JP4560181B2 - 燃料電池セパレータの製造方法および製造装置 - Google Patents

燃料電池セパレータの製造方法および製造装置 Download PDF

Info

Publication number
JP4560181B2
JP4560181B2 JP2000197828A JP2000197828A JP4560181B2 JP 4560181 B2 JP4560181 B2 JP 4560181B2 JP 2000197828 A JP2000197828 A JP 2000197828A JP 2000197828 A JP2000197828 A JP 2000197828A JP 4560181 B2 JP4560181 B2 JP 4560181B2
Authority
JP
Japan
Prior art keywords
separator
electrode
fuel cell
processed
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000197828A
Other languages
English (en)
Other versions
JP2002015752A (ja
Inventor
政憲 松川
竜太 木全
陽平 桑原
謙治 出分
伸二 出分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2000197828A priority Critical patent/JP4560181B2/ja
Priority to GB0115836A priority patent/GB2364947B/en
Priority to US09/892,618 priority patent/US6592743B2/en
Priority to DE10131393A priority patent/DE10131393B4/de
Priority to FR0108561A priority patent/FR2811140B1/fr
Publication of JP2002015752A publication Critical patent/JP2002015752A/ja
Application granted granted Critical
Publication of JP4560181B2 publication Critical patent/JP4560181B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Cell Separators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス流路一体型の燃料電池セパレータの製造方法および製造装置に関する。
【0002】
【従来の技術】
燃料ガスの供給を受けて発電を行う燃料電池は一般に、複数の電池セルを積層して構成される。隣り合う電池セル間には、両者を分離するためのセパレータが介在され、このセパレータは各セルに燃料ガスを供給するガス流路を形成するための流路構成材の役割も担っている。かかるガス流路一体型のセパレータにガス流路となる凹部(溝や凹み)を形成する手法としては、セパレータ基材となる金属板に機械切削を施して溝等を形成する切削加工法、セパレータ基材となる金属板にプレス加工を施し型押しによって溝等を形成するプレス加工法、セパレータ基材となる金属板にエッチングを施して溝等を化学的に形成するエッチング加工法が知られている。
【0003】
【発明が解決しようとする課題】
切削加工法によれば、溝や凹みの加工精度を上げられる反面、ガス流路の形状が複雑化して延べ面積も大きくなると、加工に多大の時間を要し製造コストが高くなるという難点がある。プレス加工法によれば、加工精度が高くロット間のバラツキも極めて小さいため量産には好都合であるが、プレス型の製作費が高いこと、及び、加工硬化や局部的薄肉化が避けられず耐腐食性などの経時的な耐久面で十分な保証を与えられないという難点がある。更に、上記従来のエッチング加工法によれば、電解液等のエッチング液を固定槽に準備し、その中にセパレータ基材となる金属板を浸してエッチングを行っている。しかし、このようなドブ漬け的な方法では、被処理面でのエッチング液の移動が鈍く反応生成物の移動も遅いため、加工時間が長くなる傾向にあった。特に、電極を用いた電解エッチング加工法においては、電流供給量を増してもそれに見合うだけの新鮮なエッチング液が被処理面に短時間のうちに供給され難い。このため、特に溝深さが数百μmとなるような溝の加工には時間を要し、生産性が低く製造コストが高くなるという難点があった。
【0004】
本発明の目的は、ガス流路一体型セパレータを比較的低コストで効率的に生産することが可能であると共に、加工精度や耐久性能の面でも問題を生じない燃料電池セパレータの製造方法を提供することにある。また、その製造方法を効果的に実施するための燃料電池セパレータの製造装置を提供することにある。
