JP2006147170A - Conductive material and its manufacturing method - Google Patents

Conductive material and its manufacturing method Download PDF

Info

Publication number
JP2006147170A
JP2006147170A JP2004331760A JP2004331760A JP2006147170A JP 2006147170 A JP2006147170 A JP 2006147170A JP 2004331760 A JP2004331760 A JP 2004331760A JP 2004331760 A JP2004331760 A JP 2004331760A JP 2006147170 A JP2006147170 A JP 2006147170A
Authority
JP
Japan
Prior art keywords
conductive material
carbon nanotubes
carbon nanotube
inert atmosphere
highly conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004331760A
Other languages
Japanese (ja)
Inventor
Hitoshi Oyama
仁 尾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004331760A priority Critical patent/JP2006147170A/en
Publication of JP2006147170A publication Critical patent/JP2006147170A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive material having conductivity higher than one consisting of copper and aluminum, with a small amount of heat radiation, even if it is put under electricity with a high current density, as well as a method of easily manufacturing the conductive material. <P>SOLUTION: The conductive material is made up by dispersing carbon nanotube in high-conductivity metal, and the manufacturing method of the conductive material involves a process of mixing powder of high-conductivity metal and carbon nanotube under an inert atmosphere, and a process of sintering the mixture thus obtained under an inert atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気機器内の電線やコイル等に使用され、高い導電性を有する導電材、及びその製造方法に関する。   The present invention relates to a conductive material that is used for an electric wire, a coil, or the like in an electric device and has high conductivity, and a method for manufacturing the same.

電気機器内の電線やコイル等に使用される導体(導電材)としては、導電率の高い銅やアルミニウム等が用いられており、絶縁性の高分子からなるエナメルで被覆された導電材が広く用いられている。   As conductors (conductive materials) used for electric wires and coils in electrical equipment, copper, aluminum, etc. with high conductivity are used, and conductive materials covered with enamel made of insulating polymers are widely used. It is used.

近年、電気機器の小型化、パワーアップ等のために、電流密度(導電材の単位断面積あたりの電流)の上昇が求められている。しかし、電流密度の上昇により導電材の発熱も大きくなり、より高い耐熱性を有する絶縁材が必要となる。   In recent years, there has been a demand for an increase in current density (current per unit cross-sectional area of a conductive material) in order to reduce the size and power up of electrical equipment. However, the increase in current density also increases the heat generation of the conductive material, and an insulating material having higher heat resistance is required.

高い耐熱性を有する絶縁材としては、無機系の絶縁被覆が知られているが、これらは脆く、外部よりの衝撃により導電材が変形すると脆い被覆が破れて、絶縁不良が生じる問題がある。そこで、高い導電性(すなわち低い抵抗値)を有し、電流密度が上昇しても発熱の小さい導電材が望まれていた。   As insulating materials having high heat resistance, inorganic insulating coatings are known. However, these are fragile, and there is a problem in that when the conductive material is deformed by an external impact, the fragile coating is broken and insulation failure occurs. Therefore, there has been a demand for a conductive material that has high conductivity (that is, low resistance value) and generates little heat even when the current density increases.

本発明は、銅やアルミニウムからなる導電材よりもさらに高い導電性を有し、電流密度が上昇しても発熱の小さい導電材を提供することを課題とする(課題1とする。)。本発明は、さらに、この導電材を容易に製造する方法を提供することを課題とする(課題2とする。)。   An object of the present invention is to provide a conductive material having higher conductivity than a conductive material made of copper or aluminum and generating less heat even when the current density is increased (referred to as Problem 1). Another object of the present invention is to provide a method for easily producing this conductive material (referred to as problem 2).

本発明者は、カーボンナノチューブの有する高い導電性に着目し、銅等の高導電性金属中への配合について鋭意検討の結果、カーボンナノチューブを、高導電性金属中に分散できること、その結果より高い導電性を有する導電材が得られることを見出し、次に示す構成からなる発明を完成した。   The present inventor pays attention to the high conductivity of carbon nanotubes, and as a result of intensive studies on the compounding in copper and other highly conductive metals, carbon nanotubes can be dispersed in highly conductive metals, and the result is higher. The inventors have found that a conductive material having conductivity can be obtained, and have completed the invention having the following configuration.

