JP2000090926A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2000090926A
JP2000090926A JP10257899A JP25789998A JP2000090926A JP 2000090926 A JP2000090926 A JP 2000090926A JP 10257899 A JP10257899 A JP 10257899A JP 25789998 A JP25789998 A JP 25789998A JP 2000090926 A JP2000090926 A JP 2000090926A
Authority
JP
Japan
Prior art keywords
substance
graphite
metal
secondary battery
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10257899A
Other languages
Japanese (ja)
Inventor
Hideji Sato
秀治 佐藤
Susumu Fuse
享 布施
Masaji Ishihara
正司 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10257899A priority Critical patent/JP2000090926A/en
Publication of JP2000090926A publication Critical patent/JP2000090926A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery with high charge/discharge capacity and lower cycle deterioration than a battery using the conventional carbonaceous material/metal composite material. SOLUTION: A nonaqueous system secondary battery consists of a positive electrode, a negative electrode, an electrolyte prepared by dissolving an electrolyte salt in a nonaqueous solvent, and a positive active material or a negative active material consists of a metallic material (a), a carbonaceous material (b), and a graphite material (c), the metallic material (a) is obtained by heat treating a compound converted into a material capable of electrochemically storing/releasing lithium after heat treatment, the carbonaceous material (b) has a peak intensity ratio R(=IB/IA) of 0.4 or more when the peak intensity appearing in the range of 1580-1620 cm-1 is represented by IA and the peak intensity appearing in the range of 1350-1370 cm-1 is represented by IB in Raman spectrum using argon ion beams having a wavelength of 5143 Å, and the graphite material (c) has a peak intensity ratio mentioned above of less than 0.4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、小型、軽量の電気
機器や電気自動車の電源として好適な、非水系二次電
池、特にリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, particularly a lithium secondary battery, which is suitable as a power source for small and lightweight electric devices and electric vehicles.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い、高容量
の二次電池が求められている。そのためニッケル・カド
ミウム電池、ニッケル・水素電池に比べ、よりエネルギ
ー密度の高い非水系リチウム二次電池が注目されてい
る。
2. Description of the Related Art In recent years, as electronic devices have become smaller, high-capacity secondary batteries have been demanded. For this reason, non-aqueous lithium secondary batteries having higher energy density than nickel-cadmium batteries and nickel-metal hydride batteries have attracted attention.

【0003】負極材料として、最初リチウム金属を用い
ることが試みられたが、充放電を繰り返すうちにデンド
ライト状のリチウムが析出し、セパレータを貫通して正
極にまで達し、短絡して発火事故を起こす可能性がある
ことが判明した。
Attempts were initially made to use lithium metal as the negative electrode material. However, during repeated charging and discharging, lithium in the form of dendrite was deposited, penetrated the separator, reached the positive electrode, and short-circuited, causing an ignition accident. It turned out to be possible.

【0004】また、特開昭57−208079には、リ
チウムを負極活物質とし、電極板として結晶化度が高い
黒鉛を使用することが提案された。しかしながら、黒鉛
は充放電の原理にリチウムイオンの黒鉛結晶中へのイン
ターカレーションを利用するため、常温、常圧下では、
最大リチウム導入化合物のLiC6から算出される黒鉛
の理論容量である372mAh/gを超える放電容量が得ら
れないとい問題があった。しかも、黒鉛材料の電解液と
の濡れ性の低さは、充放電初期のリチウム脱ドープ容量
が、本来黒鉛材料が発現できるはずの350mAh/g以上
の容量よりも低くなるという問題があった。
Japanese Patent Application Laid-Open No. 57-208079 has proposed that lithium be used as a negative electrode active material and graphite having a high crystallinity be used as an electrode plate. However, graphite uses intercalation of lithium ions into graphite crystals for the principle of charge and discharge.
There has been a problem that a discharge capacity exceeding 372 mAh / g, which is the theoretical capacity of graphite calculated from LiC 6 as the maximum lithium-introducing compound, cannot be obtained. In addition, the low wettability of the graphite material with the electrolytic solution has a problem that the lithium undoping capacity in the initial stage of charge and discharge is lower than the capacity of 350 mAh / g or more, at which the graphite material can be originally expressed.

【0005】そこで、黒鉛性炭素質物の表面を炭素化可
能な有機物で被覆、焼成した炭素質物を用いることが知
られているが、この材料は充放電時の電位が黒鉛のそれ
と同様リチウム金属の酸化還元電位に近く、しかも黒鉛
性炭素質物より高容量が得られるという利点があるが、
やはり黒鉛の理論容量である372mAh/gを超える容量
は得られていない。
[0005] Therefore, it is known to use a carbonaceous material obtained by coating the surface of a graphitic carbonaceous material with an organic material capable of being carbonized and calcining the material. It has the advantage of being close to the oxidation-reduction potential and of obtaining a higher capacity than the graphitic carbonaceous material,
A capacity exceeding 372 mAh / g, which is also the theoretical capacity of graphite, has not been obtained.

【0006】更に、高容量を発現できる負極材料とし
て、Al、Siなどリチウムのドープ、脱ドープが可能
な金属を用いることが知られているが、この材料は電極
表面での電解液の分解や、充放電サイクルに対する容量
の低下に問題がある。
Further, as a negative electrode material capable of exhibiting a high capacity, it is known to use a metal such as Al or Si, which can be doped with and dedoped with lithium. In addition, there is a problem in that the capacity with respect to the charge / discharge cycle decreases.

【0007】これらの問題を解決するために、特開平1
−298645、特開平1−255165などには、炭
素質物で金属粉末を被覆した負極材料を用いたイチウム
二次電池が開示されている。炭素質物で金属を被覆する
ことにより、充放電に伴う金属部分の構造的劣化を抑制
できる作用があるものと考えられる。また、特開平5−
286763には、結晶性の異なる二種類の炭素質物と
金属からなる電極材料が開示されており、一種類の炭素
質物と金属をもう一種類の炭素質物で被覆した材料の概
念が提示されている。また、特開平10−3920に
は、炭素質物に混合する金属粒子の粒径を500nm以下
とすることが開示されている。炭素質物中の金属粒子の
粒径を小さくすることで、充放電時に生じる金属部分の
大きな体積変化が抑制され、サイクル効率の向上に寄与
することが考えられる。更に特開平8−241715に
は、金属酸化物などを、炭素化又は黒鉛化可能な有機物
を非酸化雰囲気中で焼成した炭素質物/金属酸化物複合
負極材料が開示されているが、このときの焼成後の炭素
質物に対する金属酸化物の割合は、40重量%以下に限
られており、具体的に製造されたものは約20重量%以
下のものである。
To solve these problems, Japanese Patent Laid-Open No.
JP-298645, JP-A-1-255165 and the like disclose an iridium secondary battery using a negative electrode material coated with a metal powder with a carbonaceous material. It is considered that coating the metal with the carbonaceous material has an effect of suppressing structural deterioration of the metal part due to charge and discharge. Further, Japanese Unexamined Patent Publication No.
No. 286763 discloses an electrode material composed of two types of carbonaceous materials and metals having different crystallinities, and presents a concept of a material in which one type of carbonaceous material and a metal are coated with another type of carbonaceous material. . Japanese Patent Application Laid-Open No. 10-3920 discloses that the particle size of metal particles mixed with a carbonaceous material is 500 nm or less. By reducing the particle size of the metal particles in the carbonaceous material, it is conceivable that a large change in the volume of the metal portion at the time of charge and discharge is suppressed, which contributes to an improvement in cycle efficiency. Further, Japanese Patent Application Laid-Open No. 8-241715 discloses a carbonaceous material / metal oxide composite anode material in which an organic material capable of being carbonized or graphitized is fired in a non-oxidizing atmosphere. The ratio of the metal oxide to the carbonaceous material after firing is limited to 40% by weight or less, and specifically manufactured is about 20% by weight or less.

【0008】更に、特開平9−213335には、無定
型領域を持つ炭素質物と黒鉛構造領域を有す炭素質物中
に、Mg、Al、Si、Ca又はSnを含有させた、負
極を持つリチウム二次電池が提案されているが、金属質
物の前駆体として、金属カーバイド、炭酸塩、蓚酸塩を
用いている。金属カーバイドの中には高温でないと還元
されにくい物が多く、また電極活物質中に残留すると容
量の低下を引き起こす場合がある。また、炭酸塩、蓚酸
塩はマトリックスとなる炭素質物前駆体の炭素化が行わ
れる以前に、低温で分解、金属に還元される物が多く、
還元後金属同士が凝集、会合し大きな金属粒子に成長す
る場合がある。
Further, Japanese Patent Application Laid-Open No. 9-213335 discloses a lithium having a negative electrode containing Mg, Al, Si, Ca or Sn in a carbonaceous material having an amorphous region and a carbonaceous material having a graphite structure region. Although a secondary battery has been proposed, metal carbide, carbonate, and oxalate are used as precursors of a metal material. Many of the metal carbides are hardly reduced unless the temperature is high, and if they remain in the electrode active material, the capacity may be reduced. In addition, carbonates and oxalates are often decomposed at low temperatures and reduced to metals before carbonization of the carbonaceous precursor serving as a matrix.
After reduction, the metals may aggregate and associate with each other and grow into large metal particles.

【0009】[0009]

【発明が解決しようとしている課題】本発明の目的は、
リチウムの充放電を行った場合に、従来の黒鉛系電極材
料よりも高容量を発現でき、かつ負極活物質全重量中の
金属質物の含有率が大きいにも関わらず、従来の炭素質
物/金属質物複合負極材料よりサイクル劣化が小さく、
かつ高容量を発揮できる負極を備えた二次電池用を提供
することにある。
SUMMARY OF THE INVENTION The object of the present invention is to
When lithium is charged and discharged, a higher capacity than the conventional graphite-based electrode material can be achieved, and the content of the metal substance in the total weight of the negative electrode active material is large. Cycle deterioration is smaller than
Another object of the present invention is to provide a secondary battery having a negative electrode capable of exhibiting a high capacity.

【0010】[0010]

【課題を解決するための手段】本発明は、正極、負極及
び非水系溶媒中に電解質を溶解した電解液からなる非水
系二次電池であって、正極又は負極活物質、特に負極活
物質が、金属質物a、炭素質物b及び黒鉛質物cからな
り、金属質物aが、熱処理後には電気化学的にリチウム
イオンを吸蔵及び放出することができるようになる化合
物を熱処理してできたものであり、炭素質物bは、波長
5,143Åのアルゴンイオンレーザー光を用いたラマ
ンスペクトルにおいて、1,580〜1,620cm- 1
範囲に現れるピークの強度をIA、1,350〜1,3
70cm- 1の範囲に現れるピークの強度をIBとした時の
ピーク強度比R(=IB/IA)が0.4以上であり、
黒鉛質物cは、前述のピーク強度比Rが0.4未満であ
る、非水系二次電池である。
The present invention relates to a non-aqueous secondary battery comprising a positive electrode, a negative electrode and an electrolytic solution obtained by dissolving an electrolyte in a non-aqueous solvent. And a metal material a, a carbon material b and a graphite material c. The metal material a is obtained by heat-treating a compound capable of electrochemically absorbing and releasing lithium ions after heat treatment. , carbonaceous material b, in Raman spectrum using argon ion laser beam having a wavelength of 5,143Å, 1,580~1,620cm - the intensity of the peak appearing in the first range IA, 1,350~1,3
70cm - peak intensity ratio when the intensity of the peak was IB appearing in the first range R (= IB / IA) is not less than 0.4,
Graphite material c is a non-aqueous secondary battery in which the peak intensity ratio R is less than 0.4.