【0005】
【課題を解決するための手段】
請求項1の発明は、ガス流路一体型の燃料電池セパレータの製造方法であって、セパレータ基材の被加工面にマスキングを部分的に施すマスク付与工程と、マスキングされたセパレータ基材の被加工面に対して電極を対向配置すると共に、当該電極及びセパレータ基材への給電状態下、前記セパレータ基材の被加工面に対しその略直角方向から電解液を噴射供給して前記被加工面と電極との間に電解液を介在させ、前記被加工面の非マスキング部位を電解してガス流路構成用凹部を形成する電解加工工程と、前記凹部形成後に前記被加工面からマスキングを除去するマスク除去工程とを備えたことを特徴とする。
【0006】
この構成によれば、部分的にマスキングが施されたセパレータ基材の被加工面に対しその略直角方向から電解液が噴射供給されるため、被加工面と電極との間の領域に電解液を即座に行き渡らせ、被加工面の全体を満遍なく電解液で覆うことができる。特に電解液の供給方向が被加工面に対して略直角方向であることから、被加工面の中心領域にも直接電解液を送り込むことが可能となり、この点でセパレータ基材の端部から被加工面と平行方向に電解液を流し込む場合に比べ、電解液の供給効率が極めてよい。このため、電解液の噴射供給作用ともあいまって、被加工面と電極との間には十分な量の新鮮な電解液が次々と供給されると共に、不要な電解生成物が被加工面上から外へ押し流され、被加工面の非マスキング部位における電気化学反応が促進される。従って、被加工面の非マスキング部位には、高いエネルギー効率でもって比較的短時間のうちに所望のガス流路構成用凹部が形成される。
【0007】
請求項2の発明は、請求項1に記載の燃料電池セパレータの製造方法において、前記電極は、前記被加工面に対して所定間隔を隔てた状態で対向配置される面対向型の電極であると共に、前記被加工面に対してその略直角方向から電解液を噴射供給するノズルでもあることを特徴とする。本件方法では、セパレータ基材の被加工面に対しその略直角方向から電解液を噴射供給する関係上、被加工面と面対向する電極内部に電解液の噴射供給構造を設けることが好ましい。この点を慮ったのが請求項2である。
【0008】
請求項3の発明は、請求項1又は2に記載の燃料電池セパレータの製造方法において、前記セパレータ基材は平板状をなし、その両面共に被加工面となっており、これら両被加工面に対して各々の略直角方向から電解液が同時に噴射供給されることを特徴とする。この方法によれば、平板状セパレータ基材の両面に対し同時にガス流路構成用凹部を形成することができて作業能率が向上する。それのみならず、電解加工時において平板状セパレータ基材の姿勢を安定して保持することができ、電解加工の精度を向上させることができる。つまり、請求項3のように両被加工面に対して各々の略直角方向から電解液を同時に噴射した場合、二つの液噴射は互いに反対向きとなり、双方の噴射圧がほぼ等しければ、各々の液噴射は互いにセパレータ基材の背後を支え合い且つ互いの影響を打ち消し合う関係となる。それ故、平板状セパレータ基材の姿勢が安定し、それぞれの被加工面は均等な電解作用を受けることができる。
【0009】
請求項4の発明は、請求項1〜3のいずれか一項に記載の燃料電池セパレータの製造方法において、前記セパレータ基材はほぼ鉛直方向に保持され、その鉛直方向に延びる被加工面に対して電解液が略水平方向から噴射供給されることを特徴とする。この構成によれば、被加工面に吹き付けられた電解液は、重力の影響で鉛直方向に延びる被加工面に沿って自然に流れ落ちることができる。それ故、被加工面上での電解液の入れ替えが円滑化し、電解加工の効率が向上する。
【0010】
請求項5の発明は、請求項1〜4のいずれか一項に記載の燃料電池セパレータの製造方法において、前記セパレータ基材の被加工面に一度噴射供給された電解液を回収し、ポンプで汲み上げて前記被加工面に再供給することを特徴とする。
この構成によれば、被加工面から流れ落ちた電解液を再利用することが可能となる。尚、請求項3,4及び5の構成を採用すれば、燃料電池セパレータの連続生産が可能となり、燃料電池の工業的実現性が高くなる。
【0011】
請求項6の発明は、ガス流路一体型の燃料電池セパレータの製造装置であって、部分的にマスキングを施した被加工面を有するセパレータ基材を保持する保持手段と、前記保持手段によって保持されたセパレータ基材の被加工面に対して対向配置されると共に、前記被加工面に対してその略直角方向から電解液の噴射供給を可能とする誘導路を備えた面対向型の電極兼用ノズルと、前記セパレータ基材及び前記電極兼用ノズルに電流を供給する給電手段と、前記電極兼用ノズルから前記セパレータ基材に対し噴射されて流れ出した電解液を回収する回収手段と、前記回収手段に回収された電解液を前記電極兼用ノズルに再供給する供給手段とを備えたことを特徴とする。
【0012】