すなわち、請求項1の発明は、高導電性金属中にカーボンナノチューブを分散させてなることを特徴とする導電材を提供するものであり、この構成の発明により、課題1が解決され高い導電性を有する導電材が得られる。   That is, the invention of claim 1 provides a conductive material characterized in that carbon nanotubes are dispersed in a highly conductive metal, and the invention of this configuration solves the problem 1 and has high conductivity. A conductive material having the following is obtained.

本発明は、前記の請求項1の発明の好ましい態様として、カーボンナノチューブの分散量が、導電材中の10体積%以上で90体積%以下であることを特徴とする導電材(請求項2)、及び高導電性金属が、銅、銀、金及びアルミニウムから選ばれる1種以上の金属又はそれらの合金であることを特徴とする導電材(請求項3)を提供する。   According to the present invention, as a preferred aspect of the invention of claim 1, the conductive material is characterized in that the amount of carbon nanotube dispersion is 10% by volume or more and 90% by volume or less in the conductive material (claim 2). And a highly conductive metal is one or more metals selected from copper, silver, gold and aluminum, or an alloy thereof (Claim 3).

前記の本発明の導電材は、高導電性金属中にカーボンナノチューブを分散させて得られるが、その分散方法(製造方法)は特に限定されない。例えば、高導電性金属の粉末及びカーボンナノチューブを不活性雰囲気中で混合する工程、及び得られた混合物を不活性雰囲気中で焼結する工程を有する方法により製造することができる。本発明は、この導電材の製造方法(請求項4)も提供するものであり、この方法により課題2が達成される。   The conductive material of the present invention is obtained by dispersing carbon nanotubes in a highly conductive metal, but the dispersion method (manufacturing method) is not particularly limited. For example, it can be produced by a method having a step of mixing a highly conductive metal powder and carbon nanotubes in an inert atmosphere and a step of sintering the obtained mixture in an inert atmosphere. The present invention also provides a method for producing the conductive material (claim 4), and the problem 2 is achieved by this method.

前記本発明の導電材は電線等に用いられ、非常に導電性が高いので電流密度が高い場合でも発熱が少ないとの優れた特徴を有する。従って、絶縁被覆電線に用いた場合でも、絶縁被覆に高い耐熱性の絶縁材、例えば無機絶縁材を要しない。そこで、小型で高出力が求められる電気器具中の配線等、高い電流密度が求められる用途に好適に用いられる。   The conductive material of the present invention is used for electric wires and the like, and has an excellent feature that it generates little heat even when the current density is high because it is very conductive. Therefore, even when used for an insulation-coated electric wire, the insulation coating does not require a highly heat-resistant insulating material, such as an inorganic insulating material. Therefore, it is suitably used for applications that require a high current density, such as wiring in electrical appliances that are small and require high output.

本発明の導電材は、導電性が高いとの特徴の他に、強度が大きく衝撃が加わっても変形しにくい(以下、この性質を、耐衝撃変形性と言う。)、及び、無機物と同程度の熱膨張率を得やすいとの優れた特徴を有する。   The conductive material of the present invention has a high strength, has a high strength and is not easily deformed even when an impact is applied (hereinafter, this property is referred to as impact deformation resistance), and is the same as an inorganic material. It has an excellent feature that it is easy to obtain a coefficient of thermal expansion.

銅やアルミニウム等からなる従来の導電材は変形しやすく、外部よりの衝撃例えば打痕により大きく変形しやすい。その結果絶縁被覆も変形する。変形により絶縁被覆も剥離し絶縁不良が生じ易く、特に絶縁被覆がSiO2系ガラス等の脆い無機系の層の場合この問題が大きかった。しかし、本発明の導電材は、耐衝撃変形性に優れているので、絶縁被覆の剥離等の問題が生じにくい。又、無機物と同程度の熱膨張率が得られるので、温度変化による無機系の絶縁被覆の剥離も低減することができる。   A conventional conductive material made of copper, aluminum or the like is easily deformed, and is easily deformed greatly by an external impact such as a dent. As a result, the insulation coating is also deformed. The insulation coating also peels off due to deformation, and insulation failure tends to occur. This problem is particularly serious when the insulation coating is a fragile inorganic layer such as SiO 2 glass. However, since the conductive material of the present invention is excellent in impact deformation resistance, problems such as peeling off of the insulating coating hardly occur. In addition, since a thermal expansion coefficient comparable to that of an inorganic material can be obtained, peeling of an inorganic insulating coating due to a temperature change can be reduced.

次に本発明を実施するための具体的形態を説明する。   Next, specific embodiments for carrying out the present invention will be described.

本発明の導電材に使用されるカーボンナノチューブとは、炭素原子の六方格子がかご型のシート状に配列した高分子からなるファイバー粒子であり、長く伸びた微細な中空の円筒を形成している。カーボンナノチューブの粒子は、長さが最長1mm、直径は0.4nm程度から最大100nm以上であるが、その中でも長いカーボンナノチューブが好ましく用いられる。   The carbon nanotube used in the conductive material of the present invention is a fiber particle made of a polymer in which hexagonal lattices of carbon atoms are arranged in a cage-like sheet shape, and forms a long hollow micro hollow cylinder. . The carbon nanotube particles have a maximum length of 1 mm and a diameter of about 0.4 nm to a maximum of 100 nm or more. Among them, long carbon nanotubes are preferably used.

本発明の導電材において、カーボンナノチューブは、高導電性金属の中に分散されている。分散されているとは、カーボンナノチューブが導電材中に均一に分布していることを意味するが、微視的、すなわちミクロンオーダーでは分布に濃淡があってもよい。   In the conductive material of the present invention, the carbon nanotubes are dispersed in a highly conductive metal. Dispersed means that the carbon nanotubes are uniformly distributed in the conductive material, but the distribution may be microscopic, that is, in the micron order, the distribution may vary.

本発明で、好ましく用いられるカーボンナノチューブは、金属的性質を有するものである。又、カーボンナノチューブには、直径0.4nmから5nm程度の単層のものと、同心円状に多数の菅が形成されている多層のものがあるが、多層のカーボンナノチューブの方が、高い導電率を得られるので好ましい。   The carbon nanotubes preferably used in the present invention have metallic properties. Carbon nanotubes include single-walled carbon nanotubes with a diameter of about 0.4 nm to 5 nm, and multi-walled carbon nanotubes with many concentric ridges. Multi-walled carbon nanotubes have higher conductivity. Is preferable.

カーボンナノチューブを分散することにより、高導電性金属(導電材)の強度、特に耐衝撃変形性が著しく向上する。又、カーボンナノチューブは、非常に電気抵抗が低い。又、カーボンナノチューブと高導電性金属とを混合しても、合金化による抵抗上昇もない。そこで、カーボンナノチューブを高導電性金属に分散することにより、非常に導電率の高い(すなわち非常に電気抵抗が低い)、高強度の導電材が得られる。   By dispersing the carbon nanotubes, the strength of the highly conductive metal (conductive material), particularly the impact deformation resistance, is significantly improved. Carbon nanotubes have a very low electrical resistance. Further, even if carbon nanotubes and a highly conductive metal are mixed, there is no increase in resistance due to alloying. Therefore, by dispersing the carbon nanotubes in a highly conductive metal, a highly strong conductive material having a very high conductivity (that is, a very low electrical resistance) can be obtained.

高導電性金属中のカーボンナノチューブ分散量は、導電材の全体積中に占めるカーボンナノチューブの体積が、10〜90%となる範囲が好ましい。請求項2は、この好ましい態様に該当する。分散量が高い程、導電率も高くなり、又強度が増し高い耐衝撃変形性が得られる。分散量が10体積%未満では、この優れた効果が充分でない場合がある。一方カーボンナノチューブの形状から、90体積%を越える分散量は困難である。   The amount of carbon nanotube dispersion in the highly conductive metal is preferably in a range where the volume of carbon nanotubes in the total volume of the conductive material is 10 to 90%. Claim 2 corresponds to this preferable mode. The higher the amount of dispersion, the higher the conductivity, and the higher the strength and the higher impact deformation resistance. If the amount of dispersion is less than 10% by volume, this excellent effect may not be sufficient. On the other hand, the amount of dispersion exceeding 90% by volume is difficult due to the shape of the carbon nanotubes.

高導電性金属として銅を用いた場合は、カーボンナノチューブの分散量が50〜70体積%となる範囲が、特に好ましい。銅とカーボンナノチューブの混合量に応じて熱膨張率が変化する。カーボンナノチューブの分散量が、前記の範囲内の場合、無機物と同程度の熱膨張率が得られるので、無機絶縁層で被覆された絶縁被覆電線へ本発明の導電材を適用する場合、温度変化による絶縁被覆の剥離等が生じにくく、絶縁不良の発生を少なくすることができる。   When copper is used as the highly conductive metal, a range in which the amount of carbon nanotube dispersion is 50 to 70% by volume is particularly preferable. The coefficient of thermal expansion changes according to the amount of copper and carbon nanotubes mixed. When the amount of carbon nanotube dispersion is within the above range, the same coefficient of thermal expansion as that of inorganic materials can be obtained. Therefore, when the conductive material of the present invention is applied to an insulation-coated electric wire coated with an inorganic insulation layer, the temperature change It is difficult for the insulation coating to be peeled off due to, and the occurrence of insulation failure can be reduced.

高導電性金属とは、高い導電率を有する金属であり、銅、銀、金及びアルミニウムから選ばれる1種以上の金属又はそれらの合金が例示される。請求項3は、この態様に該当する。価格や、加工のしやすさ、特に伸線のしやすさ等から、銅もしくはアルミニウム又はそれらの合金が好ましい。   The highly conductive metal is a metal having high conductivity, and examples thereof include one or more metals selected from copper, silver, gold, and aluminum, or alloys thereof. Claim 3 corresponds to this aspect. Copper, aluminum, or an alloy thereof is preferable from the viewpoint of price, ease of processing, particularly ease of drawing.

前記の請求項4の製造方法では、先ず高導電性金属の粉末が製造され、カーボンナノチューブと混合される。混合方法は、特に限定されず通常の粉末冶金において用いられる混合方法が採用できる。カーボンナノチューブは、空気中の酸素と反応して燃焼するので、この混合は、酸素を遮断した不活性雰囲気中で行う必要がある。例えば、不活性ガス雰囲気下で行われる。   In the manufacturing method according to the fourth aspect of the invention, first, a highly conductive metal powder is manufactured and mixed with carbon nanotubes. The mixing method is not particularly limited, and a mixing method used in ordinary powder metallurgy can be adopted. Since the carbon nanotubes react with oxygen in the air and burn, the mixing needs to be performed in an inert atmosphere in which oxygen is blocked. For example, it is performed in an inert gas atmosphere.

混合後、得られた混合物は焼結され、本発明の導電材が得られる。混合と同様に焼結も、酸素を遮断した不活性雰囲気中で行う必要がある。この製造方法は、高導電性金属がアルミニウム等の比重の比較的小さい金属の場合に、特に好ましく採用される。   After mixing, the obtained mixture is sintered to obtain the conductive material of the present invention. Sintering as well as mixing must be carried out in an inert atmosphere with oxygen blocked. This manufacturing method is particularly preferably employed when the highly conductive metal is a metal having a relatively low specific gravity such as aluminum.

高導電性金属を、板状、線状又は粒状に鍛造し、その表面上にカーボンナノチューブを塗布し、この鍛造と塗布を繰り返す方法によっても本発明の導電材が得られる。例えば、板状の場合は、表面にカーボンナノチューブが塗布された複数枚の板を積層し、その積層品を、鍛造により再度薄板状への引伸ばし、その薄板の表面にカーボンナノチューブを塗布し、この積層、鍛造(薄板状への引伸ばし)、塗布の工程を繰り返すことにより、高導電性金属内に細かくカーボンナノチューブが分散された導電材が得られる。   The conductive material of the present invention can also be obtained by forging a highly conductive metal into a plate shape, a linear shape or a granular shape, applying carbon nanotubes on the surface, and repeating this forging and application. For example, in the case of a plate, a plurality of plates coated with carbon nanotubes on the surface are laminated, the laminated product is again stretched into a thin plate by forging, and the carbon nanotubes are applied to the surface of the thin plate, By repeating the steps of lamination, forging (stretching into a thin plate), and coating, a conductive material in which carbon nanotubes are finely dispersed in a highly conductive metal can be obtained.

高導電性金属の鍛造は、加熱下で行われることが多い。この場合、カーボンナノチューブは、空気中の酸素と反応して燃焼するので、鍛造は、酸素を遮断した不活性雰囲気、例えば不活性ガス雰囲気下で行われる。   Forging of highly conductive metals is often performed under heating. In this case, since the carbon nanotube reacts with oxygen in the air and burns, forging is performed in an inert atmosphere in which oxygen is blocked, for example, in an inert gas atmosphere.

本発明の導電材からなる電線は、高導電性金属中にカーボンナノチューブを分散させてなる導電材を伸線することにより製造することができる。このようにして得られた電線上に、有機系、無機系の絶縁被覆を施すことにより、絶縁被覆電線が得られる。   The electric wire made of the conductive material of the present invention can be produced by drawing a conductive material in which carbon nanotubes are dispersed in a highly conductive metal. By applying an organic or inorganic insulating coating on the electric wire thus obtained, an insulating coated electric wire can be obtained.

本発明の導電材からなる電線がコイルとして用いられた場合は、その優れた導電性より高い電流密度を得ることができ、高磁場を発生することができる。従って、高い電流密度を得ることができるコイルとして、小型で高出力のモータ等に好適に用いられる。又、高磁場を発生することができるとの特徴により、医療用磁石等にも適用される。

When the electric wire made of the conductive material of the present invention is used as a coil, a current density higher than its excellent conductivity can be obtained, and a high magnetic field can be generated. Therefore, it is suitably used for a small, high-power motor or the like as a coil capable of obtaining a high current density. Moreover, it can be applied to medical magnets and the like due to the feature that a high magnetic field can be generated.

Claims (4)

高導電性金属中にカーボンナノチューブを分散させてなることを特徴とする導電材。   A conductive material comprising carbon nanotubes dispersed in a highly conductive metal. カーボンナノチューブの分散量が、導電材中の10体積%以上で90体積%以下であることを特徴とする請求項1に記載の導電材。   2. The conductive material according to claim 1, wherein a dispersion amount of the carbon nanotube is 10% by volume or more and 90% by volume or less in the conductive material. 高導電性金属が、銅、銀、金及びアルミニウムから選ばれる1種以上の金属又はその合金であることを特徴とする請求項1又は請求項2に記載の導電材。   The conductive material according to claim 1 or 2, wherein the highly conductive metal is one or more metals selected from copper, silver, gold, and aluminum, or an alloy thereof. 高導電性金属の粉末及びカーボンナノチューブを不活性雰囲気中で混合する工程、及び得られた混合物を不活性雰囲気中で焼結する工程を有することを特徴とする導電材の製造方法。

A method for producing a conductive material, comprising: a step of mixing a powder of highly conductive metal and a carbon nanotube in an inert atmosphere; and a step of sintering the obtained mixture in an inert atmosphere.

JP2004331760A 2004-11-16 2004-11-16 Conductive material and its manufacturing method Pending JP2006147170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331760A JP2006147170A (en) 2004-11-16 2004-11-16 Conductive material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004331760A JP2006147170A (en) 2004-11-16 2004-11-16 Conductive material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006147170A true JP2006147170A (en) 2006-06-08

Family

ID=36626625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331760A Pending JP2006147170A (en) 2004-11-16 2004-11-16 Conductive material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006147170A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032440A1 (en) * 2006-07-13 2008-01-17 Siemens Ag High-current conductor, in particular for an electric arc furnace, and method for forming a high-current conductor
WO2008032956A1 (en) * 2006-09-11 2008-03-20 C & Tech Co., Ltd. Composite sintering materials using carbon nanotube and manufacturing method thereof
KR100839613B1 (en) * 2006-09-11 2008-06-19 주식회사 씨앤테크 Composite Sintering Materials Using Carbon Nanotube And Manufacturing Method Thereof
WO2009104665A1 (en) * 2008-02-20 2009-08-27 株式会社大成化研 Manufacturing method for metal materials that comprise carbon nanostructure materials and cnt steel manufactured therefrom
JP2009252745A (en) * 2008-04-09 2009-10-29 Qinghua Univ Coaxial cable
JP2011014650A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Electromagnetic shielding molding material, electromagnetic shielding molding for electronic component, electromagnetic shielding molding for building material, and method of manufacturing the electromagnetic shielding molding material
US8268398B2 (en) 2008-02-01 2012-09-18 Tsinghua Universtiy Method for making carbon nanotube composite structure
EP2966765A1 (en) * 2014-07-11 2016-01-13 ABB Technology Oy Converter system with DC conductors comprising carbon fibres
JPWO2015133474A1 (en) * 2014-03-05 2017-04-06 積水化学工業株式会社 Conductive filler, method for producing conductive filler, and conductive paste
CN109321775A (en) * 2018-11-12 2019-02-12 北京科技大学 A method of preparing the Cu-base composites of carbon nano-tube oriented alignment
CN110894579A (en) * 2019-12-10 2020-03-20 昆明理工大学 Preparation method of hydrogen-etched carbon nanotube reinforced copper-based composite material
WO2023136255A1 (en) * 2022-01-11 2023-07-20 矢崎総業株式会社 Carbon nanotube composite wiring and manufacturing method therefor
JP7393858B2 (en) 2017-10-26 2023-12-07 古河電気工業株式会社 Carbon nanotube coated wire, coil and coated wire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168502A (en) * 1996-12-10 1998-06-23 Osaka Gas Co Ltd Composite material with high thermal conductivity
JP2004082130A (en) * 2002-08-22 2004-03-18 Nissei Plastics Ind Co Compound forming method and compound metal product of carbon nano material and metallic material
JP2005048206A (en) * 2003-07-30 2005-02-24 Toshiba Corp High strength and high electric conductivity aluminum alloy based composite material, and its production method
WO2005040068A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
WO2005059194A1 (en) * 2003-12-18 2005-06-30 Shimane Prefectural Government Metal base carbon fiber composite material and process for producing the same
JP2006057129A (en) * 2004-08-19 2006-03-02 Shinano Kenshi Co Ltd Composite metal body, method for producing the same, metal grain and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168502A (en) * 1996-12-10 1998-06-23 Osaka Gas Co Ltd Composite material with high thermal conductivity
JP2004082130A (en) * 2002-08-22 2004-03-18 Nissei Plastics Ind Co Compound forming method and compound metal product of carbon nano material and metallic material
JP2005048206A (en) * 2003-07-30 2005-02-24 Toshiba Corp High strength and high electric conductivity aluminum alloy based composite material, and its production method
WO2005040068A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
WO2005059194A1 (en) * 2003-12-18 2005-06-30 Shimane Prefectural Government Metal base carbon fiber composite material and process for producing the same
JP2006057129A (en) * 2004-08-19 2006-03-02 Shinano Kenshi Co Ltd Composite metal body, method for producing the same, metal grain and method for producing the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032440A1 (en) * 2006-07-13 2008-01-17 Siemens Ag High-current conductor, in particular for an electric arc furnace, and method for forming a high-current conductor
WO2008032956A1 (en) * 2006-09-11 2008-03-20 C & Tech Co., Ltd. Composite sintering materials using carbon nanotube and manufacturing method thereof
KR100839613B1 (en) * 2006-09-11 2008-06-19 주식회사 씨앤테크 Composite Sintering Materials Using Carbon Nanotube And Manufacturing Method Thereof
US8119095B2 (en) 2006-09-11 2012-02-21 C & Tech Co., Ltd. Composite sintering materials using carbon nanotube and manufacturing method thereof
US8506922B2 (en) 2006-09-11 2013-08-13 C & Tech Co., Ltd. Composite sintering materials using carbon nanotube and manufacturing method thereof
US8562938B2 (en) 2006-09-11 2013-10-22 Sang-Chul Ahn Composite sintering materials using carbon nanotube and manufacturing method thereof
US8268398B2 (en) 2008-02-01 2012-09-18 Tsinghua Universtiy Method for making carbon nanotube composite structure
JP5384372B2 (en) * 2008-02-20 2014-01-08 株式会社大成化研 Method for producing metal material containing carbon nanostructure material and CNT steel produced by the method
WO2009104665A1 (en) * 2008-02-20 2009-08-27 株式会社大成化研 Manufacturing method for metal materials that comprise carbon nanostructure materials and cnt steel manufactured therefrom
JP2009252745A (en) * 2008-04-09 2009-10-29 Qinghua Univ Coaxial cable
US8604340B2 (en) 2008-04-09 2013-12-10 Tsinghua Univeristy Coaxial cable
JP2011014650A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Electromagnetic shielding molding material, electromagnetic shielding molding for electronic component, electromagnetic shielding molding for building material, and method of manufacturing the electromagnetic shielding molding material
JPWO2015133474A1 (en) * 2014-03-05 2017-04-06 積水化学工業株式会社 Conductive filler, method for producing conductive filler, and conductive paste
US10639713B2 (en) 2014-03-05 2020-05-05 Sekisui Chemical Co., Ltd. Conductive filler, method for manufacturing conductive filler, and conductive paste
EP2966765A1 (en) * 2014-07-11 2016-01-13 ABB Technology Oy Converter system with DC conductors comprising carbon fibres
CN105322809A (en) * 2014-07-11 2016-02-10 Abb技术有限公司 Converter system
CN105322809B (en) * 2014-07-11 2018-04-24 Abb技术有限公司 Converter system
US10044287B2 (en) 2014-07-11 2018-08-07 Abb Technology Oy Converter system having carbon fiber conductor
JP7393858B2 (en) 2017-10-26 2023-12-07 古河電気工業株式会社 Carbon nanotube coated wire, coil and coated wire
CN109321775A (en) * 2018-11-12 2019-02-12 北京科技大学 A method of preparing the Cu-base composites of carbon nano-tube oriented alignment
CN110894579A (en) * 2019-12-10 2020-03-20 昆明理工大学 Preparation method of hydrogen-etched carbon nanotube reinforced copper-based composite material
CN110894579B (en) * 2019-12-10 2021-05-11 昆明理工大学 Preparation method of hydrogen-etched carbon nanotube reinforced copper-based composite material
WO2023136255A1 (en) * 2022-01-11 2023-07-20 矢崎総業株式会社 Carbon nanotube composite wiring and manufacturing method therefor

Similar Documents

Publication Publication Date Title
EP2879145B1 (en) Electrical contact materials and method for preparing the same
JP2006147170A (en) Conductive material and its manufacturing method
US9879925B2 (en) Heat dissipation sheet manufactured using graphene/graphite nanoplate/carbon nanotube/nano-metal complex and method of manufacturing the same
EP1956110B1 (en) Metal-based composite material containing both micro-sized carbon fiber and nano-sized carbon fiber
KR101646573B1 (en) Aluminium-graphene composite, and preparing method of the same
CN110049943A (en) The form and its synthesis of superconducting metal composite material
TWI244720B (en) Aluminum nitride sintered body, electrostatic chuck conductive component, component for semiconductor fabrication device, and method for producing aluminum nitride sintered body
JP5270632B2 (en) Method for producing composite material of nanocarbon and metal or ceramic
KR101222038B1 (en) Method for producing a light alloy having dispersed Carbon nanotube
KR101722582B1 (en) Method for processing Composite Wire for Electrical Cable using Carbon NanoTube - Aluminum Composite Powder
WO2009014320A3 (en) Spherical assembly particle composition of cuprous oxide and preparation method thereof
CN103922324A (en) Preparation method of graphite film with high heat conductivity
KR101842355B1 (en) Method for processing Transmission cable made of composite material
Park et al. Thermoelectric and mechanical properties of PEDOT: PSS-coated Ag2Se nanowire composite fabricated via digital light processing based 3D printing
WO2007118337A1 (en) Electrical contact assembly
JP2010027895A (en) Thermoelectric conversion element
CN115020577A (en) For Mg 3 Sb 2 Interface material of base thermoelectric device and preparation method thereof
KR20160116112A (en) Copper-carbon composite powder and manufacturing method the same
WO2010010783A1 (en) Thermoelectric conversion element
CN111636006A (en) Aluminum-silicon alloy graphite composite heat conduction material and preparation and application thereof
CN112382440B (en) Conductive wire, coil and equipment
JP2011144416A (en) Highly conductive amorphous alloy, highly conductive amorphous alloy for light electric application and highly conductive amorphous alloy for power application
JP2016126993A (en) Carbon nanotube paste for high-output field-emission emitter, and manufacturing method thereof
KR20150099091A (en) Method of Manufacturing Nano Material from Graphite-Metal Composite by Mechanical Alloying and Collected Nano Material Using the Same
JP2008095183A (en) Oxide-coated copper fine particle and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Effective date: 20091120

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091201

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100413

Free format text: JAPANESE INTERMEDIATE CODE: A02