JP4582068B2 - 車両用サスペンションシステム - Google Patents

車両用サスペンションシステム Download PDF

Info

Publication number
JP4582068B2
JP4582068B2 JP2006211431A JP2006211431A JP4582068B2 JP 4582068 B2 JP4582068 B2 JP 4582068B2 JP 2006211431 A JP2006211431 A JP 2006211431A JP 2006211431 A JP2006211431 A JP 2006211431A JP 4582068 B2 JP4582068 B2 JP 4582068B2
Authority
JP
Japan
Prior art keywords
actuator
distance
vehicle
vehicle height
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006211431A
Other languages
English (en)
Other versions
JP2008037186A (ja
Inventor
博文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006211431A priority Critical patent/JP4582068B2/ja
Publication of JP2008037186A publication Critical patent/JP2008037186A/ja
Application granted granted Critical
Publication of JP4582068B2 publication Critical patent/JP4582068B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

本発明は、車両に搭載されるサスペンションシステム、詳しくは、電磁式アクチュエータと流体スプリングとを含んで構成されるサスペンションシステムに関する。
近年では、車体車輪間距離の調整、すなわち車高調整を行うために、流体の圧力を利用して車高調整を行うことが可能な流体スプリングを設けたサスペンションシステムが存在する。一方、サスペンションシステムとして、電磁式アクチュエータを振動減衰のためのアブソーバとして機能させるシステム、つまり、いわゆる電磁式サスペンションシステム(以下、「電磁サス」と略する場合がある)が検討されている。上記の流体スプリングによる車高調整は、車高を変化させる速度が低いという問題があるが、下記特許文献1に記載されているサスペンションシステムは、上述した流体スプリングと電磁サスとの両者を備え、それら流体スプリングと電磁サスとの両者を協働させて車高調整を行うことで、車高調整を迅速に行うことが可能とされている。
特開2006−117210号公報
一般的に、車高を変更する際の流体スプリングの制御として、実際の車高が目標車高となるまでは流体を流入あるいは流出させつづけ、目標車高となった時点で流体の流入・流出を止めるような制御が採用される場合が多い。例えば、そのような流体スプリングと電磁サスとの両者を協働させて車高調整を行うサスペンションシステムの場合、流体スプリングに比較して車高を変化させる速度の高い電磁式アクチュエータによって目標車高まで到達させれば、その到達時点で流体スプリングに対する流体の流入・流出が止まることになり、その車高を維持するためには、電磁式アクチェータがその時点での駆動力を発揮し続けなければならない。そのため、システムの消費電力が大きくなり、そのシステムは、その点において車高調整の効率が悪いという問題を抱える。上記特許文献に記載のシステムでは、流体スプリング内の圧力を検出可能な圧力センサを設け、その圧力に基づいて流体スプリングへの流体の流入・流出を制御するようにされており、電磁式アクチュエータの駆動力によって車体が目標車高に到達した後も、所定の圧力まで流体の流入・流出が継続して行われる。そして、その後の流体スプリング内の圧力の変化に応じて、電磁式アクチュエータの駆動力が低減するようにされることで、上記の問題に対処している。この対処手段は一例に過ぎず、その手段に拠らずとも、効率的な車高調整を行なうことが可能である。本発明は、そのような実情に鑑みてなされたものであり、効率的な車高調整を行うことが可能なサスペンションシステムを提供することを課題とする。
上記課題を解決するために、本発明の車両用サスペンションシステムは、流体スプリングと電磁式アクチュエータとを協働させて車高調整を行う際、車体車輪間距離が目標離間距離となるまで流体スプリングに対して流体を流入・流出させるような制御を実行するとともに、電磁式アクチュエータの力を利用して、目標離間距離より手前に設定された目前離間距離まで車体車輪間距離を変化させ、その目前離間距離となった後に電磁式アクチェータの力を低減させるように制御するように構成される。
本発明のサスペンションシステムは、圧力センサを設ける必要がない等、比較的簡便に構成することができ、また、比較的簡便な制御によって、車高を維持するために必要な力を流体スプリングが発揮する力に依存させることができるため、本サスペンションシステムによれば、システムの電力の消費を抑えることが可能である。つまり、本発明のサスペンションシステムは、効率的な車高調整を行うことが可能なシステムとなるのである。
発明の態様
以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、それらの発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から何某かの構成要素を削除した態様も、請求可能発明の一態様となり得るのである。なお、以下の各項において、(1)項ないし(5)項の各々が、請求項1ないし請求項5の各々に相当する。
(1)車体と車輪とを相互に流体の圧力によって弾性的に支持し、その流体が流入・流出させられることによって上下方向における車体と車輪との離間距離である車体車輪間距離を変更可能な構造とされた流体スプリングと、
その流体スプリングと並列的に設けられ、電動モータを有してその電動モータの力によって車体と車輪との接近・離間方向の力であるアクチュエータ力を発揮するアクチュエータと、
車体車輪間距離を目標離間距離に変更すべく、前記流体スプリングに対する流体の流入・流出を制御するとともに、前記電動モータの作動を制御することによって前記アクチュエータが発揮するアクチュエータ力を制御する制御装置と
を備えた車両用サスペンションシステムであって、
前記制御装置が、
前記流体スプリングに対して、実際の車体車輪間距離が前記目標離間距離となるまで流体を流入・流出させるように制御するとともに、
前記アクチュエータに発揮させるアクチュエータ力を、実際の車体車輪間距離が前記目標離間距離より手前に設定された目前離間距離となるように制御し、かつ、実際の車体車輪間距離が前記目前離間距離となった後に低減させるように制御するものである車両用サスペンションシステム。
アクチュエータの制御目標を、目標離間距離とすれば、車体車輪間距離が目標離間距離となった時点で、流体スプリングに対する流体の流入・流出が停止してしまうことになる。それに対し、本項に記載の態様では、アクチュエータの制御に関し、上記目前離間距離、つまり、上記目標離間距離よりも車高変更を開始する時点における実際の車体車輪間距離に近くなるように設定された距離を、制御目標として採用する。そのため、車体車輪間距離が目前離間距離となった後も、流体スプリングに対する流体の流入・流出を継続させることができる。そして、車体車輪間距離が目前離間距離となった後にアクチュエータ力を低減させるため、その後における目標離間距離を維持するのに必要な力を、流体スプリングに依存させることができる。したがって、本項の態様のシステムによれば、電力消費を抑えることが可能であり、また、アクチュエータ力を利用することで迅速な車高調整が可能である。つまり、本項の態様によれば、効率的な車高調整が可能となる。なお、前述したように、流体スプリング内の流体の圧力を検出するためのセンサを設け、それによって検出された圧力に基づいて、アクチュエータおよび流体スプリングを制御することも可能であるが、本項の態様では、そのようなセンサを設ける必要がないため、本項のシステムによれば、構成の簡便化を図ることが可能であり、また、コストアップを回避することも可能である。
本項の態様における「流体スプリング」には、例えば、流体としての圧縮空気が圧力室に封入されたダイヤフラム式のエアスプリングや、流体としての作動油が充満するシリンダとそのシリンダと連通するアキュムレータとを含んで構成される油圧式スプリング等、種々のスプリングを採用することが可能である。