この製造装置を用いれば前記製造方法を効果的に実施することができる。すなわち、保持手段によって保持されたセパレータ基材の被加工面に対しそれと対向配置された面対向型の電極兼用ノズルから電解液が噴射供給されると、給電手段からの電流供給によって電解液が被加工面の非マスキング部位を電解してガス流路構成用凹部が形成される。セパレータ基材に噴射されて流れ出した電解液は回収手段によって回収され、供給手段によって電極兼用ノズルに再供給される。故にこの装置によれば、燃料電池セパレータを連続生産することが容易になる。
【0013】
請求項7の発明は、請求項6に記載の燃料電池セパレータの製造装置において、前記面対向型の電極兼用ノズルは一対をなして設けられると共に、当該二つの電極兼用ノズルはそれぞれの噴射口が互いに向き合うように配置されており、前記保持手段はこれら一対の電極兼用ノズル間にセパレータ基材を配置することを特徴とする。この請求項7の技術的意義は、前記請求項3とほぼ同じである。
【0014】
請求項8の発明は、請求項6又は7に記載の燃料電池セパレータの製造装置において、前記保持手段は、前記被加工面がほぼ鉛直方向に沿って配置されるように前記セパレータ基材を保持することを特徴とする。この請求項8の技術的意義は、前記請求項4とほぼ同じである。なお、請求項6,7及び8に記載のセパレータ基材の保持手段が所定の搬送手段と作動連結されることは好ましく、こうすることで、燃料電池セパレータの量産システムの構築が容易となる。
【0015】
【発明の実施の形態】
以下、本件方法およびその方法の実施に用いる装置の一例を説明する。
(燃料電池セパレータの製造装置の概要)
図1に示すように、燃料電池セパレータの製造装置の下部には、電解液の貯留槽11が配設されている。この貯留槽11には、空冷式又は水冷式の温度調節装置(図示せず)が付属しており、貯留槽11に貯留される電解液はほぼ所望温度に保持される。貯留槽11の上方には、噴射供給時に飛散する電解液を回収するための二重槽式の回収槽12が設けられている。回収槽12の底壁部中央には垂直連通路13が設けられ、この垂直連通路13を経由して回収槽12から貯留槽11に電解液が戻される。尚、回収槽12及び垂直連通路13は回収手段を構成する。
【0016】
図1及び図2に示すように、回収槽12の上方には一対のスパージャボックス14,15が並設されている。これらのスパージャボックス14,15は同じ高さに位置するものの水平方向には互いに距離を隔てて配置され、各々の対向部位には電極兼用ノズル30(以下「電極ノズル」という)が設けられている。電極ノズル30の詳細な構造については後述するが、図4に示すように電解液を噴射するためのスリット状噴射口31が複数設けられている。各スパージャボックス14,15内には、下から上へ電解液を導くための内部通路16が形成され、この内部通路16は前記スリット状噴射口31の各々に連通している。更に、スパージャボックス14,15の内部通路16はそれぞれ、途中にポンプP(好ましくはケミカルポンプ)及びフィルタFを備えた供給通路17を介して貯留槽11に接続されている。そして、ポンプPの作用により貯留槽11に貯留されている電解液が汲み上げられ、供給通路17及び内部通路16を介して電極ノズル30の各スリット状噴射口31に供給される。フィルタFは、電解液に混入した不純物や不要な電解生成物を取り除く。尚、貯留槽11、供給通路17及びポンプPは電解液の供給手段を構成し、内部通路16及びスリット状噴射口31は、被加工面に対してその略直角方向から電解液の噴射供給を可能とする電極ノズル30の誘導路を構成する。
【0017】
スパージャボックス14,15の上方には、図1に示すように紙面と直交する方向に延びるガイドレール21が設けられている。このガイドレール21には、保持手段としてのワークホルダ22が往復動可能に設けられている。図3に示すように、ワークホルダ22は、無限軌道状のチェーン又はワイヤ23の一部に固定されており、駆動モータ24によるチェーン又はワイヤ23の正方向又は逆方向への移送に乗じてガイドレール21上を往復動する。図1及び図2に示すようにワークホルダ22は、平板状ワークとしてのセパレータ基材Bの一端(上端)を把持し、鉛直方向に吊り下げる格好で該セパレータ基材Bを保持する。ワークホルダ22に保持されたセパレータ基材Bは、一対の電極ノズル30の対向面間のほぼ中央に配置され、ワークホルダ22の往復動に伴って両電極ノズル30間を行ったり来たりすることができる。つまり、ガイドレール21、チェーン又はワイヤ23及び駆動モータ24は、ワークホルダ22と作動連結された搬送手段を構成する。
【0018】
図1に示すように当該製造装置は、給電手段としての直流電源26を備えている。直流電源26の正極は、フレキシブルな給電線27を介してワークホルダ22に接続されている。他方、直流電源26の負極は、2本のフレキシブルな給電線28を介してそれぞれ対応する電極ノズル30の上端に接続されている。直流電源26からの給電によって電極ノズル30とセパレータ基材Bとの間には電位差が付与され、セパレータ基材Bの被加工面と各電極ノズル30の対向面との間には電界が形成される。
【0019】
図4は、セパレータ基材Bの被加工面と対向する電極ノズル30の対向面の概略を示す。図4に示すように、電極ノズルの対向面32には、複数条のスリット状噴射口31(本例では9条)が形成されている。各スリット状噴射口31は鉛直方向に延びており、且つ、その鉛直方向長さhはセパレータ基材Bの被加工面(加工必要部位)の高さh(図2参照)に一致するように設定されている。つまり電極ノズル30は、その対向面32のほぼ全面が被加工面と対向し得る面対向型の電極ノズルである。各スリット状噴射口31の幅は0.5mm〜2.5mmの範囲、好ましくは1.5mmに設定されている。前述のように各スリット状噴射口31は、対応するスパージャボックスの内部通路16と連通しており、その内部通路16を経由して各噴射口31に供給される以外に電解液が他に漏洩することがないように高いシール性でもって、電極ノズル30はスパージャボックスに取り付けられている。又、電極ノズルの対向面32には、隣り合うスリット状噴射口31間において、逃がし溝33が設けられている。これら複数の逃がし溝33は、電解液が各スリット状噴射口31からセパレータ基材Bに向けて噴射されたときに、逃げ場を求めて左右に流れた電解液を捕らえて回収槽12内への円滑な排出を促進するための電解液排出促進手段として機能する。なお、逃がし溝33の深さは約20mmである。
【0020】
更に、各スリット状噴射口31の上端縁をつなぐ仮想ラインから上の領域(図4に斜線で示す上部領域)および各スリット状噴射口31の下端縁をつなぐ仮想ラインから下の領域(図4に斜線で示す下部領域)には、それぞれマスキング34,35が施されている。これらのマスキング34,35は、ワークとしてのセパレータ基材Bとの間に電界を形成する必要のない領域を極力封鎖して、スリット状噴射口31に沿った露出領域(実質的な負極)がセパレータ基材Bの被加工面(実質的な正極)と対向した場合に両者間に形成される電界の強度又は効率を向上させるためのものである。尚、マスキング34,35の厚みは極めて薄く、電極ノズル30とセパレータ基材Bとの非接触状態を阻害するものではない。また、電極ノズル30は、導電性と耐腐食性とを兼ね備えた材料で構成されればよく、そのような電極構成材料としては例えば、白金、グラファイト、又は、ステンレス鋼もしくはチタン系金属の表面に白金メッキを施したものがあげられる。
更に、マスキング34の上辺位置には、複数のワークガイド36が水平方向横一列に配列されている。又、マスキング35の下辺位置には、水平方向に延びるワークガイド37が設けられている。これらのワークガイド36,37は、電解エッチング加工時にワークの表面に接触してワークの移動をガイドすると共に、ワークを側方から支えてそのぐらつきを防止する。なお、本例では、ワークガイド36,37は電極ノズル30上に設けられているが、これらの部位は電極としての機能には全く関与しない。
【0021】
(燃料電池セパレータの製造手順)
次に、上記製造装置を用いてガス流路一体型の燃料電池セパレータを製造する手順について説明する。なお、以下の説明では、燃料電池用セパレータを製造する際の周知・慣用の手順については、説明を省略するか極めて簡潔に述べるにとどめる。
【0022】
(準備工程)
ガス流路一体型の燃料電池セパレータを形成するための出発材料たるセパレータ基材Bは、例えば金属板材からカッティングすることにより予め準備される。
セパレータ基材Bは導電性材料で構成される。使用可能な導電性材料としては、例えばアルミニウム系、ステンレス鋼系、チタン系、銅系の金属又は合金があげられる。セパレータ基材Bは、好ましくは平板状の金属板材である。本例では、セパレータ基材Bとして、厚さ1.5mm、幅430mm、高さ300mmのステンレス鋼板(SUS304)を採用した。セパレータ基材Bの被加工面(表面及び裏面)には、脱脂洗浄等の前処理の後、マスキングが施される。図1及び図2に示すように、セパレータ基材B上のマスキングMは、ガス流路を形成した際に凸部又は陸部として残す部位、即ち非エッチング部位に施される。マスキング材料としては、電解又は無電界メッキ用の一般的なマスキング材料を用いることができる。マスク形成に際しては例えば、耐酸性エッチレジストを所定の希釈溶剤で薄めて適度な粘度とし、これをセパレータ基材Bの各被加工面にスクリーン印刷後、乾燥させるという手法がとられる。なお、耐酸性エッチレジストに代えてUV硬化型レジストを用いてもよい。このようにして準備されたマスク付きセパレータ基材Bは、その上端部がワークホルダ22に把持され、鉛直方向に吊り下げられる。
【0023】
他方、貯留槽11内には、電解エッチング加工用の処理液たる電解液が用意される。電解液としては、電解エッチング処理液として一般に知られているものが使用でき、例えば、エッチング対象となる金属材料の種類に応じて、硝酸、フッ化水素酸、リン酸、塩酸及び硫酸からなる群より複数種の酸を選択・混合して混酸溶液を作り、そこへエッチング速度等を調整するための添加剤を少量(混酸溶液1リットルに対し添加剤を0.1〜0.5ミリリットル程度)加えたものが推奨される。あるいは電解液として、硝酸ナトリウム溶液を用いてもよい。電解液の温度は、30℃〜65℃の範囲で任意に選択できるが、温度がエッチング処理に与える影響は大きいため、電解エッチング中は極力一定の温度に保つことが好ましい。