【0011】[0011]

【発明の実施の形態】次に本発明の詳細を述べる。 「金属質物a」本発明に用いうる金属質物aは、熱処理
後には電気化学的にリチウムイオンを吸蔵及び放出する
ことができるようになる化合物、元素周期表Ia族、II
a族、チタン、バナジウム、タンタル、VIa族、マンガ
ン、VIII族、Ib族、IIb族、IIIb族、IVb族、ヒ
素、アンチモン及びビスマスから選ばれる元素の酸化
物、硫化物、窒化物、セレン化物、テルル化物、硝酸
塩、硫酸塩、該化合物を主成分とする複合化合物、ある
いはこれら化合物の混合物を熱処理して生成したもので
あり、該化合物の二次粒子の平均粒径が10μm以下
か、又は一次粒子の平均粒径が500nm以下のものを選
択する。
Next, the details of the present invention will be described. "Metallic substance a" Metallic substance a which can be used in the present invention is a compound capable of electrochemically absorbing and releasing lithium ions after heat treatment, group Ia of the periodic table of elements, II
oxides, sulfides, nitrides, selenides of elements selected from the group a, titanium, vanadium, tantalum, group VIa, manganese, group VIII, group Ib, group IIb, group IIIb, group IVb, arsenic, antimony and bismuth , Telluride, nitrate, sulfate, a composite compound containing the compound as a main component, or a mixture of these compounds is formed by heat treatment, and the secondary particles of the compound have an average particle size of 10 μm or less, or A primary particle having an average particle diameter of 500 nm or less is selected.

【0012】上記化合物としては、上記の要件を満たす
限り限定なく用いることができるが、具体的には、Ag
2O、Al23、Bi23、CdO、CrO2、Cr
23、Cu2O、Fe23、In23、IrO2、Mg
O、MnO2、Mn23、OsO2、OsO4、PbO、
Pb34、PbO2、PdO、PtO、RuO2、Sn
O、SnO2,SiO、SiO2、TaO2、TiO、T
23、TiO2、V23、V24、V25、VO2、V
23、WO、WO2、WO3、ZnO等の金属酸化物;B
23、CdS、In23、PbS、PtS、SnS、
SnS2、TaS2、TiS2、V23、V22、WS2
ZnS等の金属硫化物;Bi2Te3、SnTe、SnT
2、WTe2、ZnTe等の金属テルル化物;Si
34、TaSi2、TiSi2、V3Si、V2Si、WS
2等の金属ケイ化物;AlN、TaN、W2N、WN等
の金属窒化物;これら前述の金属化合物から選択される
ものの複合金属化合物;又はこれらとアルカリ金属の複
合酸化物;アルカリ土類金属との複合酸化物;前述のい
ずれかの金属化合物同士の複合金属化合物;更には、こ
れらのものから選択された化合物の混合物である。
The above compound can be used without limitation as long as the above requirements are satisfied.
2 O, Al 2 O 3 , Bi 2 O 3 , CdO, CrO 2 , Cr
2 O 3 , Cu 2 O, Fe 2 O 3 , In 2 O 3 , IrO 2 , Mg
O, MnO 2 , Mn 2 O 3 , OsO 2 , OsO 4 , PbO,
Pb 3 O 4 , PbO 2 , PdO, PtO, RuO 2 , Sn
O, SnO 2 , SiO, SiO 2 , TaO 2 , TiO, T
i 2 O 3, TiO 2, V 2 O 3, V 2 O 4, V 2 O 5, VO 2, V
Metal oxides such as 2 O 3 , WO, WO 2 , WO 3 , ZnO; B
i 2 S 3 , CdS, In 2 S 3 , PbS, PtS, SnS,
SnS 2 , TaS 2 , TiS 2 , V 2 S 3 , V 2 S 2 , WS 2 ,
Metal sulfides such as ZnS; Bi 2 Te 3 , SnTe, SnT
metal telluride such as e 2 , WTe 2 , ZnTe; Si
3 N 4, TaSi 2, TiSi 2, V 3 Si, V 2 Si, WS
metal silicides i 2 such; AlN, TaN, W 2 N , metal nitrides such as WN; complex metal compounds of those selected from the aforementioned metal compound; or a composite oxide thereof and an alkali metal; an alkaline earth A composite oxide with a metal; a composite metal compound of any of the aforementioned metal compounds; and a mixture of compounds selected from these.

【0013】該化合物粒子の二次粒子の平均粒径が10
〜0.01μm、好ましくは7〜0.05μm、更に好ま
しくは5〜0.1μmか、又は一次粒子の平均粒径が5
00〜1nm、好ましくは400〜1nm、更に好ましくは
400〜3nmのものを用いることができる。平均粒径が
該範囲より大きいと、(1)熱処理後においても完全に
金属質物まで還元されにくい、(2)粒径が大きい物を
全量還元できるような温度まで熱処理温度を引き上げる
か、あるいは熱処理時間を長くする等の工程を行うと絶
縁性の炭素化物が多量に形成され、負極容量の低下につ
ながる、(3)炭素質物前駆体と混合する場合には、不
均一な混合形態となるおそれある、等の問題が生じる可
能性がある。また、前述した化合物の代わりに、金属そ
のものを炭素質物前駆体と混合し、熱処理すると、金属
の融点が、炭素質物前駆体の炭素化が始まる温度以下に
有る物質が多いため、金属同士の融着がおこり、熱処理
後には炭素質物と分離したり、たとえ炭素質物中に取り
込まれても大きく粒成長してしまい、負極としたときサ
イクルの維持率が悪くなる。
The average particle size of the secondary particles of the compound particles is 10
To 0.01 μm, preferably 7 to 0.05 μm, more preferably 5 to 0.1 μm, or an average primary particle size of 5 to 5 μm.
Those having a thickness of 00 to 1 nm, preferably 400 to 1 nm, more preferably 400 to 3 nm can be used. If the average particle size is larger than the above range, (1) it is difficult to completely reduce to a metallic substance even after the heat treatment, and (2) the heat treatment temperature is raised to a temperature at which all the substances having a large particle diameter can be reduced, or If a process such as prolonging the time is performed, a large amount of insulative carbonized material is formed, which leads to a decrease in negative electrode capacity. (3) When mixed with a carbonaceous material precursor, a non-uniform mixing form may be caused. Yes, etc. When the metal itself is mixed with the carbonaceous precursor in place of the above-described compound and heat-treated, the melting point of the metal is often lower than the temperature at which carbonization of the carbonaceous precursor starts. After heat treatment, the particles are separated from the carbonaceous material after the heat treatment, or even if they are taken into the carbonaceous material, they undergo large grain growth.

【0014】該化合物粒子の平均粒径が上記範囲より大
きいと、熱処理後においても完全に金属質物まで還元さ
れにくい、あるいは粒径が大きい物を全量還元できるよ
うな温度まで熱処理温度を引き上げる、あるいは熱処理
時間を長くする等の工程を行うと、絶縁性の炭素質物が
多量に形成され、負極容量の低下につながる等の問題が
生じてくる化合物もある。また、前述したような化合物
の代わりに金属そのものを炭素質物前駆体と混合し熱処
理すると、金属の融点が炭素化が始まる温度以下にある
ことが多いため、金属同士の融着がおこり、熱処理後に
炭素質物と分離したり、たとえ炭素質物中に取り込まれ
ても大きく粒成長してしまい、負極としたときサイクル
の維持率が悪くなる。
When the average particle size of the compound particles is larger than the above range, the heat treatment temperature is raised to a temperature at which it is difficult to completely reduce to a metallic substance even after the heat treatment, or to reduce the total amount of the substance having a large particle size, or When a process such as prolonging the heat treatment time is performed, a large amount of an insulating carbonaceous material is formed, and some compounds may cause a problem such as a reduction in negative electrode capacity. In addition, when the metal itself is mixed with the carbonaceous precursor in place of the compound as described above and heat-treated, the melting point of the metal is often lower than the temperature at which carbonization starts, so that fusion between the metals occurs, and after the heat treatment. Even if it is separated from the carbonaceous material, or even if it is taken into the carbonaceous material, the grains will grow large, and the cycle retention will be poor when used as a negative electrode.

【0015】本発明に使用される該化合物粒子は、例え
ばシリカの一次粒子の平均粒径が10nmの超微粒子、ア
ルミナシリカの超微粒子、酸化錫又は酸化錫と酸化アン
チモンの複合金属酸化物の一次粒子の平均粒径5nmの超
微粒子が特に好ましい。また、これらの粒子を溶媒に分
散させたゲル、酸化錫の表面を有機物で被覆した一次粒
子の平均粒径10nmの酸化錫ゾル、これを溶媒に分散さ
せたゲル等は特に好ましい。
The compound particles used in the present invention include, for example, ultrafine particles having an average primary particle diameter of 10 nm of silica, ultrafine particles of alumina silica, primary oxide of tin oxide or a composite metal oxide of tin oxide and antimony oxide. Ultrafine particles having an average particle diameter of 5 nm are particularly preferred. In addition, a gel in which these particles are dispersed in a solvent, a tin oxide sol having an average particle diameter of primary particles of 10 nm in which the surface of tin oxide is coated with an organic substance, and a gel in which these are dispersed in a solvent are particularly preferable.

【0016】特に上記の化合物から異なる金属種を含む
二種類以上の化合物を選択し、加熱処理後使用すること
で、負極活物質内で共融金属あるいは金属間化合物を作
らせることも可能である。適当な金属種を選択すると、
単一種の金属化合物を用いた場合よりも、充放電サイク
ルに伴う容量の維持や高容量の発現に対し好ましい影響
を生じさせることができる。化合物の組み合わせについ
ては、従来公知の組み合わせが可能であるが、該化合物
の熱処理後の態様を、例えばBinary alloy phase diagr
ams, Ternary alloy phase diagramsに掲載されている
ような合金種を参考に選択することができる。具体的に
は錫、シリコン、アルミニウム、亜鉛、鉛、マグネシウ
ム、カルシウム、ストロンチウム、金、銀、銅、ニッケ
ル、白金、アンチモン及びヒ素を含む金属化合物から二
種類以上の組み合わせとして用いることが好ましく、熱
処理後、錫アンチモン、錫銅、錫ニッケル、錫シリコ
ン、錫カルシウム、錫ストロンチウム、アルミニウムシ
リコン等となるような組み合わせは特に好ましい。
In particular, by selecting two or more compounds containing different metal species from the above compounds and using them after heat treatment, it is possible to form a eutectic metal or an intermetallic compound in the negative electrode active material. . When you select the appropriate metal species,
As compared with the case where a single type of metal compound is used, a more favorable effect can be produced on the maintenance of the capacity and the development of a high capacity during the charge / discharge cycle. As for the combination of the compounds, conventionally known combinations are possible, and the embodiment of the compound after the heat treatment is, for example, Binary alloy phase diagr.
ams, Ternary alloy phase diagrams. Specifically, tin, silicon, aluminum, zinc, lead, magnesium, calcium, strontium, gold, silver, copper, nickel, platinum, preferably used as a combination of two or more metal compounds including antimony and arsenic, Thereafter, a combination that becomes tin antimony, tin copper, tin nickel, tin silicon, tin calcium, tin strontium, aluminum silicon, or the like is particularly preferable.

【0017】「炭素質物bの前駆体」本発明で述べる
「炭素質物bの前駆体」とは、熱処理された後は、リチ
ウムイオンを吸蔵及び放出可能な性質を有する有機物で
ある。
"Precursor of carbonaceous substance b" The "precursor of carbonaceous substance b" described in the present invention is an organic substance having the property of absorbing and releasing lithium ions after heat treatment.

