくなり、乾燥後に非水溶性結着剤が塗膜表面に偏析してしまうために、集電体基板と塗膜との境界部分の結着剤濃度が低下しやすくなり、このため塗膜接着強度が低いものとなるものと考えられる。これに対して、黒鉛質粉末を非晶質材料で被覆してなる電極活物質と、カルボキシメチルセルロース及び非水溶性結着剤と、水とを有するリチウム二次電池電極用スラリー中に、更に、高沸点有機化合物が共存すると、乾燥時、塗膜からの水分の揮散に伴い、カルボキシメチルセルロースの貧溶媒である高沸点有機化合物の濃度がスラリー中で増し、カルボキシメチルセルロースが溶解しきれなくなり、ついには上記の毛管現象が進行する前にスラリー中で析出し始め、更には毛管現象による非水溶性結着剤の毛管上昇をも抑制することができるため、従来のように結着剤が塗膜表面に偏析せず、集電体基板と塗膜との境界部分にも十分量の結着剤が存在するようになり、このため集電体基板と塗膜との接着強度を確保することができるものと考えられる。   The details of why the adhesive strength between the current collector substrate and the dried coating film can be sufficiently obtained even after applying the slurry of the present invention to the current collector substrate and drying at high speed is not yet sufficiently clear. Is estimated as follows. That is, conventionally, in an aqueous slurry containing an electrode active material obtained by coating graphite powder with an amorphous material and a water-insoluble binder, hot air is applied to the applied slurry film, for example, during mass production coating. As the moisture evaporates from the surface of the coating film during the drying process, such as by directly spraying the liquid, the dispersion medium rises due to capillary action between the active material particles inside the coating film. It tends to rise to the surface of the coating, and the water-insoluble binder segregates on the surface of the coating after drying, so the binder concentration at the boundary between the current collector substrate and the coating tends to decrease. Therefore, it is considered that the adhesion strength of the coating film is low. On the other hand, in an electrode active material formed by coating a graphite powder with an amorphous material, a slurry for a lithium secondary battery electrode having carboxymethyl cellulose and a water-insoluble binder, and water, When high-boiling organic compounds coexist, the concentration of the high-boiling organic compound, which is a poor solvent for carboxymethylcellulose, increases in the slurry with the evaporation of moisture from the coating during drying, and carboxymethylcellulose cannot be completely dissolved. Since the above-mentioned capillary phenomenon starts to precipitate in the slurry and further, the capillary rise of the water-insoluble binder due to the capillary phenomenon can also be suppressed, In this case, a sufficient amount of binder is also present at the boundary portion between the current collector substrate and the coating film, so that the adhesive strength between the current collector substrate and the coating film can be ensured. thing Conceivable.

本発明のリチウム二次電池電極用スラリーは、集電体への塗布後、高速乾燥を行っても、高い集電体接着強度を得ることができる。このような本発明の電極用スラリーを用いる本発明のリチウム二次電池電極の製造方法によれば、高性能リチウム二次電池電極を高い生産性で製造することができる。   Even if the slurry for lithium secondary battery electrodes of this invention performs high-speed drying after apply | coating to a collector, it can obtain high collector adhesive strength. According to the method for producing a lithium secondary battery electrode of the present invention using such an electrode slurry of the present invention, a high performance lithium secondary battery electrode can be produced with high productivity.

以下に、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention does not exceed the gist thereof. It is not limited to the following contents.

[リチウム二次電池電極用スラリー]
本発明のリチウム二次電池電極用スラリーは、黒鉛質粉末を非晶質材料で被覆してなる電極活物質と、カルボキシメチルセルロース及び非水溶性結着剤と、水と、更に150℃以上の沸点を有する水溶性有機化合物(高沸点有機化合物)を含有する。
[Slurry for lithium secondary battery electrode]
The slurry for the lithium secondary battery electrode of the present invention comprises an electrode active material obtained by coating a graphite powder with an amorphous material, carboxymethyl cellulose and a water-insoluble binder, water, and a boiling point of 150 ° C. or higher. The water-soluble organic compound (high boiling point organic compound) which has this.

<高沸点有機化合物>
本発明において、スラリー中に存在させる高沸点有機化合物としては、N−メチルピロリドン(沸点202℃)、ジメチルホルムアミド(沸点153℃)、ジメチルアセトアミド(沸点166℃)等のアミド類、エチレングリコール(沸点198℃)、プロピレングリコール(沸点187℃)、ブタンジオール(沸点193−228℃)、エチレングリコールモノブチルエーテル(沸点171℃)等のジオール類及びその誘導体、ガンマブチロラクトン(沸点203℃)、炭酸エチレン(沸点238℃)等の環状エステル類、ジメチルスルホキシド(沸点189℃)等が挙げられる。これらは1種を単独で用いても良く、2種以上を併用しても良い。
<High boiling point organic compounds>
In the present invention, examples of the high boiling point organic compound present in the slurry include amides such as N-methylpyrrolidone (boiling point 202 ° C.), dimethylformamide (boiling point 153 ° C.), dimethylacetamide (boiling point 166 ° C.), ethylene glycol (boiling point). Diols such as propylene glycol (boiling point 187 ° C.), butanediol (boiling point 193-228 ° C.), ethylene glycol monobutyl ether (boiling point 171 ° C.), derivatives thereof, gamma butyrolactone (boiling point 203 ° C.), ethylene carbonate ( And cyclic esters having a boiling point of 238 ° C., dimethyl sulfoxide (boiling point of 189 ° C.), and the like. These may be used alone or in combination of two or more.

本発明に特に好ましい高沸点有機化合物としては、リチウム二次電池用電極の製造で一般に広く用いられている、N−メチルピロリドンが挙げられる。   A particularly preferred high boiling point organic compound for the present invention includes N-methylpyrrolidone, which is generally widely used in the production of lithium secondary battery electrodes.

高沸点有機化合物の添加量は、スラリー中の電極活物質に対して、通常0.1重量%以上、好ましくは0.5重量%以上、更に好ましくは1重量%以上であり、通常40重量%以下、好ましくは30重量%以下、更に好ましくは20重量%以下である。高沸点有機化合物の添加量が少なすぎると集電体基板と塗膜との接着強度の向上効果が不十分なことがあり、多すぎると、乾燥工程への過負荷となってしまうことがある。   The amount of the high-boiling organic compound added is usually 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more, and usually 40% by weight, based on the electrode active material in the slurry. Hereinafter, it is preferably 30% by weight or less, more preferably 20% by weight or less. If the amount of the high-boiling organic compound added is too small, the effect of improving the adhesive strength between the current collector substrate and the coating film may be insufficient, and if it is too large, the drying process may be overloaded. .

<電極活物質>
本発明において、電極活物質として使用する材料は、黒鉛質粉末を非晶質材料で被覆したものである。
<Electrode active material>
In the present invention, the material used as the electrode active material is a graphite powder coated with an amorphous material.

(非晶質材料)
非晶質材料としては、その結晶面(002)の面間隔d002が0.349nm以上、且つC軸方向の結晶子の厚さLcが10nm未満である炭素質粉体を用いることが好ましい。結晶面(002)の面間隔d002が0.349nm以上0.355nm以下、且つC軸方向の結晶子の厚さLcが7nm以下であるものは更に好ましく、特にLcについては、1.5nm以上、更に好ましくは1.5〜10nm、更には1.5〜5nmであるものが好ましい。
(Amorphous material)
As the amorphous material, it is preferable to use a carbonaceous powder whose crystal plane (002) has an interplanar spacing d 002 of 0.349 nm or more and a crystallite thickness Lc in the C-axis direction of less than 10 nm. It is more preferable that the interplanar spacing d 002 of the crystal plane (002) is 0.349 nm or more and 0.355 nm or less, and the crystallite thickness Lc in the C-axis direction is 7 nm or less. More preferably, it is 1.5 to 10 nm, more preferably 1.5 to 5 nm.

(黒鉛質粉末の物性)
母剤となる黒鉛質粉体の好ましい粒径と比表面積は、次の通りである。
即ち、レーザー回折式粒径分布計による平均粒子径(D50)は、通常20μm以下、好ましくは15μm以下、更に好ましくは13μm以下、特に好ましくは8〜13μmであり、BET比表面積は、15m/g以下、好ましくは13m/g以下、最も好ましくは12m/g以下で、好ましくは2m/g以上、更に好ましくは3m/g以上、最も好ましくは8m/g以上である。
(Physical properties of graphite powder)
The preferred particle size and specific surface area of the graphite powder as the base material are as follows.
That is, the average particle diameter (D 50 ) measured by a laser diffraction particle size distribution meter is usually 20 μm or less, preferably 15 μm or less, more preferably 13 μm or less, particularly preferably 8 to 13 μm, and the BET specific surface area is 15 m 2. / G or less, preferably 13 m 2 / g or less, most preferably 12 m 2 / g or less, preferably 2 m 2 / g or more, more preferably 3 m 2 / g or more, and most preferably 8 m 2 / g or more.

(黒鉛質粉末の製法)
本発明の活物質に適用される黒鉛質材料は特に限定されるものではないが、例えば天然黒鉛を用いるか若しくは以下に述べる炭素前駆体から、適宜、焼成条件を変えることによって、炭化、又は黒鉛化することにより得ることができる。
(Production method of graphite powder)
Although the graphite material applied to the active material of the present invention is not particularly limited, for example, natural graphite is used, or carbonization or graphite by changing firing conditions appropriately from the carbon precursor described below. Can be obtained.

この場合、液相で炭素化を進行させる炭素前駆体としては、軟ピッチから硬ピッチまでのコールタールピッチ、或いは乾留液化油などの石炭系重質油、常圧残油、減圧残油の直流系重質油、原油、ナフサなどの熱分解時に副生するエチレンタール等分解系石油重質油、更にアセナフチレン、デカシクレン、アントラセン、フェナントレンなどの芳香族炭化水素、フェナジンやアクリジンなどのN環化合物、チオフェン、ビチオフェンなどのS環化合物、ビフェニル、テルフェニルなどのポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、これらのものの不溶化処理品、含窒素性のポリアクニロニトリル、ポリピロールなどの有機高分子、含硫黄性のポリチオフェン、ポリスチレンなどの有機高分子、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キトサン、サッカロースに代表される多糖類などの天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド等の熱可塑性樹脂、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂等の熱硬化性樹脂、以上のものとベンゼン、トルエン、キシレン、キノリン、n−へキサンなどの低分子有機溶媒の混合品、などから選ばれる1種以上の炭素化可能な有機化合物が用いられる。   In this case, as the carbon precursor for proceeding carbonization in the liquid phase, coal tar pitch from soft pitch to hard pitch, or heavy coal based oil such as dry distillation liquefied oil, normal pressure residual oil, reduced pressure residual oil DC Heavy petroleum oil, crude oil, naphtha cracked petroleum heavy oil such as ethylene tar, and aromatic hydrocarbons such as acenaphthylene, decacyclene, anthracene, phenanthrene, N-ring compounds such as phenazine and acridine, S-ring compounds such as thiophene and bithiophene, polyphenylenes such as biphenyl and terphenyl, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, insolubilized products of these, organic polymers such as nitrogen-containing polyacrylonitrile and polypyrrole, Sulfur-containing polythiophene, organic polymers such as polystyrene, cellulose Natural polymers such as polysaccharides represented by lignin, mannan, polygalacturonic acid, chitosan, saccharose, thermoplastic resins such as polyphenylene sulfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, imide resin, etc. One or more carbonizable organic compounds selected from thermosetting resins, mixtures of the above and low molecular organic solvents such as benzene, toluene, xylene, quinoline, and n-hexane are used.

(電極活物質の製法)
本発明で用いる電極活物質は、通常、かかる黒鉛質粉末と炭素前駆体を混合したものを加熱し中間物質を経て、その後炭化焼成、粉砕することにより、最終的に黒鉛粒子の表面に非晶質炭素質物を被覆させた黒鉛炭素質複合粉末(非晶質炭素被覆黒鉛複合材料)として得ることができるが、このような非晶質炭素被覆黒鉛複合材料中の非晶質炭素質物の割合は通常0.1重量%以上、好ましくは0.5重量%以上、更に好ましくは1重量%以上、特に好ましくは2重量%以上で、通常50重量%以下、好ましくは25重量%以下、更に好ましくは15重量%以下、特に好ましくは10重量%以下となるように調整するのが良い。
(Production method of electrode active material)
The electrode active material used in the present invention is usually amorphous on the surface of the graphite particles by heating a mixture of such graphite powder and a carbon precursor, passing through an intermediate material, then carbonizing and pulverizing. Graphite carbonaceous composite powder coated with carbonaceous material (amorphous carbon-coated graphite composite material), the proportion of amorphous carbonaceous material in such amorphous carbon-coated graphite composite material is Usually 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more, particularly preferably 2% by weight or more, usually 50% by weight or less, preferably 25% by weight or less, more preferably It may be adjusted to 15% by weight or less, particularly preferably 10% by weight or less.

かかる非晶質炭素被覆黒鉛複合材料を得るための製造工程は、より具体的には通常以下の4工程に分けられる。
第1工程:黒鉛質粒子と炭素前駆体、更に必要に応じて溶媒とを種々の市販の混合機や混練機等を用いて混合し、混合物を得る。
第2工程:必要に応じ前記混合物を攪拌しながら加熱し、溶媒を除去した中間物質を得る。
第3工程:前記混合物又は中間物質を、窒素ガス、炭酸ガス、アルゴンガス等の不活性ガス雰囲気下で700℃以上2800℃以下に加熱し、炭素化物質を得る。
第4工程:前記炭素化物質を必要に応じて粉砕、解砕、分級処理など粉体加工する。
More specifically, the production process for obtaining such an amorphous carbon-coated graphite composite material is usually divided into the following four processes.
First step: Graphite particles, a carbon precursor, and, if necessary, a solvent are mixed using various commercially available mixers and kneaders to obtain a mixture.
Second step: If necessary, the mixture is heated with stirring to obtain an intermediate substance from which the solvent has been removed.
Third step: The mixture or intermediate substance is heated to 700 ° C. or higher and 2800 ° C. or lower in an inert gas atmosphere such as nitrogen gas, carbon dioxide gas, or argon gas to obtain a carbonized substance.
Fourth step: The carbonized material is subjected to powder processing such as pulverization, pulverization, and classification as required.

これらの工程中、第2工程及び第4工程は場合によっては省略可能であり、第4工程は第3工程の前に行っても良い。   Among these steps, the second step and the fourth step may be omitted depending on circumstances, and the fourth step may be performed before the third step.

また、第3工程の加熱処理条件としては、熱履歴温度条件が重要である。その下限温度は炭素前駆体の種類、その熱履歴によっても若干異なるが通常700℃以上、好ましくは900℃以上である。一方、上限温度は基本的に黒鉛粒子核の結晶構造を上回る構造秩序を有しない温度まで上げることができる。従って、熱処理の上限温度としては、通常2800℃以下、好ましくは2000℃以下、更に好ましくは1500℃以下が好ましい範囲である。このような熱処理条件において、昇温速度、冷却速度、熱処理時間などは目的に応じて任意に設定することができる。また、比較的低温領域で熱処理した後、所定の温度に昇温することもできる。なお、本工程に用いる反応機は回分式でも連続式でも、また、一基でも複数基でも良い。   In addition, the heat history temperature condition is important as the heat treatment condition in the third step. The lower limit temperature is usually 700 ° C. or higher, preferably 900 ° C. or higher, although it varies slightly depending on the type of carbon precursor and its thermal history. On the other hand, the upper limit temperature can be raised to a temperature that basically does not have a structural order exceeding the crystal structure of the graphite particle nucleus. Therefore, the upper limit temperature of the heat treatment is usually 2800 ° C. or lower, preferably 2000 ° C. or lower, more preferably 1500 ° C. or lower. Under such heat treatment conditions, the heating rate, cooling rate, heat treatment time, etc. can be arbitrarily set according to the purpose. Further, after heat treatment in a relatively low temperature region, the temperature can be raised to a predetermined temperature. In addition, the reactor used for this process may be a batch type or a continuous type, and may be one or more.

このようにして得られた非晶質炭素被覆黒鉛複合材料は、ラマンスペクトル分析によるピーク強度比R値や、1580cm−1の付近のピークの半値幅、X線広角回折の回折図において得られるd002、Lcの値において、黒鉛質材料の結晶化度を上回らないこと、即ちR値は黒鉛質のその値以上で、半値幅は黒鉛質のその値以上、d002値は黒鉛質のその値以上で、Lcは黒鉛質のその値以下であることが好ましい。 The amorphous carbon-coated graphite composite material thus obtained has a peak intensity ratio R value obtained by Raman spectrum analysis, a half-value width of a peak in the vicinity of 1580 cm −1 , and a diffraction pattern obtained by X-ray wide angle diffraction. The 002 and Lc values do not exceed the crystallinity of the graphite material, that is, the R value is equal to or greater than that of the graphite, the half width is equal to or greater than that of the graphite, and the d 002 value is equal to that of the graphite. Above, it is preferable that Lc is below that value of graphite.

本発明で用いる電極活物質としての具体的な非晶質炭素被覆黒鉛複合材料のR値としては、通常0.01以上、好ましくは0.05以上、より好ましくは0.2以上、更に好ましくは0.3以上で、通常1.0以下、好ましくは0.8以下、より好ましくは0.7以下、更に好ましくは0.5以下の範囲で、かつ、母剤となる黒鉛質の値以上であることが挙げられる。   The R value of a specific amorphous carbon-coated graphite composite material as an electrode active material used in the present invention is usually 0.01 or more, preferably 0.05 or more, more preferably 0.2 or more, and still more preferably 0.3 or more, usually 1.0 or less, preferably 0.8 or less, more preferably 0.7 or less, still more preferably 0.5 or less, and more than the value of graphite as a base material. There are some.

(電極活物質の物性)
・平均粒径
電極活物質の平均粒径の下限は通常5μm以上、好ましくは8μm以上で、上限は通常20μm以下、好ましくは15μm以下である。この上限を上回ると、粗粒子や凝集粒子による塗膜の欠陥が発生しやすく、下限を下回るとスラリー調製時に分散し難くなることがある。
・比表面積
電極活物質の比表面積の上限は通常10m/g以下、好ましくは5m/g以下である。この上限を上回ると、スラリー調製時に分散し難くなることがある。なお、電極活物質の下限については電池特性の観点から、1m/g以上である。
(Physical properties of electrode active material)
-Average particle diameter The minimum of the average particle diameter of an electrode active material is 5 micrometers or more normally, Preferably it is 8 micrometers or more, and an upper limit is 20 micrometers or less normally, Preferably it is 15 micrometers or less. When this upper limit is exceeded, coating film defects due to coarse particles and aggregated particles are likely to occur, and when the lower limit is exceeded, it may be difficult to disperse during slurry preparation.
-Specific surface area The upper limit of the specific surface area of an electrode active material is 10 m < 2 > / g or less normally, Preferably it is 5 m < 2 > / g or less. If this upper limit is exceeded, it may be difficult to disperse during slurry preparation. The lower limit of the electrode active material is 1 m 2 / g or more from the viewpoint of battery characteristics.

(電極活物質の含有量)
スラリー中の電極活物質の含有量は、溶媒を除く固形分に対して、通常10重量%以上、好ましくは30重量%以上、更に好ましくは50重量%以上であり、また、99重量%以下とする。スラリー中の電極活物質の含有量が少なすぎると容量等の電池特性上不十分となりやすく、多すぎると塗膜の強度が悪化することがある。
(Content of electrode active material)
The content of the electrode active material in the slurry is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more, and 99% by weight or less based on the solid content excluding the solvent. To do. If the content of the electrode active material in the slurry is too small, battery characteristics such as capacity tend to be insufficient, and if too large, the strength of the coating film may be deteriorated.

<カルボキシメチルセルロース>
カルボキシメチルセルロースとしては、市販のカルボキシメチルセルロースナトリウムを広く用いることができるが、その分子量としては、平均分子量で下限が通常20,000以上、好ましくは50,000以上で、上限が通常700,000以下、好ましくは500,000以下である。カルボキシメチルセルロースの分子量が上述の範囲から外れると、適度な流動性を有するスラリーが得られないことがある。
<Carboxymethylcellulose>
As carboxymethylcellulose, commercially available sodium carboxymethylcellulose can be widely used. As the molecular weight, the average molecular weight has a lower limit of usually 20,000 or more, preferably 50,000 or more, and an upper limit of usually 700,000 or less. Preferably it is 500,000 or less. When the molecular weight of carboxymethyl cellulose is out of the above range, a slurry having appropriate fluidity may not be obtained.

また、スラリー中のカルボキシメチルセルロースの含有量は、溶媒を除く固形分に対して、通常0.1重量%以上、10重量%以下である。カルボキシメチルセルロースの含有量が少なすぎると、集電体基板と塗膜との接着強度が不足し、一方多すぎると電池容量や導電性を下げることがある。   Further, the content of carboxymethyl cellulose in the slurry is usually 0.1% by weight or more and 10% by weight or less based on the solid content excluding the solvent. When the content of carboxymethyl cellulose is too small, the adhesive strength between the current collector substrate and the coating film is insufficient. On the other hand, when the content is too large, the battery capacity and conductivity may be lowered.

<非水溶性結着剤>
本発明で用いる非水溶性結着剤の「非水溶性」とは、25℃の水に対する溶解度が、100mg/l以下であることをさす。
<Water-insoluble binder>
The “water-insoluble” of the water-insoluble binder used in the present invention means that the solubility in water at 25 ° C. is 100 mg / l or less.

本発明において非水溶性結着剤として使用する材料としては、一般に電極の結着剤として使用される各種の高分子材料のうち非水溶性のものを挙げることができる。具体的には、EPDM(エチレン−プロピレン−ジエン三元共重合体)、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等が挙げられる。これらは1種を単独で用いても良く、2種以上を併用しても良い。   Examples of the material used as the water-insoluble binder in the present invention include water-insoluble materials among various polymer materials generally used as an electrode binder. Specifically, EPDM (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose Etc. These may be used alone or in combination of two or more.

スラリー中の非水溶性結着剤の含有量は、溶媒を除く固形分に対して、通常0.1重量%以上、10重量%以下である。スラリー中の非水溶性結着剤の含有量が少なすぎると、活物質を十分に保持できずに集電体への電極の接着強度が不足し、一方多すぎると電池容量や導電性を下げることがある。   The content of the water-insoluble binder in the slurry is usually 0.1% by weight or more and 10% by weight or less based on the solid content excluding the solvent. If the content of the water-insoluble binder in the slurry is too small, the active material cannot be retained sufficiently and the adhesion strength of the electrode to the current collector is insufficient. On the other hand, if the content is too large, the battery capacity and conductivity are reduced. Sometimes.

<その他の固形分>
本発明のスラリー中には、必要に応じて、活物質及びカルボキシメチルセルロース、非水溶性結着剤、高沸点有機化合物以外の固形分成分を含有させることができる。例えば、電極の電子伝導性を向上させるために導電剤を含有させることができる。導電剤としては、天然黒鉛、人造黒鉛等の黒鉛や、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料を挙げることができる。スラリーの固形分中の導電剤の割合は、通常50重量%以下、好ましくは30重量%以下、更に好ましくは15重量%以下である。スラリー中の導電剤の含有量が多すぎると電池容量が低下することがある。
<Other solids>
In the slurry of this invention, solid content components other than an active material and carboxymethylcellulose, a water-insoluble binder, and a high boiling point organic compound can be contained as needed. For example, a conductive agent can be included to improve the electronic conductivity of the electrode. Examples of the conductive agent include graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke. The proportion of the conductive agent in the solid content of the slurry is usually 50% by weight or less, preferably 30% by weight or less, and more preferably 15% by weight or less. If the content of the conductive agent in the slurry is too large, the battery capacity may be reduced.

<スラリー溶媒>
本発明において、スラリーの溶媒としては、水を使用する。
<Slurry solvent>
In the present invention, water is used as the solvent for the slurry.

本発明のスラリーは、溶媒として水を用い、スラリー中の固形分の割合が、通常1重量%以上、好ましくは5重量%以上、更に好ましくは10重量%以上、最も好ましくは20重量%以上であり、また、通常99重量%以下、好ましくは95重量%以下、更に好ましくは90重量%以下、最も好ましくは80重量%以下となるように調製される。この固形分の含有量が多すぎると、スラリーの粘度が上がって塗布しにくくなり、また少なすぎると乾燥負荷が大きくなる傾向にある。なお、固形分とは、カルボキシメチルセルロースも含む不揮発成分をさす。   The slurry of the present invention uses water as a solvent, and the solid content in the slurry is usually 1% by weight or more, preferably 5% by weight or more, more preferably 10% by weight or more, and most preferably 20% by weight or more. In addition, the amount is usually 99% by weight or less, preferably 95% by weight or less, more preferably 90% by weight or less, and most preferably 80% by weight or less. If the solid content is too large, the viscosity of the slurry increases and it becomes difficult to apply, and if it is too small, the drying load tends to increase. In addition, solid content refers to the non-volatile component also containing carboxymethylcellulose.

<スラリー粘度>
本発明のスラリーは上記配合により、その粘度(後述の実施例における測定法による粘度)が通常、50mPa・s以上、好ましくは100mPa・s以上で、通常10万mPa・s以下、好ましくは5万mPa・s以下であることが好ましい。スラリーの粘度が高過ぎると塗布しにくくなり、低すぎるものは、固形分濃度が低く、乾燥負荷が大きくなる。
<Slurry viscosity>
The slurry of the present invention has a viscosity (viscosity according to a measurement method in Examples described later) of usually 50 mPa · s or more, preferably 100 mPa · s or more, and usually 100,000 mPa · s or less, preferably 50,000, by the above-described blending. It is preferably mPa · s or less. When the viscosity of the slurry is too high, it becomes difficult to apply, and when the slurry is too low, the solid content concentration is low and the drying load is increased.

<スラリーの製造方法>
本発明のスラリーの製造方法としては特に制限はなく、電極活物質、カルボキシメチルセルロース、非水溶性結着剤、水、高沸点有機化合物、及びその他の併用成分を任意の処方で混合することにより調製することができるが、例えば、次の方法が好適である。
<Method for producing slurry>
There is no restriction | limiting in particular as a manufacturing method of the slurry of this invention, It prepares by mixing an electrode active material, a carboxymethylcellulose, a water-insoluble binder, water, a high boiling point organic compound, and another combination component by arbitrary prescriptions. For example, the following method is suitable.

即ち、まず、(i)電極活物質及びその他の併用成分とカルボキシメチルセルロースを粉体の状態で混合した後、(ii)水を逐次に添加、混合し、更に、(iii)非水溶性結着剤を添加、混合する。高沸点有機化合物は、その使用量により、(i)の工程終了後の任意の時点で投入することができる。   That is, first, (i) after mixing the electrode active material and other concomitant components and carboxymethyl cellulose in a powder state, (ii) sequentially adding and mixing water, and (iii) water-insoluble binding Add and mix the agent. The high boiling point organic compound can be added at any time after the completion of the step (i) depending on the amount of use.

[リチウム二次電池電極の製造方法]
本発明のリチウム二次電池電極の製造方法は、上述の本発明のリチウム二次電池電極用スラリーを集電体上に塗布し、所定の乾燥条件で乾燥することによって電極を製造する方法である。
[Method for producing lithium secondary battery electrode]
The method for producing a lithium secondary battery electrode of the present invention is a method for producing an electrode by applying the slurry for a lithium secondary battery electrode of the present invention on a current collector and drying it under predetermined drying conditions. .

集電体への電極用スラリーの塗布方法としては、ロールコート、コンマコート、ドクターコート、ドクターリバースコート、ダイコート等各種の方法を採用することができる。   As a method for applying the electrode slurry to the current collector, various methods such as roll coating, comma coating, doctor coating, doctor reverse coating, and die coating can be employed.

塗膜の厚さとしては、乾燥後の膜厚として、通常1μm以上、好ましくは10μm以上程度で、通常1000μm以下、好ましくは200μm以下程度である。塗膜が厚すぎると導電性が低下する傾向にあり、薄すぎると容量が低下する傾向にある。   The thickness of the coating film is usually 1 μm or more, preferably about 10 μm or more, and usually about 1000 μm or less, preferably about 200 μm or less, as the film thickness after drying. If the coating film is too thick, the conductivity tends to decrease, and if it is too thin, the capacity tends to decrease.

集電体の材料には特に制限はなく、適用する電池の種類に応じて各種の金属を使用することができる。例えば、集電体の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等が用いられるが、好ましくは銅である。集電体の厚さは、通常1μm以上、好ましくは5μm以上程度で、通常500μm以下、好ましくは200μm以下程度である。集電体が厚すぎると電池全体としての容量が低下し、薄すぎると機械的強度が不足することがある。   There is no restriction | limiting in particular in the material of an electrical power collector, Various metals can be used according to the kind of applied battery. For example, as the material of the current collector, copper, nickel, stainless steel, nickel-plated steel or the like is used, and copper is preferable. The thickness of the current collector is usually about 1 μm or more, preferably about 5 μm or more, and is usually about 500 μm or less, preferably about 200 μm or less. If the current collector is too thick, the capacity of the battery as a whole decreases, and if it is too thin, the mechanical strength may be insufficient.

塗膜の乾燥方法は、温風乾燥、遠赤外線乾燥、誘導加熱乾燥等各種の方法を採用することができる。その際、乾燥温度は、塗膜内の最高温度で通常10℃以上、好ましくは50℃以上程度で、通常500℃以下、好ましくは250℃以下程度である。   Various methods such as warm air drying, far-infrared drying, induction heating drying and the like can be adopted as the method for drying the coating film. At that time, the drying temperature is usually 10 ° C. or more, preferably about 50 ° C. or more, and usually about 500 ° C. or less, preferably about 250 ° C. or less at the maximum temperature in the coating film.

電極用スラリーの塗布、乾燥によって得られた電極は、通常、活物質の充填密度を上げるためローラープレス等により圧密化することが好ましい。   In general, the electrode obtained by applying and drying the electrode slurry is preferably consolidated by a roller press or the like in order to increase the packing density of the active material.

得られた電極は、通常リチウム二次電池の電極、特に負極として使用することができる。   The obtained electrode can usually be used as an electrode of a lithium secondary battery, particularly as a negative electrode.

本発明のリチウム二次電池電極用スラリーは、前述の如く、塗布後、高速乾燥を行っても、集電体基板と乾燥後の塗膜との接着強度が低下しにくいことから、これまでにない、高速な乾燥を行っても良好な集電体基板−塗膜接着強度を維持することができる。しかして、このような本発明の電極用スラリーを用いる本発明のリチウム二次電池電極の製造方法においては、本発明の電極用スラリーを、集電体上に塗布後、乾燥条件として、JIS K 5500で規定される半硬化乾燥状態に到達するまでの水と水溶性有機化合物の蒸発速度を、集電体の片面1m当りの平均で100g/分以上という高速乾燥条件でも十分な接着強度を得ることができる点で工業的に有利である。 As described above, the slurry for the lithium secondary battery electrode of the present invention is difficult to reduce the adhesive strength between the current collector substrate and the dried coating film even after high-speed drying after coating. Even if high-speed drying is performed, good current collector substrate-coating bond strength can be maintained. Thus, in the method for producing a lithium secondary battery electrode of the present invention using such an electrode slurry of the present invention, the electrode slurry of the present invention is applied on a current collector and then dried as JIS K. Adequate adhesive strength even under high-speed drying conditions where the evaporation rate of water and water-soluble organic compounds until reaching the semi-cured dry state specified by 5500 is 100 g / min or more per 1 m 2 on one side of the current collector. This is industrially advantageous in that it can be obtained.

以下に、本発明における乾燥条件(蒸発速度)について説明する。   Below, the drying conditions (evaporation rate) in this invention are demonstrated.

<乾燥条件(蒸発速度)>
JIS K 5500によると、「半硬化乾燥」とは塗料の乾燥状態の一つで、「塗料を塗布した面の中央を指先でかるくこすってみて塗面にすり跡が付かない状態(dry to touch)になったときをいう」とあり、本発明においてもその基準に従って、「半硬化乾燥」と判定する。そして、塗布液中の水と水溶性有機化合物の総量及び塗布量から、塗布面における水と水溶性有機化合物の総量を、半硬化乾燥に至るまでの時間で除することにより、蒸発速度を算出し、本発明においては、この値を、片面1m当りの平均で評価する。以下において、この蒸発速度を「半硬化乾燥蒸発速度」と称す場合がある。
<Drying conditions (evaporation rate)>
According to JIS K 5500, “semi-curing drying” is one of the dry states of the paint. “Dry to touch the surface of the paint-coated surface by rubbing it with your fingertips (dry to touch). ) ”, And in the present invention,“ semi-cured and dried ”is determined according to the criteria. Then, the evaporation rate is calculated by dividing the total amount of water and water-soluble organic compound on the coated surface by the time until semi-curing drying from the total amount of water and water-soluble organic compound in the coating solution and the coating amount. In the present invention, this value is evaluated as an average per 1 m 2 on one side. Hereinafter, this evaporation rate may be referred to as “semi-cured dry evaporation rate”.

この半硬化乾燥蒸発速度は、従来の技術では、100g/分未満であったが、本発明によれば100g/分以上、中でも200g/分以上という超高速乾燥を行っても、接着強度の低下の問題はなく、高い生産性にて良好な電極を製造することができる。   This semi-cured drying evaporation rate was less than 100 g / min in the prior art, but according to the present invention, even if ultra-high speed drying of 100 g / min or more, especially 200 g / min or more is performed, the adhesive strength is reduced. Thus, a good electrode can be produced with high productivity.

本発明に係る乾燥条件は、上記半硬化乾燥蒸発速度が達成することができれば良く、特に制限はないが、例えば温風乾燥であれば、温度及び風速、風量は好ましくは次のように設定される。   The drying conditions according to the present invention are not particularly limited as long as the semi-cured drying evaporation rate can be achieved. For example, in the case of warm air drying, the temperature, the wind speed, and the air volume are preferably set as follows. The

(温度)
温風の温度の下限は通常30℃以上、好ましくは50℃以上で、上限は通常300℃以下、好ましくは250℃以下である。温度がこの上限を上回ると集電体や結着剤成分の劣化で、極板の機械的な強度が損なわれやすく、下限を下回ると乾燥時間が長くなりやすくなる。
(temperature)
The lower limit of the temperature of the warm air is usually 30 ° C or higher, preferably 50 ° C or higher, and the upper limit is usually 300 ° C or lower, preferably 250 ° C or lower. When the temperature exceeds this upper limit, the current collector and the binder component are deteriorated, and the mechanical strength of the electrode plate is easily impaired. When the temperature is lower than the lower limit, the drying time tends to be longer.

(風速)
温風の風速の下限は通常0.5m/s以上、好ましくは1m/s以上で、上限は通常50m/s以下、好ましくは30m/s以下である。風速がこの上限を上回ると塗布したスラリーの薄膜が風の勢いで飛散しやすく、下限を下回ると乾燥時間が長くなりやすくなる。
(wind speed)
The lower limit of the warm air velocity is usually 0.5 m / s or more, preferably 1 m / s or more, and the upper limit is usually 50 m / s or less, preferably 30 m / s or less. When the wind speed exceeds this upper limit, the applied slurry thin film tends to scatter due to the force of the wind, and when the wind speed falls below the lower limit, the drying time tends to be longer.

(風量)
温風の風量は、集電体の片面の塗膜1m当たりの風量として、下限が通常0.1m/分以上、好ましくは0.5m/分以上で、上限が通常100m/分以下、好ましくは50m/分以下である。風量がこの上限を上回ると乾燥工程への負荷が過大となり、一方下限を下回ると乾燥時間が長くなりやすくなる。
(Air flow)
The air volume of the warm air is, as the air volume per 1 m 2 of coating on one side of the current collector, the lower limit is usually 0.1 m 3 / min or more, preferably 0.5 m 3 / min or more, and the upper limit is usually 100 m 3 / min. Hereinafter, it is preferably 50 m 3 / min or less. If the air volume exceeds this upper limit, the load on the drying process becomes excessive, while if it falls below the lower limit, the drying time tends to be longer.

(半硬化乾燥蒸発速度)
本発明において、半硬化乾燥蒸発速度は100g/分以上であり、前述の如く、200g/分以上の高速乾燥にも十分に耐え得るが、半硬化乾燥蒸発速度が過度に高いと乾燥工程への負荷が過大となるため、半硬化乾燥蒸発速度の上限は通常500g/分以下であることが好ましい。
(Semi-cured drying evaporation rate)
In the present invention, the semi-cured drying evaporation rate is 100 g / min or more, and as described above, it can sufficiently withstand high-speed drying of 200 g / min or more. Since the load is excessive, the upper limit of the semi-cured dry evaporation rate is usually preferably 500 g / min or less.

以下に実施例及び比較例を挙げて本発明をさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES The present invention will be described in more detail with reference to examples and comparative examples below, but the present invention is not limited to the following examples unless it exceeds the gist.

<実施例1>
平均粒径が12μm、比表面積が3.9m/gである非晶質炭素材料で被覆した黒鉛質粉末98重量部を、平均分子量が約25万〜30万のカルボキシメチルセルロース1重量部と粉体混合し、これを二軸混練機中で水を逐次加えながら30分混練し、続いてスチレン・ブタジエンゴム水性ディスパージョンを固形分換算で1重量部加え、10分混合した。このとき、水は107重量部投入した。最後に、N−メチルピロリドンを10重量部、すなわち黒鉛質粉末に対して10.2重量%加え、10分混合し、スラリーを得た。このスラリーの粘度を表1に示す。なお、スラリーの粘度は、E型粘度計を用い、25℃、10s−1での粘度を測定した。
<Example 1>
98 parts by weight of graphite powder coated with an amorphous carbon material having an average particle size of 12 μm and a specific surface area of 3.9 m 2 / g, and 1 part by weight of carboxymethyl cellulose having an average molecular weight of about 250,000 to 300,000 and powder This was kneaded for 30 minutes while sequentially adding water in a twin-screw kneader, and then 1 part by weight of styrene / butadiene rubber aqueous dispersion was added in terms of solid content and mixed for 10 minutes. At this time, 107 parts by weight of water was added. Finally, 10 parts by weight of N-methylpyrrolidone, that is, 10.2% by weight based on the graphite powder was added and mixed for 10 minutes to obtain a slurry. The viscosity of this slurry is shown in Table 1. The viscosity of the slurry was measured using an E-type viscometer at 25 ° C. and 10 s −1 .

次に、このスラリーを集電体である銅箔(厚さ15μm)上に電極活物質が1cm当たり5.0±0.3mg付着するように(従って、水及び水溶性有機化合物の付着量は5.9±0.4mgであり、59±4g/m)、その片面に塗布し、200℃の温風を用い、風速6m/s、塗布面1m当たりの風量27m/分の条件で乾燥した。 Next, 5.0 ± 0.3 mg of the electrode active material per 1 cm 2 is deposited on the copper foil (thickness: 15 μm) as the current collector (the amount of water and water-soluble organic compound adhered accordingly). 5.9 ± 0.4 mg, 59 ± 4 g / m 2 ), coated on one side, using warm air of 200 ° C., wind speed 6 m / s, air volume 27 m 3 / min per 1 m 2 of coated surface Dried under conditions.

このとき、JIS K 5500の半硬化乾燥状態に達するまでに10秒を要したが、実際は15秒乾燥した。よって半硬化乾燥蒸発速度は、片面1m当たり、平均354±24g/分(=(59±4)÷10×60)であった。 At this time, it took 10 seconds to reach the semi-cured dry state of JIS K 5500, but actually it was dried for 15 seconds. Accordingly, the semi-cured dry evaporation rate was 354 ± 24 g / min (= (59 ± 4) ÷ 10 × 60) per 1 m 2 on one side.

最後にロールプレスで電極密度を1.30±0.05g/cmに調整し、電極膜を得た。 Finally, the electrode density was adjusted to 1.30 ± 0.05 g / cm 3 with a roll press to obtain an electrode film.

これを新東科学(株)製の連続加重式引掻強度試験機「トライボギアHEIDON−18」を用い、先端が0.3mmRで加工された円錐形の針で塗膜を引っ掻き、銅箔が露出する荷重を測定し、結果を表1に示した。   Using a continuous load type scratch strength tester “Tribogear HEIDON-18” manufactured by Shinto Kagaku Co., Ltd., the coating film is scratched with a conical needle whose tip is processed at 0.3 mmR, and the copper foil is exposed. The load to be measured was measured, and the results are shown in Table 1.

<比較例1>
N−メチルピロリドンを用いる代わりに水を用いたこと以外は実施例1と同様にして、表1に示す粘度のスラリーを調製し、このスラリーを用いて実施例1と同様にして電極膜の製造及び引っ掻き試験を行い、結果を表1に示した。
<Comparative Example 1>
A slurry having the viscosity shown in Table 1 was prepared in the same manner as in Example 1 except that water was used instead of N-methylpyrrolidone, and an electrode film was produced in the same manner as in Example 1 using this slurry. The scratch test was conducted and the results are shown in Table 1.

<比較例2>
カルボキシメチルセルロースを用いずに、その分スチレン・ブタジエンゴム水性ディスパージョンの添加量を固形分換算で2重量部に増量したこと以外は実施例1と同様にして表1に示す粘度のスラリーを調製し、このスラリーを用いて実施例1と同様にして電極膜の製造及び引っ掻き試験を行い、結果を表1に示した。
<Comparative Example 2>
Without using carboxymethylcellulose, a slurry having the viscosity shown in Table 1 was prepared in the same manner as in Example 1 except that the addition amount of the aqueous dispersion of styrene / butadiene rubber was increased to 2 parts by weight in terms of solid content. Using this slurry, production of an electrode film and a scratch test were carried out in the same manner as in Example 1, and the results are shown in Table 1.

Figure 0004715125
Figure 0004715125

表1に示した結果の通り、電極活物質とカルボキシメチルセルロース及び非水溶性結着剤と水から成るスラリーに、高沸点有機化合物であるN−メチルピロリドンを含有させることにより、高速な乾燥を行っても良好な電極膜接着強度を維持できる優れた電極を得ることができる。   As shown in Table 1, high speed drying is performed by adding N-methylpyrrolidone, which is a high boiling point organic compound, to a slurry composed of an electrode active material, carboxymethyl cellulose, a water-insoluble binder, and water. However, an excellent electrode capable of maintaining good electrode film adhesion strength can be obtained.

本発明が適用されるリチウム二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラ、自動車用動力源等を挙げることができる。   The application of the lithium secondary battery to which the present invention is applied is not particularly limited, and can be used for various known applications. Specific examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, and transceivers. Electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, motors, lighting equipment, toys, game machines, watches, strobes, cameras, automobile power sources, and the like.

Claims (4)

黒鉛質粉末を非晶質炭素材料で被覆してなる電極活物質と、結着剤と水とを含有するリチウム二次電池電極用スラリーにおいて、該結着剤としてカルボキシメチルセルロース及び非水溶性結着剤を含み、更に150℃以上の沸点を有する水溶性有機化合物を含有することを特徴とするリチウム二次電池電極用スラリー。 In a lithium secondary battery electrode slurry containing an electrode active material obtained by coating a graphite powder with an amorphous carbon material, a binder and water, carboxymethyl cellulose and a water-insoluble binder as the binder The slurry for lithium secondary battery electrodes characterized by including the water-soluble organic compound which contains an agent and has a boiling point of 150 degreeC or more. 150℃以上の沸点を有する水溶性有機化合物がN−メチルピロリドンであることを特徴とする請求項1に記載のリチウム二次電池電極用スラリー。   2. The slurry for a lithium secondary battery electrode according to claim 1, wherein the water-soluble organic compound having a boiling point of 150 ° C. or higher is N-methylpyrrolidone. 150℃以上の沸点を有する水溶性有機化合物の含有量が、前記電極活物質に対して0.1〜40重量%であることを特徴とする請求項1又は2に記載のリチウム二次電池電極用スラリー。   3. The lithium secondary battery electrode according to claim 1, wherein the content of the water-soluble organic compound having a boiling point of 150 ° C. or higher is 0.1 to 40% by weight with respect to the electrode active material. Slurry. 請求項1ないし3のいずれか1項に記載のリチウム二次電池電極用スラリーを集電体上に塗布した後乾燥する工程を有するリチウム二次電池電極の製造方法において、該乾燥条件として、JIS K 5500で規定される半硬化乾燥状態に到達するまでの水と水溶性有機化合物の蒸発速度を、該集電体の片面1m当たりの平均で100g/分以上として乾燥することを特徴とするリチウム二次電池電極の製造方法。 In the manufacturing method of the lithium secondary battery electrode which has the process of apply | coating the slurry for lithium secondary battery electrodes of any one of Claim 1 thru | or 3 on a collector, and drying, JIS JIS is used as this drying condition. The water and water-soluble organic compound are evaporated at an average rate of 100 g / min or more per 1 m 2 on one side of the current collector until reaching the semi-cured dry state defined by K 5500. A method for producing a lithium secondary battery electrode.
JP2004234407A 2004-08-11 2004-08-11 Slurry for lithium secondary battery electrode and method for producing lithium secondary battery electrode Active JP4715125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234407A JP4715125B2 (en) 2004-08-11 2004-08-11 Slurry for lithium secondary battery electrode and method for producing lithium secondary battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004234407A JP4715125B2 (en) 2004-08-11 2004-08-11 Slurry for lithium secondary battery electrode and method for producing lithium secondary battery electrode

Publications (2)

Publication Number Publication Date
JP2006054096A JP2006054096A (en) 2006-02-23
JP4715125B2 true JP4715125B2 (en) 2011-07-06

Family

ID=36031439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234407A Active JP4715125B2 (en) 2004-08-11 2004-08-11 Slurry for lithium secondary battery electrode and method for producing lithium secondary battery electrode

Country Status (1)

Country Link
JP (1) JP4715125B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396989B2 (en) * 2009-04-22 2014-01-22 トヨタ自動車株式会社 Manufacturing method of paste
JP2011034962A (en) * 2009-07-07 2011-02-17 Nippon Zeon Co Ltd Method for manufacturing electrode of lithium ion secondary battery,and lithium ion secondary battery
JP5286200B2 (en) * 2009-09-01 2013-09-11 日立ビークルエナジー株式会社 Lithium ion secondary battery
WO2011061818A1 (en) * 2009-11-18 2011-05-26 トヨタ自動車株式会社 Manufacturing method of battery electrodes
JP5105206B2 (en) 2009-12-18 2012-12-26 トヨタ自動車株式会社 Drying equipment
KR101464841B1 (en) * 2010-03-30 2014-11-25 가부시끼가이샤 구레하 Mixture for non-aqueous electrolyte secondary battery, electrode for same, and non-aqueous electrolyte secondary battery
CN101841028B (en) * 2010-06-10 2012-07-04 温岭市恒泰电池有限公司 Lithium battery anode slurry for starting power supply of motorcycle and car starting power supply and lithium battery
JP5530851B2 (en) * 2010-07-30 2014-06-25 古河電池株式会社 Method for producing electrode of lithium ion secondary battery and method for producing lithium ion secondary battery
JP2013016353A (en) * 2011-07-04 2013-01-24 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
CN104115311A (en) * 2012-02-02 2014-10-22 东洋油墨Sc控股株式会社 Composition for forming secondary cell electrode, secondary cell electrode, and secondary cell
KR101495761B1 (en) 2012-03-30 2015-02-25 주식회사 엘지화학 Method for manufacturing a electrode assembly for lithium secondary battery, method for manufacturing a lithium secondary battery and secondary battery applying the same
JP5259875B1 (en) * 2012-07-19 2013-08-07 日本碍子株式会社 Battery electrode coating film drying method and drying furnace
JP6052083B2 (en) 2013-07-12 2016-12-27 トヨタ自動車株式会社 Drying apparatus, drying method, and battery manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293498A (en) * 1996-04-26 1997-11-11 Sanyo Electric Co Ltd Negative electrode for lithium ion battery and manufacture thereof
JPH10275616A (en) * 1997-03-28 1998-10-13 Sony Corp Manufacture of nonaqueous electrolyte battery
JP2000149937A (en) * 1998-09-08 2000-05-30 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, and its manufacture
JP2001345100A (en) * 2000-05-31 2001-12-14 Hitachi Chem Co Ltd Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP2003142082A (en) * 2001-11-02 2003-05-16 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for battery and lithium battery
JP2003272627A (en) * 2002-03-18 2003-09-26 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery and negative electrode sheet manufactured from it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293498A (en) * 1996-04-26 1997-11-11 Sanyo Electric Co Ltd Negative electrode for lithium ion battery and manufacture thereof
JPH10275616A (en) * 1997-03-28 1998-10-13 Sony Corp Manufacture of nonaqueous electrolyte battery
JP2000149937A (en) * 1998-09-08 2000-05-30 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, and its manufacture
JP2001345100A (en) * 2000-05-31 2001-12-14 Hitachi Chem Co Ltd Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP2003142082A (en) * 2001-11-02 2003-05-16 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for battery and lithium battery
JP2003272627A (en) * 2002-03-18 2003-09-26 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery and negative electrode sheet manufactured from it

Also Published As

Publication number Publication date
JP2006054096A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
KR101970023B1 (en) Carbon material for non-aqueous secondary battery, anode using said carbon material, and non-aqueous secondary battery
CN101016153B (en) Carbon material, production method and use thereof
KR101291631B1 (en) Composite graphite particles and lithium rechargeable battery using the same
JP4802595B2 (en) Carbon powder suitable for negative electrode materials for non-aqueous secondary batteries
JP4967268B2 (en) Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same
JP4715125B2 (en) Slurry for lithium secondary battery electrode and method for producing lithium secondary battery electrode
JPWO2006109497A1 (en) Method for producing mesocarbon microbeads
WO2012133788A1 (en) Graphite particles for nonaqueous secondary battery and method for producing same, negative electrode and nonaqueous secondary battery
WO2007000982A1 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
WO2002071515A1 (en) Graphite material for negative pole of lithium secondary battery, method of manufacturing the graphite material, and lithium secondary battery
US20110256449A1 (en) Organic coated fine particle powders
TWI354392B (en)
CN108649197A (en) Nitrogen-doped carbon-silicon composite material and manufacturing method thereof
EP3690991A2 (en) Negative electrode slurry composition for lithium secondary battery, and method for manufacturing same
JP6472660B2 (en) Method for producing slurry for negative electrode of lithium ion secondary battery
JP2014130844A (en) Method for manufacturing electrode of lithium ion secondary battery and lithium ion secondary battery
TW201225396A (en) Graphite based negative-electrode active material for lithium secondary cell
JP2014060176A (en) Lithium secondary battery and negative electrode
JP2012216520A (en) Method for producing composite graphite particle for nonaqueous secondary battery and composite graphite particle produced by the method, negative electrode and nonaqueous secondary battery
WO2016136524A1 (en) Carbon material, method for manufacturing same, and use thereof
JP6362006B2 (en) Porous silicon oxycarbide ceramics, method for producing the same, porous silicon oxycarbide composite material, and nonaqueous electrolyte secondary battery
JP2004196609A (en) Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
KR101591712B1 (en) Binders in anode materials of lithium secondary battery
JP2948097B2 (en) Graphite material for secondary battery electrode and method for producing the same
JP3878383B2 (en) Manufacturing method of negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Ref document number: 4715125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350