【0024】
(電解加工工程)
ワークホルダ22に保持されたマスク付きセパレータ基材Bは、駆動モータ24の駆動に伴って、両スパージャボックス14,15に設けられた一対の電極ノズル30間に搬送される。セパレータ基材Bが二つの電極ノズル30間に非接触状態で配置されたとき、セパレータ基材Bの各被加工面とそれに対向する電極ノズルの対向面32との間隔は好ましくは0.1mm〜30mmに設定される(本例では1.0mmに設定)。この間隔が0.1mm未満であると、セパレータ基材Bと電極ノズル30とが接触してスパークを生じ易くなる。他方、前記間隔が30mmを超えると、電解液抵抗が増大して電解エッチング効率が著しく低下し実用に供さなくなる。なお、電極ノズル30の対向面32とセパレータ基材Bの被加工面とは、本例では平行な面対向状態となっているが、溝の深さ方向に傾斜を付ける場合には、対向面32とセパレータ基材Bの被加工面とに適度な傾斜角を付与してもよい。
【0025】
セパレータ基材Bの被加工面と電極ノズル30とが対向した状態で、各電極ノズル30からセパレータ基材Bに対して電解液が噴射供給されると共に、直流電源26によってセパレータ基材B及び電極ノズル30に電流が供給される。電解エッチング加工時に直流電源26から供給される直流電流の電流密度は、好ましくは1平方センチメートルあたり0.5A〜45Aである(本例では18A/cm2)。また、給電時間は本例では約5分であるが、電流密度や溝深さに応じて適宜変更される。
【0026】
電極ノズル30からの電解液の噴射圧及び噴射流量は、ポンプPの圧送能力を調節することにより任意設定可能である。電解液は、電極ノズル30の各々のスリット状噴射口31から、セパレータ基材Bの被加工面に対しほぼ直角方向(図1では水平方向)に噴射される。この噴射は、左右二つの電極ノズル30から一斉に行われる。図4に示すように各スリット状噴射口31は垂直方向に延びており、しかも水平方向(セパレータ基材の搬送方向)に所定間隔を隔てて複数個設けられている。このため、各スリット状噴射口31から噴射された電解液の多くは、被加工面にぶつかるとそのまま下に流れ落ちるよりも逃げ場を求めて左右に広がり、逃がし溝33に進入する。逃がし溝33に進入した電解液はその逃がし溝33に沿って垂直に流れ落ち、回収槽12内に回収される。
【0027】
このように、左右の電極ノズル30からセパレータ基材Bの左右の被加工面に噴射供給された電解液は、即座に(又は極めて短時間のうちに)各被加工面の全体に満遍なく行き渡り電解エッチング加工に供される。又、電解エッチングによって生じた電解生成物も、次々と電極ノズル30から噴射供給される電解液によって押し流され、被加工面と電極ノズルとの間にとどまることがない。故に、電解液による被加工面の電解エッチング及び電解研磨が高い効率でもって遂行される。なお、セパレータ基材Bを一対の電極ノズル30間に配置した状態で所要時間(本例では約5分間)だけ停止させてもよいが、電解エッチング加工中においてワークホルダ22を周期的に往復動させ、セパレータ基材Bに一対の電極ノズル30間の前後を行ったり来たりさせてもよい。
【0028】
(後処理工程)
電解エッチング加工後、セパレータ基材Bはワークホルダ22から取り外されて、あるいはライン上を給電されないワークホルダ22に装着されたままで、付着した電解液除去のための洗浄が行われ、更にマスキングMを除去するための処理が行われる。マスキングMを除去した後のセパレータ基材Bには、非マスキング部位において凹部(溝や凹み)が形成され、所望形態が付与された流路一体型セパレータとなる。本例のセパレータ基材Bの非マスキング部位には深さが0.4mm(誤差範囲0.02mm以内)というほぼ均一の深さの凹部が形成された。また、これらの凹部の底面には優れた光沢が観察され、所期の電解エッチングと同時に、底面その他の露出面に対する電解研磨が併せて施された。なお、このよにして得られた流路一体型セパレータに対しては、最終的に形を整えるためのプレス加工等が必要に応じて施される。
【0029】
(効果)本実施形態によれば以下のような効果を得ることができる。
・電解エッチング加工時には電解液を、マスク付きセパレータ基材Bの各被加工面に対してその直角方向から噴射供給するため、電解液は即座に被加工面の全体に満遍なく行き渡り、金属イオン溶出等の電気化学反応に有効利用される。つまり、被加工面には必要にして十分な量と濃度の電解液が常に供給される。このため、流路一体型セパレータの加工精度を低下させることなく、低コトスで効率的に燃料電池セパレータを製造することができる。
【0030】
・電解エッチング加工時に被加工面と電極ノズル30との隙間領域で電解生成物が生じても、噴射の勢いによって電解生成物は電解液と共に回収槽12に押し流される。それ故、被加工面の近傍には、電解エッチングの効率を低下させる電解生成物が沈殿又は滞留することがなく、電極ノズル30と被加工面との間隔を小さく設定することが可能となる。このため、電解エッチングにおけるエネルギー効率を高めて電解処理時間を短縮し、生産性を向上させることができる。
【0031】
・セパレータ基材Bの被加工面はその表裏両面に存在し、これら両被加工面に対して左右両方向から同時に電解液を噴射供給している。しかも、それぞれの噴射方向は被加工面に対して直角方向であることから、左右両方向からの液噴射は互いに反対向きであり、各々の噴射圧も等しい。このため、左右両方向からの液噴射は互いにセパレータ基材Bの背後を支え合い、互いの噴射圧の影響を打ち消し合う関係となる。それ故、液噴射の影響でセパレータ基材Bの保持が不安定化することがなく、セパレータ基材Bの姿勢の安定度が高まる。また、加工時におけるセパレータ基材Bの姿勢が安定すれば、それぞれの被加工面と対向する電極ノズル30との間隔も均等に保たれ、凹部の加工深さが左右でバラ付くことがない。
【0032】
・電解エッチング加工時、左右の電極ノズル30にそれぞれ設けられたワークガイド36,37は、セパレータ基材Bを左右両方向から支えて左右へのぐらつきを防止する。このような機械的工夫は、加工時におけるセパレータ基材Bの姿勢の安定度を高め、溝加工の精度を向上させる。
【0033】
・本実施形態では、ワークホルダ22にセパレータ基材Bを保持又は懸架し、ワークホルダ22ごとガイドレール21に沿って移動可能としたので、ワークホルダ22を予め多数用意しておけば、セパレータ基材Bを次々と連続加工することが可能となる。これは、バッチ式の固定電解槽を用いていた従来のエッチング加工法に比べれば、はるかに能率的であり、固体高分子型燃料電池用のセパレータの量産化に道を開くものである。
【0034】
・本件方法を用いて製造された流路一体型のセパレータには、最終製品として次のような特徴又は長所がある。プレス成型品と比べて、歪みが極めて少なく凹部の深さも均一に仕上がる。このため、電池セルとして組立てたときのガス流れ特性や、ガス流路内での水蒸気の結露現象の防止対策を設計者の意図した通りのものとし易く、電池性能が向上する。また、歪みがほとんどないため、電池セルを多数積層した場合でも歪みの累積によるシール性低下を生じない。更に、電池セル内においてプロトン透過性の固体高分子膜を挟装する電極に対し、セパレータが均等な面圧を及ぼすことができるため、当該電極の局部損傷等を未然に回避でき、電池性能を向上させることができる。
【0035】
(別例)上記実施形態を以下のように変更してもよい。
上記実施形態では、スパージャボックス14,15の上方にガイドレール21及びワークホルダ22を配置したが、スパージャボックス14,15の下方にガイドレール21及びワークホルダ22を配置し、セパレータ基材Bの下端部をワークホルダ22で把持するようにしてもよい。又、セパレータ基材Bを鉛直方向に立てて保持したが、セパレータ基材Bを水平に寝かせて保持してもよい。この場合、電解液の噴射供給方向は垂直方向となる。このように、セパレータ基材B及びそれと対向する電極ノズル30は、地面に対してどのような角度で配置されてもよい。
【0036】
上記実施形態では、左右一対のスパージャボックス14,15を一組だけ用いたが、同様のスパージャボックス対を複数組準備しそれらを直列に配置して、セパレータ基材Bを搬送する直線状経路を設定してもよい。このようにすれば、多数のセパレータを一方向に搬送しながら電解エッチングを流れ作業的にこなすことが可能となり、低コストで燃料電池セパレータの量産が可能となる。
【0037】
前記ワークガイド36,37は電極ノズル30と一体に設ける必要はなく、ワークガイド36,37と電極ノズル30とを別体化してもよい。
【0038】
尚、本明細書において「電解加工」とは、電解エッチング加工を含めた広義の電解加工を意味するものであり、狭義の電解加工のみを指すものではない。
【0039】
【発明の効果】
以上詳述したように本発明の製造方法によれば、ガス流路一体型の燃料電池セパレータを比較的低コストで効率的に生産できると共に、加工精度や耐久性能の面でも問題を生じない燃料電池セパレータを提供することが可能となる。また、本発明の製造装置によれば、前記製造方法を効果的に実施することができる。
【図面の簡単な説明】
【図1】燃料電池セパレータの製造装置の概要を示す正面図。
【図2】ワークとしてのセパレータ基材と製造装置の一部を示す斜視図。
【図3】ワークホルダの搬送系の概略を示した平面図。
【図4】電極兼用ノズルの対向面の概要を示した正面図。
【符号の説明】
11…貯留槽(供給手段)、12…回収槽(回収手段)、13…垂直連通路(回収手段)、16…内部通路(誘導路)、17…供給通路(供給手段)、22…ワークホルダ(保持手段)、26…直流電源(給電手段)、30…電極兼用ノズル、31…スリット状噴射口(誘導路)、B…セパレータ基材、M…セパレータ基材上のマスキング、P…ポンプ(供給手段)。

Claims (8)

  1. ガス流路一体型の燃料電池セパレータの製造方法であって、
    セパレータ基材の被加工面にマスキングを部分的に施すマスク付与工程と、
    マスキングされたセパレータ基材の被加工面に対して電極を対向配置すると共に、当該電極及びセパレータ基材への給電状態下、前記セパレータ基材の被加工面に対しその略直角方向から電解液を噴射供給して前記被加工面と電極との間に電解液を介在させ、前記被加工面の非マスキング部位を電解してガス流路構成用凹部を形成する電解加工工程と、
    前記凹部形成後に前記被加工面からマスキングを除去するマスク除去工程と
    を備えたことを特徴とする燃料電池セパレータの製造方法。
  2. 前記電極は、前記被加工面に対して所定間隔を隔てた状態で対向配置される面対向型の電極であると共に、前記被加工面に対してその略直角方向から電解液を噴射供給するノズルでもあることを特徴とする請求項1に記載の燃料電池セパレータの製造方法。
  3. 前記セパレータ基材は平板状をなし、その両面共に被加工面となっており、これら両被加工面に対して各々の略直角方向から電解液が同時に噴射供給されることを特徴とする請求項1又は2に記載の燃料電池セパレータの製造方法。
  4. 前記セパレータ基材はほぼ鉛直方向に保持され、その鉛直方向に延びる被加工面に対して電解液が略水平方向から噴射供給されることを特徴とする請求項1〜3のいずれか一項に記載の燃料電池セパレータの製造方法。
  5. 前記セパレータ基材の被加工面に一度噴射供給された電解液を回収し、ポンプで汲み上げて前記被加工面に再供給することを特徴とする請求項1〜4のいずれか一項に記載の燃料電池セパレータの製造方法。
  6. ガス流路一体型の燃料電池セパレータの製造装置であって、
    部分的にマスキングを施した被加工面を有するセパレータ基材を保持する保持手段と、
    前記保持手段によって保持されたセパレータ基材の被加工面に対して対向配置されると共に、前記被加工面に対してその略直角方向から電解液の噴射供給を可能とする誘導路を備えた面対向型の電極兼用ノズルと、
    前記セパレータ基材及び前記電極兼用ノズルに電流を供給する給電手段と、
    前記電極兼用ノズルから前記セパレータ基材に対し噴射されて流れ出した電解液を回収する回収手段と、
    前記回収手段に回収された電解液を前記電極兼用ノズルに再供給する供給手段とを備えたことを特徴とする燃料電池セパレータの製造装置。
  7. 前記面対向型の電極兼用ノズルは一対をなして設けられると共に、当該二つの電極兼用ノズルはそれぞれの噴射口が互いに向き合うように配置されており、前記保持手段はこれら一対の電極兼用ノズル間にセパレータ基材を配置することを特徴とする請求項6に記載の燃料電池セパレータの製造装置。
  8. 前記保持手段は、前記被加工面がほぼ鉛直方向に沿って配置されるように前記セパレータ基材を保持することを特徴とする請求項6又は7に記載の燃料電池セパレータの製造装置。
JP2000197828A 2000-06-30 2000-06-30 燃料電池セパレータの製造方法および製造装置 Expired - Fee Related JP4560181B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000197828A JP4560181B2 (ja) 2000-06-30 2000-06-30 燃料電池セパレータの製造方法および製造装置
GB0115836A GB2364947B (en) 2000-06-30 2001-06-28 Production of gas separators for use in fuel cells and apparatus used therefor
US09/892,618 US6592743B2 (en) 2000-06-30 2001-06-28 Production of gas separators for use in fuel cells and equipment used therefor
DE10131393A DE10131393B4 (de) 2000-06-30 2001-06-28 Herstellung von Gasseparatoren für Brennstoffzellen und dabei verwendete Apparatur
FR0108561A FR2811140B1 (fr) 2000-06-30 2001-06-28 Fabrication de separateurs de gaz destines a une utilisation dans des piles a combustible et equipement utilise pour cela

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197828A JP4560181B2 (ja) 2000-06-30 2000-06-30 燃料電池セパレータの製造方法および製造装置

Publications (2)

Publication Number Publication Date
JP2002015752A JP2002015752A (ja) 2002-01-18
JP4560181B2 true JP4560181B2 (ja) 2010-10-13

Family

ID=18696102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197828A Expired - Fee Related JP4560181B2 (ja) 2000-06-30 2000-06-30 燃料電池セパレータの製造方法および製造装置

Country Status (5)

Country Link
US (1) US6592743B2 (ja)
JP (1) JP4560181B2 (ja)
DE (1) DE10131393B4 (ja)
FR (1) FR2811140B1 (ja)
GB (1) GB2364947B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090939B2 (en) * 2003-03-28 2006-08-15 Plug Power Inc. Forming a layer on a flow plate of a fuel cell stack
JP2007515079A (ja) * 2003-12-19 2007-06-07 サード ディメンジョン (スリーディ) セミコンダクタ インコーポレイテッド 従来の端子を備えた超接合装置の製造方法
DE102005011298A1 (de) * 2005-03-04 2006-09-07 Gebr. Schmid Gmbh & Co. Vorrichtung und Verfahren zum Ätzen von Substraten
PL375336A1 (pl) * 2005-05-24 2006-11-27 Długi Roman Serwis Akpia Zespół do formowania akumulatorów
JP4555173B2 (ja) * 2005-06-24 2010-09-29 本田技研工業株式会社 燃料電池及び燃料電池スタック
JP4555170B2 (ja) * 2005-06-24 2010-09-29 本田技研工業株式会社 燃料電池及び燃料電池スタック
JP4555174B2 (ja) * 2005-06-24 2010-09-29 本田技研工業株式会社 燃料電池及び燃料電池スタック
JP4555169B2 (ja) 2005-06-24 2010-09-29 本田技研工業株式会社 燃料電池及び燃料電池スタック
JP4555172B2 (ja) * 2005-06-24 2010-09-29 本田技研工業株式会社 燃料電池及び燃料電池スタック
WO2006137585A2 (en) * 2005-06-24 2006-12-28 Honda Motor Co., Ltd. Fuel cell and separator
KR100737551B1 (ko) * 2006-07-04 2007-07-10 현대자동차주식회사 연료전지 차량의 세퍼레이터 구조 및 그 제조방법
EP2883268B1 (en) * 2012-08-08 2016-11-23 Robert Bosch GmbH Metal/air flow battery
GB2564893B (en) * 2017-07-27 2020-12-16 Semsysco Gmbh Distribution system for chemical and/or electrolytic surface treatment
CN113046803A (zh) * 2021-03-16 2021-06-29 大连理工大学 一种提高掩膜电解加工精度的弧形喷射阴极移动装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134831A (en) * 1974-09-18 1976-03-24 Nippon Kokan Kk Kinzoku no yokaiho
JPS54136908A (en) * 1978-04-14 1979-10-24 Hitachi Ltd Device for development and etching
JPH05503321A (ja) * 1990-10-15 1993-06-03 アメリカ合衆国 空間的に一様な電解研摩および電解エッチングを行うための方法および装置
JPH11329460A (ja) * 1998-05-08 1999-11-30 Aisin Takaoka Ltd 燃料電池のセパレータの製造方法
JPH11329465A (ja) * 1998-05-08 1999-11-30 Aisin Takaoka Ltd 燃料電池のセパレータ
JP2002506483A (ja) * 1997-04-25 2002-02-26 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング 導体プレートや導体箔の電気分解的な処理のための装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847780A (en) * 1972-07-24 1974-11-12 Rathenower Optische Werke Veb Device for thinning technical and microscopic specimens under laminar flow conditions
DE2237733A1 (de) * 1972-08-01 1974-06-20 Rathenower Optische Werke Veb Vorrichtung zum elektrochemischen oder chemischen abduennen von technischen und mikroskopischen objekten unter laminaren stroemungsverhaeltnissen
JPS60241658A (ja) * 1984-05-16 1985-11-30 Agency Of Ind Science & Technol 燃料電池のセパレ−タの製造方法
US5284554A (en) * 1992-01-09 1994-02-08 International Business Machines Corporation Electrochemical micromachining tool and process for through-mask patterning of thin metallic films supported by non-conducting or poorly conducting surfaces
US5567304A (en) 1995-01-03 1996-10-22 Ibm Corporation Elimination of island formation and contact resistance problems during electroetching of blanket or patterned thin metallic layers on insulating substrate
GB9915925D0 (en) * 1999-07-08 1999-09-08 Univ Loughborough Flow field plates
US20020004155A1 (en) * 2000-05-01 2002-01-10 Haltiner Karl Jacob Etched interconnect for fuel cell elements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134831A (en) * 1974-09-18 1976-03-24 Nippon Kokan Kk Kinzoku no yokaiho
JPS54136908A (en) * 1978-04-14 1979-10-24 Hitachi Ltd Device for development and etching
JPH05503321A (ja) * 1990-10-15 1993-06-03 アメリカ合衆国 空間的に一様な電解研摩および電解エッチングを行うための方法および装置
JP2002506483A (ja) * 1997-04-25 2002-02-26 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング 導体プレートや導体箔の電気分解的な処理のための装置
JPH11329460A (ja) * 1998-05-08 1999-11-30 Aisin Takaoka Ltd 燃料電池のセパレータの製造方法
JPH11329465A (ja) * 1998-05-08 1999-11-30 Aisin Takaoka Ltd 燃料電池のセパレータ

Also Published As

Publication number Publication date
GB2364947B (en) 2004-09-22
GB0115836D0 (en) 2001-08-22
US20020050458A1 (en) 2002-05-02
JP2002015752A (ja) 2002-01-18
GB2364947A (en) 2002-02-13
DE10131393A1 (de) 2002-01-24
FR2811140A1 (fr) 2002-01-04
US6592743B2 (en) 2003-07-15
DE10131393B4 (de) 2008-06-26
FR2811140B1 (fr) 2009-01-23

Similar Documents

Publication Publication Date Title
JP4560181B2 (ja) 燃料電池セパレータの製造方法および製造装置
CN108746894B (zh) 微细管电极脉动态电解切割方法
CN105040035A (zh) 一种平行射流电解工艺及装置
CN108588803B (zh) 一种电沉积装置
US4482440A (en) Electrochemical cell and process for manufacturing temperature sensitive solutions
US9551083B2 (en) Paddle for materials processing
CN110756926B (zh) 铣削平面的电火花电解连续加工方法
CN112077402A (zh) 一种电解工具电极及利用其对工件内部通道电解光整方法
MX2007000707A (es) Metodo y dispositivo para decapar metales.
US3399130A (en) Apparatus for electrolytically sharpening the edges of a continuous strip
CN202610379U (zh) 一种镍钨合金带材连续电解抛光装置
JP3115047U (ja) 噴流浮遊式めっき槽
FI110367B (fi) Elektrolyyttinen pintakäsittelymenetelmä ja laite sen toteuttamista varten
CN106881508A (zh) 一种双层绝缘板表面织构电解工具阴极及其制备方法
CN109390604B (zh) 一种微流道流场板及其制备方法
CN217298048U (zh) 一种高精度射流电铸用喷嘴
CN102738485B (zh) 燃料电池用金属隔板及其贵金属涂布方法
CN108637411B (zh) 一种微流道电解加工装置
JP2002151096A (ja) 燃料電池セパレータの製造方法
CN1195906C (zh) 金属精加工装置及利用该装置的金属精加工方法
US4248674A (en) Anodizing method and apparatus
CN208195863U (zh) 一种弯曲群孔电解加工装置
KR100351099B1 (ko) 전해 제련용 음극판
CN110919115A (zh) 用于微细电解线切割抛光的磷酸乙醇混合电解液及其方法
CN113474492A (zh) 电解液制造装置及电解液的制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees