JP4421556B2 - Metal particle and method for producing the same - Google Patents

Metal particle and method for producing the same Download PDF

Info

Publication number
JP4421556B2
JP4421556B2 JP2005505685A JP2005505685A JP4421556B2 JP 4421556 B2 JP4421556 B2 JP 4421556B2 JP 2005505685 A JP2005505685 A JP 2005505685A JP 2005505685 A JP2005505685 A JP 2005505685A JP 4421556 B2 JP4421556 B2 JP 4421556B2
Authority
JP
Japan
Prior art keywords
metal particles
cathode electrode
fine carbon
carbon fibers
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005505685A
Other languages
Japanese (ja)
Other versions
JPWO2004094700A1 (en
Inventor
進 新井
守信 遠藤
浩一 市来
政志 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinano Kenshi Co Ltd
Shinshu University NUC
Original Assignee
Shinano Kenshi Co Ltd
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Co Ltd, Shinshu University NUC filed Critical Shinano Kenshi Co Ltd
Publication of JPWO2004094700A1 publication Critical patent/JPWO2004094700A1/en
Application granted granted Critical
Publication of JP4421556B2 publication Critical patent/JP4421556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions

Description

【技術分野】
【0001】
本発明は、粉末冶金、電気接点、電池、電磁波シールド、導電材、摩擦材接点、摺動材等の材料として好適に用いることのできる金属材料およびその製造方法に関する。
【背景技術】
【0002】
金属内にカーボンナノチューブまたはカーボンナノファイバー(以下これらを微細炭素繊維という)を分散させた複合材料が知られている。
特開2000−223004号に示される複合材料は、微細炭素繊維と金属粉体とを混合し、焼結してブロック状となしたものである。
ところで、微細炭素繊維は、直径が5〜50nm程度と極めて微細であり、一方金属粉体は、200ないし1000nmの範囲の直径を有するものが一般的であり、微細炭素繊維の直径よりも1桁大きい。これら2つの材料を単純に混合すると、均一な混合が困難である。
そこで、上記従来のものにあっては、まず、金属粉体を酸溶液に溶かす。例えば銅粉末を塩酸、硫酸、または硝酸に溶かす。そしてこの溶液に微細炭素繊維を分散させ、次いで乾燥、焼結させるようにして複合材料を得ている。
【0003】
【特許文献1】
特開2000−223004
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかし、上記従来の複合材料の製造方法にあっては、金属粉体を溶解し、さらに微細炭素繊維を分散させた酸溶液を乾燥、焼結させる工程が極めて厄介であり、長時間を要し、またコストがかかるという課題がある。また、量が多い場合、微細炭素繊維を均一に分散させにくいという課題がある。
そこで本発明は上記課題を解決すべくなされたものであり、その目的とするところは、微細炭素繊維を均一に分散させた金属粒子およびその製造方法を提供するにある。
【課題を解決するための手段】
【0005】
本発明に係る金属粒子の製造方法は、微細炭素繊維を分散した電解液を電解して、カソード電極上に、微細炭素繊維が混入した金属粒子を析出させる工程と、該析出した金属粒子をカソード電極上から分離する工程とを含むことを特徴とする。
また、分離した金属粒子を回収、洗浄、乾燥する工程を含むことを特徴とする。
【0006】
金属粒子は銅の金属粒子とすることができる。
また、前記金属粒子が析出したカソード電極をアセトン中に浸漬し、超音波を照射することによって金属粒子を分離させることを特徴とする。
あるいは、前記金属粒子が析出したカソード電極に圧縮空気を吹き付け、もしくは電解中のカソード電極に衝撃または振動を加えて金属粒子をカソード電極上から分離するようにしてもよい。
【0007】
また、有機化合物からなる分散剤を添加して微細炭素繊維を電解液中に分散させると好適である。
前記分散剤に分子量が5000以上のポリアクリル酸を好適に用いることができる。
また、カソード電極に表面を粗面化した電極を用いることができる。
また、本発明に係る金属粒子は、上記いずれかの製造方法によって製造され、多数の微細炭素繊維が取り込まれ、該微細炭素繊維の端部が外表面から突出するウニ状の外観を呈することを特徴とする。
また、上記の金属粒子の集合体を溶融することによって種々の複合材料を得ることができる。