本項の態様における「アクチュエータ」は、例えば、アクチュエータ力を車体と車輪との接近・離間に対する抵抗力として作用させることが可能なもの、つまり、振動に対する減衰力を発生させる電磁式アブソーバとして機能するものを採用可能である。また、本態様のシステムは、車体のロール,ピッチ等の抑制を目的として、アクチュエータを制御するようなシステムとすることもできる。また、本項における「電動モータ」は、回転モータであってもよく、リニアモータであってもよい。
本項に記載の態様において、アクチュエータ力を低減させる場合、アクチュエータ力を0でない大きさに低減させてもよく、また、アクチュエータ力を0となるように低減させてもよい。つまり、アクチュエータ力を発揮させないようにしてもよい。アクチュエータの消費電力を低減するという観点からすれば、アクチュエータ力を0となるように低減することが望ましい。また、アクチュエータ力を低減させる場合、段階的に低減させてもよく、連続的に低減させてもよい。さらに、アクチュエータ力を低減させるタイミング、つまり、低減の開始時点は、実際の車体車輪間距離が前記目前離間距離となった時点であってもよく、その時点よりある程度の時間が経過した時点であってもよい。すなわち、本項にいう「実際の車体車輪間距離が目前離間距離になった後」とは、実際の車体車輪間距離が目前離間距離になった時点以後を意味する。
(2)前記制御装置が、実際の車体車輪間距離の前記目前離間距離に対する偏差に基づいて、前記アクチュエータに発揮させるアクチュエータ力を決定するものである(1)項に記載の車両用サスペンションシステム。
本項に記載の態様は、例えば、偏差が大きくなるほどアクチュエータ力を大きくすることが可能であり、詳しく言えば、車高調整の開始時点では、アクチュエータ力は大きく車高調整が迅速に行われ、目前離間距離に近づくほど、アクチュエータ力が小さく車高調整はゆっくりとなる。したがって、本項の態様によれば、スムーズな車高調整動作が行われ、車高調整時においても車両の良好な乗り心地が担保される。
(3)前記制御装置が、前記アクチュエータに発揮させるアクチュエータ力の決定において用いられる制御ゲインを変更可能に構成され、実際の車体車輪間距離が前記目前離間距離となった後に、その制御ゲインを低減することでアクチュエータ力を低減させるものである(1)項または(2)項に記載の車両用サスペンションシステム。
制御ゲインを変更させれば、アクチュエータ力の大きさを比較的容易な制御によって変更可能である。したがって、本項の態様によれば、例えば、流体スプリングに対しての流体の流入・流出量,実際の車体車輪間距離が目前離間距離となった後の経過時間等に応じて制御ゲインを低減することで、アクチュエータ力を適切に低減させることが可能である。
(4)前記制御装置が、前記アクチュエータに発揮させるアクチュエータ力の向きが反転した後に、そのアクチュエータ力を発揮させないように制御するものである(1)項ないし(3)項のいずれかに記載の車両用サスペンションシステム。
車体車輪間距離が、アクチュエータによって目前離間距離とされた後に、流体スプリングによって目前離間距離から目標離間距離に近づいた場合には、アクチュエータ力の向きは反転し、車高調整を妨げる力となる。本項に記載の態様によれば、アクチュエータ力の向きが反転した後にアクチュエータ力が発揮しないようにされるため、車体車輪間距離を、流体スプリングによって確実に目標離間距離とすることが可能である。なお、そのアクチュエータ力を発揮しないようにするタイミングは、アクチュエータ力の向きが反転した時点であってもよく、その時点より後であってもよい。例えば、アクチュエータ力の向きが反転した時点から、アクチュエータ力を漸減させて、最終的にアクチュエータ力を発揮させないような制御を実行することも可能である。
(5)前記制御装置が、実際の車体車輪間距離が前記目前離間距離となった後に、前記アクチュエータに発揮させるアクチュエータ力を漸減させるものである(1)項ないし(4)項のいずれかに記載の車両用サスペンションシステム。
本項に記載の態様は、例えば、流体スプリングに対しての流体の流入・流出量の増加に応じて、アクチュエータ力を徐々に小さくする態様とすることが可能である。そのような態様とすれば、車高調整時に車体と車輪とを相互に支持する力、つまり、車体と車輪とを接近・離間させる力が急変することはなく、車高調整時の車体の挙動を滑らかなものとすることが可能である。
(6)前記目前離間距離が、前記目標離間距離から10mm以内の距離に設定された(1)項ないし(5)項のいずれかに記載の車両用サスペンションシステム。
(7)前記目前離間距離が、前記目標離間距離から、車体車輪間距離の調整を開始する前の実際の車体車輪間距離と前記目標離間距離との差の15%以内の距離に設定された(1)項ないし(5)項のいずれかに記載の車両用サスペンションシステム。
上記2つの項に記載の態様は、目前離間距離を具体的に限定した態様である。目標離間距離を上記態様のように設定すれば、効率のよい車高調整を行うことができる。なお、車高調整を迅速に行うという観点からすれば、できる限り目標離間距離付近まで、アクチュエータ力をも利用した車高調整が行われることが望ましい。したがって、前者の態様の場合には、目前離間距離が、目標離間距離との差が5mm以内であることがさらに望ましく、後者の態様の場合には、車高調整を開始する前の車体車輪間距離と目標離間距離との差の10%以内であることがさらに望ましい。
(8)前記制御装置が、実際の車体車輪間距離が前記目前離間距離となった後に、前記目前離間距離を前記目標離間距離に漸近させるものである(1)項ないし(7)項のいずれかに記載の車両用サスペンションシステム。
本項に記載の態様は、例えば、流体スプリングに対しての流体の流入・流出量の増加に応じて、目前離間距離を目標離間距離に徐々に近づける態様とすることが可能である。そのような態様とすれば、アクチュエータ力の向きが反転しないように、目前離間距離を目標離間距離に近づけて、アクチュエータ力が車高調整を妨げる力として作用しないようにすることも可能である。また、実際の車体車輪間距離の目前離間距離に対する偏差に基づいてアクチュエータ力を決定する前述の制御が行われる場合には、アクチュエータ力の向きが反転して、アクチュエータ力が車高調整を妨げる力となることが予想されるときに、目前離間距離を目標離間距離に近づけることでその車高調整を妨げる力を比較的小さくすることも可能である。つまり、本項の態様によれば、実際の車体車輪間距離が前記目前離間距離となった後に、流体スプリングと比較的小さなアクチュエータ力によって、車体車輪間距離を確実に目標離間距離に近づけることが可能となる。
(9)前記制御装置が、前記アクチュエータに発揮させるアクチュエータ力の制御を、車体と車輪とを離間させる場合にのみ行うものである(1)項ないし(8)項のいずれかに記載の車両用サスペンションシステム。
流体スプリングから流体を流出させて行う車高調整の速度は比較的高く、車体と車輪とを接近させる場合には、流体スプリングのみで車高調整を行うようにしても、効率のよい車高調整を実施できる。逆に、流体スプリングに流体を流入させて行う車高調整の速度は比較的低くならざるを得えない。本項の態様はそのことを考慮したものであり、本項の態様によれば、車体と車輪とを接近させる場合にはアクチュエータを使用しないため、アクチュエータによる消費電力を効果的に抑えることが可能である。
(10)前記アクチュエータが、アクチュエータ力を車体と車輪との接近・離間に対する抵抗力として作用させることが可能な電磁式アブソーバである(1)項ないし(9)項のいずれかに記載の車両用サスペンションシステム。
本項に記載の態様は、当該システムが、アクチュエータをアブソーバとして機能させることで、いわゆる電磁式サスペンションシステムとして構成された態様である。
(11)前記アクチュエータが、
(a)ばね上部材とばね下部材との一方に対して相対移動不能とされた雄ねじ部と、(b)前記ばね上部材と前記ばね下部材との他方に対して相対移動不能とされ、前記雄ねじ部と螺合するとともに、車体と車輪との接近・離間に伴って前記雄ねじ部と相対回転する雌ねじ部とを有し、前記電動モータにより前記雄ねじ部と前記雌ねじ部とに相対回転力を付与することによって、アクチュエータ力を発揮させる構造とされた(1)項ないし(10)項のいずれかに記載の車両用サスペンションシステム。
本項に記載の態様は、電磁式アクチュエータを、いわゆるねじ機構を採用したものに限定した態様である。本項の態様によれば、そのねじ機構を構成する雄ねじ部と雌ねじ部との相対回転に対する抵抗力を電動モータによって発生させることで、車体と車輪との接近・離間に対する減衰力を効果的に発生させることが可能である。ばね上部材側,ばね下部材側のいずれに雄ねじ部を設け、いずれに雌ねじ部を設けるかは、任意である。さらに、雄ねじ部を回転不能とし、雌ねじ部を回転可能とするような構成としてもよく、逆に、雌ねじ部を回転不能とし、雄ねじ部を回転可能とするような構成としてもよい。
以下、請求可能発明のいくつかの実施例を、図を参照しつつ詳しく説明する。なお、請求可能発明は、下記実施例の他、前記〔発明の態様〕の項に記載された態様を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。
(A)第1実施例