【0018】具体的には、炭素化可能な有機物として
は、液相で炭素化が進行する軟ピッチから硬ピッチまで
のコールタールピッチや、乾留液化油などの石炭系重質
油や、常圧残油、減圧残油等の直流系重質油、原油、ナ
フサなどの熱分解時に副生するエチレンタール等分解系
重質油等の石油系重質油、あるいは以上のものを炭素化
が進む以下の温度で蒸留、溶媒抽出等の手段を経て固化
したもの;更にアセナフチレン、デカシクレン、アント
ラセンなどの芳香族炭化水素;フェナジンやアクリジン
などの窒素含有環状化合物;チオフェンなどの硫黄含有
環状化合物;30MPa以上の加圧が必要となるがアダマ
ンタンなどの脂環が挙げられる。炭素化可能な熱可塑性
高分子としては、炭素化に至る過程で液相を経るビフェ
ニルやテルフェニルなどのポリフェニレン;ポリ塩化ビ
ニル、ポリ酢酸ビニル、ポリビニルブチラールなどのポ
リビニルエステル類;ポリビニルアルコール等が挙げら
れる。また、以上に列挙した有機物や高分子に適量のリ
ン酸、ホウ酸、塩酸等の酸類、水酸化ナトリウム等のア
ルカリ類を添加したものでもよい。更にこれらのものを
100〜600℃、好ましくは200〜400℃で、酸
素、硫黄、窒素及び/又はホウ素から選ばれる元素によ
り、適度に架橋処理したものでもよい。適度な架橋構造
を炭素質物又は炭素質物前駆体中に形成することによ
り、後述する金属質物を安定に系内に保持することがで
き、更に熱処理中に起こる金属質物の凝集を妨げる効果
も生じる。
Specifically, examples of the organic substance that can be carbonized include coal tar pitches from soft pitch to hard pitch in which carbonization proceeds in the liquid phase, heavy coal-based oils such as liquefied liquefied oil, and normal pressure. Carbonization of direct current heavy oil such as residual oil and vacuum residue, petroleum heavy oil such as cracked heavy oil such as ethylene tar by-produced during thermal cracking of crude oil and naphtha, etc. Solidified through means such as distillation and solvent extraction at the following temperatures; aromatic hydrocarbons such as acenaphthylene, decacyclene, and anthracene; nitrogen-containing cyclic compounds such as phenazine and acridine; sulfur-containing cyclic compounds such as thiophene; However, alicyclic rings such as adamantane can be used. Examples of the thermoplastic polymer that can be carbonized include polyphenylene such as biphenyl and terphenyl which undergoes a liquid phase in the process of carbonization; polyvinyl esters such as polyvinyl chloride, polyvinyl acetate, and polyvinyl butyral; and polyvinyl alcohol. Can be Further, the above-listed organic substances and polymers may be obtained by adding an appropriate amount of acids such as phosphoric acid, boric acid and hydrochloric acid, and alkalis such as sodium hydroxide. Further, these may be appropriately crosslinked at 100 to 600 ° C, preferably 200 to 400 ° C, with an element selected from oxygen, sulfur, nitrogen and / or boron. By forming an appropriate crosslinked structure in the carbonaceous material or the carbonaceous material precursor, a metal material described later can be stably held in the system, and an effect of preventing aggregation of the metal material that occurs during the heat treatment also occurs.

【0019】これらの炭素質物の前駆体を熱処理した後
の炭素質物bの性質は、学振法によって規定されたX線
広角回折法による(002)面の面間隔(d0 0 2)が
3.38Å以上、及びc軸方向の結晶子の大きさ(L
c)が100Å以下であるものを選択するとよい。
The properties of the carbonaceous material b after heat treatment of these carbonaceous material precursors are such that the (002) plane spacing (d 0 0 2 ) determined by the X-ray wide-angle diffraction method specified by the Gakushin method is 3. .38 ° or more and the crystallite size (L
It is preferable to select one in which c) is 100 ° or less.

【0020】これらの炭素質物の前駆体を熱処理した後
の炭素質物bの性質としては、波長5,143Åのアル
ゴンイオンレーザー光を用いたラマンスペクトルにおい
て、1,580〜1,620cm- 1の範囲に現れるピーク
の強度をIA、1,350〜1,370cm- 1の範囲に現
れるピークの強度をIBとした時のピーク強度比R(=
IB/IA)が0.4〜2、好ましくは0.6〜1.
5、更に好ましくは0.8〜1.2を示すものを選択す
る。
[0020] As the nature of the carbonaceous material b after heat treatment of the precursors of these carbonaceous materials, in the Raman spectrum using argon ion laser beam having a wavelength of 5,143Å, 1,580~1,620cm - 1 range appearing the intensity of peak IA, 1,350~1,370cm - 1 peak intensity ratio when the intensity of the peak was IB, which appears in the range R (=
IB / IA) is 0.4-2, preferably 0.6-1.
5, and more preferably those exhibiting 0.8 to 1.2 are selected.

【0021】「黒鉛質物c」黒鉛質物cである限り、限
定なく用いることが可能であるが、炭素質物の前駆体を
2,000℃以上の高熱で熱処理して得られた黒鉛質物
c、天然黒鉛、人造黒鉛、膨張黒鉛、キッシュ黒鉛、こ
れらの高純度精製品、加熱処理品、薬液酸化品、気相酸
化品、これら黒鉛質物cを1,800℃〜3,200℃
程度の高熱で再加熱処理したもの、黒鉛の周りを炭素質
物で覆った構造を持つ多相黒鉛品、あるいはこれらのも
のの混合物が好ましい。これらの黒鉛質物cの内、その
平均粒径が1〜25μmのものは、初期サイクルでの効
率及び充放電サイクルの維持に良好に寄与するので好ま
しい。特に該粒子径が2〜20μmのものは好ましく、
2〜15μmのものは更に好ましい。黒鉛質物はリチウ
ムを充放電することにより負極容量の増加に寄与する
が、前述した黒鉛質物cの粒子径がこれ以上小さいと、
黒鉛質物cの比表面積が増大し、初回の不可逆容量の増
加につながり、また、粉砕歪みから生じると思われる容
量減少が生じる。粒子径がこれ以上であると長期の充放
電サイクルの維持に対し、効果が小さくなる。
"Graphic substance c" As long as it is a graphite substance c, it can be used without limitation. Graphite substance c obtained by heat-treating a precursor of a carbonaceous substance at a high heat of 2,000 ° C. or more, natural Graphite, artificial graphite, expanded graphite, quiche graphite, these high-purity purified products, heat-treated products, chemical liquid oxidized products, gas phase oxidized products, and these graphitic substances c at 1,800 ° C. to 3,200 ° C.
Preferred is a material reheated at a high heat level, a multi-phase graphite product having a structure in which graphite is covered with a carbonaceous material, or a mixture thereof. Among these graphite materials c, those having an average particle size of 1 to 25 μm are preferable because they contribute to the efficiency in the initial cycle and the maintenance of the charge / discharge cycle. In particular, those having a particle size of 2 to 20 μm are preferable,
Those having a thickness of 2 to 15 μm are more preferred. The graphite material contributes to an increase in negative electrode capacity by charging and discharging lithium, but if the particle size of the graphite material c is smaller than this,
The specific surface area of the graphitic material c increases, leading to an increase in the irreversible capacity for the first time, and a reduction in capacity that is considered to result from crushing distortion occurs. If the particle diameter is more than this, the effect of maintaining a long charge / discharge cycle is reduced.

【0022】また、波長5,143Åのアルゴンイオン
レーザー光を用いたラマンスペクトルにおいて、1,5
80〜1,620cm- 1の範囲に現れるピークの強度をI
A、1,350〜1,370cm- 1の範囲に現れるピーク
の強度をIBとしたときのピーク強度比R(=IB/I
A)が0.4〜0.001、好ましくは0.25〜0.
01、更に好ましくは、0.21〜0.03である黒鉛
質物が使用される。
In a Raman spectrum using an argon ion laser beam having a wavelength of 5,143 °, 1,5
80~1,620Cm - the intensity of the peak appearing in the first range I
A, 1,350~1,370cm - 1 ranging peak intensity when the intensity of the peak was IB appearing in ratio R (= IB / I
A) is from 0.4 to 0.001, preferably from 0.25 to 0.
01, and more preferably, a graphitic material having a ratio of 0.21 to 0.03.

【0023】また黒鉛質物cは波長5,143Åのアル
ゴンイオンレーザー光を用いたラマンスペクトルにおい
て、1,580〜1,620cm- 1の範囲に現れるピーク
の半値幅であるΔνが14〜27cm- 1、好ましくは17
〜25cm- 1、更に好ましくは18〜23cm- 1であるもの
が使用される。
[0023] In the Raman spectrum using argon ion laser light of the graphite pledge c is the wavelength 5,143Å, 1,580~1,620cm - a half width of the peak appearing in the 1 range Δν is 14~27Cm - 1 , Preferably 17
~25cm - 1, more preferably 18~23Cm - used is what is 1.

【0024】前記金属質物aの原料化合物と炭素質物b
の前駆体である有機化合物、及び黒鉛質物cの混合方法
としては、従来の方法を限定なく用いることが可能であ
るが、具体的な方法としては、例えば、金属質物aの原
料化合物、炭素質物bの前駆体を混合し、熱処理した物
に、黒鉛質物cの粉体を添加してもよいし、金属質物a
の原料化合物と黒鉛質物cを十分に混合し、最後に炭素
質物bの前駆体を添加してから、熱処理を行ってもよ
い。更には、最初から上述した三成分すべてを一度に混
合し、熱処理してもよい。これら混合過程では、手作業
や、撹拌子とスターラー等を用いた単純な混合では、原
材料を十分均質に混ぜることが難しい場合が生じるが、
それぞれの原材料の状態(固体、液体も含め)に合わ
せ、マイクロスR分散機、アキシャルミキサー、ホモジ
ェナイザー、ホモディスパーザー、ペイントシェーカ
ー、加熱式二軸混練機、加熱式ブレードニーダー、メカ
ノヒュージョン、ボールミル、ジェットミル、ハイブリ
ダイゼーションマシン、あるいはVブレンダー等を用い
ると、原材料を均質に混合することが可能となるので好
ましい。これらの混合方法は適宜組み合わせて用いても
よい。これらの混合方法には、混合と同時に解砕や粉砕
を行えるものもあり、それらを用いた場合には、混合前
の金属質物aの原料化合物の一次又は二次粒子の平均粒
径、あるいは黒鉛質物cの平均粒径が上記の範囲外にあ
っても、混合、解砕、あるいは粉砕が行われることで、
最終的に上記の平均粒径の範囲内に収まればよい。
The raw material compound of the metal substance a and the carbon substance b
As a method for mixing the organic compound which is a precursor of and the graphite material c, a conventional method can be used without limitation. Specific methods include, for example, a raw material compound for the metal material a, and a carbonaceous material. The precursor of graphite b may be added to the mixture obtained by mixing and heat-treating the precursor of b.
After sufficiently mixing the raw material compound and the graphite substance c, and finally adding the precursor of the carbonaceous substance b, heat treatment may be performed. Further, all of the above-mentioned three components may be mixed at once and heat-treated from the beginning. In these mixing processes, there are cases where it is difficult to mix the raw materials sufficiently homogeneously with manual mixing or simple mixing using a stirrer and stirrer.
According to the state of each raw material (including solid and liquid), Micros® R disperser, axial mixer, homogenizer, homodisperser, paint shaker, heated twin-screw kneader, heated blade kneader, mechanofusion, It is preferable to use a ball mill, a jet mill, a hybridization machine, a V-blender, or the like because the raw materials can be homogeneously mixed. These mixing methods may be used in appropriate combination. Some of these mixing methods can be crushed or pulverized at the same time as mixing, and if they are used, the average particle size of the primary or secondary particles of the raw material compound of the metallic substance a before mixing, or graphite Even if the average particle size of the substance c is outside the above range, mixing, crushing, or crushing is performed,
The final average particle size may be within the above range.

【0025】上記の混合後、600〜2,000℃、よ
り好ましくは700〜1,500℃、更に好ましくは8
00〜1,300℃で、好ましくは還元的雰囲気下で熱
処理し、その後、解砕、あるいは粉砕し、1〜100μ
m、好ましくは5〜50μmの平均粒径をもつ電極活物質
として使用する。
After the above mixing, 600 to 2,000 ° C., more preferably 700 to 1,500 ° C., still more preferably 8 to 500 ° C.
Heat treatment at 00 to 1,300 ° C., preferably in a reducing atmosphere, followed by crushing or pulverizing,
m, preferably used as an electrode active material having an average particle size of 5 to 50 μm.

【0026】熱処理、解砕、粉砕等の工程を経て最終調
製された電極材料粉体において、粉体全体を100重量
%としたとき、金属質物は10〜65重量%、更には2
0〜50重量%、特に30〜50重量%で、炭素質物前
駆体の熱処理物の含量は15〜60重量%であることが
好ましい。なお、上記範囲は原料仕込み比ではなく、最
終的な調製段階での含有量である。そのため、仕込み時
には、最終段階での組成比を考慮して原料の配合量を決
定する必要がある。これより金属質物の含有量が少ない
と、リチウム電池を組立てたときに、実際上大きな放電
容量の増加が見込めず、またこれ以上の含有量である
と、金属質物を炭素質物が被覆することができず、ま
た、熱処理段階で金属質物同士が融解、凝集するなどし
て粒子径が大きく成長してしまうため、電池のサイクル
の維持が難しくなる。
In the electrode material powder finally prepared through the steps of heat treatment, crushing, pulverization, etc., when the whole powder is 100% by weight, the metallic substance is 10 to 65% by weight, and more preferably 2% by weight.
The content of the heat-treated carbonaceous precursor is preferably from 0 to 50% by weight, more preferably from 30 to 50% by weight, and preferably from 15 to 60% by weight. The above range is not a raw material charging ratio but a content at the final preparation stage. Therefore, at the time of preparation, it is necessary to determine the compounding amount of the raw materials in consideration of the composition ratio at the final stage. If the content of the metallic substance is smaller than this, a substantial increase in the discharge capacity cannot be expected when assembling the lithium battery, and if the content is more than this, the metallic substance may be coated with the carbonaceous substance. In addition, it is difficult to maintain the cycle of the battery because the metal materials are melted and agglomerated in the heat treatment stage and the particle size grows large.

【0027】本発明の電極活物質は、負極活物質として
の使用が好ましい。本発明の負極活物質の製造方法は、
上記金属質物の原料化合物炭素質物及び黒鉛質物を使用
する限り限定なく、従来公知の方法が採用可能である。
例えば、有機化合物と金属化合物を加熱手段がある混合
機で、最終組成が上記範囲内となる仕込み比で混合し、
脱気・脱揮処理を行いつつ、600〜2,000℃で
0.1〜12時間、好ましくは500〜1,500℃で
0.5〜5時間熱処理し、冷却後、この熱処理物を、好
ましくは1〜100μm、更に好ましくは5〜50μmの
範囲に解砕又は粉砕して、該負極活物質粉体を得る。
The electrode active material of the present invention is preferably used as a negative electrode active material. The method for producing a negative electrode active material of the present invention,
There is no limitation as long as the carbonaceous material and the graphite material are used as the raw material compound of the metal material, and a conventionally known method can be adopted.
For example, an organic compound and a metal compound are mixed in a mixer having a heating means at a charging ratio such that the final composition is within the above range,
While performing the deaeration and devolatilization treatment, heat treatment at 600 to 2,000 ° C. for 0.1 to 12 hours, preferably 500 to 1,500 ° C. for 0.5 to 5 hours. The powder of the negative electrode active material is obtained by pulverizing or pulverizing to preferably 1 to 100 μm, more preferably 5 to 50 μm.

【0028】次に、本発明の負極活物質を用いて、電池
を製造する方法について説明する。上記負極活物質粉体
に結着剤、溶媒等を加えてスラリー状とし、銅箔等の金
属製の集電体の基板に、このスラリーを塗布・乾燥して
電極とする。また、該負極活物質をそのままロール成
形、圧縮成形等の方法で電極の形状に成形することもで
きる。
Next, a method of manufacturing a battery using the negative electrode active material of the present invention will be described. A binder, a solvent, and the like are added to the negative electrode active material powder to form a slurry, and the slurry is applied to a metal current collector substrate such as a copper foil and dried to form an electrode. Further, the negative electrode active material can be directly formed into an electrode shape by a method such as roll molding or compression molding.

【0029】上記の目的で使用できる結着剤としては、
溶媒に対して安定な、ポリエチレン、ポリプロピレン、
ポリエチレンテレフタレート、芳香族ポリアミド、セル
ロース等の樹脂系高分子;スチレン・ブタジエンゴム、
イソプレンゴム、ブタジエンゴム、エチレン・プロピレ
ンゴム等のゴム状高分子;スチレン・ブタジエン・スチ
レンブロック共重合体、その水素添加物、スチレン・エ
チレン・ブタジエン・スチレン共重合体、スチレン・イ
ソプレン・スチレンブロック共重合体、その水素添加物
等の熱可塑性エラストマー状高分子;シンジオタクチッ
ク1,2−ポリブタジエン、エチレン・酢酸ビニル共重
合体、プロピレン・α−オレフィン(炭素数2〜12)
共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデ
ン、ポリテトラフルオロエチレン、エチレン共重合体等
のフッ素系高分子;アルカリ金属イオン、特にリチウム
イオンのイオン伝導性を有する高分子組成物が挙げられ
る。
Examples of the binder that can be used for the above purpose include:
Solvent-stable, polyethylene, polypropylene,
Resin-based polymers such as polyethylene terephthalate, aromatic polyamide, and cellulose; styrene-butadiene rubber,
Rubber-like polymers such as isoprene rubber, butadiene rubber, and ethylene / propylene rubber; styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers Thermoplastic elastomeric polymers such as polymers and hydrogenated products thereof; syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / α-olefin (2 to 12 carbon atoms)
Soft resinous polymers such as copolymers; fluorinated polymers such as polyvinylidene fluoride, polytetrafluoroethylene, and ethylene copolymers; and polymer compositions having ion conductivity of alkali metal ions, particularly lithium ions. Can be

【0030】上記のイオン伝導性を有する高分子として
は、ポリエチレンオキシド、ポリプロピレンオキシド等
のポリエーテル系高分子化合物;ポリエーテル化合物の
架橋体高分子;ポリエピクロルヒドリン、ポリホスファ
ゼン、ポリシロキサン、ポリビニルピロリドン、ポリビ
ニリデンカーボネート、ポリアクリロニトリル等の高分
子化合物に、リチウム塩、又はリチウムを主体とするア
ルカリ金属塩を複合させた系、あるいはこれにプロピレ
ンカーボネート、エチレンカーボネート、γ−ブチロラ
クトン等の高い誘電率を有する有機化合物を配合した系
を用いることができる。
Examples of the polymer having ion conductivity include polyether polymer compounds such as polyethylene oxide and polypropylene oxide; crosslinked polymers of polyether compounds; polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, Organic compounds having a high dielectric constant such as vinylidene carbonate, a polymer compound such as polyacrylonitrile, a lithium salt, or a system in which an alkali metal salt mainly composed of lithium is combined, or propylene carbonate, ethylene carbonate, and γ-butyrolactone. A system containing a compound can be used.

【0031】電極粉体と上記の結着剤との混合形態とし
ては、各種の形態をとることができる。即ち、両者の粒
子が混合した形態、繊維状の結着剤が該電極粒子に絡み
合う形で混合した形態、又は結着剤の層が電極粒子表面
に付着した形態などが挙げられる。該電極粉体と上記結
着剤との混合割合は、電極粉体100重量部に対し、好
ましくは0.1〜30重量部、より好ましくは0.5〜
10重量部である。これ以上の量の結着剤を添加する
と、電極の内部抵抗が大きくなり、好ましくなく、これ
以下の量では集電体と電極粉体の結着性に劣る。
As the mixed form of the electrode powder and the above-mentioned binder, various forms can be taken. That is, a form in which both particles are mixed, a form in which a fibrous binder is entangled with the electrode particles, or a form in which a layer of the binder is attached to the surface of the electrode particles are exemplified. The mixing ratio of the electrode powder and the binder is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 100 parts by weight, based on 100 parts by weight of the electrode powder.
10 parts by weight. If the binder is added in an amount larger than this, the internal resistance of the electrode increases, which is not preferable. If the amount is less than this, the binding property between the current collector and the electrode powder is poor.

【0032】こうして作製した負極板と、以下に説明す
る電解液及び正極板を、その他の電池構成要素であるセ
パレータ、ガスケット、集電体、封口板、セルケース等
と組み合わせて二次電池を構成する。作成可能な電池
は、筒型、角型、コイン型等特に限定されるものではな
いが、基本的にはセル床板上に集電体と負極板を乗せ、
その上に電解液とセパレータを、更に負極と対向するよ
うに正極を乗せ、ガスケット、封口板と共にかしめて二
次電池とする。
The secondary battery is constructed by combining the negative electrode plate thus produced, the electrolyte solution and the positive electrode plate described below with other battery components such as a separator, a gasket, a current collector, a sealing plate, and a cell case. I do. The batteries that can be created are not particularly limited, such as a cylindrical type, a square type, a coin type, but basically, a current collector and a negative electrode plate are placed on a cell floor plate,
An electrolytic solution and a separator are further placed thereon, and a positive electrode is placed so as to face the negative electrode, and caulked together with a gasket and a sealing plate to obtain a secondary battery.

【0033】電解液用に使用できる非水溶媒としては、
プロピレンカーボネート、エチレンカーボネート、ジエ
チルカーボネート、ジメチルカーボネート、エチルメチ
ルカーボネート、1,2−ジメトキシエタン、γ−ブチ
ロラクトン、テトラヒドロフラン、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、スルホラン、1,
3−ジオキソラン等の有機溶媒の単独、又は二種類以上
を混合したものを用いることができる。
Non-aqueous solvents that can be used for the electrolyte include:
Propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, 1,
A single organic solvent such as 3-dioxolane or a mixture of two or more thereof can be used.

【0034】これらの溶媒に、0.5〜2.0M程度の
LiClO4、LiPF6、LiBF4、LiCF3
3、LiAsF6、LiCl、LiBr等の電解質を溶
解して電解液とする。
In these solvents, about 0.5 to 2.0 M of LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 S
An electrolyte such as O 3 , LiAsF 6 , LiCl, or LiBr is dissolved to form an electrolyte.

【0035】また、リチウムイオン等のアルカリ金属カ
チオンの導電体である高分子固体電解質を用いることも
できる。
Further, a solid polymer electrolyte which is a conductor of an alkali metal cation such as lithium ion can also be used.

【0036】正極材料は特に限定されないが、リチウム
イオンなどのアルカリ金属カチオンを充放電時に吸蔵、
放出できる金属カルコゲン化合物からなることが好まし
い。そのような金属カルコゲン化合物としては、バナジ
ウム酸化物、バナジウム硫化物、モリブデン酸化物、モ
リブデン硫化物、マンガン酸化物、クロム酸化物、チタ
ン酸化物、チタン硫化物及びこれらの複合酸化物、複合
硫化物等が挙げられる。好ましくはCr38、V25
51 3、VO2、Cr25、MnO2、TiO2、MoV
28、TiS225MoS2、MoS3VS2、Cr0 . 2 5
0 . 7 52、Cr0 . 50 . 52等である。またLiMY2
(Mは、Co、Ni,Fe等の遷移金属、YはO、S等
のカルコゲン化合物)、LiM24(MはMn、Yは
O)、あるいはこれらの酸化物の不定比化合物、WO3
等の酸化物、CuS、Fe0 . 2 50 . 7 52、Na0 . 1Cr
2等の硫化物、NiPS3、FePS3等のリン、硫黄
化合物、VSe2、NbSe3等のセレン化合物等を用い
ることもできる。これらを負極体と同様、結着剤と混合
して集電体の上に塗布して正極体とする。
The material of the positive electrode is not particularly limited, but may store and store an alkali metal cation such as lithium ion during charge and discharge.
Preferably, it consists of a releasable metal chalcogen compound. Such metal chalcogen compounds include vanadium oxide, vanadium sulfide, molybdenum oxide, molybdenum sulfide, manganese oxide, chromium oxide, titanium oxide, titanium sulfide and composite oxides and composite sulfides thereof. And the like. Preferably, Cr 3 O 8 , V 2 O 5 ,
V 5 O 1 3, VO 2 , Cr 2 O 5, MnO 2, TiO 2, MoV
2 O 8, TiS 2 V 2 S 5 MoS 2, MoS 3 VS 2, Cr 0. 2 5
V 0. 7 5 S 2, Cr 0. A 5 V 0. 5 S 2 and the like. LiMY 2
(M is a transition metal such as Co, Ni or Fe, Y is a chalcogen compound such as O or S), LiM 2 Y 4 (M is Mn and Y is O), or a nonstoichiometric compound of these oxides, WO Three
Oxides etc., CuS, Fe 0. 2 5 V 0. 7 5 S 2, Na 0. 1 Cr
Sulfides such as S 2 , phosphorus such as NiPS 3 and FePS 3 , sulfur compounds, selenium compounds such as VSe 2 and NbSe 3 can also be used. Like the negative electrode body, these are mixed with a binder and applied on a current collector to obtain a positive electrode body.

【0037】電解液を保持するセパレーターは、一般的
に保液性に優れた材料であり、例えばポリオレフィン系
樹脂の不織布や多孔性フィルム等を使用して、上記電解
液を含浸させる。
The separator holding the electrolyte is generally a material having excellent liquid retention properties. For example, the separator is impregnated with a nonwoven fabric or a porous film of a polyolefin resin.

【0038】[0038]

【実施例】次に実施例により本発明を更に詳細に説明す
るが、本発明はこれらの例によってなんら限定されるも
のではない。
Next, the present invention will be described in more detail by way of examples, which should not be construed as limiting the present invention.

【0039】電極材料の評価方法評価は以下のように行
った。結着剤を用いてペレット状に成形した上記の負極
体を、セパレーター、電解液と共に、対極をリチウム金
属とした半電池とし、2016コインセル中に組み立
て、充放電試験機で充放電容量を評価したが、正極体と
ともに組んだ全電池でも同様な効果が期待できる。
The evaluation method of the electrode material was evaluated as follows. The above-described negative electrode body formed into a pellet using the binder was used as a half-cell having a lithium metal as a counter electrode together with a separator and an electrolytic solution, assembled in a 2016 coin cell, and the charge / discharge capacity was evaluated using a charge / discharge tester. However, a similar effect can be expected with all batteries assembled with the positive electrode body.

【0040】(実施例1)二次粒子の平均粒径2.0μ
m(一次粒子の平均粒径280nm)の酸化錫(IV)(S
nO2;和光純薬(株)製試薬)微粒子粉と、コールタ
ールピッチを熱処理して得た揮発分(以下、VMと称
す)が22.1%で、ガンマーレジン量が25.0%
で、かつ原子比O/Cが0.009である原料(以下、
ピッチAと称す)を、空気の存在下で機械的エネルギー
を付与しながら、280℃で1時間処理して得られた固
体を粉末化した。得られた粉体を、回分式加熱炉で不活
性雰囲気下にて、1,000℃に保ち、1時間熱処理し
た。不活性雰囲気下で放冷後、得られた粉体を解砕し、
10〜25μmに整え、サンプル粉体とした。該粒子の
炭素質部分の波長5,143Åのアルゴンイオンレーザ
ー光を用いたラマンスペクトルにおいて、1,580〜
1,620cm- 1の範囲に現れるピークの強度をIA、
1,350〜1,370cm- 1の範囲に現れるピークの強
度をIBとしたときのピーク強度比:ラマンR値(=I
B/IA)は0.96であった。また、元素分析から算
出された該粉体内の金属質物の含有量は、粉体全体を1
00重量%としたとき49重量%であった。この粉体を
走査型顕微鏡で観察したところ、炭素質物中により被覆
された錫金属微粒子が微分散しているのが見られた。次
いでこの粉体に、平均粒径4.7μmの人造黒鉛粉体
(ラマンR値:0.21)を等量添加した。黒鉛混合後
の金属質部分の含有量は、粉体全体を100重量%とし
たとき25重量%であった。なお、揮発分(VM)は、
JIS−M8812に従って求め、ガンマーレジン量
は、JIS−K2425に従ってトルエン不溶分量を測
定して求めた。また、酸素含有量(原子比O/C)は、
炭素及び酸素の重量含有率からそれぞれの原子量を用い
て計算した。炭素の含有量は、全自動元素分析装置(パ
ーキンエルマー社製「CHN計240C」)で測定し
た。酸素含有量は、酸素窒素分析装置(LECO社製
「TC436」)を用い、試料10mgをニッケルカプセ
ルに封入し、ヘリウム気流下において300Wで300
秒、続いて5,500Wで100秒加熱し、発生ガス中
の二酸化炭素を赤外吸収より定量して求めた。この電極
材料サンプル2gに対し、ポリフッ化ビニリデン(PV
dF)のジメチルアセトアミド溶液を固形分換算で10
重量%加えたものを撹拌し、スラリーを得た。このスラ
リーを銅箔上に塗布し、80℃で予備乾燥した。更に圧
着したのち、直径12.5mmの円盤状に打ち抜き、11
0℃で減圧乾燥して電極とした。得られた電極に対し、
電解液を含浸させたポリプロピレン製セパレーターをは
さみ、リチウム金属電極に対向させたコイン型セルを作
製し、充放電試験を行った。電解液には、エチレンカー
ボネートとジエチルカーボネートを容量比1:1の比率
で混合した溶媒に、過塩素酸リチウムを1.0mol/Lの
割合で溶解させたものを用いた。基準充放電試験は、電
流密度0.16mA/cm2で極間電位差が0Vになるまでド
ープを行い、電流密度0.33mA/cm2で極間電位差が
1.5Vになるまで脱ドープを行った。容量値は、コイ
ン型セル3個について各々充放電試験を行い、第1回目
の充放電時サイクルのドープ容量の平均で評価した。ま
た、サイクルの維持については、第4回目、第5回目及
び第30回目の脱ドープ容量を初回の脱ドープ容量で割
った値の100分率(容量維持率%)で評価した。
(Example 1) The average particle size of the secondary particles is 2.0 μm.
m (average primary particle size of 280 nm) tin (IV) oxide (S
nO 2 ; reagent manufactured by Wako Pure Chemical Industries, Ltd.) Fine particles and volatile matter (hereinafter referred to as VM) obtained by heat treatment of coal tar pitch are 22.1%, and the amount of gamma resin is 25.0%.
Raw material having an atomic ratio O / C of 0.009 (hereinafter, referred to as
The pitch A) was treated at 280 ° C. for 1 hour while applying mechanical energy in the presence of air to powder the solid obtained. The obtained powder was heat-treated at 1,000 ° C. for 1 hour in a batch heating furnace under an inert atmosphere. After cooling in an inert atmosphere, the obtained powder is crushed,
It was adjusted to 10 to 25 μm to obtain a sample powder. The Raman spectrum of the carbonaceous portion of the particles using an argon ion laser beam with a wavelength of 5,143 ° was 1,580 to 1,580.
1,620Cm - the intensity of the peak appearing in the first range IA,
1,350~1,370cm - 1 range appearing peak intensity peak intensity when the IB ratio of: Raman R value (= I
(B / IA) was 0.96. In addition, the content of the metallic substance in the powder calculated from the elemental analysis was 1% for the entire powder.
It was 49% by weight when it was set to 00% by weight. Observation of this powder with a scanning microscope revealed that fine particles of tin metal covered with the carbonaceous material were finely dispersed. Next, an equal amount of artificial graphite powder (Raman R value: 0.21) having an average particle size of 4.7 μm was added to this powder. The content of the metallic portion after the graphite was mixed was 25% by weight based on 100% by weight of the whole powder. The volatile matter (VM) is
The amount of gamma resin was determined according to JIS-M8812, and the amount of gamma-resin was determined by measuring the amount of toluene-insoluble components according to JIS-K2425. The oxygen content (atomic ratio O / C) is
It was calculated from the weight contents of carbon and oxygen using the respective atomic weights. The carbon content was measured by a fully automatic elemental analyzer (“CHN meter 240C” manufactured by PerkinElmer). Oxygen content was measured using an oxygen-nitrogen analyzer ("TC436" manufactured by LECO) to encapsulate 10 mg of a sample in a nickel capsule and 300 W at 300 W under a helium stream.
After heating at 5,500 W for 100 seconds, carbon dioxide in the generated gas was quantitatively determined by infrared absorption. To 2 g of this electrode material sample, polyvinylidene fluoride (PV
The dimethylacetamide solution of dF) is converted to a solid content of 10%.
Stirring was performed with the addition of the weight% to obtain a slurry. This slurry was applied on a copper foil and pre-dried at 80 ° C. After further press-fitting, it was punched into a disc with a diameter of 12.5 mm,
The electrode was dried at 0 ° C. under reduced pressure. For the obtained electrode,
A separator made of polypropylene impregnated with an electrolytic solution was sandwiched, and a coin-shaped cell facing a lithium metal electrode was prepared, and a charge / discharge test was performed. As the electrolytic solution, a solution obtained by dissolving lithium perchlorate at a rate of 1.0 mol / L in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used. Reference charge and discharge test was performed to dope at a current density of 0.16 mA / cm 2 until the interelectrode potential difference becomes to 0V, and subjected to undoping at a current density of 0.33 mA / cm 2 until the interelectrode potential difference becomes 1.5V Was. The capacity value was evaluated by performing a charge / discharge test on each of the three coin-type cells and averaging the dope capacity in the first charge / discharge cycle. Regarding the maintenance of the cycle, the fourth, fifth, and thirtieth dedoping capacity was evaluated by dividing the dedoping capacity by the initial dedoping capacity by 100 percentage (capacity maintenance ratio%).

【0041】[0041]

【数1】 (Equation 1)

【0042】(n=4、30) 結果を表1に示す。(N = 4, 30) The results are shown in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0044】(実施例2)二次粒子平均粒径0.6μm
の酸化錫(IV)(SnO2;福井新素材(株)製)粉
を、石油系ピッチであるエチレンヘビーエンド(三菱化
学製)とともに、室温でホモディスパーザーにより撹
拌、均一混合した。得られたスラリー状の混合物を、回
分式加熱炉で窒素/酸素混合雰囲気下にて280℃で1
時間熱処理し、その後900℃に保ち、更に1時間熱処
理した。不活性雰囲気下で放冷後、得られた粉体を粉砕
し、10〜25μmに整えサンプル粉体とした。該粒子
の炭素質物部分のラマンR値は0.97であった。元素
分析から算出された該粉体内の金属質部分の含有量は、
粉体全体を100重量%としたとき80重量%であっ
た。これを平均粒径2.3μmの天然黒鉛粉体(ラマン
R値:0.19)と等量混合し、評価した。黒鉛混合後
の金属質部分の含有量は、粉体全体を100重量%とし
たとき40重量%であった。走査型電子顕微鏡で観察し
たところ、炭素質物により被覆された微分散された金属
質物が観察された。電極作成方法及び評価方法は、実施
例1と同様に行った。結果を表1に示す。
(Example 2) Secondary particle average particle diameter 0.6 μm
Tin oxide (IV); a (SnO 2 Fukuishin Material Co., Ltd.) powder, with ethylene heavy end is petroleum pitch (product of Mitsubishi Chemical), stirred by a homo disperser at room temperature, it was uniformly mixed. The obtained slurry-like mixture is heated at 280 ° C. in a batch heating furnace at 280 ° C. under a nitrogen / oxygen mixed atmosphere.
Heat treatment was performed for one hour, and then the temperature was maintained at 900 ° C., and the heat treatment was further performed for one hour. After cooling in an inert atmosphere, the obtained powder was pulverized and adjusted to 10 to 25 μm to obtain a sample powder. The Raman R value of the carbonaceous material portion of the particles was 0.97. The content of the metallic portion in the powder calculated from the elemental analysis is
It was 80% by weight based on 100% by weight of the whole powder. This was mixed with an equal amount of natural graphite powder having an average particle size of 2.3 μm (Raman R value: 0.19) and evaluated. The content of the metallic portion after the graphite mixing was 40% by weight when the entire powder was 100% by weight. When observed with a scanning electron microscope, a finely dispersed metal material covered with the carbon material was observed. The electrode preparation method and the evaluation method were performed in the same manner as in Example 1. Table 1 shows the results.

【0045】(実施例3)二次粒子の平均粒径10μm
の一酸化ケイ素(SiO;高純度化学)粉と、実施例2
で使用した二次粒子平均粒径が0.6μmの酸化錫(I
V)を常温で、ペイントシェーカーにより3時間混合
し、更にここに石油系ピッチであるエチレンヘビーエン
ド(三菱化学製)を添加し、常温でペイントシェーカー
により撹拌、均一混合した。得られたスラリーを回分式
加熱炉で不活性雰囲気下にて、900℃に保ち1時間熱
処理した以外は、実施例1と同様の操作を行った。元素
分析から算出された該粉体内の金属質物部分の含有量
は、粉体全体を100重量%としたとき54重量%であ
り、ケイ素:錫の比は1:9であった。該粒子の炭素質
物部分の波ラマンR値は1.11であった。走査型電子
顕微鏡で観察したところ、炭素質物により被覆された微
分散された金属質物が観察された。次いでこの粉体に、
平均粒径4.7μmの人造黒鉛粉体(ラマンR値:0.
21)を等量添加した。これを実施例1で用いた人造黒
鉛粉体と等量混合し、評価した。黒鉛混合後の金属質物
部分の含有量は、粉体全体を100重量%としたとき2
7重量%であった。走査型電子顕微鏡で観察したとこ
ろ、炭素質物により被覆された微分散された金属質物が
観察された。電極作成方法及び評価方法は、実施例1と
同様に行った。結果を表1に示す。
(Example 3) Average particle size of secondary particles 10 μm
Silicon monoxide (SiO; high purity chemical) powder and Example 2
Tin oxide with an average secondary particle diameter of 0.6 μm (I
V) was mixed at room temperature with a paint shaker for 3 hours, and further, ethylene heavy end (manufactured by Mitsubishi Chemical Corporation) as a petroleum pitch was added thereto, and the mixture was stirred and uniformly mixed at room temperature with a paint shaker. The same operation as in Example 1 was performed except that the obtained slurry was heat-treated at 900 ° C. for 1 hour in an inert atmosphere in a batch heating furnace. The content of the metallic portion in the powder calculated from elemental analysis was 54% by weight, assuming that the entire powder was 100% by weight, and the ratio of silicon: tin was 1: 9. The wave Raman R value of the carbonaceous material portion of the particles was 1.11. When observed with a scanning electron microscope, a finely dispersed metal material covered with the carbon material was observed. Then, to this powder,
Artificial graphite powder having an average particle size of 4.7 μm (Raman R value: 0.
21) was added in an equal amount. This was mixed with an equal amount of the artificial graphite powder used in Example 1 and evaluated. The content of the metallic part after the graphite mixing is 2% when the whole powder is 100% by weight.
7% by weight. When observed with a scanning electron microscope, a finely dispersed metal material covered with the carbon material was observed. The electrode preparation method and the evaluation method were performed in the same manner as in Example 1. Table 1 shows the results.

【0046】(実施例4)硫酸錫(II)(SnSO4
和光純薬試薬)19gを純水100gに溶解し、これを
界面活性剤であるポリプロピレンオキシド(平均分子量
1,000)20g、石油系ピッチであるエチレンヘビ
ーエンド(三菱化学製)、及び実施例1で用いた人造黒
鉛を添加し、350℃で二軸混練機によりに脱気しなが
ら混練し、均一混合した。得られたペレットの混合物
を、回分式加熱炉で還元雰囲気下にて1,100℃に保
ち、1時間熱処理した。放冷後、得られた粉体を粉砕し
て10〜25μmに整え、サンプル粉体とした。該粒子
の炭素質物部分のラマンR値は1.09であった。ま
た、元素分析から算出された該粉体内の金属質物部分の
含有量は、粉体全体を100重量%としたとき46重量
%であった。走査型電子顕微鏡で観察したところ、炭素
質物により被覆された微分散された金属質物が観察され
た。次いでこの粉体に、平均粒径4.7μmの人造黒鉛
粉体(ラマンR値:0.21)を等量添加した。熱処理
後の、元素分析から算出された該粉体内の金属質物部分
の含有量は、粉体全体を100重量%としたとき23重
量%、黒鉛の含有量は51重量%であった。走査型電子
顕微鏡で観察したところ、炭素質物により被覆された微
分散された金属質物、及び黒鉛が観察された。電極作成
方法及び評価方法は、実施例1と同様に行った。結果を
表1に示す。
Example 4 Tin (II) sulfate (SnSO 4 ;
19 g of Wako Pure Chemical Reagent was dissolved in 100 g of pure water, and 20 g of polypropylene oxide (average molecular weight 1,000) as a surfactant, ethylene heavy end (Mitsubishi Chemical) as a petroleum pitch, and Example 1 The artificial graphite used in the above was added, and the mixture was kneaded at 350 ° C. while degassing with a twin-screw kneader, and uniformly mixed. The mixture of the obtained pellets was heat-treated at 1,100 ° C. in a batch heating furnace under a reducing atmosphere for 1 hour. After cooling, the obtained powder was pulverized and adjusted to 10 to 25 μm to obtain a sample powder. The Raman R value of the carbonaceous material portion of the particles was 1.09. Further, the content of the metallic substance portion in the powder calculated by elemental analysis was 46% by weight when the whole powder was 100% by weight. When observed with a scanning electron microscope, a finely dispersed metal material covered with the carbon material was observed. Next, an equal amount of artificial graphite powder (Raman R value: 0.21) having an average particle size of 4.7 μm was added to this powder. After the heat treatment, the content of the metallic substance portion in the powder calculated from the elemental analysis was 23% by weight when the whole powder was 100% by weight, and the content of graphite was 51% by weight. When observed with a scanning electron microscope, a finely dispersed metal material covered with the carbonaceous material and graphite were observed. The electrode preparation method and the evaluation method were performed in the same manner as in Example 1. Table 1 shows the results.

【0047】(実施例5)酸化錫(IV)微粒子の表面を
有機物で被覆した一次粒子の平均粒径5nmのものをイソ
プロピルアルコールに分散させ、これをフェノール樹脂
エマルジョン(群栄化学製)に添加し、室温で「マイク
ロス」R分散機により、均一混合した。得られたスラリ
ーを、不活性ガス雰囲気下、100℃で3時間熱処理
し、固化させた。これを粉砕し、得られた粉体を回分式
加熱炉で不活性雰囲気下にて900℃に保ち、1時間熱
処理した。不活性雰囲気下で放冷後、得られた粉体を解
砕し、10〜25μmに整えサンプル粉体とした。該粒
子の炭素質部分のラマンR値は1.07であった。次い
でこの粉体に、平均粒径4.7μmの人造黒鉛粉体(ラ
マンR値:0.21)を等量添加した。また、元素分析
から算出された該粉体内の金属質物部分の含有量は、粉
体全体を100重量%としたとき60重量%であった。
次いでこの粉体に、平均粒径4.7μmの人造黒鉛粉体
(ラマンR値:0.21)を等量添加した。黒鉛混合後
の金属質物部分の含有量は、粉体全体を100重量%と
したとき30重量%であった。走査型電子顕微鏡で観察
したところ、炭素質物により被覆された微分散された金
属質物が観察された。電極作成方法及び評価方法は、実
施例1と同様に行った。結果を表1に示す。
Example 5 Tin (IV) oxide fine particles whose surfaces had been coated with an organic substance were dispersed in isopropyl alcohol with primary particles having an average particle size of 5 nm and added to a phenol resin emulsion (manufactured by Gunei Chemical). Then, the mixture was uniformly mixed at room temperature with a "Micros" R disperser. The obtained slurry was heat-treated at 100 ° C. for 3 hours in an inert gas atmosphere to be solidified. This was pulverized, and the obtained powder was heat-treated at 900 ° C. for 1 hour in a batch heating furnace under an inert atmosphere. After cooling in an inert atmosphere, the obtained powder was crushed and adjusted to 10 to 25 μm to obtain a sample powder. The Raman R value of the carbonaceous portion of the particles was 1.07. Next, an equal amount of artificial graphite powder (Raman R value: 0.21) having an average particle size of 4.7 μm was added to this powder. Further, the content of the metallic substance portion in the powder calculated by elemental analysis was 60% by weight when the whole powder was 100% by weight.
Next, an equal amount of artificial graphite powder (Raman R value: 0.21) having an average particle size of 4.7 μm was added to this powder. The content of the metallic part after the graphite was mixed was 30% by weight based on 100% by weight of the whole powder. When observed with a scanning electron microscope, a finely dispersed metal material covered with the carbon material was observed. The electrode preparation method and the evaluation method were performed in the same manner as in Example 1. Table 1 shows the results.

【0048】(実施例6)実施例2で用いた二次粒子の
平均粒径0.6μmの酸化錫(IV)微粒子粉と、前記ピ
ッチA及び平均粒径1.5μmの人造黒鉛(ラマンR
値:0.25)を、加熱加圧式ニーダーにより、280
℃、大気中で撹拌、酸素架橋しつつ均一混合して粉末化
した。得られた粉体を、回分式加熱炉で不活性雰囲気下
にて1,100℃に保ち、1時間熱処理した。不活性雰
囲気下で放冷後、得られた粉体を解砕し、10〜25μ
mに整え、サンプル粉体とした。該粒子の炭素質部分の
ラマンR値は0.96であった。また、熱処理後に元素
分析から算出された該粉体内の金属質物部分の含有量
は、粉体全体を100重量%としたとき29重量%、黒
鉛の含有量は50重量%であった。走査型電子顕微鏡で
観察したところ、炭素質物により被覆された微分散され
た金属質物及び黒鉛が観察された。電極作成方法及び評
価方法は、実施例1と同様に行った。結果を表1に示
す。
(Example 6) Tin (IV) oxide fine particles having an average particle diameter of 0.6 µm of the secondary particles used in Example 2 and artificial graphite (Raman R) having the pitch A and the average particle diameter of 1.5 µm were used.
Value: 0.25) was determined to be 280 using a heating and pressing kneader.
The mixture was stirred at ℃, in the air, and uniformly mixed while being crosslinked with oxygen to form a powder. The obtained powder was heat-treated at 1,100 ° C. for 1 hour in a batch heating furnace under an inert atmosphere. After cooling under an inert atmosphere, the resulting powder is crushed, and
m to give a sample powder. The Raman R value of the carbonaceous portion of the particles was 0.96. Further, the content of the metallic substance portion in the powder calculated by elemental analysis after the heat treatment was 29% by weight, and the content of graphite was 50% by weight, assuming that the entire powder was 100% by weight. When observed with a scanning electron microscope, a finely dispersed metal substance and graphite covered with the carbon substance were observed. The electrode preparation method and the evaluation method were performed in the same manner as in Example 1. Table 1 shows the results.

【0049】(実施例7)実施例1における金属質物部
分が、酸化錫(IV)・酸化アンチモン分子混合酸化物の
微粒子の表面を、有機物で被覆した一次粒子の平均粒径
5nmのものであり、熱処理後のアンチモンと錫の重量比
がSn:Sb=9:1となるように調整し、熱処理後に
元素分析から算出された炭素質物/金属質物複合粉体内
の金属質物部分の含有量が、粉体全体を100重量%と
したとき56重量%である以外は、同様の操作した。該
粒子の炭素質部分のラマンR値は0.97であった。次
いでこの粉体に、実施例1で用いた平均粒径4.7μm
の人造黒鉛粉体(ラマンR値:0.21)を等量添加し
た。黒鉛混合後の金属質物部分の含有量は、粉体全体を
100重量%としたとき28重量%であった。電極作成
方法及び評価方法は、実施例1と同様に行った。結果を
表1に示す。
(Example 7) The metal material portion in Example 1 is a primary particle in which the surface of fine particles of mixed oxide of tin (IV) oxide and antimony oxide is coated with an organic substance has an average particle diameter of 5 nm. The weight ratio of antimony to tin after the heat treatment was adjusted to be Sn: Sb = 9: 1, and the content of the metal substance portion in the carbonaceous substance / metal substance composite powder calculated from the elemental analysis after the heat treatment was: The same operation was performed except that the amount was 56% by weight when the whole powder was 100% by weight. The Raman R value of the carbonaceous portion of the particles was 0.97. Next, this powder was added to the average particle size of 4.7 μm used in Example 1.
Of an artificial graphite powder (Raman R value: 0.21) was added in an equal amount. The content of the metallic part after the graphite was mixed was 28% by weight based on 100% by weight of the whole powder. The electrode preparation method and the evaluation method were performed in the same manner as in Example 1. Table 1 shows the results.

【0050】(実施例8)一次粒子の平均粒径5nmの酸
化錫(IV)・酸化アンチモンの分子状混合酸化物の微粒
子を、アンモニア性水溶液(pH10.8)に分散させた
のものを、水溶性フェノール樹脂エマルジョン(群栄化
学製)に添加し、ホモディスパーザーにより室温で撹拌
した。得られたスラリー状の物を、不活性ガス雰囲気
下、100℃で3時間熱処理し、固化させた。これを軽
く解砕し、得られた粉体を回分式加熱炉で不活性雰囲気
下にて1,100℃に保ち、1時間熱処理した。熱処理
後のアンチモンと錫の重量比はSn:Sb=93:7と
なるように仕込み比率を調整した。熱処理後の元素分析
から算出された炭素質物/金属質物複合粉体内の金属質
物部分の含有量は、粉体全体を100重量%としたとき
59重量%であった。該粒子の炭素質部分のラマンR値
は0.99であった。次いでこの粉体に、実施例1で用
いた平均粒径4.7μmの人造黒鉛粉体(ラマンR値:
0.21)を等量添加し、Vブレンダーにより混合し
た。黒鉛混合後の金属質物部分の含有量は、粉体全体を
100重量%としたとき30重量%であった。走査型電
子顕微鏡で観察したところ、炭素質物により被覆された
微分散された金属質物が観察された。電極製造方法、及
び評価方法は実施例1と同様に行った。結果を表1に示
す。
(Example 8) Fine particles of a molecular mixed oxide of tin (IV) oxide and antimony oxide having an average primary particle diameter of 5 nm were dispersed in an ammoniacal aqueous solution (pH 10.8). The mixture was added to a water-soluble phenol resin emulsion (manufactured by Gunei Chemical) and stirred at room temperature with a homodisperser. The obtained slurry was heat-treated at 100 ° C. for 3 hours in an inert gas atmosphere to be solidified. This was lightly crushed, and the obtained powder was heat-treated at 1,100 ° C. for 1 hour in a batch heating furnace under an inert atmosphere. The charge ratio was adjusted so that the weight ratio of antimony to tin after the heat treatment became Sn: Sb = 93: 7. The content of the metallic substance portion in the carbonaceous substance / metallic substance composite powder calculated from the elemental analysis after the heat treatment was 59% by weight when the whole powder was 100% by weight. The Raman R value of the carbonaceous portion of the particles was 0.99. Next, the artificial graphite powder having an average particle diameter of 4.7 μm used in Example 1 (Raman R value:
0.21) was added in an equal amount, and mixed by a V blender. The content of the metallic part after the graphite was mixed was 30% by weight based on 100% by weight of the whole powder. When observed with a scanning electron microscope, a finely dispersed metal material covered with the carbon material was observed. The electrode manufacturing method and the evaluation method were performed in the same manner as in Example 1. Table 1 shows the results.

【0051】(実施例9)一次粒子径10nmのアルミノ
シリカケゲルをメタノールに分散させ、これと石油系ピ
ッチであるエチレンヘビーエンド(三菱化学製)を、常
温でZブレードニーダーにより撹拌、均一混合した。得
られたロウ状スラリーを、加熱式二軸混練機により15
0℃で加熱しながら、平均粒径2.3μmの天然黒鉛粉
体(ラマンR値:0.19)と混練、均一混合した。得
られた半固体状固形物を、回分式加熱炉で不活性雰囲気
下にて1,100℃に保ち、1時間熱処理した。不活性
雰囲気下で放冷後、得られた粉体を解砕し、10〜25
μmに整え、サンプル粉体とした。該粒子の炭素質部分
のラマンR値は1.02であった。。また、熱処理後の
元素分析から算出された該粉体内の金属質物部分の含有
量は、粉体全体を100重量%としたとき25重量%、
黒鉛の含有量は53重量%であった。走査型電子顕微鏡
で観察したところ、炭素質物により被覆された微分散さ
れた金属質物及び黒鉛が観察された。電極作成方法及び
評価方法は、実施例1と同様に行った。結果を表1に示
す。
Example 9 Alumino-silica kegel having a primary particle diameter of 10 nm was dispersed in methanol, and this was mixed with petroleum pitch ethylene heavy-end (manufactured by Mitsubishi Chemical Corporation) at room temperature using a Z-blade kneader and uniformly mixed. did. The obtained waxy slurry is mixed with a heating type twin-screw kneader for 15 minutes.
While heating at 0 ° C., the mixture was kneaded with a natural graphite powder having an average particle size of 2.3 μm (Raman R value: 0.19) and uniformly mixed. The obtained semi-solid solid was heat-treated at 1,100 ° C. for 1 hour in a batch heating furnace under an inert atmosphere. After allowing to cool in an inert atmosphere, the resulting powder is crushed,
It was adjusted to μm to obtain a sample powder. The Raman R value of the carbonaceous portion of the particles was 1.02. . The content of the metallic substance portion in the powder calculated from the elemental analysis after the heat treatment was 25% by weight when the entire powder was 100% by weight,
The graphite content was 53% by weight. When observed with a scanning electron microscope, a finely dispersed metal substance and graphite covered with the carbon substance were observed. The electrode preparation method and the evaluation method were performed in the same manner as in Example 1. Table 1 shows the results.

【0052】(比較例1)二次粒子の平均粒径0.6μ
m(一次粒子の平均粒径400nm)の酸化錫(IV)(S
nO2;福井新素材(株)製)微粒子粉と、前記ピッチ
Aを、空気の存在下で機械的エネルギーを付与しながら
280℃で1時間処理して得られた固体を粉末化した。
得られた粉体を、回分式加熱炉で不活性雰囲気下にて9
00℃に保ち、1時間熱処理した。不活性雰囲気下で放
冷後、得られた粉体を解砕し、10〜25μmに整え、
サンプル粉体とした。該粒子の炭素質部分のラマンR値
は0.98であった。また、元素分析から算出された該
粉体内の金属質物部分の含有量は、粉体全体を100重
量%としたとき47重量%であった。走査型電子顕微鏡
で観察したところ、炭素質物により被覆された微分散さ
れた金属質物が観察された。しかし、いずれの黒鉛も一
切添加しなかった。電極作成方法及び評価方法は、実施
例1と同様に行った。結果を表1に示す。
(Comparative Example 1) Average particle size of secondary particles 0.6 μm
m (average primary particle diameter 400 nm) tin (IV) oxide (S
nO 2 ; manufactured by Fukui New Materials Co., Ltd.) and a solid obtained by treating the pitch A with 280 ° C. for 1 hour while applying mechanical energy in the presence of air.
The obtained powder is placed in a batch heating furnace under an inert atmosphere for 9 hours.
The temperature was kept at 00 ° C. and heat-treated for 1 hour. After cooling under an inert atmosphere, the obtained powder is crushed and adjusted to 10 to 25 μm,
Sample powder was used. The Raman R value of the carbonaceous portion of the particles was 0.98. Further, the content of the metallic substance portion in the powder calculated by elemental analysis was 47% by weight when the whole powder was 100% by weight. When observed with a scanning electron microscope, a finely dispersed metal material covered with the carbon material was observed. However, no graphite was added at all. The electrode preparation method and the evaluation method were performed in the same manner as in Example 1. Table 1 shows the results.

【0053】(比較例2)実施例1で、平均粒径4.7
μmの人造黒鉛粉体(ラマンR値:0.21)に換え、
平均粒径0.8μm(ラマンR値:1.25)の人造黒
鉛の粉砕品を等量添加した他は、実施例1と同様に行っ
た。黒鉛混合後の金属質物部分の含有量は、粉体全体を
100重量%としたとき23重量%であった。電極作成
方法及び評価方法は、実施例1と同様に行った。結果を
表1に示す。
Comparative Example 2 The average particle size of Example 1 was 4.7.
μm artificial graphite powder (Raman R value: 0.21)
The procedure was performed in the same manner as in Example 1 except that an equal amount of a pulverized product of artificial graphite having an average particle size of 0.8 μm (Raman R value: 1.25) was added. The content of the metal material portion after the graphite mixing was 23% by weight based on 100% by weight of the whole powder. The electrode preparation method and the evaluation method were performed in the same manner as in Example 1. Table 1 shows the results.

【0054】(比較例3)実施例1の炭素質物の前駆体
である前記ピッチAを、2,400℃で熱処理したもの
のラマンR値が0.13であり、元素分析から算出され
た熱処理後の炭素質物/金属質物複合粉体内の金属質物
部分の含有量が、粉体全体を100重量%としたとき5
1重量%である以外は、実施例1と同様に行った。得ら
れた粉体を解砕しようとしたところ、錫粒子の大きな成
長(最大200μm程度)がみられ、電極には成形でき
なかった。
(Comparative Example 3) The pitch A, which is a precursor of the carbonaceous material of Example 1, was heat-treated at 2,400 ° C. and had a Raman R value of 0.13. When the content of the metal material portion in the carbonaceous material / metallic material composite powder of
Except for 1% by weight, the same procedure as in Example 1 was carried out. When the obtained powder was to be crushed, large growth of tin particles (maximum of about 200 μm) was observed, and it could not be formed into an electrode.

【0055】(比較例4)実施例1で、平均粒径4.7
μmの人造黒鉛粉体(ラマンR値:0.21)に換え、
平均粒径14.0μm(ラマンR値:0.41)の天然
黒鉛の粉砕品を等量添加した他は、実施例1と同様に行
った。黒鉛混合後の金属質物部分の含有量は、粉体全体
を100重量%としたとき23重量%であった。電極作
成方法及び評価方法は、実施例1と同様に行った。結果
を表1に示す。
Comparative Example 4 The average particle size of Example 1 was 4.7.
μm artificial graphite powder (Raman R value: 0.21)
The procedure was performed in the same manner as in Example 1 except that an equal amount of a pulverized product of natural graphite having an average particle size of 14.0 μm (Raman R value: 0.41) was added. The content of the metal material portion after the graphite mixing was 23% by weight based on 100% by weight of the whole powder. The electrode preparation method and the evaluation method were performed in the same manner as in Example 1. Table 1 shows the results.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 正司 茨城県稲敷郡阿見町中央8丁目3番1号 三菱化学株式会社筑波研究所内 Fターム(参考) 4G046 CA05 CA07 CB02 CB08 CB09 CC03 EA05 EB04 EC02 EC06 5H003 AA02 AA04 BA01 BA03 BB01 BB02 BB04 BB05 BB06 BC01 BC05 BD00 BD01 BD02 BD03 BD04 5H014 AA02 BB01 EE05 EE08 EE10 HH00 HH01 HH08 5H029 AJ03 AJ05 AK02 AK03 AK05 AK06 AK07 AK11 AK18 AL02 AL03 AL04 AL06 AL07 AL11 AL18 AM01 AM02 AM03 AM04 AM05 AM07 AM16 BJ03 CJ02 DJ16 HJ00 HJ01 HJ05 HJ14 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shoji Ishihara 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Pref. 5H003 AA02 AA04 BA01 BA03 BB01 BB02 BB04 BB05 BB06 BC01 BC05 BD00 BD01 BD02 BD03 BD04 5H014 AA02 BB01 EE05 EE08 EE10 HH00 HH01 HH08 5H029 AJ03 AJ05 AK02 AK03 AK05 AM03 AL03 AL04 BJ03 CJ02 DJ16 HJ00 HJ01 HJ05 HJ14

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極及び非水系溶媒中に電解質を
溶解した電解液からなる非水系二次電池であって、 正極又は負極活物質が、金属質物a、炭素質物b及び黒
鉛質物cからなり、 金属質物aは、熱処理後には電気化学的にリチウムを吸
蔵及び放出することができるようになる化合物を熱処理
してできたものであり、 炭素質物bは、波長5,143Åのアルゴンイオンレー
ザー光を用いたラマンスペクトルにおいて、1,580
〜1,620cm- 1の範囲に現れるピークの強度をIA、
1,350〜1,370cm- 1の範囲に現れるピークの強
度をIBとしたときのピーク強度比R(=IB/IA)
が0.4以上であり、黒鉛質物cは、前述のピーク強度
比Rが0.4未満である、非水系二次電池。
1. A non-aqueous secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, wherein the positive electrode or the negative electrode active material comprises a metal material a, a carbon material b, and a graphite material c. The metal substance a is obtained by heat-treating a compound capable of electrochemically absorbing and releasing lithium after the heat treatment. The carbon substance b is an argon ion laser having a wavelength of 5,143 °. In the Raman spectrum using light, 1,580
~1,620Cm - the intensity of the peak appearing in the first range IA,
1,350~1,370cm - 1 ranging peak intensity when the intensity of the peak was IB appearing in ratio R (= IB / IA)
Is 0.4 or more, and the graphite material c has the above-mentioned peak intensity ratio R of less than 0.4.
【請求項2】 負極活物質が、前記金属質物a、炭素質
物b及び黒鉛質物cからなる、請求項1記載の非水系二
次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the negative electrode active material comprises the metallic substance a, the carbonaceous substance b, and the graphite substance c.
【請求項3】 前記金属質物aが、元素周期表Ia族、
IIa族、チタン、バナジウム、タンタル、VIa族、マン
ガン、VIII族、Ib族、IIb族、IIIb族、IVb族、ヒ
素、アンチモン及びビスマスから選ばれる元素の酸化
物、硫化物、窒化物、セレン化物、テルル化物、硝酸
塩、硫酸塩、該化合物を主成分とする複合化合物、及び
これらの化合物の混合物から選ばれる化合物を熱処理し
て得られた物である、請求項1又は2記載の非水系二次
電池。
3. The method according to claim 1, wherein the metallic substance a is a group Ia of the periodic table of the element,
Oxides, sulfides, nitrides, selenides of elements selected from the group IIa, titanium, vanadium, tantalum, VIa, manganese, VIII, Ib, IIb, IIIb, IVb, arsenic, antimony and bismuth 3. The non-aqueous system according to claim 1, wherein the compound is obtained by heat-treating a compound selected from the group consisting of, telluride, nitrate, sulfate, a complex compound containing the compound as a main component, and a mixture of these compounds. Next battery.
【請求項4】 金属物質aが、錫酸、錫酸塩、一酸化
錫、二酸化錫、錫酸アルカリ金属塩、錫酸アルカリ土類
金属塩、錫酸アンモニウム、錫酸アンチモン、酸化アン
チモン、一酸化ケイ素、酸化銀、酸化亜鉛、酸化アルミ
ニウム及び二酸化ケイ素から選ばれた金属の酸化物を熱
処理して得られたものである、請求項3記載の非水系二
次電池。
4. A method according to claim 1, wherein the metal substance a is stannic acid, stannate, tin monoxide, tin dioxide, alkali metal stannate, alkaline earth metal stannate, ammonium stannate, antimony stannate, antimony oxide, The non-aqueous secondary battery according to claim 3, which is obtained by heat-treating an oxide of a metal selected from silicon oxide, silver oxide, zinc oxide, aluminum oxide, and silicon dioxide.
【請求項5】 金属物質aが、錫、銀、亜鉛、カルシウ
ム及びアンチモンから選ばれた金属の硫酸塩を熱処理し
て得られたものである、請求項3記載の非水系二次電
池。
5. The non-aqueous secondary battery according to claim 3, wherein the metal substance a is obtained by heat-treating a sulfate of a metal selected from tin, silver, zinc, calcium and antimony.
【請求項6】 金属物質aが、原料化合物粒子の二次粒
子の平均粒径が10μm以下か、又は一次粒子の平均粒
径が500nm以下である、請求項1〜5のいずれか1項
記載の非水系二次電池。
6. The metal material a according to claim 1, wherein the average particle size of the secondary particles of the raw material compound particles is 10 μm or less, or the average particle size of the primary particles is 500 nm or less. Non-aqueous secondary batteries.
【請求項7】 金属物質aが、該粒子を有機物で被覆し
た微粒子、あるいは該微粒子を溶媒に分散したものであ
る、請求項1〜6のいずれか1項記記載の非水系二次電
池。
7. The non-aqueous secondary battery according to claim 1, wherein the metal substance a is fine particles obtained by coating the particles with an organic substance, or the fine particles are dispersed in a solvent.
【請求項8】 黒鉛質物cが、炭素質物bの前駆体を熱
処理して得られた黒鉛質物c、天然黒鉛、人造黒鉛、膨
張黒鉛、キッシュ黒鉛、これらの高純度精製品、これら
の再熱処理品、あるいはこれらの混合物である、請求項
1記載の非水系二次電池。
8. A graphitic substance c is a graphitic substance c obtained by heat-treating a precursor of a carbonaceous substance b, natural graphite, artificial graphite, expanded graphite, quiche graphite, high-purity purified products thereof, and re-heat treatment thereof. The non-aqueous secondary battery according to claim 1, which is a product or a mixture thereof.
【請求項9】 黒鉛質物cが、1,800℃〜3,20
0℃で再加熱処理されたものである、請求項8記載の非
水系二次電池。
9. The graphitic substance c is from 1,800 ° C. to 3,20 ° C.
The non-aqueous secondary battery according to claim 8, wherein the non-aqueous secondary battery has been reheated at 0 ° C.
【請求項10】 黒鉛質物cの平均粒径が、1〜25μ
mである、請求項1〜9のいずれか1項記載の非水系二
次電池。
10. The graphite material c has an average particle size of 1 to 25 μm.
The non-aqueous secondary battery according to claim 1, wherein m is m.
【請求項11】 黒鉛質物cを波長5,143Åのアル
ゴンイオンレーザー光を用いたラマンスペクトルにおい
て、1,580〜1,620cm- 1の範囲に現れるピーク
の半値幅であるΔνが14〜27cm- 1である、請求項1
〜10のいずれか1項記載の非水系二次電池。
11. A Raman spectrum of graphite pledge c using an argon ion laser beam having a wavelength of 5,143Å, 1,580~1,620cm - a half width of the peak appearing in the 1 range Δν is 14~27Cm - 1, according to claim 1
The non-aqueous secondary battery according to any one of claims 10 to 10.
【請求項12】 全活物質を100重量%としたとき、
炭素質物bと黒鉛質物cに対する金属物質aの割合が、
10〜65重量%である、請求項1〜3のいずれか1項
記載の非水系二次電池。
12. When the total active material is 100% by weight,
The ratio of the metal substance a to the carbonaceous substance b and the graphite substance c is
The non-aqueous secondary battery according to claim 1, wherein the content is 10 to 65% by weight.
【請求項13】 金属物質aを生成する物質、炭素質物
bの前駆体、及び黒鉛質物cを混合し、熱処理した負極
活物質を含む、請求項1〜3のいずれか1項記載の非水
系二次電池。
13. The non-aqueous system according to claim 1, further comprising a negative electrode active material obtained by mixing and heat-treating a substance that forms a metal substance a, a precursor of a carbonaceous substance b, and a graphite substance c. Rechargeable battery.
【請求項14】 前記熱処理が、600〜2,000℃
で行われた負極活物質を含む、請求項13記載の非水系
二次電池。
14. The heat treatment is performed at 600 to 2,000 ° C.
The non-aqueous secondary battery according to claim 13, comprising the negative electrode active material performed in (1).
【請求項15】 炭素質物bの前駆体が、有機化合物の
分子を、酸素、硫黄、窒素及び/又はホウ素原子で分子
間架橋されたものである、請求項1〜3のいずれか1項
記載の非水系二次電池。
15. The method according to claim 1, wherein the precursor of the carbonaceous substance b is obtained by intermolecularly crosslinking an organic compound molecule with oxygen, sulfur, nitrogen and / or boron atoms. Non-aqueous secondary batteries.
【請求項16】 前記分子間架橋が、100〜600℃
の熱処理で形成されたものである、請求項15記載の非
水系二次電池。
16. The method according to claim 16, wherein the intermolecular crosslinking is performed at 100 to 600 ° C.
The non-aqueous secondary battery according to claim 15, which is formed by the heat treatment of (1).
JP10257899A 1998-09-11 1998-09-11 Nonaqueous secondary battery Pending JP2000090926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10257899A JP2000090926A (en) 1998-09-11 1998-09-11 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10257899A JP2000090926A (en) 1998-09-11 1998-09-11 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2000090926A true JP2000090926A (en) 2000-03-31

Family

ID=17312744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10257899A Pending JP2000090926A (en) 1998-09-11 1998-09-11 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2000090926A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291528A (en) * 2000-04-05 2001-10-19 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2001345100A (en) * 2000-05-31 2001-12-14 Hitachi Chem Co Ltd Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
WO2002067348A1 (en) 2001-02-22 2002-08-29 Kureha Chemical Industry Company, Limited Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell
JP2013137969A (en) * 2011-12-28 2013-07-11 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery anode material manufacturing method and nonaqueous electrolyte secondary battery anode material manufactured by the manufacturing method
JP2013193886A (en) * 2012-03-15 2013-09-30 Mitsubishi Chemicals Corp Composite carbon material, method of producing the same, and negative electrode using the same, and power storage device
JP2018049770A (en) * 2016-09-23 2018-03-29 プライムアースEvエナジー株式会社 Lithium ion secondary battery
US11495794B2 (en) 2018-01-25 2022-11-08 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery, negative electrode for lithium secondary battery including the same and lithium secondary battery including the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291528A (en) * 2000-04-05 2001-10-19 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP4560877B2 (en) * 2000-04-05 2010-10-13 パナソニック株式会社 Lithium secondary battery
JP2001345100A (en) * 2000-05-31 2001-12-14 Hitachi Chem Co Ltd Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
CN1331251C (en) * 2001-02-22 2007-08-08 株式会社吴羽 Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell
EP1298742A1 (en) * 2001-02-22 2003-04-02 Kureha Chemical Industry Co., Ltd. Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell
EP1298742A4 (en) * 2001-02-22 2006-12-06 Kureha Corp Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell
US7147970B2 (en) * 2001-02-22 2006-12-12 Kureha Corporation Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell
US7235329B2 (en) 2001-02-22 2007-06-26 Kureha Chemical Industry Company, Limited Electrode material for non-aqueous solvent-secondary cell, electrode and secondary cell
JP2002251992A (en) * 2001-02-22 2002-09-06 Kureha Chem Ind Co Ltd Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
CN100440590C (en) * 2001-02-22 2008-12-03 株式会社吴羽 Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell
EP2058879A1 (en) * 2001-02-22 2009-05-13 Kureha Corporation Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell
WO2002067348A1 (en) 2001-02-22 2002-08-29 Kureha Chemical Industry Company, Limited Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell
JP2013137969A (en) * 2011-12-28 2013-07-11 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery anode material manufacturing method and nonaqueous electrolyte secondary battery anode material manufactured by the manufacturing method
JP2013193886A (en) * 2012-03-15 2013-09-30 Mitsubishi Chemicals Corp Composite carbon material, method of producing the same, and negative electrode using the same, and power storage device
JP2018049770A (en) * 2016-09-23 2018-03-29 プライムアースEvエナジー株式会社 Lithium ion secondary battery
US11495794B2 (en) 2018-01-25 2022-11-08 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery, negative electrode for lithium secondary battery including the same and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
JP3960691B2 (en) Anode active material for non-aqueous carbon-coated lithium secondary battery
JP2007214137A (en) Negative electrode active material for nonaqueous carbon-coated lithium secondary battery
US7771876B2 (en) Anode active material method of manufacturing the same and nonaqueous electrolyte secondary battery using the same
EP1717888A1 (en) Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
JP3973300B2 (en) Non-aqueous secondary battery
JP4040381B2 (en) Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
US8182939B2 (en) Anode material for lithium secondary cell with high capacity
JP5268018B2 (en) Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery
EP2741350A1 (en) Negative electrode active material, method of preparing the same, negative electrode and lithium secondary battery employing the electrode including the negative electrode active material
JP2007242630A (en) Nonaqueous secondary battery
KR20060051615A (en) Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO1998029335A1 (en) Graphite powder suitable for negative electrode material of lithium ion secondary cell
US20100154206A1 (en) Process for making composite lithium powders for batteries
JP3633257B2 (en) Lithium ion secondary battery
JP3969164B2 (en) Negative electrode material for lithium secondary battery and negative electrode body produced therefrom
WO2006021714A2 (en) Composite negative electrode material, production method thereof, negative electrode and lithium-ion battery
JP2002231225A (en) Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
US20100159324A1 (en) Lithium powders for batteries
KR20040007548A (en) Mesophase spherular graphitized substance, anode material, anode, and lithium ion secondary battery using same
JPH11135120A (en) Negative electrode material for nonaqueous secondary battery
JP6584975B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery
JP2009158105A (en) Method of manufacturing composite carbon material for negative electrode material of lithium ion secondary battery
JP2000090926A (en) Nonaqueous secondary battery
JP2003176115A (en) Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery
JP2000260428A (en) Lithium secondary battery using nonaqueous cabon- coated negative electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050726