また電解液として水溶液、溶融塩、イオン性液体が利用できる。
【発明の効果】
【0008】
本発明によれば、CNFが多数取り込まれた、ウニ状の外観を呈する金属粒子が形成され、これら金属粒子は、容易にカソード電極から分離し、粒子化できる。
そして各金属粒子に微細炭素繊維が混入している。したがって、これら金属粒子の集合体を溶融して得られる複合材料中には、微細炭素繊維が均一に混入されたものとなる。
また、電解液への微細炭素繊維の分散量、電解条件などを変えることによって、種々の微細炭素繊維の混入量、粒径の金属粒子が得られるから、これら金属粒子の集合体を溶融することによって得られる複合材料中の微細炭素繊維量も任意にコントロールすることが可能となる。
このような複合材料は、CNTまたはCNFの特質を生かして、摺動性が必要な軸受、高い電気伝導率が必要な電極や電気接点、高い熱伝導率の必要な放熱機構など、多様な用途に利用可能である。
【発明を実施するための最良の形態】
【0009】
以下本発明の好適な実施の形態を詳細に説明する。
本発明に係る金属粒子の製造方法は、上記のように、微細炭素繊維を分散した電解液を電解して、カソード電極上に、微細炭素繊維が混入した金属粒子を析出させる工程と、該析出した金属粒子をカソード電極上から分離する工程とを含むことを特徴とする。
分離した金属粒子を回収、洗浄、乾燥することによって所要の金属粒子を得ることができる。
【0010】
電流密度や電解時間などの電解条件を調節することによって平均粒径数百nm〜数十μmの範囲の金属粒子を析出させることができる。
電流密度は粒径や生産性を考慮して最適値を選択する。
大量に生産する場合は、例えば銅の電解液の場合、電解槽に硫酸銅水溶液と硫酸を主成分とする電解液を入れ、CNTまたはCNFを、有機化合物を分散剤として電解液に分散させる。電解槽中ではアノード電極として電気銅を使用し、電解中の銅イオンの補給を行う。電解液への銅イオンの補給は、銅以外の金属、例えば鉛をアノード電極として使用し、外部から銅イオンを補給しても構わない。
なお、電解中の電解液はポンプにより撹拌されると同時に、電解液濃度および成分量も所定の比率となるように制御する。
【0011】
析出した金属粒子をカソード電極上から分離するには、金属粒子が析出したカソード電極をアセトン中に浸漬し、超音波を照射することによって金属粒子を分離できる。
あるいは、前記金属粒子が析出したカソード電極に圧縮空気を吹き付け、もしくは電解中のカソード電極に衝撃または振動を加えて金属粒子をカソード電極上から分離するようにしてもよい。
【0012】
析出粒子の粒径や強度、およびカソード電極からの分離性を調整するため、電解液にチオ尿素、ゼラチン、タングステン、塩化物等の有機、無機化合物を添加するとよい。
カソード電極には、析出する金属の密着性が悪く、析出粒子を分離しやすいチタンを使用すると好適である。またカソード電極の表面は析出する金属を粒子化するため表面を粗面化しておくことが望ましい。例えば、カソード電極に、ニオブ、タンタル、白金をチタンの表面に微小突起状に固定したものを好適に使用することができる。
【0013】
微細炭素繊維を電解液に分散させるには、有機化合物からなる分散剤を添加するようにするとよい。この分散剤には分子量が5000以上のポリアクリル酸を好適に用いることができる。
生産される、CNTまたはCNFで修飾された金属粒子の粒径は、電解液中の金属イオン濃度、電解電流密度、CNTまたはCNFの繊維直径及びその長さが相互に関連して決まる。
なお、金属粒子の金属の種類は銅に限定されるものではない。
【0014】
上記金属粒子の集合体を溶融することによって種々の複合材料が得られる。この場合金属粒子に各種添加材を添加して複合材料としてもよい。
例えば、上記微細炭素繊維が混入した金属粒子と、微細炭素繊維を含まない金属粒子の配合比を適宜に制御し、混合することで、微細炭素繊維の配合量を制御した複合材料が実現できる。
その他、樹脂と混合するなど、種々の複合材料の材料として用いることができる。
これら複合材料の生産手段としては、樹脂成形、焼結、メタル・インジェクション・モールディングなどの手段が利用できる。
【0015】
上記のようにして得られる金属粒子は数百nm〜数十μmの極めて微細なものであり、しかも各金属粒子に微細炭素繊維が混入している。したがって、これら金属粒子の集合体を溶融して得られる複合材料中には、微細炭素繊維が均一に混入されたものとなる。
【0016】
また、電解液への微細炭素繊維の分散量、電解条件などを変えることによって、種々の微細炭素繊維の混入量、粒径の金属粒子が得られるから、これら金属粒子の集合体を溶融することによって得られる複合材料中の微細炭素繊維量も任意にコントロールすることが可能となる。
このような複合材料は、CNTまたはCNFの特質を生かして、摺動性が必要な軸受、高い電気伝導率が必要な電極や電気接点、高い熱伝導率の必要な放熱機構など、多様な用途に利用可能である。
【0017】
【実施例】
実施例1
電解液
CuSO4・5H2O 0.85M
H2SO4 0.55M
PA5000 2×10-5
CNF 2g/L
(なお、PA5000は分子量5000のポリアクリル酸、CNFはカーボンナノファイバー:微細炭素繊維)
上記電解液を用いて、撹拌下、25℃、5A/dm2の電流密度で5分間電解を行った場合に、カソード電極の表面に析出した皮膜の走査型電子顕微鏡写真を図1、図2に示す。図1、図2に見られるように、粒径約2〜3μmの極めて微細な球状の銅粒にCNFが多数取り込まれた、ウニ状の外観を呈するCu-CNF複合物が形成されている。これら複合物は、圧縮空気の吹き付けやアセトン中での超音波照射により容易にカソード電極から分離し、粒子化できた。