≪サスペンションシステムの構成および機能≫
図1に、第1実施例の車両用サスペンションシステム10を模式的に示す。本サスペンションシステム10は、前後左右の車輪12の各々に対応する独立懸架式の4つのサスペンション装置を備えており、それらサスペンション装置の各々は、サスペンションスプリングとショックアブソーバとが一体化されたスプリング・アブソーバAssy20を有している。車輪12,スプリング・アブソーバAssy20は総称であり、4つの車輪のいずれに対応するものであるかを明確にする必要のある場合には、図に示すように、車輪位置を示す添え字として、左前輪,右前輪,左後輪,右後輪の各々に対応するものにFL,FR,RL,RRを付す場合がある。
スプリング・アブソーバAssy20は、図2に示すように、車輪12を保持するばね下部材としてのサスペンションロアアーム22と、車体に設けられたばね上部材としてのマウント部24との間に、それらを連結するようにして配設された電磁式アブソーバであるアクチュエータ26と、それと並列的に設けられた流体スプリングとしてのエアスプリング28とを備えている。
アクチュエータ26は、アウターチューブ30と、そのアウターチューブ30に嵌入してアウターチューブ30の上端部から上方に突出するインナチューブ32とを含んで構成されている。アウターチューブ30は、それの下端部に設けられた取付部材34を介してロアアーム22に連結され、一方、インナチューブ32は、それの上端部に形成されたフランジ部36においてマウント部24に連結されている。アウターチューブ30には、その内壁面にアクチュエータ26の軸線の延びる方向(以下、「軸線方向」という場合がある)に延びるようにして1対のガイド溝38が設けられるとともに、それらのガイド溝38の各々には、インナチューブ32の下端部に付設された1対のキー40の各々が嵌まるようにされており、それらガイド溝38およびキー40によって、アウターチューブ30とインナチューブ32とが、相対回転不能、軸線方向に相対移動可能とされている。ちなみに、アウターチューブ30の上端部には、シール42が付設されており、後に説明する圧力室44からのエアの漏れが防止されている。
また、アクチュエータ26は、ねじ溝が形成された雄ねじ部としてのねじロッド50と、ベアリングボールを保持してそのねじロッド50と螺合する雌ねじ部としてのナット52とを含んで構成されたボールねじ機構と、電動モータ54(3相のDCブラシレスモータであり、以下、単に「モータ54」という場合がある)とを備えている。モータ54はモータケース56に固定して収容されるとともに、そのモータケース56の鍔部がマウント部24の上面側に固定されており、モータケース56の鍔部にインナチューブ32のフランジ部36が固定されていることで、インナーチューブ32は、モータケース56を介してマウント部24に連結されている。モータ54の回転軸であるモータ軸58は、ねじロッド50の上端部と一体的に接続されている。つまり、ねじロッド50は、モータ軸58を延長する状態でインナチューブ32内に配設され、モータ54によって回転させられる。一方、ナット52は、ねじロッド50と螺合させられた状態で、アウタチューブ30の内底部に付設されたナット支持筒60の上端部に固定支持されている。
エアスプリング28は、マウント部24に固定されたハウジング70と、アクチュエータ26のアウタチューブ30に固定されたエアピストン72と、それらを接続するダイヤフラム74とを備えている。ハウジング70は、概して有蓋円筒状をなし、蓋部76に形成された穴にアクチュエータ26のインナチューブ32を貫通させた状態で、蓋部76の上面側においてマウント部24の下面側に固定されている。エアピストン72は、概して円筒状をなし、アウタチューブ30を嵌入させた状態で、アウタチューブ30の上部に固定されている。それらハウジング70とエアピストン72とは、ダイヤフラム74によって気密性を保ったまま接続されており、それらハウジング70とエアピストン72とダイヤフラム74とによって圧力室44が形成されている。その圧力室44には、流体としての圧縮エアが封入されている。このような構造から、エアスプリング28は、その圧縮エアの圧力によって、ロアアーム22とマウント部24、つまり、車輪12と車体とを相互に弾性的に支持しているのである。
車体と車輪12とが接近・離間する場合、アウターチューブ30とインナチューブ32とは、軸線方向に相対移動する。その相対移動に伴って、ねじロッド50とナット52とが軸線方向に相対移動するとともに、ねじロッド50がナット52に対して回転する。モータ54は、ねじロッド50に回転トルクを付与可能とされ、この回転トルクによって、車体と車輪12との接近・離間に対して、その接近・離間を阻止する方向の抵抗力を発生させることが可能とされている。この抵抗力が、車体と車輪12との接近・離間に対する減衰力となることで、アクチュエータ26は、いわゆるアブソーバ(「ダンパ」と呼ぶこともできる)として機能するものとなっている。また、アクチュエータ26は、アクチュエータ力によって、車体と車輪12とを接近・離間させる機能をも有している。すなわち、車体と車輪12との接近・離間方向のアクチュエータ力を推進力として作用させることが可能とされているのである。この機能により、旋回時の車体のロール,加速・減速時の車体のピッチ等を効果的に抑制することや、車両の車高を調整することが可能とされているのである。
なお、アウタチューブ30の上端内壁面には環状の緩衝ゴム77が貼着されており、アウタチューブ30の内部底壁面にも緩衝ゴム78が貼着されている。車体と車輪12とが接近・離間する際、それらが離間する方向(以下、「リバウンド方向」という場合がある)にある程度相対移動した場合には、キー40が緩衝ゴム77を介してアウターチューブ30の縁部79に当接し、逆に、車体と車輪12とが接近する方向(以下、「バウンド方向」という場合がある)にある程度相対移動した場合には、ねじロッド50の下端が緩衝ゴム78を介してアウタチューブ30の内部底壁面に当接するようになっている。つまり、スプリング・アブソーバAssy20は、車体と車輪12との接近・離間に対するストッパ(いわゆるバウンドストッパおよびリバウンドストッパ)を有しているのである。
サスペンションシステム10は、各スプリング・アブソーバAssy20が有するエアスプリング28に対して流体としてのエア(空気)を流入・流出させるための流体流入・流出装置、詳しく言えば、エアスプリング28の圧力室44に接続されて、その圧力室44にエアを供給し、圧力室44からエアを排出するエア供給・排出装置80を備えている。図3に、そのエア供給・排出装置80の模式図を示す。エア供給・排出装置80は、圧縮エアを圧力室44に供給するコンプレッサ82を含んで構成される。コンプレッサ82は、ポンプ84と、そのポンプ84を駆動するポンプモータ86とを備え、そのポンプ84によって、フィルタ88,逆止弁90を経て大気からエアを吸入し、そのエアを加圧して逆止弁92を介して吐出するものである。そのコンプレッサ82は、個別制御弁装置100を介して前記4つのエアスプリング28の圧力室44に接続されている。個別制御弁装置100は、各エアスプリング28の圧力室44に対応して設けられてそれぞれが常閉弁である4つの個別制御弁102を備え、各圧力室44に対する流路の開閉を行うものである。なお、それらコンプレッサ82と個別制御弁装置100とは、圧縮エアの水分を除去するドライヤ104と、絞り106と逆止弁108とが互いに並列に設けられた流通制限装置110とを介して、共通通路112によって接続されている。また、その共通通路112は、コンプレッサ82とドライヤ104との間から分岐しており、その分岐する部分に圧力室44からエアを排気するための排気制御弁114が設けられている。
上述の構造から、本サスペンションシステム10は、エア供給・排出装置80によって、各エアスプリング28の圧力室44内のエア量を調整することが可能とされており、エア量の調整によって、上下方向における車体と車輪12との距離(以下、「車体車輪間距離」という場合がある)を変化させることが可能とされている。具体的に言えば、圧力室44のエア量を増加させて車体車輪間距離を増大させ、エア量を減少させて車体車輪間距離を減少させることが可能とされている。
本サスペンションシステム10は、サスペンション制御装置によって、スプリング・アブソーバAssy20の作動が制御される。このサスペンション制御装置は、アクチュエータ26の作動、つまり、アクチュエータ力を制御するアクチュエータ電子制御ユニット(アクチュエータECU)142と、エアスプリング28の作動、つまり、エア供給・排出装置80を制御するエアスプリング電子制御ユニット(エアスプリングECU)144とを含んで構成される。
エアスプリングECU144は、CPU,ROM,RAM等を備えたコンピュータを主体として構成されたコントローラ146と、エア供給・排出装置80の駆動回路としてのドライバ148とを有している。エア供給・排出装置80が有する各制御弁102,ポンプモータ86等には、そのドライバ148とコンバータ150とを介して、バッテリ152から電力が供給される。また、コントローラ146には、車両走行速度(以下、「車速」と略す場合がある)を検出するための車速センサ154,各車輪12と車体24との距離を検出する4つのストロークセンサ156,運転者の操作によって車高を変更するための車高変更スイッチ158が接続されている(図1では、それぞれ「v」,「St」,「HSw」と表されている)。コントローラ146のコンピュータが備えるROMには、後に説明するところの車高調整に関するプログラム,各種のデータ等が記憶されている。なお、本サスペンションシステム10では、運転者の選択可能な設定車高は、設定標準車高(Mid車高),設定標準車高より高い車高として設定された設定高車高(Hi車高),設定標準車高より低い車高として設定された設定低車高(Low車高)の3つが設定されており、運転者の車高変更スイッチ158の操作によって所望の設定車高に選択的に変更される。この車高変更スイッチ158は、設定車高を段階的に高い側の設定車高あるいは低い側の設定車高にシフトさせるような指令、つまり、車高増加指令あるいは車高減少指令が発令される構造とされている。
一方、アクチュエータECU142は、CPU,ROM,RAM等を備えたコンピュータを主体として構成されているコントローラ160と、各アクチュエータ26が有するモータ54に対応する駆動回路としてのインバータ162とを有している。インバータ162は、コンバータ168を介してバッテリ152に接続されており、各モータ54には、電力供給源としてのバッテリ152から電力が供給される。なお、モータ54は定電圧駆動されることから、モータ54への供給電力量は、供給電流量を変更することによって変更され、モータ54の力は、その供給電流量に応じた力となる。ちなみに、供給電流量は、各インバータ162がPWM(Pulse Width Modulation)によるパルスオン時間とパルスオフ時間との比(デューティ比)を変更することによって行われる。コントローラ160には、さらに、上記車速センサ154とともに、ステアリングホイールの操作角を検出するための操作角センサ170,車体に実際に発生する前後加速度である実前後加速度を検出する前後加速度センサ172,車体に実際に発生する横加速度である実横加速度を検出する横加速度センサ174,各車輪12に対応する車体の各マウント部24の縦加速度を検出する4つの縦加速度センサ176,各車輪12の縦加速度を検出する4つの縦加速度センサ178,アクセルスロットルの開度を検出するスロットルセンサ180,ブレーキのマスタシリンダ圧を検出するブレーキ圧センサ182,モータ54の回転角を検出する回転角センサ184が接続されている(図1では、それぞれ「δ」,「Gx」,「Gy」,「Gzu」,「GzL」,「Sr」,「Br」,「ω」と表されている)。コントローラ160のコンピュータが備えるROMには、後に説明するところのアクチュエータ力の制御に関するプログラム,各種のデータ等が記憶されている。なお、アクチュエータECU142のコントローラ160と上述したエアスプリングECU144のコントローラ146とは、互いに通信可能とされている。
≪サスペンションシステムの制御≫
本サスペンションシステム10では、4つのスプリング・アブソーバAssy20をそれぞれ独立して制御することが可能となっている。それらスプリング・アブソーバAssy20の各々において、アクチュエータ26のアクチュエータ力が独立して制御されて、車体および車輪12の振動、つまり、ばね上振動およびばね下振動を減衰するための制御(以下、「振動減衰制御」という場合がある),車体のロールを抑制する制御(以下「ロール抑制制御」という場合がある),車体のピッチを抑制する制御(以下、「ピッチ抑制制御」という場合がある)が実行される。また、アクチュエータ26とエアスプリング28とが協働させられて、車体車輪間距離を調整する制御(以下、「車高調整制御」という場合がある)が実行される。上記振動減衰制御,ロール抑制制御,ピッチ抑制制御は、アクチュエータ力を、それぞれ、減衰力,ロール抑制力,ピッチ抑制力として作用させることによって実行される。詳しく言えば、振動減衰制御,ロール抑制制御,ピッチ抑制制御の各制御ごとのアクチュエータ力の成分である減衰力成分,ロール抑制力成分,ピッチ抑制力成分を合計して目標アクチュエータ力を決定し、アクチュエータ26が、その目標アクチュエータ力を発揮するように制御されることで一元的に実行される。また、車高調整制御は、エアスプリング28のエア量を調整するエア供給・排出装置80を制御するとともに、車高を調整させるアクチュエータ力成分である車高調整成分を加えた目標アクチュエータ力を発揮するようにアクチュエータ26を制御することで実行される。以下に、振動減衰制御,ロール抑制制御,ピッチ抑制制御の各々を、それら各々におけるアクチュエータ力成分の決定方法を説明し、さらに、車高調整制御を、エア供給・排出装置80の作動、および、車高調整成分の決定方法を詳しく説明する。なお、以下の説明において、アクチュエータ力およびそれの成分は、車体と車輪12とを離間させる方向(リバウンド方向)のものが正の値,車体と車輪12とを接近させる方向(バウンド方向)のものが負の値となるものとして扱うこととする。
i)振動減衰制御
振動減衰制御では、車体および車輪12の振動を減衰するためにその振動の速度に応じた大きさのアクチュエータ力を発揮させるべく、減衰力成分FVが決定される。具体的には、車体のマウント部24に設けられた縦加速度センサ176によって検出され計算される車体のマウント部24の上下方向の動作速度、いわゆる、ばね上速度VUと、ロアアーム22に設けられた縦加速度センサ178によって検出され計算される車輪の上下方向の動作速度、いわゆる、ばね下速度VLとに基づいて、次式に従って、減衰力成分FVが演算される。
V=CU・VU−CL・VL
ここで、CUは、車体のマウント部24の上下方向の動作速度に応じた減衰力を発揮させるためのゲインであり、CLは、車輪12の上下方向の動作速度に応じた減衰力を発揮させるためのゲインである。つまり、CU,CLは、いわゆる減衰係数である。なお、減衰力成分FVは、他の手法で決定することも可能である。例えば、車輪と車体との相対速度の指標値として、モータ54に設けられている回転角センサ184の検出値から得られたモータ54の回転速度Vに基づき、次式に従って決定することも可能である。
V=C・V(C:減衰係数)
ii)ロール抑制制御
ロール抑制制御では、車両の旋回時において、その旋回に起因するロールモーメントに応じて、旋回内輪側のアクチュエータ26にバウンド方向のアクチュエータ力を、旋回外輪側のアクチュエータ26にリバウンド方向のアクチュエータ力を、それぞれ、ロール抑制力として発揮させる。具体的に言えば、まず、車体が受けるロールモーメントを指標する横加速度として、ステアリングホイールの操舵角δと車速vに基づいて推定された推定横加速度Gycと、実測された実横加速度Gyrとに基づいて、制御に利用される横加速度である制御横加速度Gy*が、次式に従って決定される。
Gy*=K1・Gyc+K2・Gyr (K1,K2:ゲイン)
そのように決定された制御横加速度Gy*に基づいて、ロール抑制力成分FRが、次式に従って決定される。
R=K3・Gy* (K3:ゲイン)
iii)ピッチ抑制制御
ピッチ抑制制御では、車体の制動時等に発生する車体のノーズダイブに対しては、そのノーズダイブを生じさせるピッチモーメントに応じて、前輪側のアクチュエータ26FL,FRにリバウンド方向のアクチュエータ力を、後輪側のアクチュエータ26RL,RRにバウンド方向のアクチュエータ力をそれぞれピッチ抑制力として発揮させる。また、車体の加速時等に発生する車体のスクワットに対しては、そのスクワットを生じさせるピッチモーメントに応じて、後輪側のアクチュエータ26RL,RRにリバウンド方向のアクチュエータ力を、前輪側のアクチュエータ26FL,FRにバウンド方向のアクチュエータ力をピッチ抑制力として発揮させる。具体的には、車体が受けるピッチモーメントを指標する前後加速度として、実測された実前後加速度Gxが採用され、その実前後加速度Gxに基づいて、ピッチ抑制力成分FPが、次式に従って決定される。
P=K4・Gx (K4:ゲイン)
iv)車高調整制御
車高調整制御では、原則的に運転者の意思に基づいて設定された目標となる車高と実際の車高との関係に応じて、アクチュエータ26とエアスプリング28とを協働させて、車高が調整される。まず、エアスプリング28の制御について詳しく言えば、コントローラ146内に格納された目標となる車高、具体的には、目標となる車体車輪間距離h*(以下、「目標離間距離h*」という場合がある)とストロークセンサ156により検出される実車体車輪間距離hとが比較され、エアスプリング28の圧力室44のエア量が調整されることで、車高が調整される。車高を上げる場合のエア供給・排出装置80の作動(以下、「車高増加作動」という場合がある)では、まず、ポンプモータ94が作動させられるとともに、個別制御弁102が開弁されることで、圧縮エアがエアスプリング28の圧力室44に供給される。その状態が継続された後、車体車輪間距離が目標距離h*となった場合に、個別制御弁102が閉弁され、車高を上げる必要があったすべての車輪12についての車体車輪間距離が目標距離h*となった後に、ポンプモータ94の作動が停止させられる。車高を下げる場合のエア供給・排出装置80の作動(以下、「車高減少作動」という場合がある)では、まず、排気制御弁114が開弁されるとともに、個別制御弁102が開弁されることで、エアスプリング28の圧力室44からエアが大気に排気される状態とされる。その後、車体車輪間距離が目標距離h*となった場合に、個別制御弁102が閉弁され、車高を下げる必要があったすべての車輪12についての車体車輪間距離が目標距離h*となった後に、排気制御弁114が閉弁される。ただし、上記の車高増加作動,車高減少作動は、特定の禁止条件(以下、「車高調整禁止条件」という場合がある)を充足する場合には実行が禁止される。具体的には、車体にロールモーメント,ピッチモーメントが作用していること、車体と車輪12との少なくとも一方に振動が発生していること、4輪の車体車輪間距離がある許容範囲を越えて揃っていないことが、1つでも充足されると、エア供給・排出装置80の作動が禁止される。その場合においては、個別制御弁102が閉弁され、ポンプモータ94の作動の停止あるいは排気制御弁114の閉弁が行われ、エアスプリング28の圧力室44内のエア量が維持される。
また、車高調整制御では、上述したエアスプリング28のエア量の調整とともに、アクチュエータ26に車高を調整する力を発揮させる。なお、エアスプリング28からエアを流出させて行う車高減少作動の速度は比較的高く、逆に、エアスプリング28にエアを流入させて行う車高増加作動の速度は比較的低くならざるを得えないことを考慮して、本実施例においては、車高増加作動の場合にのみ、アクチュエータ26に車高を調整する力を発揮させるのであり、詳しくは、アクチュエータ26に発揮させるアクチュエータ力の車高調整成分FHが決定される。その車高調整成分FHの決定において、アクチュエータ26の目標となる車高は、エアスプリング28の目標車高より手前に設定されている。具体的には、エアスプリング28の目標離間距離h*より設定距離δh(本システムでは5mmとされている)だけ手前である目前離間距離hA *(=h*−δh)が、アクチュエータ26の制御目標とされる。そして、車高調整成分FHが、実車体車輪間距離hの目前離間距離hA *からの偏差である離間距離偏差Δh(=hA *−h)に基づいて、次式に従って決定されるのである。
H=K5・Δh (K5:ゲイン)
上記車高調整成分FHは、実車体車輪間距離hが目前離間距離hA *となった後、詳しくは、実車体車輪間距離hがエアスプリング28によって目前離間距離hA *を超えて目標離間距離h*に近づいた場合に、低減させられるようになっている。そのような場合には、離間距離偏差Δhが負となり、車高調整成分FHの方向がリバウンド方向からバウンド方向へ反転することとなるが、車高調整成分FHが低減させられることによって、その車高調整成分FHがエアスプリング28による車高増加を妨げるものとして作用することが抑制される。そして、車高調整成分FHの方向が反転した後には、次式に従ってゲインが補正されることで、車高調整成分FHが低減させられる。
5’=α・K5
図4に、車高調整成分FHの方向が反転した後の経過時間tcと補正係数αとの関係を示す。補正係数αが図に示すように変更されることで、ゲインK5は[0]まで漸減させられるのであり、つまり、車高調整成分FHが[0]まで漸減させられるのである。
車高調整中に先に述べた特定の禁止条件を充足する状態となった場合、この車高調整制御におけるアクチュエータ26の制御においては、その禁止された時点での車高を維持するように、その禁止された時点での車高調整成分FHが維持されるようになっている。また、車高調整成分FHの方向が反転した後に禁止条件を充足する状態となった場合も同様に、禁止された時点での車高調整成分FHが維持されるようになっている。なお、その場合、車高調整成分FHの方向が反転した後の時間tcのカウントが禁止され、補正係数αの漸減も禁止されるようになっている。
v)アクチュエータ力とモータの作動制御
上述のように減衰力成分FV,ロール抑制力成分FR,ピッチ抑制力成分FP、および車高調整成分FHが決定されると、次式に従って目標アクチュエータ力Fが決定される。
F=FV+FR+FP+FH
その決定された目標アクチュエータ力Fを発揮するようにアクチュエータ26が制御される。つまり、上記振動減衰制御,ロール抑制制御,ピッチ抑制制御、および、車高調整制御におけるアクチュエータ26の制御は、その目標アクチュエータ力Fを発揮するように制御されることで一元的に実行されるのである。そして、目標アクチュエータ力Fを発揮させるためのモータ54の作動制御は、インバータ162によって行われる。詳しく言えば、決定された目標アクチュエータ力Fに基づくモータ力方向およびデューティ比についての指令がインバータ162に発令され、インバータ162の備えるスイッチング素子が切換えられて、電動モータ54が、その発令されたモータ力方向に、そのデューティ比に応じた大きさのアクチュエータ力を発揮するのである。
≪制御プログラム≫
上述の車高調整制御におけるエアスプリング28の制御は、図5にフローチャートを示すエアスプリング制御プログラムが、イグニッションスイッチがON状態とされている間、短い時間間隔(例えば、数msec〜数十msec)をおいてコントローラ146により繰り返し実行されることによって行われる。また、上述のようなアクチュエータ力の制御は、図7にフローチャートを示すアクチュエータ制御プログラムが、イグニッションスイッチがON状態とされている間、短い時間間隔(例えば、数msec〜数十msec)をおいてコントローラ160により繰り返し実行されることによって行われる。なお、それら2つのプログラムは、並行して実行される。以下に、それぞれの制御のフローを、図に示すフローチャートを参照しつつ、簡単に説明する。
i)エアスプリング制御プログラム
車高調整制御では、目標となる車高を示すフラグである目標車高フラグfHが用いられ、そのフラグfHに基づく車高調整が実行される。フラグfHのフラグ値0,1,2は、それぞれLow車高,Mid車高,Hi車高に対応するものとされており、フラグfHに対して、目標離間距離がh0 *,h1 *,h2 *とされるのである。なお、本制御プログラムに従う処理のうち、車高を調整する処理、すなわち、各車輪12について車体車輪間距離を調整する処理は、各車輪12に対して個別に実行される。
エアスプリング制御プログラムでは、まず、ステップ1(以下、「S1」と略す、他のステップも同様である)において、目標車高決定サブルーチンが実行される。このサブルーチンは、図6にフローチャートを示す制御を行うルーチンである。このルーチンでは、車速vが閾速度v0以上となっている場合には、車両の安定性に鑑み目標車高フラグfHのフラグ値が0とされ、それ以外の場合には、車高変更スイッチ158の操作に基づく指令が車高増加指令あるいは車高減少指令であるかに応じて、高車高側あるいは低車高側のいずれかに目標車高フラグfHのフラグ値が変更され、目標離間距離h*が決定される。続いて、メインプログラムのS2において、前述した車高調整禁止条件を充足しているか否かが判断され、充足していないと判断された場合には、S5,6において、各車輪に対応する現時点での実車体車輪間距離hと、目標車高フラグfHのフラグ値に応じた目標離間距離h*とがそれぞれ比較判定される。車体車輪間距離を増加させる必要があると判定された場合には、S7において、前述した車高増加作動に従って、車体車輪間距離が増加するように調整される。逆に、車体車輪間距離を減少させる必要があると判定された場合には、S8において、前述した車高減少作動に従って、車体車輪間距離が減少するように調整される。また、車高調整禁止条件を充足している場合、若しくは車体車輪間距離を変化させる必要がないと判定された場合には、S9において、上述したようにエア量が維持される。なお、車高調整禁止条件を充足していると判定された場合に、禁止フラグfが1とされ、充足していないと判定された場合に、禁止フラグfが0とされる。以上の一連の処理の後、本プログラムの1回の実行が終了する。
ii)アクチュエータ制御プログラム
アクチュエータ制御プログラムは、4つの車輪12にそれぞれ設けられたスプリング・アブソーバAssy20のアクチュエータ26の各々に対して実行される。以降の説明においては、説明の簡略化に配慮して、1つのアクチュエータ26に対しての本プログラムによる処理について説明する。この処理では、S31〜S33において、先に説明したように、減衰力成分FV,ロール抑制力成分FR,ピッチ抑制力成分FPがそれぞれ決定される。次いで、S34において、車高調整成分決定サブルーチンが実行され、車高調整成分FHが決定される。車高調整成分決定サブルーチンは、図8にフローチャートを示す制御を行うルーチンである。このルーチンでは、エアスプリング制御プログラムにおいて車高調整禁止条件を充足していない場合、つまり、禁止フラグfが0である場合には、S53,56において、各車輪に対応する現時点での実車体車輪間距離hと、目標離間距離h*とがそれぞれ比較判定される。車体車輪間距離を増加させる必要があると判定された場合には、S57以下において、車高調整成分FHが先に述べたように決定される。車高調整成分FHの方向が反転した後について詳しく説明すれば、S60において、反転した後の時間tCが、プログラムの実行間隔δtが加えられるようにされることでカウントされ、その時間tCに対する補正係数αが、図4に示したマップデータを参照して決定される。そして、S61以下において、ゲインK5が補正されて、車高調整成分FHを漸減させるようになっている。また、車体車輪間距離を減少させる必要があると判定された場合には、エアスプリング28のみによって車高調整を行うため、S55において車高調整成分FHは0とされる。なお、禁止フラグfが1である場合には、車高調整中に禁止された場合を考慮して、その時点での車高を維持するように、車高調整成分FHが1回前のプログラム実行時における車高調整成分FHとされるようになっている。また、車高調整成分FHの方向が反転した後である場合には、反転した後の経過時間tCがカウントされないため、禁止された時点での補正係数αの値が維持される。ちなみに、その経過時間tCは、S53において、車体車輪間距離を変化させる必要がないと判定された場合に、リセットされるようになっている。
以上のように、アクチュエータ力の4つの成分がすべて決定された後には、メインプログラムのS35において、アクチュエータ26に発揮させる目標アクチュエータ力Fが決定される。次いで、決定された目標アクチュエータ力Fに対応する制御信号が、インバータ162を介してモータ54に送信され、アクチュエータ制御プログラムの1回の実行が終了する。
≪車高調整を行うための力の発生の様子≫
図9に、車高調整制御における車体車輪間距離の変化、および、エアスプリング28内のエアの変化量,アクチュエータ26の車高調整成分FHの発生の様子を概略的に示す。図9(a)は、アクチュエータ26とエアスプリング28とが同じ目標車高で制御された場合のものである。この場合、車体車輪間距離が、アクチュエータ26によって目標離間距離とされると、その時点でエアスプリング28へのエアの流入は停止してしまうことになり、その車高を維持するために、アクチュエータ26がその時点でのアクチュエータ力を発揮し続けることとなる。そのため、システムの消費電力は大きくなり、車高調整の効率が悪くなる。図9(b)は、本実施例のサスペンションシステム10によって制御された場合のものであり、車高調整を途中で禁止することがなかった場合のものである。本システム10の場合には、アクチュエータ26によって車体車輪間距離が目前離間距離hA *となった後も、エアスプリングへのエアの流入は継続して行われ、さらに、車体車輪間距離が目前離間距離hA *となった後にアクチュエータ力が[0]まで漸減させられるため、その後における目標離間距離h*を維持するのに必要な力を、エアスプリング28に依存させることができる。したがって、本サスペンションシステムによれば、アクチュエータ力を利用して迅速な車高調整が行われるとともに、電力消費を抑えることができるため、効率的な車高調整が可能となるのである。なお、本実施例においては、車体車輪間距離が目前離間距離となった後に、アクチュエータ力が漸減させられるように制御されるため、車高調整時に車体と車輪12とを接近・離間させる力が急変することはなく、車高調整時の車体の挙動を滑らかなものとすることが可能である。
(B)第2実施例
第2実施例の車両用サスペンションシステムは、そのハード構成が第1実施例のシステムと同様の構成であるため、本実施例の説明においては、第1実施例のシステムと同じ機能の構成要素については、同じ符号を用いて対応するものであることを示し、それらの説明は省略するものとする。本実施例のシステムは、第1実施例のシステムとはECUによる制御が異なるものであるため、本実施例のECUによる制御ついて、以下に説明する。
本実施例は、サスペンションECU140による車高調整制御におけるアクチュエータの26の制御が、第1実施例における制御とは相違する。その車高調整制御におけるアクチュエータ26の制御、つまり、車高調整成分FHの決定は、図10にフローチャートを示す車高調整成分決定サブルーチンが実行されることによって行われる。本実施例においては、車高増加作動(S78以下)だけでなく車高減少作動(S82以下)の場合も、エアスプリング28とアクチュエータ26とを協働させて、車高調整が行われるようにされている。また、本実施例においては、車高調整開始前の車体車輪間距離h0と目標離間距離h*との差に対する目標離間距離h*と目前離間距離hA *との差が、比率r(本システムにおいては、r=0.1とされている。換言すれば、目前離間距離hA *が、目標離間距離h*から、車高調整開始前の車体車輪間距離h0と目標離間距離h*との差の10%以内となる位置に設定されている。)となるように設定されている(S76)。つまり、本実施例においては、全体の1−rがアクチュエータ26とエアスプリング28の両者によって車高調整され、残りのrがエアスプリング28によって車高調整されるように制御される(図11参照)。さらに、本実施例においては、車高調整成分FHは、実車体車輪間距離hが目前離間距離hA *となった後に、エアスプリング28に対するエアの流入・流出量の増加に応じて、目前離間距離hA *を、目標離間距離h*にδhずつ漸近させるように決定される(S79,S83)。なお、本プログラムにおいては、目前離間距離hA *は、車高調整が必要となって最初のプログラムの実行である場合にS75において目前離間距離hA *の決定が必要であると判定され、S76において決定されるようになっている。つまり、実車体車輪間距離hが目前離間距離hA *となった後に目前離間距離hA *が変更された場合であっても、次の車高調整の際に、再度設定されるようになっている。
図11は、本実施例の車高調整制御において、車高増加作動を行った場合の車体車輪間距離の変化、および、エアスプリング28内のエアの変化量,アクチュエータ26の車高調整成分FHの発生の様子を示す概略図である。なお、この図は、車高調整を途中で禁止することがなかった場合のものである。この図から解るように、目前離間距離hA *は、車高調整成分FHの向きが反転しないように目標離間距離h*に漸近させられるため、その車高調整成分FHをエアスプリング28による車高調整を妨げるものとして作用させないようにすることが可能である。また、本実施例のサスペンションシステムにおいては、アクチュエータ26によって車体車輪間距離が目前離間距離hA *となった後も、エアスプリング28へのエアの流入は継続して行われ、さらに、車体車輪間距離が目前離間距離hA *となった後に、目前離間距離hA *が目標離間距離h*に漸近させられることで、アクチュエータ力が低減させられる。そのため、その後における目標離間距離h*を維持するのに必要な力を、エアスプリング28に依存させることができる。つまり、本サスペンションシステムによれば、第1実施例と同様に、効率的な車高調整が可能となるのである。
第1実施例の車両用サスペンションシステムの全体構成を示す模式図である。 図1に示すスプリング・アブソーバAssyを示す正面断面図である。 図1に示すスプリング・アブソーバAssyとエア供給・排出装置とを示す模式図である。 アクチュエータ力の車高調整成分の方向が反転した後の時間経過と、車高調整成分の決定において用いられる制御ゲインを補正するための補正係数との関係を示す概略図である。 図1に示すエアスプリングECUによって実行されるエアスプリング制御プログラムを表すフローチャートである。 エアスプリング制御プログラムにおいて実行される目標車高決定サブルーチンを示すフローチャートである。 図1に示すアクチュエータECUによって実行されるアクチュエータ制御プログラムを表すフローチャートである。 アクチュエータ制御プログラムにおいて実行される車高調整成分決定サブルーチンを示すフローチャートである。 車高調整制御における車体車輪間距離の変化、および、エアスプリング内のエアの変化量,アクチュエータ力の車高調整成分の発生の様子を示す概略図である。 第2実施例の車両用サスペンションシステムにおけるアクチュエータ制御プログラムにおいて実行される車高調整成分決定サブルーチンを示すフローチャートである。 第2実施例の車両用サスペンションシステムの車高調整制御における車体車輪間距離の変化、および、エアスプリングのエア圧,アクチュエータ力の車高調整成分の発生の様子を示す概略図である。
符号の説明
10:車両用サスペンションシステム 20:スプリング・アブソーバAssy 22:ロアアーム(ばね下部材) 24:マウント部(ばね上部材) 26:アクチュエータ 28:エアスプリング(流体スプリング) 50:ねじロッド(雄ねじ部) 52:ナット(雌ねじ部) 54:電動モータ 142:アクチュエータ電子制御ユニット 144:エアスプリング電子制御ユニット

Claims (5)

  1. 車体と車輪とを相互に流体の圧力によって弾性的に支持し、その流体が流入・流出させられることによって上下方向における車体と車輪との離間距離である車体車輪間距離を変更可能な構造とされた流体スプリングと、
    その流体スプリングと並列的に設けられ、電動モータを有してその電動モータの力によって車体と車輪との接近・離間方向の力であるアクチュエータ力を発揮するアクチュエータと、
    車体車輪間距離を目標離間距離に変更すべく、前記流体スプリングに対する流体の流入・流出を制御するとともに、前記電動モータの作動を制御することによって前記アクチュエータが発揮するアクチュエータ力を制御する制御装置と
    を備えた車両用サスペンションシステムであって、
    前記制御装置が、
    前記流体スプリングに対して、実際の車体車輪間距離が前記目標離間距離となるまで流体を流入・流出させるように制御するとともに、
    前記アクチュエータに発揮させるアクチュエータ力を、実際の車体車輪間距離が前記目標離間距離より手前に設定された目前離間距離となるように制御し、かつ、実際の車体車輪間距離が前記目前離間距離となった後に低減させるように制御するものである車両用サスペンションシステム。
  2. 前記制御装置が、実際の車体車輪間距離の前記目前離間距離に対する偏差に基づいて、前記アクチュエータに発揮させるアクチュエータ力を決定するものである請求項1に記載の車両用サスペンションシステム。
  3. 前記制御装置が、前記アクチュエータに発揮させるアクチュエータ力の決定において用いられる制御ゲインを変更可能に構成され、実際の車体車輪間距離が前記目前離間距離となった後に、その制御ゲインを低減することでアクチュエータ力を低減させるものである請求項1または請求項2に記載の車両用サスペンションシステム。
  4. 前記制御装置が、前記アクチュエータに発揮させるアクチュエータ力の向きが反転した後に、そのアクチュエータ力を発揮させないように制御するものである請求項1ないし請求項3のいずれかに記載の車両用サスペンションシステム。
  5. 前記制御装置が、実際の車体車輪間距離が前記目前離間距離となった後に、前記アクチュエータに発揮させるアクチュエータ力を漸減させるものである請求項1ないし請求項4のいずれかに記載の車両用サスペンションシステム。
JP2006211431A 2006-08-02 2006-08-02 車両用サスペンションシステム Active JP4582068B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006211431A JP4582068B2 (ja) 2006-08-02 2006-08-02 車両用サスペンションシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211431A JP4582068B2 (ja) 2006-08-02 2006-08-02 車両用サスペンションシステム

Publications (2)

Publication Number Publication Date
JP2008037186A JP2008037186A (ja) 2008-02-21
JP4582068B2 true JP4582068B2 (ja) 2010-11-17

Family

ID=39172723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211431A Active JP4582068B2 (ja) 2006-08-02 2006-08-02 車両用サスペンションシステム

Country Status (1)

Country Link
JP (1) JP4582068B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11458796B2 (en) * 2018-09-24 2022-10-04 Zoox, Inc. Controlling vehicle suspension system using pressure set point

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140144A (ja) * 2003-11-04 2005-06-02 Toyota Motor Corp 車両懸架装置
JP2006117210A (ja) * 2004-10-25 2006-05-11 Toyota Motor Corp 車両懸架装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026910U (ja) * 1983-07-30 1985-02-23 厚木自動車部品株式会社 減衰力可変シヨツクアブソ−バつき車高調整装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140144A (ja) * 2003-11-04 2005-06-02 Toyota Motor Corp 車両懸架装置
JP2006117210A (ja) * 2004-10-25 2006-05-11 Toyota Motor Corp 車両懸架装置

Also Published As

Publication number Publication date
JP2008037186A (ja) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4743276B2 (ja) 車両用サスペンションシステム
JP4519113B2 (ja) 車両用サスペンションシステム
JP4737222B2 (ja) 車両用サスペンションシステム
JP4525660B2 (ja) 車両用サスペンションシステム
KR20090034393A (ko) 차량용 서스펜션 시스템
JP4894545B2 (ja) 車両用サスペンションシステム
JP4858292B2 (ja) 車両用サスペンションシステム
JP4788675B2 (ja) 車両用サスペンションシステム
JP4582068B2 (ja) 車両用サスペンションシステム
JP2008296802A (ja) 車両用サスペンションシステム
JP4894501B2 (ja) 車両用サスペンションシステム
JP4631847B2 (ja) 車両用サスペンションシステム
JP5187252B2 (ja) 車両用サスペンションシステム
JP4775250B2 (ja) 車両用サスペンションシステム
JP5088014B2 (ja) 車両用サスペンションシステム
JP4797869B2 (ja) 車両用サスペンションシステム
JP2008162333A (ja) 車両用サスペンションシステム
JP2009196484A (ja) 車両用サスペンションシステム
JP4888078B2 (ja) 車両用サスペンションシステム
JP4693055B2 (ja) 車両用サスペンションシステム
JP2009096315A (ja) 車両用サスペンションシステム
JP4635979B2 (ja) 車両用サスペンションシステム
JP5266811B2 (ja) 車両用サスペンションシステム
JP2008222023A (ja) 車両用電磁式アブソーバシステム
JP2009040244A (ja) 車両用サスペンションシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R151 Written notification of patent or utility model registration

Ref document number: 4582068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3