JP2002263496A - Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber - Google Patents

Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber

Info

Publication number
JP2002263496A
JP2002263496A JP2001069808A JP2001069808A JP2002263496A JP 2002263496 A JP2002263496 A JP 2002263496A JP 2001069808 A JP2001069808 A JP 2001069808A JP 2001069808 A JP2001069808 A JP 2001069808A JP 2002263496 A JP2002263496 A JP 2002263496A
Authority
JP
Japan
Prior art keywords
carbon
catalyst
metal particles
catalyst composition
catalyst metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001069808A
Other languages
Japanese (ja)
Inventor
Terumi Furuta
照実 古田
Hajime Goto
肇 後藤
Yoshinari Fujiwara
良也 藤原
Toshio Tokune
敏生 徳根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001069808A priority Critical patent/JP2002263496A/en
Publication of JP2002263496A publication Critical patent/JP2002263496A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst composition, in which catalyst particles are arranged to be separately scattered on a carbon based supporting body, and a manufacturing method thereof and a manufacturing method capable easily manufacturing high purity carbon nanofiber. SOLUTION: The catalyst composition is composed of the catalyst metal particle 1 having the surface covered with carbon 3 and nano-structured carbon 2 dispersed on the surroundings. The catalyst metal particle is at least one kind selected from Ti, Zr, Fe, Co, Ni and Y. The nano-structural carbon 2 is the carbon nanofiber. The catalyst composition is produced by vaporizing the catalyst metal and the carbon material and rapidly quenching. The vaporization is performed by arc discharge. The catalyst composition is placed on a carbon substrate 21 and is exposed in an oxidizing atmosphere to remove the carbon 3 and the nano-structural carbon 2 by oxidation. A gaseous mixture of hydrogen with hydrocarbon is passed through the carbon substrate 21 supporting the catalyst metal particle 1 to form the carbon nanofiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カーボンナノファ
イバー等のナノ構造炭素の製造に用いられる触媒組成物
とその製造方法とに関するものである。また、本発明
は、前記カーボンナノファイバーの製造方法にも関する
ものである。
[0001] The present invention relates to a catalyst composition used for producing nanostructured carbon such as carbon nanofibers, and a method for producing the same. The present invention also relates to a method for producing the carbon nanofiber.

【0002】[0002]

【従来の技術】近年、C60フラーレン、カーボンナノ
チューブ、グラファイトナノファイバー等のナノメート
ルオーダーの大きさを有するナノ構造炭素が注目されて
いる。前記ナノ構造炭素は、その特殊な構造のために、
特殊な機能的性質、構造的性質を備えている。例えば、
数ナノメートルの微細な大きさを備えるグラファイトナ
ノファイバーは、水素吸蔵、電池電極、キャパシタ等に
応用する用途がある。
2. Description of the Related Art In recent years, attention has been paid to nanostructured carbon having a size on the order of nanometers, such as C60 fullerene, carbon nanotube, and graphite nanofiber. The nanostructured carbon, due to its special structure,
Has special functional and structural properties. For example,
Graphite nanofibers having a fine size of several nanometers have applications to hydrogen storage, battery electrodes, capacitors and the like.

【0003】前記ナノ構造炭素の製造方法として、例え
ば、特開平11−256430号記載の技術が知られて
いる。前記公報記載の技術は、炭素、黒鉛、無機酸化物
からなる支持体粒子上に多価遷移金属触媒の粒子を担持
させ、水素と炭化水素との混合ガスをチューブに流通す
ると共に、該チューブに該触媒を導入するものである。
ここで、前記公報には、前記遷移金属触媒の粒子を前記
支持体粒子上に担持させる際に、3.5〜70μm、好
ましくは6〜30μmの間隔で離散させることが、前記
ナノ構造炭素を製造するために重要であるとされてい
る。
As a method for producing the nanostructured carbon, for example, a technique described in Japanese Patent Application Laid-Open No. H11-256430 is known. The technology described in the above-mentioned publication discloses a method in which particles of a polyvalent transition metal catalyst are supported on support particles made of carbon, graphite, and an inorganic oxide, and a mixed gas of hydrogen and a hydrocarbon flows through the tube, The catalyst is introduced.
Here, the publication discloses that when the particles of the transition metal catalyst are supported on the support particles, the particles are dispersed at intervals of 3.5 to 70 μm, preferably 6 to 30 μm. It is considered important for manufacturing.

【0004】ところが、前記支持体粒子として黒鉛等の
炭素系材料を用いると、前記遷移金属触媒の粒子が凝集
してしまう傾向があり、前記のような離散した状態を作
ることが難しいとの問題がある。そこで、従来、前記支
持体として、比表面積を増加させるために多孔質とした
アルミナ基板を用い、該アルミナ基板上に前記遷移金属
触媒の粒子を離散した状態で配置し、該アルミナ基板上
に水素と炭化水素との混合ガスを流通させて、前記ナノ
構造炭素を製造させることが行われている。
However, if a carbon-based material such as graphite is used as the support particles, the transition metal catalyst particles tend to agglomerate, making it difficult to form the discrete state as described above. There is. Therefore, conventionally, a porous alumina substrate was used as the support to increase the specific surface area, and the transition metal catalyst particles were arranged in a discrete state on the alumina substrate, and hydrogen was placed on the alumina substrate. The production of the nanostructured carbon is carried out by flowing a mixed gas of carbon and hydrocarbon.

【0005】しかしながら、前記のようにアルミナ基板
上に前記遷移金属触媒を配置して前記ナノ構造炭素を製
造すると生成したナノ構造炭素にアルミナが不純物とし
て混入してしまい、該不純物を除去して高純度に精製す
るためにフッ酸等の強力な酸処理工程が必要になるとの
不都合がある。
However, when the transition metal catalyst is disposed on the alumina substrate to produce the nanostructured carbon as described above, alumina is mixed with the generated nanostructured carbon as an impurity. There is an inconvenience that a strong acid treatment step such as hydrofluoric acid is required for purification to a purity.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる不都
合を解消して、炭素系材料からなる支持体に対して触媒
粒子を離散した状態で配置することができる触媒組成物
及びその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is directed to a catalyst composition and a method for producing the same, which are capable of solving the above disadvantages and disposing catalyst particles in a discrete state on a support made of a carbon-based material. The purpose is to provide.

【0007】また、本発明は、高純度のカーボンナノフ
ァイバーを容易に得ることができるカーボンナノファイ
バーの製造方法を提供することを目的とする。
Another object of the present invention is to provide a method for producing carbon nanofibers that can easily obtain high-purity carbon nanofibers.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の触媒組成物は、表面が炭素で被覆された
直径3〜20nmの触媒金属粒子と、該触媒金属粒子の
周囲に分散されて該触媒金属粒子の凝集を妨げるナノ構
造炭素とからなることを特徴とする。
In order to achieve the above object, a catalyst composition of the present invention comprises catalyst metal particles having a surface coated with carbon and having a diameter of 3 to 20 nm, and dispersed around the catalyst metal particles. And nano-structured carbon that prevents aggregation of the catalytic metal particles.

【0009】本発明の触媒組成物によれば、前記触媒金
属粒子の表面が炭素で被覆されており、しかも該触媒金
属粒子間に前記ナノ構造炭素が介在している。そこで、
本発明の触媒組成物を炭素基板上に配置したときに、前
記触媒金属粒子は前記ナノ構造炭素により凝集を妨げら
れ、離散した状態を維持することができる。
According to the catalyst composition of the present invention, the surface of the catalyst metal particles is coated with carbon, and the nanostructured carbon is interposed between the catalyst metal particles. Therefore,
When the catalyst composition of the present invention is disposed on a carbon substrate, the catalytic metal particles are prevented from aggregating by the nanostructured carbon, and can maintain a discrete state.

【0010】従って、本発明の触媒組成物によれば、炭
素基板を用いてナノ構造炭素を製造することができ、高
純度のナノ構造炭素を得ることができる。
Therefore, according to the catalyst composition of the present invention, nanostructured carbon can be produced using a carbon substrate, and high-purity nanostructured carbon can be obtained.

【0011】本発明の触媒組成物は、前記触媒金属粒子
として、例えば、Ti,Zr,Fe,Co,Ni,Yか
らなる群から選択される少なくとも1種の金属粒子を用
いることができる。また、本発明の触媒組成物における
前記ナノ構造炭素としては、例えばカーボンナノファイ
バーを挙げることができる。
In the catalyst composition of the present invention, for example, at least one kind of metal particles selected from the group consisting of Ti, Zr, Fe, Co, Ni, and Y can be used as the catalyst metal particles. In addition, examples of the nanostructured carbon in the catalyst composition of the present invention include carbon nanofibers.

【0012】本発明の触媒組成物は、触媒金属と炭素材
料とを共に蒸発させた後、蒸発した触媒金属と炭素材料
との蒸気を急冷することにより、表面が炭素で被覆され
た直径3〜20nmの触媒金属粒子と、該触媒金属粒子
の周囲に分散されて該触媒金属粒子の凝集を妨げるナノ
構造炭素とからなる触媒組成物を生成させる製造方法に
より、有利に製造することができる。前記触媒金属と炭
素材料とを共に蒸発させる方法としては、例えば、前記
触媒金属の粉末と、前記炭素材料としての黒鉛粉末とを
混合してなる電極を用いてアーク放電を行う方法を用い
ることができる。
The catalyst composition of the present invention is characterized in that the catalyst metal and the carbon material are co-evaporated, and then the vapor of the evaporated catalyst metal and the carbon material is rapidly cooled, so that the diameter of the carbon material is 3 to 3 mm. It can be advantageously produced by a production method for producing a catalyst composition comprising 20 nm of catalytic metal particles and nanostructured carbon dispersed around the catalytic metal particles and preventing aggregation of the catalytic metal particles. As a method of evaporating the catalyst metal and the carbon material together, for example, a method of performing an arc discharge using an electrode formed by mixing the catalyst metal powder and the graphite powder as the carbon material may be used. it can.

【0013】また、本発明のカーボンナノファイバーの
製造方法は、表面が炭素で被覆された直径3〜20nm
の触媒金属粒子と、該触媒金属粒子の周囲に分散されて
該触媒金属粒子の凝集を妨げるナノ構造炭素とからなる
触媒組成物を炭素基板上に配置する工程と、前記炭素基
板上に配置された前記触媒組成物を酸化雰囲気に曝露
し、前記触媒金属粒子の表面を被覆している炭素と、前
記ナノ構造炭素とを酸化して除去することにより該触媒
金属粒子を分散した状態で該炭素基板上に担持せしめる
工程と、前記触媒金属粒子を担持している炭素基板上
に、水素と炭化水素との混合ガスを流通することによ
り、カーボンナノファイバーを生成せしめる工程とを備
えることを特徴とする。
The method for producing carbon nanofibers according to the present invention is characterized in that the surface is coated with carbon and has a diameter of 3 to 20 nm.
Disposing a catalyst composition comprising catalyst metal particles and a nanostructured carbon dispersed around the catalyst metal particles to prevent aggregation of the catalyst metal particles on a carbon substrate, and disposing the catalyst composition on the carbon substrate. The catalyst composition is exposed to an oxidizing atmosphere, and the carbon coating the surface of the catalyst metal particles and the nanostructured carbon are oxidized and removed to remove the carbon in a state where the catalyst metal particles are dispersed. A step of causing a mixed gas of hydrogen and hydrocarbon to flow on a carbon substrate supporting the catalytic metal particles, thereby forming carbon nanofibers. I do.

【0014】本発明のカーボンナノファイバーの製造方
法によれば、前記本発明の触媒組成物を炭素基板上に配
置するので、触媒金属粒子が該炭素基板上で凝集するこ
とを防止して、離散した状態で配置することができる。
前記炭素基板上に配置された触媒組成物は、次いで、酸
化雰囲気に曝露されることにより、前記触媒金属粒子の
表面を被覆している炭素と、前記ナノ構造炭素とが酸化
されて除去される。この結果、前記触媒金属粒子を凝集
させることなく、前記のように離散した状態のままで、
前記炭素基板上に担持させることができる。
According to the method for producing carbon nanofibers of the present invention, the catalyst composition of the present invention is disposed on a carbon substrate. It can be arranged in the state where it was done.
The catalyst composition disposed on the carbon substrate is then exposed to an oxidizing atmosphere, whereby the carbon coating the surface of the catalyst metal particles and the nanostructured carbon are oxidized and removed. . As a result, without aggregating the catalyst metal particles, in the discrete state as described above,
It can be carried on the carbon substrate.

【0015】そこで、次に、前記触媒金属粒子を担持し
ている炭素基板上に、水素と炭化水素との混合ガスを流
通することにより、基板から炭素以外の物質が不純物と
して混入することを防止して、高純度のカーボンナノフ
ァイバーを生成させることができる。
Then, by flowing a mixed gas of hydrogen and hydrocarbon over the carbon substrate carrying the catalyst metal particles, it is possible to prevent substances other than carbon from being mixed as impurities from the substrate. As a result, high-purity carbon nanofibers can be generated.

【0016】[0016]

【発明の実施の形態】次に、添付の図面を参照しながら
本発明の実施の形態についてさらに詳しく説明する。図
1は本実施形態の触媒組成物の説明図であり、図2は本
実施形態の触媒組成物を製造するアーク放電装置のシス
テム構成図、図3は本実施形態のカーボンナノファイバ
ーの製造方法を示す工程図である。
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory view of the catalyst composition of the present embodiment, FIG. 2 is a system configuration diagram of an arc discharge device for producing the catalyst composition of the present embodiment, and FIG. 3 is a method for producing carbon nanofibers of the present embodiment. FIG.

【0017】本実施形態の触媒組成物は、図1示のよう
に、触媒金属粒子1と、その周囲に分散されたカーボン
ナノファイバー2とからなり、触媒金属粒子1の表面は
炭素被覆層3により被覆されている。
As shown in FIG. 1, the catalyst composition of the present embodiment is composed of catalytic metal particles 1 and carbon nanofibers 2 dispersed around the catalytic metal particles 1. Coated with

【0018】前記触媒金属粒子1は、Ti,Zr,F
e,Co,Ni,Yからなる群から選択される少なくと
も1種であり、本実施形態ではTi,Ni,Yが1:
1:1の原子比率で混合されている。前記触媒金属粒子
1は、それぞれ実質的に純物質であればよく、不可避的
不純物を含んでいてもよい。
The catalyst metal particles 1 are made of Ti, Zr, F
e, Co, Ni, and Y are at least one member selected from the group consisting of Ti, Ni, and Y in the present embodiment.
They are mixed at an atomic ratio of 1: 1. The catalyst metal particles 1 may be substantially pure substances, and may contain unavoidable impurities.

【0019】また、触媒金属粒子1は、3〜20nmの
直径を備えている。触媒金属粒子1の直径が20nmを
超えると、このような触媒金属粒子1を用いてナノ構造
炭素を生成させることが難しくなる。また、触媒金属粒
子1の直径を3nm未満とするには、特殊な装置等を必
要とし、コスト増が避けられない。
The catalytic metal particles 1 have a diameter of 3 to 20 nm. When the diameter of the catalyst metal particles 1 exceeds 20 nm, it becomes difficult to generate nanostructured carbon using such catalyst metal particles 1. Further, in order to reduce the diameter of the catalyst metal particles 1 to less than 3 nm, a special device or the like is required, and an increase in cost cannot be avoided.

【0020】前記カーボンナノファイバー2は、例え
ば、直径0.7〜5nm、長さ10〜1000nmの範
囲にあることにより、炭素層3で被覆された触媒金属粒
子1の凝集を好適に妨げることができる。
When the carbon nanofibers 2 have a diameter of, for example, 0.7 to 5 nm and a length of 10 to 1000 nm, the aggregation of the catalytic metal particles 1 covered with the carbon layer 3 can be preferably prevented. it can.

【0021】前記触媒組成物は、例えば、図2示のよう
な構成のアーク放電装置11を用いて製造することがで
きる。アーク放電装置11は、開閉自在のアーク放電チ
ャンバ12内に固定された負極13と、負極13に対し
て進退自在に備えられた正極(消耗電極)14とを備
え、負極13と正極14とは電源装置15に接続されて
いる。また、アーク放電チャンバ12は、開閉弁16を
介して図示しない真空ポンプに接続されており、開閉弁
17を介して図示しないヘリウムガス源に接続されてい
る。尚、このようなアーク放電装置11としては、例え
ば、特開平11−263609号公報記載の装置等を用
いることができる。
The above-mentioned catalyst composition can be produced, for example, by using an arc discharge device 11 having a structure as shown in FIG. The arc discharge device 11 includes a negative electrode 13 fixed in an openable and closable arc discharge chamber 12 and a positive electrode (consumable electrode) 14 provided to be able to move forward and backward with respect to the negative electrode 13. It is connected to the power supply 15. The arc discharge chamber 12 is connected to a vacuum pump (not shown) via an on-off valve 16 and to a helium gas source (not shown) via an on-off valve 17. In addition, as such an arc discharge device 11, for example, the device described in JP-A-11-263609 can be used.

【0022】前記負極13、正極14は軸方向に沿って
中空部を備える中実円筒形状の高純度黒鉛電極であり、
前記中空部には触媒金属粒子1と黒鉛粉末との混合物が
充填されている。本実施形態では、Ni:Y:Ti:黒
鉛=1:1:1:97の原子比率で混合した混合物を前
記中空部に充填した負極13、正極14を用い、0.0
55MPaのヘリウム雰囲気下、100A、30Vの電
流、電圧条件で、アーク放電を行う。
The negative electrode 13 and the positive electrode 14 are solid cylindrical high-purity graphite electrodes having hollow portions along the axial direction.
The hollow portion is filled with a mixture of the catalyst metal particles 1 and graphite powder. In the present embodiment, a negative electrode 13 and a positive electrode 14 are used, in which a mixture obtained by mixing Ni: Y: Ti: graphite at an atomic ratio of 1: 1: 1: 97 into the hollow portion is used.
The arc discharge is performed under a helium atmosphere of 55 MPa, under a current and voltage condition of 100 A and 30 V.

【0023】この結果、前記アーク放電により、負極1
3、正極14から触媒金属粒子1と炭素材料としての黒
鉛とが蒸発し、それぞれの蒸気が生成する。このとき、
アーク放電チャンバ12内は、前記アーク放電を行って
いる負極13、正極14の近傍は高温であるが、負極1
3、正極14から離れた領域は遙かに低温になってい
る。そこで、触媒金属粒子1と黒鉛との蒸気は、負極1
3、正極14から離れると、急冷され、図1示のような
触媒組成物が生成する。前記触媒組成物は、前記アーク
放電終了後、アーク放電チャンバ12内から回収するこ
とができる。
As a result, the arc discharge causes the negative electrode 1
3. The catalyst metal particles 1 and the graphite as a carbon material evaporate from the positive electrode 14 to generate respective vapors. At this time,
In the arc discharge chamber 12, the temperature near the negative electrode 13 and the positive electrode 14 performing the arc discharge is high.
3. The region far from the positive electrode 14 is at a much lower temperature. Therefore, the vapor of the catalyst metal particles 1 and graphite is applied to the anode 1
3. When it is separated from the positive electrode 14, it is quenched to produce a catalyst composition as shown in FIG. The catalyst composition can be recovered from the arc discharge chamber 12 after the completion of the arc discharge.

【0024】次に、図1示の触媒組成物を用いてカーボ
ンナノファイバーを製造する方法について説明する。
Next, a method for producing carbon nanofibers using the catalyst composition shown in FIG. 1 will be described.

【0025】本実施形態では、まず、前記触媒組成物を
エタノール中に投入し、該エタノールに超音波を印加す
ることにより、前記触媒組成物を十分に分散、懸濁させ
て懸濁液を調製する。次に、図3(a)示のように前記
懸濁液を炭素基板21上に塗布し、乾燥することにより
エタノールを除去して、炭素基板21上に前記触媒組成
物を配置する。前記触媒組成物は、表面が炭素被覆層3
で被覆された触媒金属粒子1間にカーボンナノファイバ
ー2が介在しているので、炭素基板21上で触媒金属粒
子1が凝集することがない。尚、図3(a)では、説明
のために、触媒金属粒子1,1の間にカーボンナノファ
イバー2が1本ずつ規則正しく介在されているように図
示しているが、実際には触媒金属粒子1とカーボンナノ
ファイバー2との位置関係は不規則になっているのは言
うまでもない。
In the present embodiment, first, the catalyst composition is poured into ethanol, and ultrasonic waves are applied to the ethanol to sufficiently disperse and suspend the catalyst composition to prepare a suspension. I do. Next, as shown in FIG. 3A, the suspension is applied on a carbon substrate 21 and dried to remove ethanol, and the catalyst composition is disposed on the carbon substrate 21. The catalyst composition has a carbon coating layer 3 on the surface.
Since the carbon nanofibers 2 are interposed between the catalyst metal particles 1 coated with the carbon nanotubes, the catalyst metal particles 1 do not aggregate on the carbon substrate 21. In FIG. 3A, for the sake of explanation, the carbon nanofibers 2 are regularly arranged one by one between the catalytic metal particles 1 and 1; It goes without saying that the positional relationship between 1 and the carbon nanofibers 2 is irregular.

【0026】次に、図3(b)示のように、前記触媒組
成物が配置された炭素基板21を石英管22内に投入す
る。そして、石英管22に10%の酸素を含むアルゴン
ガスを、550℃、100ccmの速度で流通する。
Next, as shown in FIG. 3 (b), the carbon substrate 21 on which the catalyst composition is disposed is put into a quartz tube 22. Then, an argon gas containing 10% oxygen flows through the quartz tube 22 at 550 ° C. at a speed of 100 ccm.

【0027】前記のようにすると石英管22内が酸化雰
囲気となり、前記触媒組成物は該酸化雰囲気に曝露され
て、カーボンナノファイバー2と炭素被覆層3とが二酸
化炭素ガスに酸化されて除去される。この結果、図3
(c)示のように、炭素基板21上には露出された触媒
金属粒子1のみが残り、しかも触媒金属粒子1は間にカ
ーボンナノファイバー2が介在していた状態のまま、凝
集することなく炭素基板21に担持されている。
As described above, the inside of the quartz tube 22 becomes an oxidizing atmosphere, the catalyst composition is exposed to the oxidizing atmosphere, and the carbon nanofibers 2 and the carbon coating layer 3 are oxidized to carbon dioxide gas and removed. You. As a result, FIG.
As shown in (c), only the exposed catalytic metal particles 1 remain on the carbon substrate 21, and the catalytic metal particles 1 are not aggregated with the carbon nanofibers 2 interposed therebetween. It is carried on a carbon substrate 21.

【0028】そこで、次に、石英管22に水素:メタン
=4:1の混合ガスを、600℃、100ccmの速度
で流通することにより、カーボンナノファイバーを生成
せしめる。前記カーボンナノファイバーは、前記のよう
に凝集せず、離散した状態の触媒金属粒子1の上に成長
するので、触媒金属粒子1の粒子サイズに従ったカーボ
ンナノファイバーが得られる。
Then, a mixed gas of hydrogen: methane = 4: 1 is passed through the quartz tube 22 at 600 ° C. at a speed of 100 ccm to generate carbon nanofibers. Since the carbon nanofibers do not aggregate as described above and grow on the catalyst metal particles 1 in a discrete state, carbon nanofibers according to the particle size of the catalyst metal particles 1 are obtained.

【0029】本実施形態の製造方法によれば、得られた
カーボンナノファイバーは、前記触媒金属粒子1以外の
不純物を含んでいないので、触媒金属粒子1を常法によ
り除去することにより、容易に高純度化することができ
る。
According to the manufacturing method of the present embodiment, the obtained carbon nanofibers do not contain impurities other than the catalyst metal particles 1, so that the catalyst metal particles 1 are easily removed by removing the catalyst metal particles 1 by a conventional method. It can be highly purified.

【0030】尚、本実施形態では、前記触媒組成物を生
成させるために、触媒金属粒子1と炭素材料との蒸発を
アーク放電により行っているが、レーザー、プラズマ等
を熱源として蒸発させるようにしてもよい。
In the present embodiment, the catalyst metal particles 1 and the carbon material are evaporated by arc discharge in order to form the catalyst composition. However, the catalyst metal particles 1 and the carbon material are evaporated using a laser, plasma or the like as a heat source. You may.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態の触媒組成物の説明図。FIG. 1 is an explanatory diagram of a catalyst composition of the present embodiment.

【図2】本実施形態の触媒組成物を製造するアーク放電
装置のシステム構成図。
FIG. 2 is a system configuration diagram of an arc discharge device for producing the catalyst composition of the present embodiment.

【図3】本実施形態のカーボンナノファイバーの製造方
法を示す工程図。
FIG. 3 is a process chart showing a method for producing a carbon nanofiber of the present embodiment.

【符号の説明】[Explanation of symbols]

1…触媒金属粒子、 2…ナノ構造炭素、 3…炭素被
覆層、 21…炭素基板。
DESCRIPTION OF SYMBOLS 1 ... Catalyst metal particle, 2 ... Nano structure carbon, 3 ... Carbon coating layer, 21 ... Carbon substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 良也 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 徳根 敏生 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 4G069 AA02 AA08 BA08A BA08B BB02A BB02B BC40A BC40B BC50A BC50B BC51A BC66A BC67A BC68A BC68B CB81 DA05 EB19 EC28 EC30 FA01 FB31 FB37 FB58 4L037 AT01 CS03 FA20 PA02 PA11 UA20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshiya Fujiwara 1-4-1 Chuo, Wako-shi, Saitama Prefecture Inside Honda R & D Co., Ltd. (72) Inventor Toshio Tokune 1-4-4 Chuo, Wako-shi, Saitama No. 1 F-term in Honda R & D Co., Ltd. (Reference) 4G069 AA02 AA08 BA08A BA08B BB02A BB02B BC40A BC40B BC50A BC50B BC51A BC66A BC67A BC68A BC68B CB81 DA05 EB19 EC28 EC30 FA01 FB31 FB37 PA02 PA01 AT02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】表面が炭素で被覆された直径3〜20nm
の触媒金属粒子と、該触媒金属粒子の周囲に分散されて
該触媒金属粒子の凝集を妨げるナノ構造炭素とからなる
ことを特徴とする触媒組成物。
1. The diameter is 3 to 20 nm, the surface of which is coated with carbon.
And a nanostructured carbon dispersed around the catalytic metal particles to prevent aggregation of the catalytic metal particles.
【請求項2】前記触媒金属粒子は、Ti,Zr,Fe,
Co,Ni,Yからなる群から選択される少なくとも1
種の金属粒子であることを特徴とする請求項1記載の触
媒組成物。
2. The catalyst metal particles include Ti, Zr, Fe,
At least one selected from the group consisting of Co, Ni, Y
The catalyst composition according to claim 1, wherein the catalyst composition is a seed metal particle.
【請求項3】前記ナノ構造炭素は、カーボンナノファイ
バーであることを特徴とする請求項1または請求項2記
載の触媒組成物。
3. The catalyst composition according to claim 1, wherein the nanostructured carbon is a carbon nanofiber.
【請求項4】触媒金属と炭素材料とを共に蒸発させた
後、蒸発した触媒金属と炭素材料との蒸気を急冷するこ
とにより、表面が炭素で被覆された直径3〜20nmの
触媒金属粒子と、該触媒金属粒子の周囲に分散されて該
触媒金属粒子の凝集を妨げるナノ構造炭素とからなる触
媒組成物を生成させることを特徴とする触媒組成物の製
造方法。
4. After evaporating the catalyst metal and the carbon material together, the vapor of the evaporated catalyst metal and the carbon material is quenched to form catalyst metal particles having a surface coated with carbon and having a diameter of 3 to 20 nm. Producing a catalyst composition comprising nanostructured carbon dispersed around the catalyst metal particles and preventing aggregation of the catalyst metal particles.
【請求項5】前記触媒金属の粉末と、前記炭素材料とし
ての黒鉛粉末とを混合してなる電極を用いてアーク放電
を行うことにより、該触媒金属と該炭素材料とを共に蒸
発させることを特徴とする請求項4記載の触媒組成物の
製造方法。
5. An arc discharge using an electrode obtained by mixing the catalyst metal powder and the graphite powder as a carbon material, thereby evaporating the catalyst metal and the carbon material together. A method for producing a catalyst composition according to claim 4, characterized in that:
【請求項6】表面が炭素で被覆された直径3〜20nm
の触媒金属粒子と、該触媒金属粒子の周囲に分散されて
該触媒金属粒子の凝集を妨げるナノ構造炭素とからなる
触媒組成物を炭素基板上に配置する工程と、 前記炭素基板上に配置された前記触媒組成物を酸化雰囲
気に曝露し、前記触媒金属粒子の表面を被覆している炭
素と、前記ナノ構造炭素とを酸化して除去することによ
り該触媒金属粒子を分散した状態で該炭素基板上に担持
せしめる工程と、 前記触媒金属粒子を担持している炭素基板上に、水素と
炭化水素との混合ガスを流通することにより、カーボン
ナノファイバーを生成せしめる工程とを備えることを特
徴とするカーボンナノファイバーの製造方法。
6. A diameter of 3 to 20 nm, the surface of which is coated with carbon.
Disposing a catalyst composition comprising catalyst metal particles of the following structure and nanostructured carbon dispersed around the catalyst metal particles to prevent aggregation of the catalyst metal particles on a carbon substrate, and disposing the catalyst composition on the carbon substrate. The catalyst composition is exposed to an oxidizing atmosphere, and the carbon coating the surface of the catalyst metal particles and the nanostructured carbon are oxidized and removed to remove the carbon in a state where the catalyst metal particles are dispersed. A step of causing a carbon nanofiber to be generated by flowing a mixed gas of hydrogen and a hydrocarbon on a carbon substrate supporting the catalytic metal particles. Of producing carbon nanofibers.
JP2001069808A 2001-03-13 2001-03-13 Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber Pending JP2002263496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069808A JP2002263496A (en) 2001-03-13 2001-03-13 Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001069808A JP2002263496A (en) 2001-03-13 2001-03-13 Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber

Publications (1)

Publication Number Publication Date
JP2002263496A true JP2002263496A (en) 2002-09-17

Family

ID=18927785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069808A Pending JP2002263496A (en) 2001-03-13 2001-03-13 Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber

Country Status (1)

Country Link
JP (1) JP2002263496A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054922A (en) * 2001-08-13 2003-02-26 Sony Corp Structure including carbon-coated catalyst nanoparticle, method of making such structure, and method of producing carbon nanostructure therefrom
WO2004094700A1 (en) * 2003-02-18 2004-11-04 Shinshu University Metal particles and method for producing same
WO2009132407A2 (en) * 2008-04-30 2009-11-05 Universidade Federal De Minas Gerais - Ufmg Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products
JP4905129B2 (en) * 2004-02-26 2012-03-28 コニカミノルタホールディングス株式会社 Method for producing nanoparticle-attached substrate
JP2013513483A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Method of forming a catalyst with reduced mobility of nanoactive materials
JP2014065033A (en) * 2012-09-24 2014-04-17 Korea Institute Of Energ Reserch Method for producing metal-carbon composite supported catalyst using co-vaporization method for producing hydrogen, and metal-carbon composite supported catalyst for producing hydrogen produced thereby
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054922A (en) * 2001-08-13 2003-02-26 Sony Corp Structure including carbon-coated catalyst nanoparticle, method of making such structure, and method of producing carbon nanostructure therefrom
WO2004094700A1 (en) * 2003-02-18 2004-11-04 Shinshu University Metal particles and method for producing same
JP4905129B2 (en) * 2004-02-26 2012-03-28 コニカミノルタホールディングス株式会社 Method for producing nanoparticle-attached substrate
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9085487B2 (en) 2008-04-30 2015-07-21 Universidade Federal De Minas Gerais Large scale production of carbon nanotubes in portland cement
WO2009132407A3 (en) * 2008-04-30 2011-06-09 Universidade Federal De Minas Gerais - Ufmg Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products
WO2009132407A2 (en) * 2008-04-30 2009-11-05 Universidade Federal De Minas Gerais - Ufmg Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
JP2013513483A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Method of forming a catalyst with reduced mobility of nanoactive materials
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9566567B2 (en) 2012-09-24 2017-02-14 Korea Institute Of Energy Research Metal-carbon composite supported catalyst for hydrogen production using co-evaporation and method of preparing the same
JP2014065033A (en) * 2012-09-24 2014-04-17 Korea Institute Of Energ Reserch Method for producing metal-carbon composite supported catalyst using co-vaporization method for producing hydrogen, and metal-carbon composite supported catalyst for producing hydrogen produced thereby
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Similar Documents

Publication Publication Date Title
JP2002263496A (en) Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber
Awasthi et al. Synthesis of carbon nanotubes
TWI400193B (en) Process for the production of carbon nanostructure
JP3986711B2 (en) Method for producing single-walled carbon nanotube
JP2007169159A (en) Apparatus and method for forming nanoparticle and nanotube, and use therefor for gas storage
US20110006254A1 (en) Process to make electrochemically active/inactive nanocomposite material
JP2001348215A (en) Manufacturing method of carbon nanotube and/or fullerene and manufacturing device therefor
JP6969938B2 (en) Method for purifying carbon nanotubes
JP2006188389A (en) Method for production of high-purity two- to five-walled carbon nanotube, and composition containing the same
Rümmeli et al. Carbon nanotubes and related structures: production and formation
Gangele et al. Synthesis of patterned vertically aligned carbon nanotubes by PECVD using different growth techniques: a review
US20110027164A1 (en) Method and apparatus for synthesizing carbon nanotubes using ultrasonic evaporation
Rakhi et al. Field emission from carbon nanotubes on a graphitized carbon fabric
JP5647827B2 (en) Carbon nanomaterials and their use
JP2002097010A (en) Method for making hybrid monolayered carbon nanotube
JP2007513047A (en) Method for producing high purity carbon nanotubes using water
JP2003054922A (en) Structure including carbon-coated catalyst nanoparticle, method of making such structure, and method of producing carbon nanostructure therefrom
WO2002070405A1 (en) Device and method for manufacture of carbonaceous material
US7820132B2 (en) Hot wire production of single-wall and multi-wall carbon nanotubes
JP2006281168A (en) Catalyst for manufacturing double-layer carbon nanotube, and manufacturing method of double-layer carbon nanotube using the same
JP2004168647A (en) Method and apparatus for manufacturing multilayer carbon nanotube and method of refining the same and pulse like high voltage large current power source
JP2004035962A (en) Method of producing metal nanotube
Ismael Mechanical properties of nanotubes
JP3861857B2 (en) Method for producing carbon nanotube tape
JP2004331477A (en) Manufacturing method of monolayer carbon nanotube and its unit