【0018】
実施例2
電解液
CuSO4・5H2O 0.85M
H2SO4 0.55M
PA5000 2×10-5
CNF 2g/L
(なお、PA5000は分子量5000のポリアクリル酸、CNFはカーボンナノファイバー:微細炭素繊維)
上記電解液を用いて、撹拌下、25℃、5A/dm2の電流密度で20分間電解を行った場合に、カソード電極の表面に析出した皮膜の走査型電子顕微鏡写真を図3、図4に示す。図3、図4に見られるように、粒径約10〜30μmの微細な球状の銅粒にCNFが多数取り込まれた、ウニ状の外観を呈するCu-CNF複合物が形成されている。これら複合物は、圧縮空気の吹き付けやアセトン中での超音波照射により容易にカソード電極から分離し、粒子化できた。
【0019】
実施例1、実施例2から明らかなように、電流密度を大きめにして、ヤケめっき気味にすることによって粒状の複合物とすることができる。また電解条件(電解時間)を変えることによって粒状物の大きさを制御できることがわかる。
【0020】
実施例3
電解液
CuSO4・5H2O 220g/L
H2SO4 55g/L
PA5000 0.25g/L
CNF 10g/L
(なお、PA5000は分子量5000のポリアクリル酸)
上記電解液を用いて、撹拌下、25℃、40A/dm2の電流密度で10分間電解を行った場合に、カソード電極の表面に析出した皮膜の走査型電子顕微鏡写真を図5に示す。図5に見られるように、粒径約10〜30μmの微細な球状の銅粒にCNFが多数取り込まれた、ウニ状の外観を呈するCu-CNF複合物が形成されている。この複合物中におけるCNFの含量を計測したところ、約7vol%であった。
【0021】
実施例4
電解液
CuSO4・5H2O 220g/L
H2SO4 55g/L
PA5000 0.25g/L
CNF 20g/L
上記電解液を用いて、撹拌下、25℃、40A/dm2の電流密度で10分間電解を行った場合に、カソード電極の表面に析出した皮膜の走査型電子顕微鏡写真を図6に示す。図6に見られるように、粒径約10〜30μmの微細な球状の銅粒にCNFが多数取り込まれた、ウニ状の外観を呈するCu-CNF複合物が形成されている。この複合物中におけるCNFの含有量を計測したところ、約15vol%であった。
【0022】
実施例3、4から明らかなように、電解液中のCNF含有量を増加させることによって、Cu-CNF複合物中のCNF含有量を増加させることができる。
【0023】
実施例5
電解液
CuSO4・5H2O 1g/L
H2SO4 150g/L
ポリオキシエチレン(10)オクチルフェニルエーテル(分散剤)
2g
CNF 20g/L
上記電解液を用いて、撹拌下、25℃、10A/dm2の電流密度で10分間電解を行った場合に、カソード電極の表面に析出した皮膜の走査型電子顕微鏡写真を図7に示す。本実施例では、実施例1〜4で用いたCNFよりも外周表面の活性の高いCNFを用いた。このようなCNFを用いることによって、図7に見られるように、CNF表面に銅が数珠(連玉)状に付着したCu-CNF複合物が形成されている。
【0024】
実施例6
電解液
CuSO4・5H2O 1g/L
H2SO4 50g/L
ポリオキシエチレン(10)オクチルフェニルエーテル(分散剤)
2g
CNF 20g/L
上記電解液を用いて、撹拌下、25℃、40A/dm2の電流密度で10分間電解を行った場合に、カソード電極の表面に析出した皮膜の走査型電子顕微鏡写真を図8に示す。本実施例では、実施例1〜4で用いたCNFよりも外周表面の活性の高いCNFを用いた。このようなCNFを用いることによって、図8に見られるように、CNF表面に銅が樹枝状に付着したCu-CNF複合物が形成されている。
【0025】
実施例7
電解液
NiSO4・6H2O 250g/L
NiCl2・6H2O 45g/L
H3BO3 35g/L
CNF 10g/L
PA5000 0.5g/L
上記電解液を用いて、撹拌下、25℃、40A/dm2の電流密度で10分間電解を行った場合に、カソード電極の表面に析出した皮膜の走査型電子顕微鏡写真を図9に示す。このように銅以外に金属でも電解析出可能な金属であれば、CNFとの複合電解粉が得られる。
【図面の簡単な説明】
【0026】
【図1】 実施例1でカソード電極上に析出した金属粒子の走査型電子顕微鏡写真である。
【図2】 図1の拡大図である。
【図3】 実施例2でカソード電極上に析出した金属粒子の走査型電子顕微鏡写真である。
【図4】 図3の拡大図である。
【図5】 実施例3でカソード電極上に析出した金属粒子の走査型電子顕微鏡写真である。
【図6】 実施例4でカソード電極上に析出した金属粒子の走査型電子顕微鏡写真である。
【図7】 実施例5でカソード電極上に析出した金属粒子の走査型電子顕微鏡写真である。
【図8】 実施例6でカソード電極上に析出した金属粒子の走査型電子顕微鏡写真である。
【図9】 実施例7でカソード電極上に析出した金属粒子の走査型電子顕微鏡写真である。
【Technical field】
[0001]
The present invention relates to a metal material that can be suitably used as a material such as powder metallurgy, an electrical contact, a battery, an electromagnetic wave shield, a conductive material, a friction material contact, and a sliding material, and a manufacturing method thereof.
[Background]
[0002]
A composite material in which carbon nanotubes or carbon nanofibers (hereinafter referred to as fine carbon fibers) are dispersed in a metal is known.
The composite material disclosed in Japanese Patent Application Laid-Open No. 2000-220304 is obtained by mixing fine carbon fibers and metal powder and sintering them into a block shape.
By the way, the fine carbon fiber has a very fine diameter of about 5 to 50 nm, while the metal powder generally has a diameter in the range of 200 to 1000 nm, which is one digit larger than the diameter of the fine carbon fiber. large. If these two materials are simply mixed, uniform mixing is difficult.
Therefore, in the conventional one, first, the metal powder is dissolved in an acid solution. For example, copper powder is dissolved in hydrochloric acid, sulfuric acid, or nitric acid. Then, fine carbon fibers are dispersed in this solution, and then dried and sintered to obtain a composite material.
[0003]
[Patent Document 1]
JP 2000-223044 A
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0004]
However, in the conventional method for producing a composite material, the process of dissolving the metal powder and further drying and sintering the acid solution in which fine carbon fibers are dispersed is extremely troublesome and takes a long time. In addition, there is a problem that the cost is high. Moreover, when there is much quantity, there exists a subject that it is difficult to disperse | distribute fine carbon fiber uniformly.
Accordingly, the present invention has been made to solve the above-mentioned problems, and an object thereof is to provide metal particles in which fine carbon fibers are uniformly dispersed and a method for producing the same.
[Means for Solving the Problems]
[0005]
The method for producing metal particles according to the present invention includes a step of electrolyzing an electrolytic solution in which fine carbon fibers are dispersed to deposit metal particles mixed with fine carbon fibers on a cathode electrode, and the deposited metal particles are applied to a cathode. And separating from the electrode.
Further, the method includes a step of collecting, washing, and drying the separated metal particles .
[0006]
The metal particles can be copper metal particles.
In addition, the metal particles are separated by immersing the cathode electrode on which the metal particles are deposited in acetone and irradiating with ultrasonic waves.
Alternatively, the metal particles may be separated from the cathode electrode by blowing compressed air on the cathode electrode on which the metal particles are deposited or by applying impact or vibration to the cathode electrode during electrolysis.
[0007]
In addition, it is preferable to add a dispersant made of an organic compound to disperse the fine carbon fibers in the electrolytic solution.
As the dispersant, polyacrylic acid having a molecular weight of 5000 or more can be suitably used.
An electrode having a roughened surface can be used as the cathode electrode.
In addition, the metal particles according to the present invention are produced by any one of the above production methods, and a large number of fine carbon fibers are taken in, and the end of the fine carbon fibers has a sea urchin-like appearance protruding from the outer surface. Features.
Also, various composite materials can be obtained by melting the aggregate of metal particles.
Further, an aqueous solution, a molten salt, or an ionic liquid can be used as the electrolytic solution.
【The invention's effect】
[0008]
According to the present invention, metal particles having a sea urchin-like appearance in which a large amount of CNF is incorporated are formed, and these metal particles can be easily separated from the cathode electrode and formed into particles.
And fine carbon fiber is mixed in each metal particle. Therefore, fine carbon fibers are uniformly mixed in the composite material obtained by melting the aggregate of these metal particles.
Also, by changing the amount of fine carbon fibers dispersed in the electrolyte and the electrolysis conditions, metal particles with various fine carbon fibers and particle sizes can be obtained. Thus, the amount of fine carbon fibers in the composite material obtained can be arbitrarily controlled.
Such composite materials can be used in various applications such as bearings that require slidability, electrodes and electrical contacts that require high electrical conductivity, and heat dissipation mechanisms that require high thermal conductivity, taking advantage of the characteristics of CNT or CNF. Is available.
BEST MODE FOR CARRYING OUT THE INVENTION
[0009]
Hereinafter, preferred embodiments of the present invention will be described in detail.
The method for producing metal particles according to the present invention includes a step of electrolyzing an electrolytic solution in which fine carbon fibers are dispersed as described above, and depositing metal particles mixed with fine carbon fibers on the cathode electrode, Separating the metal particles from the cathode electrode.
The required metal particles can be obtained by collecting, washing and drying the separated metal particles.
[0010]
By adjusting electrolysis conditions such as current density and electrolysis time, metal particles having an average particle size in the range of several hundred nm to several tens of μm can be deposited.
The optimum current density is selected in consideration of the particle size and productivity.
In the case of mass production, for example, in the case of a copper electrolyte, an electrolytic solution containing a copper sulfate aqueous solution and sulfuric acid as main components is placed in an electrolytic tank, and CNT or CNF is dispersed in the electrolyte using an organic compound as a dispersant. In the electrolytic bath, electrolytic copper is used as the anode electrode to replenish copper ions during electrolysis. For supplying copper ions to the electrolytic solution, a metal other than copper, for example, lead may be used as the anode electrode, and copper ions may be supplied from the outside.
The electrolytic solution being electrolyzed is agitated by a pump, and at the same time, the electrolytic solution concentration and the component amount are controlled to have a predetermined ratio.
[0011]
In order to separate the deposited metal particles from the cathode electrode, the metal particles can be separated by immersing the cathode electrode in which the metal particles are deposited in acetone and irradiating ultrasonic waves.
Alternatively, the metal particles may be separated from the cathode electrode by blowing compressed air on the cathode electrode on which the metal particles are deposited or by applying impact or vibration to the cathode electrode during electrolysis.
[0012]
In order to adjust the particle size and strength of the deposited particles and the separability from the cathode electrode, an organic or inorganic compound such as thiourea, gelatin, tungsten, or chloride may be added to the electrolytic solution.
For the cathode electrode, it is preferable to use titanium which has poor adhesion to the deposited metal and can easily separate the deposited particles. Further, it is desirable that the surface of the cathode electrode is roughened in order to make the deposited metal into particles. For example, a cathode electrode in which niobium, tantalum, and platinum are fixed on the surface of titanium in the form of minute protrusions can be suitably used.
[0013]
In order to disperse the fine carbon fibers in the electrolytic solution, it is preferable to add a dispersant made of an organic compound. As the dispersant, polyacrylic acid having a molecular weight of 5000 or more can be suitably used.
The particle diameter of the produced metal particles modified with CNT or CNF is determined in relation to the metal ion concentration in the electrolyte, the electrolysis current density, the fiber diameter of CNT or CNF, and the length thereof.
Note that the metal type of the metal particles is not limited to copper.
[0014]
Various composite materials can be obtained by melting the aggregate of metal particles. In this case, various additives may be added to the metal particles to form a composite material.
For example, the composite material which controlled the compounding quantity of the fine carbon fiber is realizable by controlling suitably and the mixing ratio of the metal particle which mixed the said fine carbon fiber, and the metal particle which does not contain a fine carbon fiber.
In addition, it can be used as a material for various composite materials such as mixed with a resin.
As means for producing these composite materials, means such as resin molding, sintering and metal injection molding can be used.
[0015]
The metal particles obtained as described above are extremely fine particles of several hundred nm to several tens of μm, and fine carbon fibers are mixed in each metal particle. Therefore, fine carbon fibers are uniformly mixed in the composite material obtained by melting the aggregate of these metal particles.
[0016]
Also, by changing the amount of fine carbon fibers dispersed in the electrolyte and the electrolysis conditions, metal particles with various fine carbon fibers and particle sizes can be obtained. Thus, the amount of fine carbon fibers in the composite material obtained can be arbitrarily controlled.
Such composite materials can be used in various applications such as bearings that require slidability, electrodes and electrical contacts that require high electrical conductivity, and heat dissipation mechanisms that require high thermal conductivity, taking advantage of the characteristics of CNT or CNF. Is available.
[0017]
【Example】
Example 1
Electrolyte
CuSO 4・ 5H 2 O 0.85M
H 2 SO 4 0.55M
PA5000 2 × 10 -5 M
CNF 2g / L
(Note that PA5000 is a polyacrylic acid with a molecular weight of 5000, and CNF is carbon nanofiber: fine carbon fiber)
1 and 2 show scanning electron micrographs of the film deposited on the surface of the cathode electrode when electrolysis was performed for 5 minutes at 25 ° C. and a current density of 5 A / dm 2 with stirring using the above electrolytic solution. Shown in As can be seen in FIGS. 1 and 2, a Cu-CNF composite having a sea urchin-like appearance in which a large number of CNFs are incorporated into extremely fine spherical copper particles having a particle diameter of about 2 to 3 μm is formed. These composites could be easily separated from the cathode electrode by spraying with compressed air or ultrasonic irradiation in acetone to form particles.
[0018]
Example 2
Electrolyte
CuSO 4・ 5H 2 O 0.85M
H 2 SO 4 0.55M
PA5000 2 × 10 -5 M
CNF 2g / L
(Note that PA5000 is a polyacrylic acid with a molecular weight of 5000, and CNF is carbon nanofiber: fine carbon fiber)
Scanning electron micrographs of the film deposited on the surface of the cathode electrode when electrolysis was performed for 20 minutes at 25 ° C. and a current density of 5 A / dm 2 with stirring using the electrolyte solution shown in FIGS. Shown in As can be seen in FIGS. 3 and 4, a Cu—CNF composite having a sea urchin-like appearance in which a large number of CNFs are incorporated into fine spherical copper particles having a particle diameter of about 10 to 30 μm is formed. These composites could be easily separated from the cathode electrode by spraying with compressed air or ultrasonic irradiation in acetone to form particles.
[0019]
As is clear from Example 1 and Example 2, it is possible to obtain a granular composite by increasing the current density and making it slightly discolored. Moreover, it turns out that the magnitude | size of a granular material can be controlled by changing electrolysis conditions (electrolysis time).
[0020]
Example 3
Electrolyte
CuSO 4 · 5H 2 O 220g / L
H 2 SO 4 55g / L
PA5000 0.25g / L
CNF 10g / L
(Note that PA5000 is a polyacrylic acid with a molecular weight of 5000)
FIG. 5 shows a scanning electron micrograph of the film deposited on the surface of the cathode electrode when electrolysis was performed for 10 minutes at 25 ° C. and a current density of 40 A / dm 2 with stirring using the above electrolytic solution. As can be seen in FIG. 5, a Cu-CNF composite having a sea-like appearance is formed in which a large number of CNFs are incorporated into fine spherical copper particles having a particle size of about 10 to 30 μm. When the content of CNF in this composite was measured, it was about 7 vol%.
[0021]
Example 4
Electrolyte
CuSO 4 · 5H 2 O 220g / L
H 2 SO 4 55g / L
PA5000 0.25g / L
CNF 20g / L
FIG. 6 shows a scanning electron micrograph of the film deposited on the surface of the cathode electrode when electrolysis is performed for 10 minutes at 25 ° C. and a current density of 40 A / dm 2 with stirring using the electrolytic solution. As shown in FIG. 6, a Cu-CNF composite having a sea urchin-like appearance in which a large number of CNFs are incorporated into fine spherical copper particles having a particle diameter of about 10 to 30 μm is formed. When the content of CNF in this composite was measured, it was about 15 vol%.
[0022]
As is clear from Examples 3 and 4, the CNF content in the Cu-CNF composite can be increased by increasing the CNF content in the electrolytic solution.
[0023]
Example 5
Electrolyte
CuSO 4・ 5H 2 O 1g / L
H 2 SO 4 150 g / L
Polyoxyethylene (10) octylphenyl ether (dispersant)
2g
CNF 20g / L
FIG. 7 shows a scanning electron micrograph of a film deposited on the surface of the cathode electrode when electrolysis is performed for 10 minutes at 25 ° C. and a current density of 10 A / dm 2 with stirring using the above electrolytic solution. In this example, CNF having higher activity on the outer peripheral surface than CNF used in Examples 1 to 4 was used. By using such CNF, as can be seen in FIG. 7, a Cu—CNF composite in which copper adheres in a rosary (continuous ball) shape on the CNF surface is formed.
[0024]
Example 6
Electrolyte
CuSO 4・ 5H 2 O 1g / L
H 2 SO 4 50g / L
Polyoxyethylene (10) octylphenyl ether (dispersant)
2g
CNF 20g / L
FIG. 8 shows a scanning electron micrograph of the film deposited on the surface of the cathode electrode when electrolysis was performed for 10 minutes at 25 ° C. and a current density of 40 A / dm 2 with stirring using the above electrolytic solution. In this example, CNF having higher activity on the outer peripheral surface than CNF used in Examples 1 to 4 was used. By using such CNF, as can be seen in FIG. 8, a Cu—CNF composite in which copper adheres in a dendritic manner on the CNF surface is formed.
[0025]
Example 7
Electrolyte
NiSO 4・ 6H 2 O 250g / L
NiCl 2・ 6H 2 O 45g / L
H 3 BO 3 35g / L
CNF 10g / L
PA5000 0.5g / L
FIG. 9 shows a scanning electron micrograph of the film deposited on the surface of the cathode electrode when electrolysis is performed for 10 minutes at 25 ° C. and a current density of 40 A / dm 2 with stirring using the above electrolytic solution. Thus, if it is a metal which can be electrolytically deposited even with a metal other than copper, a composite electrolytic powder with CNF can be obtained.
[Brief description of the drawings]
[0026]
1 is a scanning electron micrograph of metal particles deposited on a cathode electrode in Example 1. FIG.
FIG. 2 is an enlarged view of FIG.
3 is a scanning electron micrograph of metal particles deposited on a cathode electrode in Example 2. FIG.
FIG. 4 is an enlarged view of FIG . 3;
5 is a scanning electron micrograph of metal particles deposited on a cathode electrode in Example 3. FIG.
6 is a scanning electron micrograph of metal particles deposited on a cathode electrode in Example 4. FIG.
7 is a scanning electron micrograph of metal particles deposited on a cathode electrode in Example 5. FIG.
8 is a scanning electron micrograph of metal particles deposited on a cathode electrode in Example 6. FIG.
9 is a scanning electron micrograph of metal particles deposited on a cathode electrode in Example 7. FIG.

Claims (10)

微細炭素繊維を分散した電解液を電解して、カソード電極上に、微細炭素繊維が混入した金属粒子を析出させる工程と、
該析出した金属粒子をカソード電極上から分離する工程とを含むことを特徴とする金属粒子の製造方法。
Electrolyzing an electrolytic solution in which fine carbon fibers are dispersed, and depositing metal particles mixed with fine carbon fibers on the cathode electrode;
And a step of separating the deposited metal particles from the cathode electrode.
分離した金属粒子を回収、洗浄、乾燥する工程を含むことを特徴とする請求項1記載の金属粒子の製造方法。  The method for producing metal particles according to claim 1, further comprising a step of collecting, washing, and drying the separated metal particles. 金属粒子が銅の金属粒子であることを特徴とする請求項1または2記載の金属粒子の製造方法。 3. The method for producing metal particles according to claim 1, wherein the metal particles are copper metal particles. 前記金属粒子が析出したカソード電極をアセトン中に浸漬し、超音波を照射することによって金属粒子を分離させることを特徴とする請求項1〜3いずれか1項記載の金属粒子の製造方法。The method for producing metal particles according to any one of claims 1 to 3 , wherein the metal particles are separated by immersing the cathode electrode on which the metal particles are deposited in acetone and irradiating with ultrasonic waves. 前記金属粒子が析出したカソード電極に圧縮空気を吹き付け、もしくは電解中のカソード電極に衝撃または振動を加えて金属粒子をカソード電極上から分離することを特徴とする請求項1〜3いずれか1項記載の金属粒子の製造方法。The metal particles blowing compressed air to the cathode electrode deposited is, or claims 1 to 3 any one, characterized in that the separation of an impact or vibration is applied to the metal particles to the cathode in the electrolyte from the cathode electrode The manufacturing method of the metal particle of description. 有機化合物からなる分散剤を添加して微細炭素繊維を電解液中に分散させることを特徴とする請求項1〜5いずれか1項記載の金属粒子の製造方法。The method for producing metal particles according to any one of claims 1 to 5 , wherein a dispersing agent comprising an organic compound is added to disperse the fine carbon fibers in the electrolytic solution. 前記分散剤に分子量が5000以上のポリアクリル酸を用いることを特徴とする請求項6記載の金属粒子の製造方法。The method for producing metal particles according to claim 6, wherein polyacrylic acid having a molecular weight of 5000 or more is used for the dispersant. カソード電極に表面を粗面化した電極を用いることを特徴とする請求項1〜7いずれか1項記載の金属粒子の製造方法。The method for producing metal particles according to any one of claims 1 to 7, wherein an electrode having a roughened surface is used as the cathode electrode. 請求項1〜8いずれか1項記載の金属粒子の製造方法によって製造され、多数の微細炭素繊維が取り込まれ、該微細炭素繊維の端部が外表面から突出するウニ状の外観を呈することを特徴とする金属粒子。 It is manufactured by the method for manufacturing metal particles according to any one of claims 1 to 8 , wherein a large number of fine carbon fibers are taken in, and an end portion of the fine carbon fibers exhibits a sea urchin-like appearance protruding from the outer surface. Characteristic metal particles. 請求項9記載の金属粒子の集合体を溶融することによって得られる複合材料。 A composite material obtained by melting the aggregate of metal particles according to claim 9 .
JP2005505685A 2003-02-18 2004-02-13 Metal particle and method for producing the same Expired - Fee Related JP4421556B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003040308 2003-02-18
JP2003040308 2003-02-18
PCT/JP2004/001599 WO2004094700A1 (en) 2003-02-18 2004-02-13 Metal particles and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2004094700A1 JPWO2004094700A1 (en) 2006-07-13
JP4421556B2 true JP4421556B2 (en) 2010-02-24

Family

ID=33307866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005505685A Expired - Fee Related JP4421556B2 (en) 2003-02-18 2004-02-13 Metal particle and method for producing the same

Country Status (4)

Country Link
US (1) US20060065543A1 (en)
JP (1) JP4421556B2 (en)
DE (1) DE112004000296T5 (en)
WO (1) WO2004094700A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448341B1 (en) * 2012-03-19 2014-10-07 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Manufacturing method for electrolytic lead

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932974B1 (en) * 2003-04-08 2009-12-21 삼성에스디아이 주식회사 Method for producing carbon-based composite particles for electron emission
EP1626110A3 (en) * 2004-07-30 2008-02-06 Shinano Kenshi Kabushiki Kaisha Metallic particle and method of producing the same
JP4770139B2 (en) * 2004-08-10 2011-09-14 東レ株式会社 Conductive particles and anisotropic conductive material composition
CN1934281A (en) * 2004-10-21 2007-03-21 信浓绢糸株式会社 Composite metal article and method for preparation thereof
JP4716760B2 (en) * 2005-03-09 2011-07-06 国立大学法人信州大学 Gold plating solution and gold plating method
KR101697382B1 (en) * 2008-11-10 2017-01-17 크라이론 글로벌, 엘엘씨 Solid composition having enhanced physical and electrical properties
JP5220696B2 (en) * 2009-06-30 2013-06-26 パナソニック株式会社 Electromagnetic shielding molding material, electromagnetic shielding molding for electronic parts, electromagnetic shielding molding for building materials, and method for producing electromagnetic shielding molding material
JP4697643B2 (en) * 2009-09-07 2011-06-08 福田金属箔粉工業株式会社 Aggregate of electrolytic copper powder and method for producing the electrolytic copper powder
US8375840B2 (en) 2009-11-06 2013-02-19 Kryron Global, Llc Ballistic strike plate and assembly
US10533098B2 (en) * 2013-08-01 2020-01-14 Sekisui Chemical Co., Ltd. Conductive filler, method for producing same, conductive paste and method for producing conductive paste
US10639713B2 (en) 2014-03-05 2020-05-05 Sekisui Chemical Co., Ltd. Conductive filler, method for manufacturing conductive filler, and conductive paste
JP6373055B2 (en) * 2014-05-13 2018-08-15 丸祥電器株式会社 Spherical composite copper fine particles containing ultrafine carbon fiber and method for producing the same
CN104674327B (en) * 2015-03-03 2017-07-28 北京汽车股份有限公司 The preparation method and composite deposite of composite deposite
GB201706783D0 (en) * 2017-04-28 2017-06-14 Cambridge Entpr Ltd Composite layers, methods for their manufacture and uses thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994785A (en) * 1975-01-09 1976-11-30 Rippere Ralph E Electrolytic methods for production of high density copper powder
US4246057A (en) * 1977-02-16 1981-01-20 Uop Inc. Heat transfer surface and method for producing such surface
US4465741A (en) * 1980-07-31 1984-08-14 Sumitomo Chemical Company, Limited Fiber-reinforced metal composite material
US4724051A (en) * 1985-03-25 1988-02-09 The Dow Chemical Company Impure zinc powder, preparation thereof, and use as a selective reductant for pentachloropyridine
US4746412A (en) * 1986-07-03 1988-05-24 C. Uyemura & Co., Ltd. Iron-phosphorus electroplating bath and electroplating method using same
ES2137324T3 (en) * 1993-05-28 1999-12-16 Enthone Omi Inc ELECTRICAL DEPOSIT PROCEDURE AND APPARATUS.
US5785837A (en) * 1996-01-02 1998-07-28 Midwest Research Institute Preparation of transparent conductors ferroelectric memory materials and ferrites
US5733429A (en) * 1996-09-10 1998-03-31 Enthone-Omi, Inc. Polyacrylic acid additives for copper electrorefining and electrowinning
US6250984B1 (en) * 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
JP2001214291A (en) * 2000-01-31 2001-08-07 Sumitomo Metal Mining Co Ltd Method for manufacturing electrolytic copper powder
US20040151886A1 (en) * 2000-03-06 2004-08-05 Bobsein Barrett Richard Binder composition
US6346136B1 (en) * 2000-03-31 2002-02-12 Ping Chen Process for forming metal nanoparticles and fibers
JP2002263496A (en) * 2001-03-13 2002-09-17 Honda Motor Co Ltd Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber
US6858173B2 (en) * 2003-01-30 2005-02-22 The Regents Of The University Of California Nanocrystalline ceramic materials reinforced with single-wall carbon nanotubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448341B1 (en) * 2012-03-19 2014-10-07 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Manufacturing method for electrolytic lead

Also Published As

Publication number Publication date
JPWO2004094700A1 (en) 2006-07-13
WO2004094700A1 (en) 2004-11-04
DE112004000296T5 (en) 2005-12-29
US20060065543A1 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP4421556B2 (en) Metal particle and method for producing the same
JP4390807B2 (en) Composite metal body and method for producing the same
US4290859A (en) Process for preparing electrode
KR101832251B1 (en) Highly corrosion-resistant porous metal body and method for producing the same
JP5551161B2 (en) Conductive solid composite material and method for obtaining the same
US6010610A (en) Method for electroplating metal coating(s) particulates at high coating speed with high current density
CN101258269A (en) Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process
US20070196641A1 (en) Production method of composite particles
JP4351120B2 (en) Method for producing metal particles
KR20180027934A (en) Fiber complexes and methods of manufacturing the same
EP0343836A1 (en) Particulate material useful in an electroconductive body and method of making such particles
US4470893A (en) Method for water electrolysis
JP5342976B2 (en) Granules and method for producing the same
JP2004076031A (en) Plating bath for electroplating and plating bath for composite plating, and their production method
JP2007211305A (en) Composite foil of electrolytic copper, and production method therefor
JP5735265B2 (en) Method for producing porous metal body having high corrosion resistance
RU2355471C1 (en) Method of nanocomposite preparation
Avramović et al. The particle size distribution (PSD) as criteria for comparison of silver powders obtained by different methods of synthesis and by conditions of electrolysis
KR100861698B1 (en) Metal powder producing apparatus and method to produce metal powder
JPS6145711B2 (en)
US20060021877A1 (en) Metallic particle and method of producing the same
JP7261946B2 (en) Silver powder, method for producing the same, and conductive resin composition
RU2734213C1 (en) Electrolyte for electrochemical deposition of composite copper coating for radioelectronics
CN117026346A (en) Inert anode for PCB electroplating and preparation method thereof
KR20230125629A (en) Manufacturing method of conductive material for secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees