WO2016013219A1 - Plating solution and method for producing same, composite material, copper composite material, and method for producing same - Google Patents

Plating solution and method for producing same, composite material, copper composite material, and method for producing same Download PDF

Info

Publication number
WO2016013219A1
WO2016013219A1 PCT/JP2015/003679 JP2015003679W WO2016013219A1 WO 2016013219 A1 WO2016013219 A1 WO 2016013219A1 JP 2015003679 W JP2015003679 W JP 2015003679W WO 2016013219 A1 WO2016013219 A1 WO 2016013219A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
plating solution
copper
carbon
dispersion
Prior art date
Application number
PCT/JP2015/003679
Other languages
French (fr)
Japanese (ja)
Inventor
新井 進
貢 上島
Original Assignee
日本ゼオン株式会社
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社, 国立大学法人信州大学 filed Critical 日本ゼオン株式会社
Priority to JP2016535798A priority Critical patent/JP6606076B2/en
Publication of WO2016013219A1 publication Critical patent/WO2016013219A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Definitions

  • the present invention relates to a plating solution and a method for producing the same, and particularly relates to a plating solution containing carbon nanofibers and a method for producing the plating solution.
  • the present invention also relates to a composite material formed using a plating solution containing carbon nanofibers.
  • the present invention also relates to a copper composite material in which copper and a carbon nanostructure are combined, and a method for producing the copper composite material.
  • Carbon nanostructures such as carbon nanotubes (hereinafter sometimes referred to as “CNT”) are excellent in conductivity, thermal conductivity, sliding properties, mechanical properties, etc. Has been. Therefore, in recent years, by utilizing the excellent properties of carbon nanostructures, we have provided composite materials that have further improved conductivity and thermal conductivity by combining carbon and other metals with carbon nanostructures. The development of technology is underway.
  • Patent Document 1 fine carbon fibers such as CNT are mixed in a plating solution, and a plating film is formed by the plating solution, whereby metal and fine carbon are formed.
  • a technique for satisfactorily combining fibers is proposed.
  • the metal and CNT are well compounded by using an electrolytic plating solution containing metal ions that can be plated, polyacrylic acid as a dispersant, and CNTs.
  • a technique for manufacturing an electronic component or the like having a plated film is proposed.
  • the composite material described in Patent Document 1 has room for improvement in terms of further improving the performance (for example, conductivity and thermal conductivity) of the composite material.
  • the inventors of the present invention made extensive studies to solve the above problems.
  • the inventors have found that carbon nanofibers can be well dispersed in the plating solution by blending the ionic surfactant and the polymeric surfactant into the plating solution. Completed the invention.
  • the present inventors have found that a composite material excellent in conductivity and thermal conductivity can be obtained by using a plating solution in which carbon nanofibers are well dispersed, and have completed the present invention.
  • the present invention aims to advantageously solve the above-mentioned problems, and the plating solution of the present invention comprises metal ions that can be plated, a chelating agent, an ionic surfactant, and a polymer system.
  • the plating solution of the present invention comprises metal ions that can be plated, a chelating agent, an ionic surfactant, and a polymer system.
  • One of the characteristics is that it contains a surfactant and carbon nanofibers.
  • the carbon nanofibers can be favorably dispersed in the plating solution.
  • “fiber” refers to those having an aspect ratio of 10 or more.
  • the plating solution of the present invention preferably has an average diameter of the carbon nanofibers of 5 nm or less. Since carbon nanofibers having an average diameter of 5 nm or less have a strong interaction between the carbon nanofibers, it is usually difficult to disperse them well in the plating solution. However, if an ionic surfactant and a polymeric surfactant are blended, even carbon nanofibers having an average diameter of 5 nm or less can be favorably dispersed in the plating solution.
  • the “average diameter of carbon nanofibers” can be determined by measuring the diameter (outer diameter) of 100 carbon nanofibers selected at random using a transmission electron microscope.
  • the metal ion capable of plating is preferably a copper ion. Since copper is highly conductive and excellent in rollability, a composite material having excellent performance (for example, conductivity and thermal conductivity) can be obtained by compounding with carbon nanofibers.
  • the plating solution of the present invention is preferably alkaline. If an alkaline plating solution is used, a composite material can be satisfactorily prepared by electroless plating.
  • the carbon nanofibers are preferably carbon nanotubes. If carbon nanotubes are used as the carbon nanofibers, the performance (for example, conductivity and thermal conductivity) of the composite material obtained using the plating solution can be further improved.
  • the carbon nanotube preferably has an average diameter (Av) and a standard deviation ( ⁇ ) of the diameter satisfy a relational expression: 0.20 ⁇ (3 ⁇ / Av) ⁇ 0.60. If carbon nanotubes having 3 ⁇ / Av of more than 0.20 and less than 0.60 are used, the conductivity and thermal conductivity of the composite material can be sufficiently improved even if the blending amount is small.
  • average diameter (Av) of carbon nanotubes” and “standard deviation of carbon nanotube diameter ( ⁇ : sample standard deviation)” are carbons selected at random using a transmission electron microscope, respectively. It can be obtained by measuring the diameter (outer diameter) of 100 nanotubes.
  • the manufacturing method of the plating solution of this invention is any manufacturing method of the plating solution mentioned above, Comprising:
  • One of the characteristics is that it includes a dispersion step of dispersing in a solvent by a dispersion treatment in which a cavitation effect or a crushing effect is obtained in the presence of an ionic surfactant and a polymeric surfactant.
  • a dispersion treatment is performed in the presence of the ionic surfactant and the polymer surfactant, a plating solution in which carbon nanofibers are well dispersed in the solution can be obtained.
  • the carbon nanofibers are dispersed by a dispersion treatment that can obtain a cavitation effect or a crushing effect, the carbon nanofibers are prevented from being damaged during the dispersion treatment, and a composite material prepared using a plating solution is desired. Performance can be demonstrated.
  • this invention aims at solving the said subject advantageously, and the composite material of this invention uses either one of the plating solutions mentioned above, and electroplating treatment or electroless plating on the substrate surface
  • One of the characteristics is that it is obtained by processing.
  • the composite material excellent in electroconductivity and heat conductivity will be obtained.
  • a copper composite material using copper as a metal among the composite materials includes a conventional copper composite material that has a much higher electrical resistance than that of unoxidized copper.
  • copper oxide may be contained, and as a result, it has been found that the conductivity and thermal conductivity of the copper composite material are not sufficiently excellent, and the present invention has been completed.
  • the present invention aims to advantageously solve the above problems, and the copper composite material of the present invention is a copper composite material in which copper and a carbon nanostructure are combined.
  • the copper composite material is a copper composite material in which copper and a carbon nanostructure are combined.
  • One characteristic of the copper composite material is that the diffraction intensity of the X-ray diffraction peak attributed to cuprous oxide is below the detection limit in the X-ray diffraction analysis.
  • the diffraction intensity of the X-ray diffraction peak attributed to cuprous oxide is below the detection limit, excellent conductivity and thermal conductivity can be exhibited.
  • the carbon nanostructure includes single-walled carbon nanotubes having a specific surface area of 600 m 2 / g or more. If single-walled carbon nanotubes with a specific surface area of 600 m 2 / g or more are contained, the conductivity and thermal conductivity of the copper composite material can be further improved.
  • the “specific surface area” refers to the nitrogen adsorption specific surface area measured using the BET method.
  • the average diameter (Av) and the diameter distribution (3 ⁇ ) of the single-walled carbon nanotube satisfy 0.20 ⁇ (3 ⁇ / Av) ⁇ 0.60. If single-walled carbon nanotubes having 3 ⁇ / Av of more than 0.20 and less than 0.60 are used, the conductivity and thermal conductivity of the copper composite material can be sufficiently improved even if the blending amount is small.
  • “diameter distribution (3 ⁇ )” refers to a value obtained by multiplying the sample standard deviation ( ⁇ ) of the diameter of the single-walled carbon nanotube by 3.
  • the “average diameter (Av) of single-walled carbon nanotubes” and “sample standard deviation ( ⁇ ) of diameter of single-walled carbon nanotubes” are 100 carbon nanotubes randomly selected using a transmission electron microscope, respectively. It can be determined by measuring the diameter (outer diameter).
  • Another object of the present invention is to advantageously solve the above-mentioned problems, and the method for producing a copper composite material according to the present invention comprises cavitation of carbon nanostructures in a dispersion medium in the presence of a dispersant.
  • a carbon nanostructure-dispersed copper plating solution is prepared by mixing the carbon nanostructure dispersion liquid and the copper plating material, it can be obtained by plating using the carbon nanostructure-dispersed copper plating solution.
  • the amount of cuprous oxide generated in the copper composite material can be significantly reduced. Accordingly, it is possible to obtain a copper composite material having excellent conductivity and thermal conductivity.
  • the plating treatment is preferably an electrolytic plating treatment. If electrolytic plating is used, the generation of cuprous oxide can be further suppressed.
  • a plating solution in which carbon nanofibers are well dispersed in the solution can be provided.
  • a composite material having excellent conductivity and thermal conductivity can be provided.
  • Example 2 is a photograph showing a state when the copper plating solution 1 obtained in Example 1-1 is dropped on a slide glass.
  • A is a photograph of the copper composite material of Example 2-1 taken using a scanning electron microscope, and
  • B is an enlarged view of the photograph shown in (A). It is a figure which shows the result when the copper composite material of Example 2-1 is analyzed using an X-ray diffractometer.
  • the plating solution of this invention can be used suitably for manufacture of the composite material containing a metal and carbon nanofiber.
  • the plating solution of this invention can be prepared, for example using the manufacturing method of the plating solution of this invention.
  • the 1st composite material of this invention is obtained by performing the electroplating process or the electroless-plating process, Preferably the electroless-plating process is performed to the base-material surface using the plating solution of this invention.
  • the second composite material of the present invention is capable of plating, and a composite of copper (Cu), which is a metal having excellent conductivity and thermal conductivity, and a carbon nanostructure. It is a copper composite material.
  • the 2nd composite material of this invention can be prepared using the manufacturing method of the copper composite material of this invention, for example.
  • the plating solution of the present invention includes metal ions that can be plated, a chelating agent, an ionic surfactant, a polymeric surfactant, and carbon nanofibers, and is optionally added to the plating solution in general. It further contains other additives. And since the plating solution of this invention contains both an ionic surfactant and polymeric surfactant, carbon nanofiber can be favorably disperse
  • the reason why the carbon nanofibers can be favorably dispersed in the plating solution by using the ionic surfactant and the polymeric surfactant in combination is not clear, but the above-mentioned two kinds of interfaces It is presumed that the action when the activator is used in combination is as follows. That is, the carbon nanofiber has strong interaction between the carbon nanofibers and is likely to aggregate in the plating solution. However, when only one of the ionic surfactant and the polymeric surfactant is used, even if a large amount of the ionic surfactant or the polymeric surfactant is blended, the carbon Nanofibers do not disperse well enough.
  • the plating solution in which the carbon nanofibers are well dispersed while the carbon nanofibers are sufficiently satisfactorily dispersed in a blending amount that does not affect the stability of the plating solution and the stability as the plating solution is ensured. It is guessed that can be obtained.
  • the metal ions that can be plated are not particularly limited, and examples include metal ions that can be plated, such as ions of copper, nickel, tin, platinum, chromium, and zinc. Among these, copper ions are preferred as metal ions that can be plated. Copper is excellent in conductivity, thermal conductivity, rollability, and the like, and if it is combined with carbon nanofiber, a composite material having excellent performance (for example, conductivity and thermal conductivity) can be obtained. Because.
  • the metal ions that can be plated are not particularly limited and can be introduced into the plating solution by dissolving a known metal compound such as copper sulfate pentahydrate or nickel sulfate hexahydrate. . Further, the concentration of metal ions that can be plated in the plating solution is not particularly limited.
  • chelating agent a known chelating agent capable of forming a chelate complex with the metal ion that can be plated can be used.
  • chelating agent for example, ethylenediaminetetraacetic acid (EDTA), ethylenediamine, triethanolamine, thiourea, Rochelle salt, tartaric acid and the like can be used.
  • EDTA ethylenediaminetetraacetic acid
  • ethylenediamine ethylenediamine
  • triethanolamine thiourea
  • Rochelle salt tartaric acid and the like
  • the ionic surfactant and the polymeric surfactant can function as a dispersant for assisting the dispersion of the carbon nanofibers in the plating solution. And in the plating solution of this invention, in order to disperse
  • the plating solution of the present invention may contain a known dispersant other than the ionic surfactant and the polymer surfactant.
  • any of a cationic surfactant and an anionic surfactant can be used.
  • a cationic surfactant is preferably used, and when an electroless plating process is performed using a plating solution, an anionic surfactant is preferably used.
  • an anionic surfactant is preferably used.
  • the cationic surfactant include quaternary ammonium salts and quaternary phosphonium salts.
  • anionic surfactant examples include sodium dodecyl sulfate, sodium deoxycholate, sodium cholate, sodium dodecylbenzenesulfonate, sodium dodecyldiphenyloxide disulfonate, and the like.
  • sodium dodecyl sulfate and sodium deoxycholate are preferable from the viewpoint of excellent dispersibility of carbon nanofibers.
  • polymer surfactant examples include polyvinyl pyrrolidone, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polystyrene sulfonic acid, and salts thereof. Among these, hydroxypropylcellulose and polyvinylpyrrolidone are preferable from the viewpoint of excellent dispersibility of the carbon nanofibers.
  • the total compounding amount of the ionic surfactant and the polymer surfactant may be at least an amount that provides a critical micelle concentration.
  • the total amount of ionic surfactant and polymer surfactant in the plating solution can be, for example, 1 to 20 times the amount of carbon nanofibers in the plating solution.
  • the ratio of the amount of the polymeric surfactant to the amount of the ionic surfactant (polymeric surfactant / ionic surfactant) is preferably 0.05 or more and 5 or less.
  • the ratio of the amount of the polymeric surfactant to the amount of the ionic surfactant is within the above range, the effect obtained by using the ionic surfactant and the polymeric surfactant together can be obtained. This is because it can be made sufficiently high.
  • Carbon nanotubes or carbon nanofibers can be used as the carbon nanofibers contained in the plating solution.
  • carbon nanotubes from the viewpoint of obtaining a composite material having excellent performance (for example, conductivity and thermal conductivity), it is preferable to use carbon nanotubes, and it is more preferable to use carbon nanotubes having an average diameter of 5 nm or less.
  • the average diameter of the carbon nanofibers contained in the plating solution is not particularly limited. However, from the viewpoint of improving the performance of the composite material obtained using the plating solution, the average diameter of the carbon nanofibers is preferably 15 nm or less, more preferably 10 nm or less, and 5 nm or less. Is more preferable.
  • carbon nanofibers having a small average diameter, particularly carbon nanofibers having an average diameter of 5 nm or less, are usually difficult to disperse well in the plating solution because of the strong interaction between the carbon nanofibers. . However, if an ionic surfactant and a polymeric surfactant are used in combination, even carbon nanofibers having a small average diameter can be favorably dispersed in the plating solution.
  • the CNT contained in the plating solution is not particularly limited, and single-walled carbon nanotubes and / or multi-walled carbon nanotubes can be used.
  • the CNT is preferably a single-walled to carbon-walled carbon nanotube, and more preferably a single-walled carbon nanotube. This is because if single-walled carbon nanotubes are used, the conductivity and thermal conductivity of the composite material can be improved better than when multi-walled carbon nanotubes are used.
  • a CNT having a ratio (3 ⁇ / Av) of a value (3 ⁇ ) obtained by multiplying the standard deviation ( ⁇ ) of the diameter by 3 with respect to the average diameter (Av) is more than 0.20 and less than 0.60. It is preferable to use CNTs with 3 ⁇ / Av exceeding 0.25, and it is even more preferable to use CNTs with 3 ⁇ / Av exceeding 0.50. This is because if 3CNT / Av is more than 0.20 and less than 0.60, the conductivity and thermal conductivity of the composite material can be sufficiently improved even if the amount of CNT is small.
  • the average diameter (Av) and standard deviation ( ⁇ ) of CNTs may be adjusted by changing the CNT manufacturing method and manufacturing conditions, or by combining multiple types of CNTs obtained by different manufacturing methods. May be.
  • CNT when measuring the diameter of 100 carbon nanotubes using a transmission electron microscope, the measured diameter is plotted on the horizontal axis, the frequency is plotted on the vertical axis, and approximated by Gaussian, A normal distribution is usually used.
  • the CNT preferably has a peak of Radial Breathing Mode (RBM) when evaluated using Raman spectroscopy. Note that there is no RBM in the Raman spectrum of multi-walled carbon nanotubes of three or more layers.
  • RBM Radial Breathing Mode
  • CNTs preferably have a G-band peak intensity ratio (G / D ratio) of 1 to 20 in the Raman spectrum. This is because if the G / D ratio is 1 or more and 20 or less, the conductivity and thermal conductivity of the composite material can be sufficiently improved even if the blending amount of CNT is small.
  • G / D ratio G-band peak intensity ratio
  • the average diameter (Av) of the CNTs is preferably 0.5 nm or more, and more preferably 1 nm or more. This is because, if the average diameter (Av) of CNTs is 0.5 nm or more, aggregation of CNTs can be suppressed and the dispersibility of CNTs in the plating solution can be further enhanced.
  • the average length of the structure during synthesis is preferably 100 ⁇ m or more and 5000 ⁇ m or less, and more preferably 300 ⁇ m or more and 2000 ⁇ m or less. This is because if the average length of the structure during synthesis is 100 ⁇ m or more, the conductivity and thermal conductivity of the composite material are improved. In addition, as the length of the structure at the time of synthesis is longer, damage such as breakage or cutting tends to occur in the CNT during dispersion. Therefore, the average length of the structure during synthesis is preferably 5000 ⁇ m or less.
  • the BET specific surface area of the CNT is preferably 600 m 2 / g or more in an unopened state, more preferably 800 m 2 / g or more, and preferably 2500 m 2 / g or less, and 1200 m 2. / G or less is more preferable. Furthermore, when the CNT is mainly opened, the BET specific surface area is preferably 1300 m 2 / g or more. This is because if the BET specific surface area of CNT is 600 m 2 / g or more, the conductivity and thermal conductivity of the composite material can be improved satisfactorily.
  • the BET specific surface area of CNT is 2500 m ⁇ 2 > / g or less, it can suppress the aggregation of CNT and can improve the dispersibility of CNT in a plating solution.
  • the “BET specific surface area” refers to a nitrogen adsorption specific surface area measured using the BET method.
  • CNTs are obtained as aggregates (CNT aggregates) oriented in a direction substantially perpendicular to the base material on a base material having a catalyst layer for carbon nanotube growth on the surface according to the super growth method described later.
  • the mass density of the CNTs as the aggregate is preferably 0.002 g / cm 3 or more and 0.2 g / cm 3 or less. If the mass density is 0.2 g / cm 3 or less, the CNTs are weakly bonded, so that the CNTs can be uniformly dispersed. In addition, if the mass density is 0.002 g / cm 3 or more, the integrity of the CNTs can be improved and the variation can be suppressed, so that handling becomes easy.
  • the CNT preferably has a plurality of micropores.
  • the CNT preferably has micropores having a pore diameter smaller than 2 nm, and the abundance thereof is a micropore volume determined by the following method, preferably 0.40 mL / g or more, more preferably 0.43 mL. / G or more, more preferably 0.45 mL / g or more, and the upper limit is usually about 0.65 mL / g.
  • the CNTs have the above micropores, aggregation of the CNTs is suppressed, the dispersibility of the CNTs is increased, and a plating solution in which the CNTs are highly dispersed can be obtained very efficiently.
  • the micropore volume can be adjusted, for example, by appropriately changing the CNT preparation method and preparation conditions.
  • P is a measurement pressure at the time of adsorption equilibrium
  • P0 is a saturated vapor pressure of liquid nitrogen at the time of measurement
  • M is an adsorbate (nitrogen) molecular weight of 28.010
  • is an adsorbate (nitrogen).
  • micropore volume can be determined using, for example, “BELSORP (registered trademark) -mini” (manufactured by Nippon Bell Co., Ltd.).
  • the CNT having the above-described properties is obtained by, for example, supplying a raw material compound and a carrier gas onto a base material having a catalyst layer for producing carbon nanotubes on the surface, and performing chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • a catalyst is synthesized, a method of dramatically improving the catalytic activity of the catalyst layer by making a small amount of an oxidizing agent (catalyst activating substance) present in the system (super growth method; see International Publication No. 2006/011655) ),
  • the catalyst layer is formed on the surface of the substrate by a wet process, and a raw material gas containing acetylene as a main component (for example, a gas containing 50% by volume or more of acetylene) can be used for efficient production. it can.
  • the carbon nanotube obtained by the super growth method may be referred to as “SGCNT”.
  • the compounding quantity of the carbon nanofiber in a plating solution is not specifically limited, According to the characteristic of the plating film according to a use, it can adjust suitably.
  • the plating solution of this invention may contain known additives, such as a pH adjuster and a brightener other than the component mentioned above in the range which does not impair the effect of this invention.
  • the pH of the plating solution containing the above components is adjusted to be alkaline, preferably pH 9 or higher, using a pH adjuster such as potassium hydroxide, particularly when used for preparing a composite material by electroless plating. It is preferable that
  • the plating solution of the present invention can be prepared by dissolving or dispersing the above-described components in a known solvent such as water.
  • the plating solution may be prepared by simultaneously adding all of the above-described components into a solvent and performing a dispersion treatment.
  • the ionic surfactant and After carbon nanofibers are dispersed in a solvent in the presence of a polymeric surfactant the metal nanofiber dispersion is prepared by adding a metal compound and a chelating agent that give a metal ion that can be plated. It is preferable.
  • the plating solution is obtained by subjecting a coarse dispersion containing carbon nanofibers, an ionic surfactant, a polymer surfactant, and a solvent to a dispersion treatment, It is preferable to prepare by adding a metal compound and a chelating agent to the nanofiber dispersion and mixing them.
  • mixing with a carbon nanofiber dispersion liquid, a metal compound, and a chelating agent can be performed using a known stirring apparatus.
  • distributing carbon nanofiber in a solvent it is preferable to use the dispersion process from which a cavitation effect or a crushing effect is acquired. If a dispersion treatment that provides a cavitation effect or a crushing effect is used, the carbon nanofibers can be prevented from being damaged during the dispersion treatment, and the composite material prepared using the plating solution can exhibit the desired performance. It is. In a normal dispersion treatment using a ball mill or the like, the carbon nanofibers may be damaged and the desired characteristics cannot be expressed in the composite material, and the electrical conductivity and thermal conductivity of the composite material may not be sufficiently improved. is there.
  • a dispersion process that can provide a cavitation effect or a crushing effect will be described.
  • the dispersion treatment that provides a cavitation effect is a dispersion method that uses shock waves generated by bursting of vacuum bubbles generated in water when high energy is applied to a liquid. And by using the said dispersion
  • dispersion treatment examples include dispersion treatment using ultrasonic waves, dispersion treatment using a jet mill, and dispersion treatment using high shear stirring. These distributed processes may be performed only one, or may be performed in combination. More specifically, for example, an ultrasonic homogenizer, a jet mill, and a high shear stirrer are suitably used for the dispersion treatment. These devices may be conventionally known devices.
  • the output is preferably 100 W or more and 500 W or less, and the temperature is preferably 15 ° C. or more and 50 ° C. or less.
  • the number of treatments may be appropriately set depending on the amount of carbon nanofibers, and is preferably 2 times or more, more preferably 5 times or more, preferably 100 times or less, and 50 times or less. More preferred.
  • the pressure is preferably 20 MPa to 250 MPa, and the temperature is preferably 15 ° C. to 50 ° C.
  • the coarse dispersion may be treated with a high shear stirring device.
  • the operation time (the time during which the machine is rotating) is preferably 3 minutes to 4 hours
  • the peripheral speed is 5 m / s to 50 m / s
  • the temperature is preferably 15 ° C. to 50 ° C.
  • the dispersion treatment for obtaining the above cavitation effect it is more preferable to perform the dispersion treatment for obtaining the above cavitation effect at a temperature of 50 ° C. or lower. This is because a change in concentration due to the volatilization of the solvent is suppressed.
  • Dispersion treatment that can produce a crushing effect Moreover, in the manufacturing method of the plating solution of this invention, the dispersion process from which the crushing effect shown below is acquired can also be applied. Dispersion treatment that provides this crushing effect allows carbon nanofibers to be uniformly dispersed in the solvent, as well as damage to carbon nanofibers caused by shock waves when bubbles disappear, compared to the dispersion treatment that provides the cavitation effect described above. This is more advantageous in this respect.
  • the above-mentioned coarse dispersion is subjected to shearing force to crush and disperse the aggregates of carbon nanofibers in the coarse dispersion, and a back pressure is applied to the obtained dispersion.
  • a back pressure is applied to the dispersion, the back pressure applied to the dispersion may be reduced to atmospheric pressure at a stretch, but it is preferable to reduce the pressure in multiple stages.
  • a dispersion system having a disperser having the following structure may be used.
  • the disperser has a disperser orifice having an inner diameter d1, a dispersion space having an inner diameter d2, and a terminal portion having an inner diameter d3 from the inflow side to the outflow side of the coarse dispersion liquid (where d2>d3> d1)).
  • an inflowing high-pressure (usually 10 to 400 MPa, preferably 50 to 250 MPa) coarse dispersion passes through the disperser orifice, thereby reducing the pressure and increasing the flow rate of the fluid. And flows into the dispersion space. Thereafter, the high-velocity coarse dispersion liquid flowing into the dispersion space flows at high speed in the dispersion space and receives a shearing force at that time. As a result, the flow rate of the coarse dispersion decreases, and the carbon nanofibers in the coarse dispersion are well dispersed. Then, a fluid having a pressure (back pressure) lower than the pressure of the inflowing coarse dispersion liquid flows out from the terminal portion as the dispersion liquid.
  • a pressure back pressure
  • the back pressure of the dispersion can be applied by applying a load to the flow of the dispersion.
  • a multistage step-down device described later can be provided on the downstream side of the disperser to provide a desired dispersion. Back pressure can be applied. By reducing the back pressure of the dispersion in multiple stages using this multistage pressure reducer, it is possible to suppress the generation of bubbles in the dispersion when the dispersion is finally released to atmospheric pressure.
  • the disperser may include a heat exchanger for cooling the dispersion and a coolant supply mechanism. This is because the generation of bubbles in the dispersion can be further suppressed by cooling the dispersion that has been heated to a high temperature by the shearing force applied by the distributor. In addition, it can suppress that a bubble generate
  • the effect of improving dispersibility by suppressing the adhesion of bubbles to the carbon nanofibers is very large in carbon nanofibers having a large BET specific surface area, particularly carbon nanofibers having a BET specific surface area of 600 m 2 / g or more. This is because the larger the specific surface area of the carbon nanofibers and the easier the carbon nanofibers to adhere to the surface, the more easily the dispersibility decreases when bubbles are generated and attached.
  • a distributed system having the above-described configuration for example, there is a distributed system in which a product name “BERYU SYSTEM PRO” (manufactured by Migrain Co., Ltd.) is combined with a multistage step-down device.
  • BERYU SYSTEM PRO manufactured by Migrain Co., Ltd.
  • the 1st composite material of this invention is obtained as a plating film by performing a plating process on the base-material surface using the plating solution mentioned above.
  • the carbon nanofibers are well dispersed, and the metal and the carbon nanofibers are well composited. Excellent in properties.
  • the plating method is not limited to electrolytic plating, and electroless plating can also be applied.
  • the method is not limited to the direct current plating method, and a current reversal plating method or a pulse plating method can also be employed.
  • the plating treatment conditions are not particularly limited, and may be according to a conventional method.
  • it does not specifically limit about the material of a base material The material used by normal electrolytic plating and electroless plating can be used.
  • the first composite material of the present invention is obtained by dispersing carbon nanofibers in a plating solution and performing a plating process. Therefore, in the first composite material of the present invention, for example, CNTs are formed on a base material, and then CNTs vertically aligned with the base material are collapsed and compressed to be horizontally aligned, and then the CNTs are made of copper or the like. It is different from a composite material obtained by a method of dipping in a plating solution and electrolytic plating.
  • the second composite material of the present invention is a copper composite material in which copper and carbon nanostructures are combined, and in the X-ray diffraction analysis, the diffraction intensity of the X-ray diffraction peak attributed to cuprous oxide is detected. It needs to be below the limit. That is, the copper composite material as the second composite material of the present invention does not substantially contain cuprous oxide and does not have a problem in practice due to the presence of cuprous oxide. Therefore, the copper composite material can exhibit excellent conductivity and thermal conductivity.
  • Carbon nanostructure is a general term for nano-sized substances composed of carbon atoms.
  • Specific examples of the carbon nanostructure include, for example, a single-walled or multi-walled carbon nanotube, a coiled carbon nanocoil, a carbon nanotwist obtained by twisting the carbon nanotube, and a beaded carbon in which beads are formed on the carbon nanotube.
  • Examples thereof include nanotubes, carbon nanoribbons having a width of several nanometers, carbon nanobrushes in which a large number of carbon nanotubes are erected, spherical fullerenes, and fine carbon fibers that are nano-sized carbon fibers.
  • These carbon nanostructures may be used alone or in combination of two or more.
  • These carbon nanostructures can be manufactured by, for example, a catalytic chemical vapor deposition method using a raw material gas disclosed in International Publication No. 2005/118473.
  • the proportion of the carbon nanostructures contained in the copper composite material is preferably 1% by mass or more, and more preferably 5% by mass or more from the viewpoint of sufficiently obtaining a desired effect. Further, from the viewpoint of suppressing deterioration of mechanical properties such as bending properties of the copper composite material, the proportion of the carbon nanostructure is preferably 60% by mass or less, and more preferably 50% by mass or less.
  • the copper composite material as the second composite material of the present invention preferably contains a single-walled carbon nanotube (hereinafter also referred to as “SWCNT”) as the carbon nanostructure.
  • SWCNT has a small diameter and a large specific surface area compared to other carbon nanostructures such as multi-walled carbon nanotubes, so it can reduce the amount required to form a composite with copper and make a uniform composite Can be realized. Thereby, it becomes possible to improve the electroconductivity and thermal conductivity of a copper composite material.
  • the SWCNT ratio in the carbon nanostructure is preferably 1% by mass or more, and more preferably 10% by mass or more.
  • the total amount of carbon nanostructures may be SWCNT.
  • the SWCNT specific surface area improves the conductivity and thermal conductivity of the copper composite material, and improves the dispersibility of the SWCNTs during the dispersion treatment to obtain the crushing effect described below. From the viewpoint of sufficiently preventing SWCNT damage, it is preferably 600 m 2 / g or more, more preferably 800 m 2 / g or more, and preferably 1200 m 2 / g or less in the unopened state. .
  • SWCNT preferably has a peak of Radial Breathing Mode (RBM) when evaluated using Raman spectroscopy. Note that there is no RBM in the Raman spectrum of multi-walled carbon nanotubes of three or more layers.
  • RBM Radial Breathing Mode
  • the ratio of the G band peak intensity to the D band peak intensity (G / D ratio) in the Raman spectrum of SWCNT is the viewpoint of the dispersibility of SWCNT and the conductivity of the copper composite material even when the amount of SWCNT is small. From the viewpoint of sufficiently improving the property and thermal conductivity, it is preferably 1 or more and 20 or less.
  • the ratio (3 ⁇ / Av) of the diameter distribution (3 ⁇ ) to the average diameter (Av) of SWCNT is from the viewpoint of sufficiently improving the conductivity and thermal conductivity of the copper composite material even when the amount of SWCNT is small. , More than 0.20, more preferably more than 0.25, particularly preferably more than 0.50, and preferably less than 0.60. That is, in SWCNT, the average diameter (Av) and the diameter distribution (3 ⁇ ) preferably satisfy the relational expression: 0.20 ⁇ (3 ⁇ / Av) ⁇ 0.60.
  • SWCNTs those having a normal distribution when the measured diameter is plotted on the horizontal axis and the frequency is plotted on the vertical axis and approximated by Gaussian are usually used.
  • the average diameter (Av) of SWCNT is preferably 0.5 nm or more, and more preferably 1 nm or more, from the viewpoint of suppressing SWCNT aggregation and improving dispersibility in the plating solution. . From the viewpoint of improving the conductivity and thermal conductivity of the copper composite material, the average diameter (Av) of SWCNT is preferably 15 nm or less, and more preferably 10 nm or less.
  • the average length of SWCNT is preferably 50 ⁇ m to 2000 ⁇ m, and more preferably 100 ⁇ m to 1000 ⁇ m, from the viewpoint of improving the conductivity and thermal conductivity of the copper composite material.
  • SWCNTs preferably have a plurality of micropores, and preferably have micropores having a pore diameter smaller than 2 nm.
  • the amount of micropores is the micropore volume (Vp) determined by the following method, and the lower limit is preferably 0.4 mL / g or more, more preferably 0.43 mL / g or more, and particularly preferably 0. It is 45 mL / g or more, and an upper limit can be 0.65 mL / g or less. If SWCNT has the above-mentioned micropores, the dispersibility of SWCNT can be improved.
  • the micropore volume can be adjusted, for example, by appropriately changing the SWCNT preparation method and preparation conditions.
  • Vp micropore volume (Vp)
  • Vp (V / 22414) ⁇ (M / ⁇ ).
  • P is a measurement pressure at the time of adsorption equilibrium
  • P0 is a saturated vapor pressure of liquid nitrogen at the time of measurement
  • M is an adsorbate (nitrogen) molecular weight of 28.010
  • is an adsorbate ( Density) at 77K of 0.808 g / cm 3 .
  • the SWCNT is not subjected to opening treatment (that is, is not open), and the t-plot obtained from the adsorption isotherm shows an upwardly convex shape.
  • the t-plot is obtained by converting the relative pressure to the average thickness t (nm) of the nitrogen gas adsorption layer in the adsorption isotherm measured by the nitrogen gas adsorption method for SWCNT (t-plot by de Boer et al. Law).
  • the convex shape of the t-plot indicates that the ratio of the internal specific surface area to the total specific surface area of SWCNT is large, and a large number of openings are formed on the sidewalls of SWCNT.
  • the SWCNT preferably has an inflection point in the range of 0.2 ⁇ t (nm) ⁇ 1.5 in the above-described t-plot, and 0.45 ⁇ t (nm) ⁇ 1.5. More preferably, it is in the range of 0.55 ⁇ t (nm) ⁇ 1.0.
  • SWCNTs whose t-plot has an upwardly convex shape have a large ratio of the internal specific surface area to the total specific surface area.
  • the ratio of the internal specific surface area S2 to the total specific surface area S1 (S2 / S1) preferably satisfies 0.05 ⁇ S2 / S1 ⁇ 0.30.
  • the total specific surface area S1 is preferably 600 to 1800 m 2 / g, and more preferably 800 to 1500 m 2 / g.
  • the internal specific surface area S2 is preferably 30 to 540 m 2 / g.
  • the total specific surface area S1 and the internal specific surface area S2 can be obtained from the above-described t-plot.
  • the SWCNT production method is not particularly limited, and includes a chemical vapor deposition method (CVD method), an arc discharge method, a laser ablation method, and the like, and the super growth method described above is particularly preferable.
  • CVD method chemical vapor deposition method
  • arc discharge method arc discharge method
  • laser ablation method a laser ablation method
  • super growth method described above is particularly preferable.
  • the copper composite material as the second composite material of the present invention is a carbon nanostructure, the single-walled carbon nanotube (SWCNT), and a fibrous carbon nanostructure having an average diameter larger than the average diameter of SWCNT.
  • SWCNT single-walled carbon nanotube
  • fibrous carbon nanostructure having an average diameter larger than the average diameter of SWCNT.
  • the ratio of the large-diameter carbon nanostructure in the carbon nanostructure is preferably 1% by mass or more, and more preferably 5% by mass or more from the viewpoint of sufficiently obtaining a desired effect. Further, from the viewpoint of suppressing deterioration of mechanical properties such as bending properties of the copper composite material, the ratio of the large-diameter carbon nanostructure is preferably 60% by mass or less, and more preferably 50% by mass or less. preferable.
  • Large-diameter carbon nanostructures are nano-sized carbon fibers.
  • Examples of the large-diameter carbon nanostructure include multi-walled carbon nanotubes and fine carbon fibers.
  • the average diameter of the large-diameter carbon nanostructure is not particularly limited as long as it is larger than the average diameter of SWCNT, and can be, for example, 10 nm or more and 200 nm or less.
  • the large-diameter carbon nanostructure is not particularly limited and can be produced, for example, according to the method described in the above-mentioned International Publication No. 2005/118473.
  • the copper composite material as the second composite material of the present invention for example, by subjecting the carbon nanostructure to a dispersion treatment in which a cavitation effect or a crushing effect is obtained in a dispersion medium in the presence of a dispersant, Dispersing the carbon nanostructure in a dispersion medium to obtain a carbon nanostructure dispersion liquid (A), and mixing the carbon nanostructure dispersion liquid and the copper plating solution material, the carbon nanostructure
  • the manufacturing method of the copper composite material of this invention including the mixing process (B) which obtains a dispersion
  • an ionic surfactant and a polymer surfactant are used in combination as a dispersant. You don't have to.
  • a carbon nanostructure is first dispersed to prepare a dispersion (carbon nanostructure dispersion), and then the carbon nanostructure dispersion and the plating solution are used. Since they are mixed, contact between oxygen contained in the carbon nanostructure and the copper component in the plating solution can be effectively suppressed. Therefore, cuprous oxide generated in the copper composite material can be significantly reduced, and thereby a copper composite material containing no cuprous oxide can be obtained.
  • Dispersion step (A) In the method for producing a copper composite material of the present invention, first, the carbon nanostructure is subjected to a dispersion treatment in which a cavitation effect or a crushing effect is obtained in a dispersion medium in the presence of a dispersing agent, whereby a carbon nanostructure is obtained. Is dispersed in a dispersion medium to obtain a carbon nanostructure dispersion liquid (dispersion step (A)).
  • the dispersant used in the dispersion step (A) is not particularly limited, and a known dispersant that can assist the dispersion of the carbon nanostructure can be used.
  • the dispersant include ionic surfactants, nonionic surfactants, polysaccharides, and the like, and surfactants are particularly preferable.
  • anionic surfactants are particularly preferable from the viewpoint of ensuring sufficient dispersibility of the carbon nanostructure.
  • the cationic surfactant include quaternary ammonium salts such as dodecyltrimethylammonium bromide, cetyltrimethylammonium bromide, distearyldimethylammonium chloride; tetrabutylphosphonium chloride, tetrapentylphosphonium chloride, trioctylmethylphosphonium chloride, Quaternary phosphonium salts such as pentyltriphenylphosphonium; and the like.
  • anionic surfactant examples include sodium dodecyl sulfate, sodium deoxycholate, sodium cholate, sodium dodecylbenzenesulfonate, sodium dodecyldiphenyloxide disulfonate, and the like.
  • nonionic surfactants include ether type nonionic surfactants such as polyoxyethylene alkyl ether; ether ester type nonionic surfactants such as polyoxyethylene ether of glycerin ester; polyethylene glycol fatty acid ester Glycerin ester; and the like.
  • polysaccharide examples include hydroxypropylcellulose, gum arabic, carboxymethylcellulose sodium salt, carboxymethylcellulose ammonium salt, hydroxyethylcellulose and the like.
  • Dispersion medium As the dispersion medium used in the dispersion step (A), water is usually used from the viewpoint of forming micelles with a dispersant.
  • a dispersant for example, an ether solvent, an alcohol solvent, an ester solvent, a ketone solvent, and the like can be used in combination with water as long as micelle formation is not inhibited.
  • the concentration of the dispersant in the dispersion medium is not particularly limited as long as it is equal to or higher than the critical micelle concentration.
  • the amount of carbon nanostructures to be dispersed in the dispersion medium is preferably 0.01 g / L or more, more preferably 0.1 g / L or more, from the viewpoint of obtaining a copper composite material having sufficient characteristics. . Further, from the viewpoint of improving the dispersibility in the dispersion medium, the amount of the carbon nanostructure dispersed in the dispersion medium is preferably 20 g / L or less, and more preferably 10 g / L or less.
  • the dispersion treatment used in the dispersion step (A) (dispersion treatment for obtaining a cavitation effect or a crushing effect) is performed on the coarse dispersion obtained by adding the above-described dispersant and carbon nanostructure to the above-described dispersion medium. Except for carrying out, it can be carried out in the same manner as the “dispersion treatment that provides a cavitation effect or a crushing effect” that can be used in the method for producing the plating solution used for the preparation of the first composite material described above.
  • the dispersion treatment that can obtain the cavitation effect in the dispersion step (A) is the same as that described in the item [Dispersion treatment that can obtain the cavitation effect], with “solvent” as “dispersion medium” and “ionic properties”. “Surfactant and polymeric surfactant” can be read as “dispersing agent”, and “carbon nanofiber” can be read as “carbon nanostructure”.
  • the dispersion treatment in which the crushing effect in the dispersion step (A) is obtained is the content described in the above item [Dispersion treatment in which the crushing effect is obtained], “solvent” as “dispersion medium”, “ It can be carried out by replacing “ionic surfactant and polymeric surfactant” with “dispersing agent” and “carbon nanofiber” with “carbon nanostructure”.
  • a surfactant ionic interface
  • an activator or a nonionic surfactant it is preferable to use an activator or a nonionic surfactant.
  • the dispersant does not freeze or falls below the cloud point of the nonionic surfactant in order to make the function of the dispersant better. It is preferable to perform the dispersion treatment at a low temperature.
  • the carbon nanostructure dispersion liquid and the copper plating liquid material are mixed to obtain a carbon nanostructure dispersion copper plating liquid (mixing step (B)).
  • the carbon nanostructure dispersion liquid and the copper plating liquid material if a desired carbon nanostructure dispersion copper plating liquid is obtained, (i) the carbon nanostructure dispersion liquid and It may be performed by mixing with a copper plating solution (solution containing a material of the copper plating solution), or (ii) the material of the copper plating solution is added individually or simultaneously to the carbon nanostructure dispersion liquid. Then, it may be carried out by mixing these, or (iii) the above (i) and (ii) may be used in combination.
  • Examples of the material for the copper plating solution include those commonly used in plating solutions such as a copper ion source, a chelating agent, and a pH adjusting agent.
  • examples of the copper ion source include copper sulfate pentahydrate.
  • examples of the chelating agent include ethylenediaminetetraacetic acid disodium salt, ethylenediamine, triethanolamine, thiourea, Rochelle salt, and tartaric acid.
  • Examples of the pH adjuster include potassium hydroxide.
  • the copper plating solution of said (i) can be obtained by dissolving the materials of these copper plating solutions in solvents, such as water.
  • the concentration of the copper ion source in the carbon nanostructure-dispersed copper plating solution is preferably 0.01 mol / L or more, and 0.05 mol / L or more. More preferably.
  • the concentration of the copper ion source is preferably 1.0 mol / L or less, and more preferably 0.5 mol / L or less, from the viewpoint of ensuring sufficient dispersibility of the carbon nanostructure.
  • the mixing of the carbon nanostructure dispersion liquid and the copper plating solution is such that the temperature of the obtained carbon nanostructure-dispersed copper plating solution is 90 ° C. or less from the viewpoint of ensuring sufficient dispersibility of the carbon nanostructure. It is preferable to carry out the temperature adjustment as appropriate.
  • the pH of the carbon nanostructure-dispersed copper plating solution is preferably 8 or more from the viewpoint of efficiently obtaining a desired copper composite material.
  • plating treatment examples of the plating method include electrolytic plating and electroless plating, and electrolytic plating is particularly preferable from the viewpoint of suppressing the generation of cuprous oxide.
  • electrolytic plating it is not limited to direct current plating, and current reversal plating or pulse plating can also be used.
  • the plating treatment conditions are not particularly limited, and may be in accordance with ordinary methods.
  • current density from the viewpoint of producing a copper composite material efficiently, it is preferably 0.1Adm -2 or more, is 0.5Adm -2 or More preferably.
  • the current density is preferably 6 Adm ⁇ 2 or less, and more preferably 4 Adm ⁇ 2 or less, from the viewpoint of obtaining a copper composite material having sufficient characteristics.
  • SGCNT-1 Synthesis of carbon nanotubes CNT
  • the catalyst layer was formed on the surface of the substrate by a wet process, and a raw material gas mainly composed of acetylene was used.
  • the obtained SGCNT-1 has a BET specific surface area of 1050 m 2 / g (unopened) and a micropore volume of 0.44 mL / g, and is characteristic of single-walled CNT in measurement with a Raman spectrophotometer.
  • a spectrum of radial breathing mode (RBM) was observed in the low wavenumber region of ⁇ 300 cm ⁇ 1 .
  • the average diameter (Av) was 3.3 nm
  • the standard deviation ( ⁇ ) of the diameter was multiplied by 3 (3 ⁇ ) was 1.9 nm
  • the ratio (3 ⁇ / Av) was 0.58.
  • the obtained plating solution was stirred using a stirrer under the condition of a temperature of 60 ° C. for 1 week. Thereafter, the plating solution is treated with an ultracentrifuge (centrifugation conditions: 8000 G, 20 ° C., 4 hours), and the presence or absence of CNT aggregates in the treated plating solution is visually observed to determine the dispersibility of CNTs. evaluated.
  • an ultracentrifuge centrifugation conditions: 8000 G, 20 ° C., 4 hours
  • Example 1-1 The concentration of SGCNT-1 as the carbon nanofiber is 0.2 g / L, the concentration of sodium dodecyl sulfate (SDS) as the ionic surfactant and the concentration of hydroxypropyl cellulose as the polymeric surfactant is 1 g / L, respectively.
  • An aqueous solution was prepared and stirred with a stirrer for 30 minutes to obtain a crude dispersion.
  • This coarse dispersion is subjected to a dispersion process 20 times under the condition of 50 MPa using a jet mill (product name: “JN-20”, manufactured by Joko Co., Ltd.), which is a dispersion apparatus utilizing the cavitation effect. A dispersion containing -1 was obtained.
  • FIG. 1 shows a state when 1 mL of the obtained copper plating solution 1 is taken and dropped on a slide glass. And when the dispersibility of CNT in the copper plating solution 1 was evaluated according to the method described above, no CNT aggregates were observed, and it was confirmed that the dispersion stability was excellent.
  • Example 1-2 A copper plating solution 2 containing SGCNT-1 was obtained in the same manner as in Example 1-1 except that sodium deoxycholate (DOC) was used instead of sodium dodecyl sulfate (SDS) as the ionic surfactant.
  • DOC sodium deoxycholate
  • SDS sodium dodecyl sulfate
  • Example 1-3 A copper plating solution 3 containing SGCNT-1 was obtained in the same manner as in Example 1-1 except that polyvinylpyrrolidone was used in place of hydroxypropylcellulose as the polymeric surfactant. When the dispersibility of CNT in the obtained copper plating solution 3 was evaluated, no CNT aggregates were observed, and it was confirmed that the dispersion stability was excellent.
  • the single-walled carbon nanotubes used in the following Examples 2-1 to 2-3 were synthesized by the following method.
  • SWCNT-1 Single-walled carbon nanotubes (SWCNT-1) as carbon nanostructures were prepared by the super-growth method according to the description in WO 2006/011655.
  • the thickness of the iron thin film layer as a catalyst layer was 2 nm.
  • the obtained SWCNT-1 had a BET specific surface area of 1050 m 2 / g (unopened state) and a micropore volume of 0.45 mL / g.
  • the t-plot in the unopened state shows an upwardly convex shape
  • the inflection point is in the range of 0.55 ⁇ t (nm) ⁇ 1.0
  • the total specific surface area S1 and the internal specific surface area S2 The ratio satisfied 0.05 ⁇ S2 / S1 ⁇ 0.30.
  • Single-walled carbon nanotubes were prepared in the same manner as in SWCNT-1, except that the thickness of the iron thin film layer as the catalyst layer was changed to 4 nm.
  • the obtained SWCNT-2 had a BET specific surface area of 820 m 2 / g (unopened state) and a micropore volume of 0.41 mL / g.
  • a spectrum of radial breathing mode (RBM) was observed in a low wavenumber region of 100 to 300 cm ⁇ 1 characteristic of single-walled CNT.
  • the average diameter (Av) was 5.9 nm
  • the diameter distribution (3 ⁇ ) was 3.2 nm
  • (3 ⁇ / Av ) was 0.54.
  • the t-plot in the unopened state shows an upwardly convex shape
  • the inflection point is in the range of 0.55 ⁇ t (nm) ⁇ 1.0
  • the total specific surface area S1 and the internal specific surface area S2 The ratio satisfied 0.05 ⁇ S2 / S1 ⁇ 0.30.
  • Example 2-1 A solution was prepared so that the concentration of SWCNT-1 as a carbon nanostructure was 0.2 g / L, and the concentration of sodium dodecyl sulfate (SDS) and hydroxypropyl cellulose as a dispersant was 1 g / L. The solution was stirred for 30 minutes using a stirrer. By subjecting this solution (crude dispersion) to 20 times of dispersion treatment at 50 MPa using a jet mill (manufactured by Joko, manufactured by JN-20) which is a dispersion device capable of obtaining a cavitation effect.
  • SDS sodium dodecyl sulfate
  • hydroxypropyl cellulose hydroxypropyl cellulose
  • distribution copper plating solution was about 50 degreeC.
  • the copper substrate whose surface was activated was attached to the anode side of the plating tank, maintained at 50 ° C., and immersed in a carbon nanostructure-dispersed copper plating solution stirred at a stirring speed of 450 rpm using a stirrer. And the electroplating process was performed so that it might become the energization amount 136.4C on the conditions of current density 1Adm- 2 (plating process (C)).
  • a copper composite material 1 composed of copper and SWCNT-1 was obtained.
  • FIG. 2 (A) shows a photograph of the surface of the copper composite material 1
  • FIG. 2 (B) shows an enlarged photograph. From the results of observation with a scanning electron microscope, it was observed that in the produced copper composite material 1, the matrix copper and SWCNT-1 were composited at the nano level. Further, surface elemental analysis of the obtained copper composite material 1 was performed using an X-ray diffraction apparatus (manufactured by Shimadzu Corporation, product name: XRD-6000). FIG. 3 shows the results. In the analysis using an X-ray diffraction apparatus, no peak derived from cuprous oxide was observed. From this result, it was confirmed that the copper composite material 1 does not contain cuprous oxide.
  • Example 2-2 In the same manner as in Example 2-1, except that the carbon nanostructure to be used was replaced with SWCNT-2, and the dispersion of the carbon nanostructure was performed by a dispersion treatment capable of obtaining a crushing effect, copper and A copper composite material 2 composed of SWCNT-2 was obtained.
  • the dispersion treatment was performed 4 times under the condition of 100 MPa using a high-pressure homogenizer having a multi-stage step-down device (product name: BERYU SYSTEM PRO).
  • the obtained copper composite material 2 was observed and analyzed in the same manner as in Example 2-1. As a result of observation using a scanning electron microscope, the copper composite material 2 had a matrix of copper and SWCNT-2.
  • Example 2-3 As carbon nanostructure, in addition to SWCNT-1, VGCF-H (manufactured by Showa Denko, average diameter 150 nm) (fine carbon fiber) (fine carbon fiber) which is a large-diameter carbon nanostructure was used. Thus, a copper composite material 3 composed of copper and SWCNT-1 and VGCF-H was obtained. Here, the concentrations of SWCNT-1 and VGCF-H in the dispersion liquid (carbon nanostructure dispersion liquid) were 0.5 g / L and 0.5 g / L, respectively. The obtained copper composite material 3 was observed and analyzed in the same manner as in Example 1.
  • the matrix copper, SWCNT-1 and VGCF-H are compounded while forming an advanced network at the nano level. Observed. Moreover, from the result of the analysis using an X-ray diffraction apparatus, in the copper composite material 3, no peak derived from cuprous oxide was observed, and it was confirmed that the copper composite material 3 does not contain cuprous oxide.
  • a plating solution in which carbon nanofibers are well dispersed in the solution can be provided.
  • a composite material having excellent conductivity and thermal conductivity can be provided.

Abstract

 The present invention provides a plating solution in which carbon nanofibers are well-dispersed into a liquid. The present invention also provides composite materials having exceptional electrical conductivity and thermal conductivity. This plating solution includes plateable metal ions, a chelator, an ionic surfactant, a polymer-based surfactant, and carbon nanofibers. This first composite material is obtained by carrying out an electroplating process or electroless plating process on a base material surface, using the plating solution. This second composite material is a copper composite material in which copper and a carbon nanofiber structure have been complexed, wherein the diffraction intensity of the X-ray diffraction peak attributed to copper (I) oxide in the copper composite material is at or below the detection limit in X-ray diffraction analysis.

Description

めっき液およびその製造方法、並びに、複合材料、銅複合材料およびその製造方法Plating solution and method for producing the same, and composite material, copper composite material and method for producing the same
 本発明は、めっき液およびその製造方法に関し、特には、炭素ナノ繊維を含有するめっき液、および、当該めっき液の製造方法に関するものである。また、本発明は、炭素ナノ繊維を含有するめっき液を用いて形成した複合材料に関するものである。
 また、本発明は、銅と炭素ナノ構造体とが複合化された銅複合材料、および、当該銅複合材料の製造方法に関する。
The present invention relates to a plating solution and a method for producing the same, and particularly relates to a plating solution containing carbon nanofibers and a method for producing the plating solution. The present invention also relates to a composite material formed using a plating solution containing carbon nanofibers.
The present invention also relates to a copper composite material in which copper and a carbon nanostructure are combined, and a method for producing the copper composite material.
 金属、なかでも銅は、導電性が高く、圧延性にも優れるため、配線材料、電線等の導電材料として広く活用されている。
 一方、カーボンナノチューブ(以下、「CNT」と称することがある。)などの炭素ナノ構造体は、導電性、熱伝導性、摺動特性、機械特性等に優れるため、幅広い用途への応用が検討されている。
 そこで、近年、炭素ナノ構造体の優れた特性を活かし、銅をはじめとした金属と炭素ナノ構造体とを複合化することで、導電性および熱伝導性をより一層向上させた複合材料を提供する技術の開発が進められている。
Metals, particularly copper, are widely used as conductive materials such as wiring materials and electric wires because of their high conductivity and excellent rollability.
On the other hand, carbon nanostructures such as carbon nanotubes (hereinafter sometimes referred to as “CNT”) are excellent in conductivity, thermal conductivity, sliding properties, mechanical properties, etc. Has been.
Therefore, in recent years, by utilizing the excellent properties of carbon nanostructures, we have provided composite materials that have further improved conductivity and thermal conductivity by combining carbon and other metals with carbon nanostructures. The development of technology is underway.
 しかしながら、金属と炭素ナノ構造体とでは、材料間の比重差が大きいため、上記複合材料の調製には、複合化が非常に難しいという点に問題があった。 However, since the specific gravity difference between the metal and the carbon nanostructure is large, there is a problem in that the composite material is very difficult to prepare.
 そこで、上記問題を解決するための方法として、例えば、特許文献1には、CNT等の微細炭素繊維をめっき液中に混入させ、そのめっき液によりめっき皮膜を形成することで、金属と微細炭素繊維とを良好に複合化させる技術が提案されている。具体的には、特許文献1には、めっき可能な金属イオンと、分散剤としてのポリアクリル酸と、CNTとを含有する電解めっき液を使用することで、金属とCNTとが良好に複合化されためっき皮膜を有する電子部品などを製造する技術が提案されている。 Therefore, as a method for solving the above problem, for example, in Patent Document 1, fine carbon fibers such as CNT are mixed in a plating solution, and a plating film is formed by the plating solution, whereby metal and fine carbon are formed. A technique for satisfactorily combining fibers is proposed. Specifically, in Patent Document 1, the metal and CNT are well compounded by using an electrolytic plating solution containing metal ions that can be plated, polyacrylic acid as a dispersant, and CNTs. A technique for manufacturing an electronic component or the like having a plated film is proposed.
特開2004-156074号公報Japanese Patent Laid-Open No. 2004-156074
 しかしながら、特許文献1に記載の電解めっき液では、めっき液中でCNTが十分に分散していなかった。そのため、CNTなどの炭素ナノ繊維を良好に分散させためっき液が求められていた。 However, in the electrolytic plating solution described in Patent Document 1, CNTs were not sufficiently dispersed in the plating solution. Therefore, a plating solution in which carbon nanofibers such as CNTs are well dispersed has been demanded.
 また、特許文献1に記載の複合材料には、複合材料の性能(例えば、導電性および熱伝導性)を更に向上させるという点において改善の余地があった。 Further, the composite material described in Patent Document 1 has room for improvement in terms of further improving the performance (for example, conductivity and thermal conductivity) of the composite material.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた。そして、本発明者らは、イオン性界面活性剤と高分子系界面活性剤とをめっき液中に配合することで、めっき液中で炭素ナノ繊維を良好に分散させることができることを見出し、本発明を完成させた。更に、本発明者らは、炭素ナノ繊維を良好に分散させためっき液を用いれば、導電性および熱伝導性に優れる複合材料が得られることを見出し、本発明を完成させた。 The inventors of the present invention made extensive studies to solve the above problems. The inventors have found that carbon nanofibers can be well dispersed in the plating solution by blending the ionic surfactant and the polymeric surfactant into the plating solution. Completed the invention. Furthermore, the present inventors have found that a composite material excellent in conductivity and thermal conductivity can be obtained by using a plating solution in which carbon nanofibers are well dispersed, and have completed the present invention.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のめっき液は、めっき可能な金属イオンと、キレート剤と、イオン性界面活性剤と、高分子系界面活性剤と、炭素ナノ繊維とを含むことを特徴の一つとする。このように、イオン性界面活性剤と高分子系界面活性剤とを配合すれば、炭素ナノ繊維をめっき液中に良好に分散させることができる。
 なお、本発明において、「繊維」とは、アスペクト比が10以上のものを指す。
That is, the present invention aims to advantageously solve the above-mentioned problems, and the plating solution of the present invention comprises metal ions that can be plated, a chelating agent, an ionic surfactant, and a polymer system. One of the characteristics is that it contains a surfactant and carbon nanofibers. Thus, if an ionic surfactant and a polymeric surfactant are blended, the carbon nanofibers can be favorably dispersed in the plating solution.
In the present invention, “fiber” refers to those having an aspect ratio of 10 or more.
 ここで、本発明のめっき液は、前記炭素ナノ繊維の平均直径が5nm以下であることが好ましい。平均直径が5nm以下の炭素ナノ繊維は、炭素ナノ繊維間に強い相互作用が働くため、通常、めっき液中で良好に分散させることが困難である。しかし、イオン性界面活性剤と高分子系界面活性剤とを配合すれば、平均直径が5nm以下の炭素ナノ繊維であっても、めっき液中に良好に分散させることができる。
 なお、本発明において、「炭素ナノ繊維の平均直径」は、透過型電子顕微鏡を用いて無作為に選択した炭素ナノ繊維100本の直径(外径)を測定して求めることができる。
Here, the plating solution of the present invention preferably has an average diameter of the carbon nanofibers of 5 nm or less. Since carbon nanofibers having an average diameter of 5 nm or less have a strong interaction between the carbon nanofibers, it is usually difficult to disperse them well in the plating solution. However, if an ionic surfactant and a polymeric surfactant are blended, even carbon nanofibers having an average diameter of 5 nm or less can be favorably dispersed in the plating solution.
In the present invention, the “average diameter of carbon nanofibers” can be determined by measuring the diameter (outer diameter) of 100 carbon nanofibers selected at random using a transmission electron microscope.
 そして、本発明のめっき液は、前記めっき可能な金属イオンが銅イオンであることが好ましい。銅は、導電性が高く、圧延性にも優れているため、炭素ナノ繊維と複合化させれば、優れた性能(例えば、導電性および熱伝導性)を有する複合材料を得ることができる。 In the plating solution of the present invention, the metal ion capable of plating is preferably a copper ion. Since copper is highly conductive and excellent in rollability, a composite material having excellent performance (for example, conductivity and thermal conductivity) can be obtained by compounding with carbon nanofibers.
 また、本発明のめっき液は、アルカリ性であることが好ましい。アルカリ性のめっき液を用いれば、無電解めっき処理により複合材料を良好に調製することができる。 Further, the plating solution of the present invention is preferably alkaline. If an alkaline plating solution is used, a composite material can be satisfactorily prepared by electroless plating.
 更に、本発明のめっき液は、前記炭素ナノ繊維がカーボンナノチューブであることが好ましい。炭素ナノ繊維としてカーボンナノチューブを使用すれば、めっき液を用いて得られる複合材料の性能(例えば、導電性および熱伝導性)を更に向上させることができる。
 そして、前記カーボンナノチューブは、平均直径(Av)と直径の標準偏差(σ)とが、関係式:0.20<(3σ/Av)<0.60を満たすことが好ましい。3σ/Avが0.20超0.60未満のカーボンナノチューブを使用すれば、配合量が少量であっても、複合材料の導電性や熱伝導性を十分に向上させることができる。
 なお、本発明において、「カーボンナノチューブの平均直径(Av)」および「カーボンナノチューブの直径の標準偏差(σ:標本標準偏差)」は、それぞれ、透過型電子顕微鏡を用いて無作為に選択したカーボンナノチューブ100本の直径(外径)を測定して求めることができる。
Furthermore, in the plating solution of the present invention, the carbon nanofibers are preferably carbon nanotubes. If carbon nanotubes are used as the carbon nanofibers, the performance (for example, conductivity and thermal conductivity) of the composite material obtained using the plating solution can be further improved.
The carbon nanotube preferably has an average diameter (Av) and a standard deviation (σ) of the diameter satisfy a relational expression: 0.20 <(3σ / Av) <0.60. If carbon nanotubes having 3σ / Av of more than 0.20 and less than 0.60 are used, the conductivity and thermal conductivity of the composite material can be sufficiently improved even if the blending amount is small.
In the present invention, “average diameter (Av) of carbon nanotubes” and “standard deviation of carbon nanotube diameter (σ: sample standard deviation)” are carbons selected at random using a transmission electron microscope, respectively. It can be obtained by measuring the diameter (outer diameter) of 100 nanotubes.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のめっき液の製造方法は、上述しためっき液の何れかの製造方法であって、炭素ナノ繊維を、イオン性界面活性剤および高分子系界面活性剤の存在下で、キャビテーション効果または解砕効果が得られる分散処理によって溶媒に分散させる分散工程を含むことを特徴の一つとする。このように、イオン性界面活性剤および高分子系界面活性剤の存在下で分散処理を実施すれば、液中に炭素ナノ繊維が良好に分散しためっき液が得られる。また、キャビテーション効果または解砕効果が得られる分散処理によって炭素ナノ繊維を分散させれば、分散処理中に炭素ナノ繊維が損傷するのを抑制し、めっき液を用いて調製した複合材料に所望の性能を発揮させることができる。 Moreover, this invention aims at solving the said subject advantageously, The manufacturing method of the plating solution of this invention is any manufacturing method of the plating solution mentioned above, Comprising: One of the characteristics is that it includes a dispersion step of dispersing in a solvent by a dispersion treatment in which a cavitation effect or a crushing effect is obtained in the presence of an ionic surfactant and a polymeric surfactant. As described above, when the dispersion treatment is performed in the presence of the ionic surfactant and the polymer surfactant, a plating solution in which carbon nanofibers are well dispersed in the solution can be obtained. Moreover, if the carbon nanofibers are dispersed by a dispersion treatment that can obtain a cavitation effect or a crushing effect, the carbon nanofibers are prevented from being damaged during the dispersion treatment, and a composite material prepared using a plating solution is desired. Performance can be demonstrated.
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の複合材料は、上述しためっき液の何れかを用いて基材表面に電解めっき処理または無電解めっき処理を行って得られるものであることを特徴の一つとする。このように、上述しためっき液を用いて複合材料を調製すれば、導電性および熱伝導性に優れる複合材料が得られる。 And this invention aims at solving the said subject advantageously, and the composite material of this invention uses either one of the plating solutions mentioned above, and electroplating treatment or electroless plating on the substrate surface One of the characteristics is that it is obtained by processing. Thus, if a composite material is prepared using the plating solution mentioned above, the composite material excellent in electroconductivity and heat conductivity will be obtained.
 また、本発明者らは、上記課題を解決するために鋭意検討を重ねた。そして、本発明者らは、複合材料の中でも金属として銅を用いた銅複合材料について、従来の銅複合材料には、未酸化の銅の電気抵抗と比較してはるかに大きい電気抵抗を有する亜酸化銅が含まれている場合があり、これにより、銅複合材料の導電性および熱伝導性が十分に優れたものとならないことを見出し、本発明を完成させた。 In addition, the present inventors have made extensive studies to solve the above problems. The inventors of the present invention have found that a copper composite material using copper as a metal among the composite materials includes a conventional copper composite material that has a much higher electrical resistance than that of unoxidized copper. In some cases, copper oxide may be contained, and as a result, it has been found that the conductivity and thermal conductivity of the copper composite material are not sufficiently excellent, and the present invention has been completed.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の銅複合材料は、銅と炭素ナノ構造体とが複合化された銅複合材料であって、前記銅複合材料は、X線回折分析において、亜酸化銅に帰属されるX線回折ピークの回折強度が検出限界以下であることを特徴の一つとする。このように、亜酸化銅に帰属されるX線回折ピークの回折強度が検出限界以下であれば、優れた導電性および熱伝導性を発揮することができる。
 なお、本発明において、「亜酸化銅に帰属されるX線回折ピーク」とは、銅複合材料についてX線回折分析(XRD)を行った場合に得られる回折線プロファイルにおいて、入射角2θ=37°±1°の領域に観察されるX線回折ピークを指す。また、「X線回折ピークの回折強度が検出限界以下である」とは、そのX線回折分析の分析条件において明瞭なピークが観察されないこと指す。
That is, the present invention aims to advantageously solve the above problems, and the copper composite material of the present invention is a copper composite material in which copper and a carbon nanostructure are combined, One characteristic of the copper composite material is that the diffraction intensity of the X-ray diffraction peak attributed to cuprous oxide is below the detection limit in the X-ray diffraction analysis. Thus, if the diffraction intensity of the X-ray diffraction peak attributed to cuprous oxide is below the detection limit, excellent conductivity and thermal conductivity can be exhibited.
In the present invention, “X-ray diffraction peak attributed to cuprous oxide” means an incident angle 2θ = 37 in a diffraction line profile obtained when X-ray diffraction analysis (XRD) is performed on a copper composite material. It refers to the X-ray diffraction peak observed in the region of ° ± 1 °. Further, “the diffraction intensity of the X-ray diffraction peak is below the detection limit” means that a clear peak is not observed under the analysis conditions of the X-ray diffraction analysis.
 ここで、本発明の銅複合材料では、前記炭素ナノ構造体は、比表面積600m2/g以上の単層カーボンナノチューブを含むことが好ましい。比表面積600m2/g以上の単層カーボンナノチューブを含有させれば、銅複合材料の導電性や熱伝導性を更に向上させることができる。
 なお、本発明において、「比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
Here, in the copper composite material of the present invention, it is preferable that the carbon nanostructure includes single-walled carbon nanotubes having a specific surface area of 600 m 2 / g or more. If single-walled carbon nanotubes with a specific surface area of 600 m 2 / g or more are contained, the conductivity and thermal conductivity of the copper composite material can be further improved.
In the present invention, the “specific surface area” refers to the nitrogen adsorption specific surface area measured using the BET method.
 また、本発明の銅複合材料では、前記単層カーボンナノチューブの平均直径(Av)と直径分布(3σ)とは、0.20<(3σ/Av)<0.60を満たすことが好ましい。3σ/Avが0.20超0.60未満の単層カーボンナノチューブを使用すれば、配合量が少量であっても、銅複合材料の導電性や熱伝導性を十分に向上させることができる。
 なお、本発明において、「直径分布(3σ)」とは、単層カーボンナノチューブの直径の標本標準偏差(σ)に3を乗じたものを指す。また、「単層カーボンナノチューブの平均直径(Av)」および「単層カーボンナノチューブの直径の標本標準偏差(σ)」は、それぞれ、透過型電子顕微鏡を用いて無作為に選択したカーボンナノチューブ100本の直径(外径)を測定して求めることができる。
In the copper composite material of the present invention, it is preferable that the average diameter (Av) and the diameter distribution (3σ) of the single-walled carbon nanotube satisfy 0.20 <(3σ / Av) <0.60. If single-walled carbon nanotubes having 3σ / Av of more than 0.20 and less than 0.60 are used, the conductivity and thermal conductivity of the copper composite material can be sufficiently improved even if the blending amount is small.
In the present invention, “diameter distribution (3σ)” refers to a value obtained by multiplying the sample standard deviation (σ) of the diameter of the single-walled carbon nanotube by 3. The “average diameter (Av) of single-walled carbon nanotubes” and “sample standard deviation (σ) of diameter of single-walled carbon nanotubes” are 100 carbon nanotubes randomly selected using a transmission electron microscope, respectively. It can be determined by measuring the diameter (outer diameter).
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の銅複合材料の製造方法は、炭素ナノ構造体を、分散剤の存在下分散媒中で、キャビテーション効果または解砕効果が得られる分散処理に供することによって、炭素ナノ構造体を分散媒に分散させて、炭素ナノ構造体分散液を得る分散工程(A)と、前記炭素ナノ構造体分散液と銅めっき液の材料とを混合して、炭素ナノ構造体分散銅めっき液を得る混合工程(B)と、前記炭素ナノ構造体分散銅めっき液を用いて基板表面にめっき処理を行うめっき工程(C)とを含むことを特徴とする。このように、炭素ナノ構造体分散液と銅めっき液の材料とを混合して炭素ナノ構造体分散銅めっき液を調製すれば、炭素ナノ構造体分散銅めっき液を用いためっき処理により得られる銅複合材料中に発生する亜酸化銅の量を著しく低減することができる。従って、導電性および熱伝導性に優れる銅複合材料を得ることができる。 Another object of the present invention is to advantageously solve the above-mentioned problems, and the method for producing a copper composite material according to the present invention comprises cavitation of carbon nanostructures in a dispersion medium in the presence of a dispersant. A dispersion step (A) for obtaining a carbon nanostructure dispersion by dispersing the carbon nanostructure in a dispersion medium by subjecting to a dispersion treatment in which an effect or a crushing effect is obtained; and the carbon nanostructure dispersion; A mixing step (B) for mixing a copper plating solution material to obtain a carbon nanostructure-dispersed copper plating solution, and a plating step for plating the substrate surface using the carbon nanostructure-dispersed copper plating solution ( C). Thus, if a carbon nanostructure-dispersed copper plating solution is prepared by mixing the carbon nanostructure dispersion liquid and the copper plating material, it can be obtained by plating using the carbon nanostructure-dispersed copper plating solution. The amount of cuprous oxide generated in the copper composite material can be significantly reduced. Accordingly, it is possible to obtain a copper composite material having excellent conductivity and thermal conductivity.
 ここで、本発明の銅複合材料の製造方法では、前記めっき処理は、電解めっき処理であることが好ましい。電解めっき処理を用いれば、亜酸化銅の発生を更に抑制することができる。 Here, in the method for producing a copper composite material of the present invention, the plating treatment is preferably an electrolytic plating treatment. If electrolytic plating is used, the generation of cuprous oxide can be further suppressed.
 本発明によれば、液中に炭素ナノ繊維が良好に分散しためっき液を提供することができる。
 また、本発明によれば、導電性および熱伝導性に優れる複合材料を提供することができる。
According to the present invention, a plating solution in which carbon nanofibers are well dispersed in the solution can be provided.
In addition, according to the present invention, a composite material having excellent conductivity and thermal conductivity can be provided.
実施例1-1で得られた銅めっき液1について、スライドグラスに滴下したときの様子を示す写真である。2 is a photograph showing a state when the copper plating solution 1 obtained in Example 1-1 is dropped on a slide glass. (A)は、実施例2-1の銅複合材料を、走査型電子顕微鏡を用いて撮影したときの写真であり、(B)は、(A)に示す写真を拡大したものである。(A) is a photograph of the copper composite material of Example 2-1 taken using a scanning electron microscope, and (B) is an enlarged view of the photograph shown in (A). 実施例2-1の銅複合材料を、X線回折装置を用いて分析したときの結果を示す図である。It is a figure which shows the result when the copper composite material of Example 2-1 is analyzed using an X-ray diffractometer.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明のめっき液は、金属と炭素ナノ繊維とを含む複合材料の製造に好適に用いることができる。また、本発明のめっき液は、例えば、本発明のめっき液の製造方法を用いて調製することができる。
 そして、本発明の第一の複合材料は、本発明のめっき液を用いて基材表面に電解めっき処理または無電解めっき処理、好ましくは無電解めっき処理を施すことにより得られる。
 また、本発明の第二の複合材料は、めっき処理が可能であり、且つ、優れた導電性および熱伝導性を有する金属である銅(Cu)と、炭素ナノ構造体とが複合化された銅複合材料である。そして、本発明の第二の複合材料は、例えば、本発明の銅複合材料の製造方法を用いて調製することができる。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the plating solution of this invention can be used suitably for manufacture of the composite material containing a metal and carbon nanofiber. Moreover, the plating solution of this invention can be prepared, for example using the manufacturing method of the plating solution of this invention.
And the 1st composite material of this invention is obtained by performing the electroplating process or the electroless-plating process, Preferably the electroless-plating process is performed to the base-material surface using the plating solution of this invention.
In addition, the second composite material of the present invention is capable of plating, and a composite of copper (Cu), which is a metal having excellent conductivity and thermal conductivity, and a carbon nanostructure. It is a copper composite material. And the 2nd composite material of this invention can be prepared using the manufacturing method of the copper composite material of this invention, for example.
(めっき液)
 本発明のめっき液は、めっき可能な金属イオンと、キレート剤と、イオン性界面活性剤と、高分子系界面活性剤と、炭素ナノ繊維とを含み、任意に、めっき液に一般に添加されるその他の添加剤を更に含む。そして、本発明のめっき液は、イオン性界面活性剤および高分子系界面活性剤の双方を含んでいるので、炭素ナノ繊維を液中に良好に分散させることができる。
(Plating solution)
The plating solution of the present invention includes metal ions that can be plated, a chelating agent, an ionic surfactant, a polymeric surfactant, and carbon nanofibers, and is optionally added to the plating solution in general. It further contains other additives. And since the plating solution of this invention contains both an ionic surfactant and polymeric surfactant, carbon nanofiber can be favorably disperse | distributed in a liquid.
 ここで、イオン性界面活性剤と高分子系界面活性剤とを併用することでめっき液中に炭素ナノ繊維を良好に分散させることができる理由は、明らかではないが、上述の2種の界面活性剤を併用した際の作用は、以下の通りであると推察される。即ち、炭素ナノ繊維は、炭素ナノ繊維間の相互作用が強く、めっき液中で凝集し易い。しかし、イオン性界面活性剤および高分子系界面活性剤の何れか一方のみを用いた場合には、イオン性界面活性剤または高分子系界面活性剤を大量に配合した場合であっても、炭素ナノ繊維が十分に良好には分散しない。また、イオン性界面活性剤または高分子系界面活性剤を大量に配合した場合には、大量に配合されたイオン性界面活性剤または高分子系界面活性剤の影響により、めっき液の安定性(例えば、めっき可能な金属イオンの溶解性)が低下する虞もある。これに対し、イオン性界面活性剤および高分子系界面活性剤を併用した場合には、性状の異なる界面活性剤の相乗効果により、炭素ナノ繊維を十分に良好に分散させることができると推察される。そして、その結果、めっき液の安定性に影響しない程度の配合量で炭素ナノ繊維を十分に良好に分散させ、めっき液としての安定性を確保しつつ、炭素ナノ繊維が良好に分散しためっき液を得ることができると推察される。 Here, the reason why the carbon nanofibers can be favorably dispersed in the plating solution by using the ionic surfactant and the polymeric surfactant in combination is not clear, but the above-mentioned two kinds of interfaces It is presumed that the action when the activator is used in combination is as follows. That is, the carbon nanofiber has strong interaction between the carbon nanofibers and is likely to aggregate in the plating solution. However, when only one of the ionic surfactant and the polymeric surfactant is used, even if a large amount of the ionic surfactant or the polymeric surfactant is blended, the carbon Nanofibers do not disperse well enough. In addition, when a large amount of ionic surfactant or polymer surfactant is blended, the stability of the plating solution (due to the influence of a large amount of ionic surfactant or polymer surfactant) ( For example, there is a possibility that the solubility of metal ions that can be plated decreases. On the other hand, when an ionic surfactant and a polymeric surfactant are used in combination, it is speculated that carbon nanofibers can be dispersed sufficiently satisfactorily due to the synergistic effect of surfactants having different properties. The As a result, the plating solution in which the carbon nanofibers are well dispersed while the carbon nanofibers are sufficiently satisfactorily dispersed in a blending amount that does not affect the stability of the plating solution and the stability as the plating solution is ensured. It is guessed that can be obtained.
<めっき可能な金属イオン>
 めっき可能な金属イオンとしては、特に限定されることなく、めっき処理可能な金属のイオン、例えば、銅、ニッケル、錫、白金、クロム、亜鉛のイオンなどが挙げられる。これらの中でも、めっき可能な金属イオンとしては、銅イオンが好ましい。銅は、導電性、熱伝導性および圧延性などに優れており、炭素ナノ繊維と複合化させれば、優れた性能(例えば、導電性および熱伝導性)を有する複合材料を得ることができるからである。
 なお、めっき可能な金属イオンは、特に限定されることなく、例えば硫酸銅五水和物や硫酸ニッケル六水和物などの既知の金属化合物を溶解させることによりめっき液中に導入することができる。また、めっき液中におけるめっき可能な金属イオンの濃度は、特に限定されない。
<Platable metal ions>
The metal ions that can be plated are not particularly limited, and examples include metal ions that can be plated, such as ions of copper, nickel, tin, platinum, chromium, and zinc. Among these, copper ions are preferred as metal ions that can be plated. Copper is excellent in conductivity, thermal conductivity, rollability, and the like, and if it is combined with carbon nanofiber, a composite material having excellent performance (for example, conductivity and thermal conductivity) can be obtained. Because.
The metal ions that can be plated are not particularly limited and can be introduced into the plating solution by dissolving a known metal compound such as copper sulfate pentahydrate or nickel sulfate hexahydrate. . Further, the concentration of metal ions that can be plated in the plating solution is not particularly limited.
<キレート剤>
 キレート剤としては、上記めっき可能な金属イオンとキレート錯体を形成し得る既知のキレート剤を用いることができる。具体的には、キレート剤としては、例えば、エチレンジアミン四酢酸(EDTA)、エチレンジアミン、トリエタノールアミン、チオ尿素、ロッシェル塩、酒石酸などを使用することができる。
<Chelating agent>
As the chelating agent, a known chelating agent capable of forming a chelate complex with the metal ion that can be plated can be used. Specifically, as the chelating agent, for example, ethylenediaminetetraacetic acid (EDTA), ethylenediamine, triethanolamine, thiourea, Rochelle salt, tartaric acid and the like can be used.
<イオン性界面活性剤および高分子系界面活性剤>
 イオン性界面活性剤および高分子系界面活性剤は、めっき液中で炭素ナノ繊維の分散を補助する分散剤として機能し得るものである。そして、本発明のめっき液では、炭素ナノ繊維を良好に分散させるために、イオン性界面活性剤と高分子系界面活性剤とを併用することを必要とする。なお、本発明のめっき液は、イオン性界面活性剤および高分子系界面活性剤以外の既知の分散剤を含有していてもよい。
<Ionic surfactants and polymeric surfactants>
The ionic surfactant and the polymeric surfactant can function as a dispersant for assisting the dispersion of the carbon nanofibers in the plating solution. And in the plating solution of this invention, in order to disperse | distribute carbon nanofiber favorably, it is necessary to use together an ionic surfactant and a polymeric surfactant. The plating solution of the present invention may contain a known dispersant other than the ionic surfactant and the polymer surfactant.
[イオン性界面活性剤]
 ここで、イオン性界面活性剤としては、カチオン性界面活性剤およびアニオン性界面活性剤の何れも用いることができる。中でも、めっき液を用いて電解めっきを行う場合には、カチオン性界面活性剤を用いることが好ましく、めっき液を用いて無電解めっき処理を行う場合には、アニオン性界面活性剤を用いることが好ましい。
 そして、カチオン性界面活性剤としては、例えば、4級アンモニウム塩、4級ホスホニウム塩などが挙げられる。
 また、アニオン性界面活性剤としては、例えば、ドデシル硫酸ナトリウム、デオキシコール酸ナトリウム、コール酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルジフェニルオキシドジスルホン酸ナトリウムなどが挙げられる。これらの中でも、炭素ナノ繊維の分散性に優れる観点からは、ドデシル硫酸ナトリウム、デオキシコール酸ナトリウムが好ましい。
[Ionic surfactant]
Here, as the ionic surfactant, any of a cationic surfactant and an anionic surfactant can be used. In particular, when electrolytic plating is performed using a plating solution, a cationic surfactant is preferably used, and when an electroless plating process is performed using a plating solution, an anionic surfactant is preferably used. preferable.
Examples of the cationic surfactant include quaternary ammonium salts and quaternary phosphonium salts.
Examples of the anionic surfactant include sodium dodecyl sulfate, sodium deoxycholate, sodium cholate, sodium dodecylbenzenesulfonate, sodium dodecyldiphenyloxide disulfonate, and the like. Among these, sodium dodecyl sulfate and sodium deoxycholate are preferable from the viewpoint of excellent dispersibility of carbon nanofibers.
[高分子系界面活性剤]
 高分子系界面活性剤としては、ポリビニルピロリドン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリスチレンスルホン酸、および、それらの塩などが挙げられる。これらの中でも、炭素ナノ繊維の分散性に優れる観点からは、ヒドロキシプロピルセルロース、ポリビニルピロリドンが好ましい。
[Polymer surfactant]
Examples of the polymer surfactant include polyvinyl pyrrolidone, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polystyrene sulfonic acid, and salts thereof. Among these, hydroxypropylcellulose and polyvinylpyrrolidone are preferable from the viewpoint of excellent dispersibility of the carbon nanofibers.
[配合量]
 なお、イオン性界面活性剤および高分子系界面活性剤の合計配合量は、少なくとも臨界ミセル濃度となる量であればよい。具体的には、めっき液中のイオン性界面活性剤および高分子系界面活性剤の合計配合量は、例えば、めっき液中の炭素ナノ繊維の量の1倍以上20倍以下とすることができる。
 そして、イオン性界面活性剤の配合量に対する高分子系界面活性剤の配合量の比(高分子系界面活性剤/イオン性界面活性剤)は、0.05以上5以下とすることが好ましい。イオン性界面活性剤の配合量に対する高分子系界面活性剤の配合量の比を上記範囲内とすれば、イオン性界面活性剤と高分子系界面活性剤とを併用することにより得られる効果を十分に高くすることができるからである。
[Blending amount]
In addition, the total compounding amount of the ionic surfactant and the polymer surfactant may be at least an amount that provides a critical micelle concentration. Specifically, the total amount of ionic surfactant and polymer surfactant in the plating solution can be, for example, 1 to 20 times the amount of carbon nanofibers in the plating solution. .
The ratio of the amount of the polymeric surfactant to the amount of the ionic surfactant (polymeric surfactant / ionic surfactant) is preferably 0.05 or more and 5 or less. If the ratio of the amount of the polymeric surfactant to the amount of the ionic surfactant is within the above range, the effect obtained by using the ionic surfactant and the polymeric surfactant together can be obtained. This is because it can be made sufficiently high.
<炭素ナノ繊維>
 めっき液に含有させる炭素ナノ繊維としては、カーボンナノチューブまたはカーボンナノファイバーなどを用いることができる。中でも、優れた性能(例えば、導電性および熱伝導性)を有する複合材料を得る観点からは、カーボンナノチューブを用いることが好ましく、平均直径が5nm以下のカーボンナノチューブを用いることがより好ましい。
<Carbon nanofiber>
Carbon nanotubes or carbon nanofibers can be used as the carbon nanofibers contained in the plating solution. Among these, from the viewpoint of obtaining a composite material having excellent performance (for example, conductivity and thermal conductivity), it is preferable to use carbon nanotubes, and it is more preferable to use carbon nanotubes having an average diameter of 5 nm or less.
 なお、めっき液に含有させる炭素ナノ繊維の平均直径は、特に限定されない。但し、めっき液を用いて得られる複合材料の性能を向上させる観点からは、炭素ナノ繊維の平均直径は、15nm以下であることが好ましく、10nm以下であることがより好ましく、5nm以下であることが更に好ましい。ここで、平均直径が小さい炭素ナノ繊維、特に平均直径が5nm以下の炭素ナノ繊維は、炭素ナノ繊維間に強い相互作用が働くため、通常、めっき液中で良好に分散させることが困難である。しかし、イオン性界面活性剤と高分子系界面活性剤とを併用すれば、平均直径が小さい炭素ナノ繊維であっても、めっき液中に良好に分散させることができる。 Note that the average diameter of the carbon nanofibers contained in the plating solution is not particularly limited. However, from the viewpoint of improving the performance of the composite material obtained using the plating solution, the average diameter of the carbon nanofibers is preferably 15 nm or less, more preferably 10 nm or less, and 5 nm or less. Is more preferable. Here, carbon nanofibers having a small average diameter, particularly carbon nanofibers having an average diameter of 5 nm or less, are usually difficult to disperse well in the plating solution because of the strong interaction between the carbon nanofibers. . However, if an ionic surfactant and a polymeric surfactant are used in combination, even carbon nanofibers having a small average diameter can be favorably dispersed in the plating solution.
[カーボンナノチューブ]
 ここで、めっき液に含有させるCNTとしては、特に限定されることなく、単層カーボンナノチューブおよび/または多層カーボンナノチューブを用いることができる。但し、CNTは、単層から5層までのカーボンナノチューブであることが好ましく、単層カーボンナノチューブであることがより好ましい。単層カーボンナノチューブを使用すれば、多層カーボンナノチューブを使用した場合と比較し、複合材料の導電性や熱伝導性を良好に向上させることができるからである。
[carbon nanotube]
Here, the CNT contained in the plating solution is not particularly limited, and single-walled carbon nanotubes and / or multi-walled carbon nanotubes can be used. However, the CNT is preferably a single-walled to carbon-walled carbon nanotube, and more preferably a single-walled carbon nanotube. This is because if single-walled carbon nanotubes are used, the conductivity and thermal conductivity of the composite material can be improved better than when multi-walled carbon nanotubes are used.
 また、CNTとしては、平均直径(Av)に対する、直径の標準偏差(σ)に3を乗じた値(3σ)の比(3σ/Av)が0.20超0.60未満のCNTを用いることが好ましく、3σ/Avが0.25超のCNTを用いることがより好ましく、3σ/Avが0.50超のCNTを用いることが更に好ましい。3σ/Avが0.20超0.60未満のCNTを使用すれば、CNTの配合量が少量であっても、複合材料の導電性や熱伝導性を十分に向上させることができるからである。
 なお、CNTの平均直径(Av)および標準偏差(σ)は、CNTの製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られたCNTを複数種類組み合わせることにより調整してもよい。
In addition, as the CNT, a CNT having a ratio (3σ / Av) of a value (3σ) obtained by multiplying the standard deviation (σ) of the diameter by 3 with respect to the average diameter (Av) is more than 0.20 and less than 0.60. It is preferable to use CNTs with 3σ / Av exceeding 0.25, and it is even more preferable to use CNTs with 3σ / Av exceeding 0.50. This is because if 3CNT / Av is more than 0.20 and less than 0.60, the conductivity and thermal conductivity of the composite material can be sufficiently improved even if the amount of CNT is small. .
The average diameter (Av) and standard deviation (σ) of CNTs may be adjusted by changing the CNT manufacturing method and manufacturing conditions, or by combining multiple types of CNTs obtained by different manufacturing methods. May be.
 そして、CNTとしては、透過型電子顕微鏡を用いて100本のカーボンナノチューブの直径を測定し、測定した直径を横軸に、その頻度を縦軸に取ってプロットし、ガウシアンで近似した際に、正規分布を取るものが通常使用される。 And as CNT, when measuring the diameter of 100 carbon nanotubes using a transmission electron microscope, the measured diameter is plotted on the horizontal axis, the frequency is plotted on the vertical axis, and approximated by Gaussian, A normal distribution is usually used.
 更に、CNTは、ラマン分光法を用いて評価した際に、Radial Breathing Mode(RBM)のピークを有することが好ましい。なお、三層以上の多層カーボンナノチューブのラマンスペクトルには、RBMが存在しない。 Furthermore, the CNT preferably has a peak of Radial Breathing Mode (RBM) when evaluated using Raman spectroscopy. Note that there is no RBM in the Raman spectrum of multi-walled carbon nanotubes of three or more layers.
 また、CNTは、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が1以上20以下であることが好ましい。G/D比が1以上20以下であれば、CNTの配合量が少量であっても、複合材料の導電性や熱伝導性を十分に向上させることができるからである。 CNTs preferably have a G-band peak intensity ratio (G / D ratio) of 1 to 20 in the Raman spectrum. This is because if the G / D ratio is 1 or more and 20 or less, the conductivity and thermal conductivity of the composite material can be sufficiently improved even if the blending amount of CNT is small.
 更に、CNTの平均直径(Av)は、0.5nm以上であることが好ましく、1nm以上であることが更に好ましい。CNTの平均直径(Av)が0.5nm以上であれば、CNTの凝集を抑制して、めっき液中でのCNTの分散性を更に高めることができるからである。 Furthermore, the average diameter (Av) of the CNTs is preferably 0.5 nm or more, and more preferably 1 nm or more. This is because, if the average diameter (Av) of CNTs is 0.5 nm or more, aggregation of CNTs can be suppressed and the dispersibility of CNTs in the plating solution can be further enhanced.
 また、CNTは、合成時における構造体の平均長さが100μm以上5000μm以下であることが好ましく、300μm以上2000μm以下であることがより好ましい。合成時の構造体の平均長さが100μm以上であれば、複合材料の導電性および熱伝導性が向上するからである。なお、合成時の構造体の長さが長いほど、分散時にCNTに破断や切断などの損傷が発生し易い。従って、合成時の構造体の平均長さは5000μm以下であることが好ましい。 Further, in CNT, the average length of the structure during synthesis is preferably 100 μm or more and 5000 μm or less, and more preferably 300 μm or more and 2000 μm or less. This is because if the average length of the structure during synthesis is 100 μm or more, the conductivity and thermal conductivity of the composite material are improved. In addition, as the length of the structure at the time of synthesis is longer, damage such as breakage or cutting tends to occur in the CNT during dispersion. Therefore, the average length of the structure during synthesis is preferably 5000 μm or less.
 更に、CNTのBET比表面積は、未開口の状態で600m2/g以上であることが好ましく、800m2/g以上であることが更に好ましく、2500m2/g以下であることが好ましく、1200m2/g以下であることが更に好ましい。更に、CNTが主として開口したものにあっては、BET比表面積が1300m2/g以上であることが好ましい。CNTのBET比表面積が600m2/g以上であれば、複合材料の導電性や熱伝導性を良好に向上させることができるからである。また、CNTのBET比表面積が2500m2/g以下であれば、CNTの凝集を抑制してめっき液中でのCNTの分散性を高めることができるからである。
 なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
Further, the BET specific surface area of the CNT is preferably 600 m 2 / g or more in an unopened state, more preferably 800 m 2 / g or more, and preferably 2500 m 2 / g or less, and 1200 m 2. / G or less is more preferable. Furthermore, when the CNT is mainly opened, the BET specific surface area is preferably 1300 m 2 / g or more. This is because if the BET specific surface area of CNT is 600 m 2 / g or more, the conductivity and thermal conductivity of the composite material can be improved satisfactorily. Moreover, if the BET specific surface area of CNT is 2500 m < 2 > / g or less, it can suppress the aggregation of CNT and can improve the dispersibility of CNT in a plating solution.
In the present invention, the “BET specific surface area” refers to a nitrogen adsorption specific surface area measured using the BET method.
 更に、CNTは、後述のスーパーグロース法によれば、カーボンナノチューブ成長用の触媒層を表面に有する基材上に、基材に略垂直な方向に配向した集合体(CNT配向集合体)として得られるが、当該集合体としての、CNTの質量密度は、0.002g/cm3以上0.2g/cm3以下であることが好ましい。質量密度が0.2g/cm3以下であれば、CNT同士の結びつきが弱くなるので、CNTを均質に分散させることができる。また、質量密度が0.002g/cm3以上であれば、CNTの一体性を向上させ、バラけることを抑制できるため取り扱いが容易になる。 Furthermore, CNTs are obtained as aggregates (CNT aggregates) oriented in a direction substantially perpendicular to the base material on a base material having a catalyst layer for carbon nanotube growth on the surface according to the super growth method described later. However, the mass density of the CNTs as the aggregate is preferably 0.002 g / cm 3 or more and 0.2 g / cm 3 or less. If the mass density is 0.2 g / cm 3 or less, the CNTs are weakly bonded, so that the CNTs can be uniformly dispersed. In addition, if the mass density is 0.002 g / cm 3 or more, the integrity of the CNTs can be improved and the variation can be suppressed, so that handling becomes easy.
 更に、CNTは、複数の微小孔を有することが好ましい。CNTは、中でも、孔径が2nmよりも小さいマイクロ孔を有するのが好ましく、その存在量は、下記の方法で求めたマイクロ孔容積で、好ましくは0.40mL/g以上、より好ましくは0.43mL/g以上、更に好ましくは0.45mL/g以上であり、上限としては、通常、0.65mL/g程度である。CNTが上記のようなマイクロ孔を有することで、CNTの凝集が抑制され、CNTの分散性が高まり、CNTが高度に分散しためっき液を非常に効率的に得ることができる。なお、マイクロ孔容積は、例えば、CNTの調製方法および調製条件を適宜変更することで調整することができる。
 ここで、「マイクロ孔容積(Vp)」は、CNTの液体窒素温度(77K)での窒素吸着等温線を測定し、相対圧P/P0=0.19における窒素吸着量をVとして、式(I):Vp=(V/22414)×(M/ρ)より、算出することができる。なお、Pは吸着平衡時の測定圧力、P0は測定時の液体窒素の飽和蒸気圧であり、式(I)中、Mは吸着質(窒素)の分子量28.010、ρは吸着質(窒素)の77Kにおける密度0.808g/cm3である。マイクロ孔容積は、例えば、「BELSORP(登録商標)-mini」(日本ベル(株)製)を使用して求めることができる。
Furthermore, the CNT preferably has a plurality of micropores. Among them, the CNT preferably has micropores having a pore diameter smaller than 2 nm, and the abundance thereof is a micropore volume determined by the following method, preferably 0.40 mL / g or more, more preferably 0.43 mL. / G or more, more preferably 0.45 mL / g or more, and the upper limit is usually about 0.65 mL / g. When the CNTs have the above micropores, aggregation of the CNTs is suppressed, the dispersibility of the CNTs is increased, and a plating solution in which the CNTs are highly dispersed can be obtained very efficiently. The micropore volume can be adjusted, for example, by appropriately changing the CNT preparation method and preparation conditions.
Here, the “micropore volume (Vp)” is a formula in which the nitrogen adsorption isotherm at the liquid nitrogen temperature (77 K) of CNT is measured and the nitrogen adsorption amount at relative pressure P / P0 = 0.19 is V. I): Vp = (V / 22414) × (M / ρ). Here, P is a measurement pressure at the time of adsorption equilibrium, P0 is a saturated vapor pressure of liquid nitrogen at the time of measurement, and in formula (I), M is an adsorbate (nitrogen) molecular weight of 28.010, and ρ is an adsorbate (nitrogen). ) At 77K with a density of 0.808 g / cm 3 . The micropore volume can be determined using, for example, “BELSORP (registered trademark) -mini” (manufactured by Nippon Bell Co., Ltd.).
 なお、上述した性状を有するCNTは、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に、原料化合物およびキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)において、基材表面への触媒層の形成をウェットプロセスにより行い、アセチレンを主成分とする原料ガス(例えば、アセチレンを50体積%以上含むガス)を用いることにより、効率的に製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。 The CNT having the above-described properties is obtained by, for example, supplying a raw material compound and a carrier gas onto a base material having a catalyst layer for producing carbon nanotubes on the surface, and performing chemical vapor deposition (CVD). When a catalyst is synthesized, a method of dramatically improving the catalytic activity of the catalyst layer by making a small amount of an oxidizing agent (catalyst activating substance) present in the system (super growth method; see International Publication No. 2006/011655) ), The catalyst layer is formed on the surface of the substrate by a wet process, and a raw material gas containing acetylene as a main component (for example, a gas containing 50% by volume or more of acetylene) can be used for efficient production. it can. Hereinafter, the carbon nanotube obtained by the super growth method may be referred to as “SGCNT”.
[炭素ナノ繊維の配合量]
 めっき液中における炭素ナノ繊維の配合量は、特に限定されることなく、用途に応じためっき皮膜の特性に従って適宜調整することができる。
[Amount of carbon nanofiber blended]
The compounding quantity of the carbon nanofiber in a plating solution is not specifically limited, According to the characteristic of the plating film according to a use, it can adjust suitably.
<その他の添加剤>
 なお、本発明のめっき液は、本発明の効果を損なわない範囲で、上述した成分以外に、pH調整剤や光沢剤などの既知の添加剤を含有していてもよい。
<Other additives>
In addition, the plating solution of this invention may contain known additives, such as a pH adjuster and a brightener other than the component mentioned above in the range which does not impair the effect of this invention.
<めっき液の性状>
 そして、上記成分を含有するめっき液のpHは、無電解めっき処理による複合材料の調製に用いられる場合には特に、水酸化カリウム等のpH調整剤を用いて、アルカリ性、好ましくはpH9以上に調整されていることが好ましい。
<Properties of plating solution>
The pH of the plating solution containing the above components is adjusted to be alkaline, preferably pH 9 or higher, using a pH adjuster such as potassium hydroxide, particularly when used for preparing a composite material by electroless plating. It is preferable that
(めっき液の製造方法)
 本発明のめっき液は、上述した成分を水などの既知の溶媒中に溶解または分散させることにより調製することができる。
(Plating solution manufacturing method)
The plating solution of the present invention can be prepared by dissolving or dispersing the above-described components in a known solvent such as water.
 ここで、めっき液は、上述した成分を溶媒中に全て同時に投入し、分散処理を施すことにより調製してもよいが、炭素ナノ繊維の分散性を高める観点からは、イオン性界面活性剤および高分子系界面活性剤の存在下で炭素ナノ繊維を溶媒中に分散させた後に、当該炭素ナノ繊維分散液に対してめっき可能な金属イオンを与える金属化合物およびキレート剤を添加することにより調製することが好ましい。具体的には、めっき液は、炭素ナノ繊維と、イオン性界面活性剤と、高分子系界面活性剤と、溶媒とを含む粗分散液に対して分散処理を施した後に、得られた炭素ナノ繊維分散液に対して金属化合物およびキレート剤を添加し、混合することにより調製することが好ましい。なお、炭素ナノ繊維分散液と、金属化合物およびキレート剤との混合は、既知の撹拌装置などを用いて行うことができる。 Here, the plating solution may be prepared by simultaneously adding all of the above-described components into a solvent and performing a dispersion treatment. From the viewpoint of enhancing the dispersibility of the carbon nanofibers, the ionic surfactant and After carbon nanofibers are dispersed in a solvent in the presence of a polymeric surfactant, the metal nanofiber dispersion is prepared by adding a metal compound and a chelating agent that give a metal ion that can be plated. It is preferable. Specifically, the plating solution is obtained by subjecting a coarse dispersion containing carbon nanofibers, an ionic surfactant, a polymer surfactant, and a solvent to a dispersion treatment, It is preferable to prepare by adding a metal compound and a chelating agent to the nanofiber dispersion and mixing them. In addition, mixing with a carbon nanofiber dispersion liquid, a metal compound, and a chelating agent can be performed using a known stirring apparatus.
 また、炭素ナノ繊維を溶媒中で分散させる際の分散処理としては、キャビテーション効果または解砕効果が得られる分散処理を用いることが好ましい。キャビテーション効果または解砕効果が得られる分散処理を用いれば、分散処理中に炭素ナノ繊維が損傷するのを抑制し、めっき液を用いて調製した複合材料に所望の性能を発揮させることができるからである。なお、ボールミル等による通常の分散処理では、炭素ナノ繊維がダメージを受けて複合材料中で所望の特性を発現できず、複合材料の導電性および熱伝導性を十分に向上させることができない虞がある。
 以下、キャビテーション効果または解砕効果が得られる分散処理について、説明する。
Moreover, as a dispersion process at the time of disperse | distributing carbon nanofiber in a solvent, it is preferable to use the dispersion process from which a cavitation effect or a crushing effect is acquired. If a dispersion treatment that provides a cavitation effect or a crushing effect is used, the carbon nanofibers can be prevented from being damaged during the dispersion treatment, and the composite material prepared using the plating solution can exhibit the desired performance. It is. In a normal dispersion treatment using a ball mill or the like, the carbon nanofibers may be damaged and the desired characteristics cannot be expressed in the composite material, and the electrical conductivity and thermal conductivity of the composite material may not be sufficiently improved. is there.
Hereinafter, a dispersion process that can provide a cavitation effect or a crushing effect will be described.
[キャビテーション効果が得られる分散処理]
 キャビテーション効果が得られる分散処理は、液体に高エネルギーを付与した際に、水に生じた真空の気泡が破裂することにより生じた衝撃波を利用した分散方法である。そして、当該分散処理方法を用いることにより、炭素ナノ繊維をめっき液中に均一に分散させることができ、ひいてはめっき皮膜として形成される複合材料の導電性や熱伝導性を向上させることが可能になる。
[Distributed processing with cavitation effect]
The dispersion treatment that provides a cavitation effect is a dispersion method that uses shock waves generated by bursting of vacuum bubbles generated in water when high energy is applied to a liquid. And by using the said dispersion | distribution processing method, carbon nanofiber can be uniformly disperse | distributed in a plating solution, and it becomes possible to improve the electroconductivity and thermal conductivity of the composite material formed as a plating film by extension. Become.
 ここで、キャビテーション効果が得られる分散処理の具体例としては、超音波による分散処理、ジェットミルによる分散処理および高せん断撹拌による分散処理が挙げられる。これらの分散処理は一つのみを行なってもよく、複数を組み合わせて行なってもよい。より具体的には、分散処理には、例えば超音波ホモジナイザー、ジェットミル、および高せん断撹拌装置が好適に用いられる。これらの装置は従来公知のものを使用すればよい。 Here, specific examples of the dispersion treatment that can obtain the cavitation effect include dispersion treatment using ultrasonic waves, dispersion treatment using a jet mill, and dispersion treatment using high shear stirring. These distributed processes may be performed only one, or may be performed in combination. More specifically, for example, an ultrasonic homogenizer, a jet mill, and a high shear stirrer are suitably used for the dispersion treatment. These devices may be conventionally known devices.
 炭素ナノ繊維の分散に超音波ホモジナイザーを用いる場合には、イオン性界面活性剤および高分子系界面活性剤を添加した溶媒に炭素ナノ繊維を加えた後、得られた粗分散液に対して超音波ホモジナイザーにより超音波を照射すればよい。照射する時間は、炭素ナノ繊維の量などにより適宜設定すればよく、例えば、3分以上が好ましく、30分以上がより好ましく、また、5時間以下が好ましく、2時間以下がより好ましい。また、例えば、出力は100W以上500W以下、温度は15℃以上50℃以下が好ましい。 When using an ultrasonic homogenizer to disperse carbon nanofibers, after adding carbon nanofibers to a solvent containing an ionic surfactant and a polymeric surfactant, What is necessary is just to irradiate an ultrasonic wave with a sound wave homogenizer. What is necessary is just to set suitably for the time to irradiate according to the quantity of carbon nanofiber etc. For example, 3 minutes or more are preferable, 30 minutes or more are more preferable, 5 hours or less are preferable, and 2 hours or less are more preferable. For example, the output is preferably 100 W or more and 500 W or less, and the temperature is preferably 15 ° C. or more and 50 ° C. or less.
 また、ジェットミルを用いる場合、処理回数は、炭素ナノ繊維の量などにより適宜設定すればよく、例えば、2回以上が好ましく、5回以上がより好ましく、100回以下が好ましく、50回以下がより好ましい。また、例えば、圧力は20MPa~250MPa、温度は15℃~50℃が好ましい。 In the case of using a jet mill, the number of treatments may be appropriately set depending on the amount of carbon nanofibers, and is preferably 2 times or more, more preferably 5 times or more, preferably 100 times or less, and 50 times or less. More preferred. For example, the pressure is preferably 20 MPa to 250 MPa, and the temperature is preferably 15 ° C. to 50 ° C.
 さらに、高せん断撹拌を用いる場合には、高せん断撹拌装置により粗分散液を処理すればよい。旋回速度は速ければ速いほどよい。例えば、運転時間(機械が回転動作をしている時間)は3分以上4時間以下、周速は5m/s以上50m/s以下、温度は15℃以上50℃以下が好ましい。 Furthermore, when using high shear stirring, the coarse dispersion may be treated with a high shear stirring device. The faster the turning speed, the better. For example, the operation time (the time during which the machine is rotating) is preferably 3 minutes to 4 hours, the peripheral speed is 5 m / s to 50 m / s, and the temperature is preferably 15 ° C. to 50 ° C.
 なお、上記したキャビテーション効果が得られる分散処理は、50℃以下の温度で行なうことがより好ましい。溶媒の揮発による濃度変化が抑制されるからである。 In addition, it is more preferable to perform the dispersion treatment for obtaining the above cavitation effect at a temperature of 50 ° C. or lower. This is because a change in concentration due to the volatilization of the solvent is suppressed.
[解砕効果が得られる分散処理]
 また、本発明のめっき液の製造方法では、以下に示す解砕効果が得られる分散処理を適用することもできる。この解砕効果が得られる分散処理は、炭素ナノ繊維を溶媒中に均一に分散できることは勿論、上記したキャビテーション効果が得られる分散処理に比べ、気泡が消滅する際の衝撃波による炭素ナノ繊維の損傷を抑制することができるので、この点で一層有利である。
[Dispersion treatment that can produce a crushing effect]
Moreover, in the manufacturing method of the plating solution of this invention, the dispersion process from which the crushing effect shown below is acquired can also be applied. Dispersion treatment that provides this crushing effect allows carbon nanofibers to be uniformly dispersed in the solvent, as well as damage to carbon nanofibers caused by shock waves when bubbles disappear, compared to the dispersion treatment that provides the cavitation effect described above. This is more advantageous in this respect.
 この解砕効果が得られる分散処理では、上記した粗分散液にせん断力を与えて粗分散液中の炭素ナノ繊維の凝集体を解砕・分散させ、さらに得られた分散液に背圧を負荷し、また所望により、分散液を冷却することで、キャビテーションの発生を抑制しつつ、炭素ナノ繊維を溶媒中に均一に分散させることができる。
 なお、分散液に背圧を負荷する場合、分散液に負荷した背圧は、大気圧まで一気に降圧させてもよいが、多段階で降圧することが好ましい。
In the dispersion treatment in which this crushing effect is obtained, the above-mentioned coarse dispersion is subjected to shearing force to crush and disperse the aggregates of carbon nanofibers in the coarse dispersion, and a back pressure is applied to the obtained dispersion. By loading and, if desired, cooling the dispersion, the carbon nanofibers can be uniformly dispersed in the solvent while suppressing the occurrence of cavitation.
When a back pressure is applied to the dispersion, the back pressure applied to the dispersion may be reduced to atmospheric pressure at a stretch, but it is preferable to reduce the pressure in multiple stages.
 ここに、粗分散液にせん断力を与えて粗分散液中の炭素ナノ繊維をさらに分散させるには、例えば、以下のような構造の分散器を有する分散システムを用いればよい。
 すなわち、分散器は、粗分散液の流入側から流出側に向かって、内径がd1の分散器オリフィスと、内径がd2の分散空間と、内径がd3の終端部と(但し、d2>d3>d1である。)、を順次備える。
 そして、この分散器では、流入する高圧(通常、10~400MPa、好ましくは50~250MPa)の粗分散液が、分散器オリフィスを通過することで、圧力の低下を伴いつつ、高流速の流体となって分散空間に流入する。その後、分散空間に流入した高流速の粗分散液は、分散空間内を高速で流動し、その際にせん断力を受ける。その結果、粗分散液の流速が低下すると共に、粗分散液中の炭素ナノ繊維が良好に分散する。そして、終端部から、流入した粗分散液の圧力よりも低い圧力(背圧)の流体が、分散液として流出することになる。
Here, in order to further disperse the carbon nanofibers in the coarse dispersion by applying a shearing force to the coarse dispersion, for example, a dispersion system having a disperser having the following structure may be used.
In other words, the disperser has a disperser orifice having an inner diameter d1, a dispersion space having an inner diameter d2, and a terminal portion having an inner diameter d3 from the inflow side to the outflow side of the coarse dispersion liquid (where d2>d3> d1)).
In this disperser, an inflowing high-pressure (usually 10 to 400 MPa, preferably 50 to 250 MPa) coarse dispersion passes through the disperser orifice, thereby reducing the pressure and increasing the flow rate of the fluid. And flows into the dispersion space. Thereafter, the high-velocity coarse dispersion liquid flowing into the dispersion space flows at high speed in the dispersion space and receives a shearing force at that time. As a result, the flow rate of the coarse dispersion decreases, and the carbon nanofibers in the coarse dispersion are well dispersed. Then, a fluid having a pressure (back pressure) lower than the pressure of the inflowing coarse dispersion liquid flows out from the terminal portion as the dispersion liquid.
 なお、分散液の背圧は、分散液の流れに負荷をかけることで負荷することができ、例えば、後述する多段降圧器を分散器の下流側に配設することにより、分散液に所望の背圧を負荷することができる。
 この多段降圧器により分散液の背圧を多段階で降圧することで、最終的に分散液を大気圧に開放した際に、分散液中に気泡が発生するのを抑制できる。
Note that the back pressure of the dispersion can be applied by applying a load to the flow of the dispersion. For example, a multistage step-down device described later can be provided on the downstream side of the disperser to provide a desired dispersion. Back pressure can be applied.
By reducing the back pressure of the dispersion in multiple stages using this multistage pressure reducer, it is possible to suppress the generation of bubbles in the dispersion when the dispersion is finally released to atmospheric pressure.
 また、この分散器は、分散液を冷却するための熱交換器や冷却液供給機構を備えていてもよい。というのは、分散器でせん断力を与えられて高温になった分散液を冷却することにより、分散液中で気泡が発生するのをさらに抑制できるからである。
 なお、熱交換器等の配設に替えて、粗分散液を予め冷却しておくことでも、分散液中で気泡が発生することを抑制できる。
Further, the disperser may include a heat exchanger for cooling the dispersion and a coolant supply mechanism. This is because the generation of bubbles in the dispersion can be further suppressed by cooling the dispersion that has been heated to a high temperature by the shearing force applied by the distributor.
In addition, it can suppress that a bubble generate | occur | produces in a dispersion liquid by replacing with arrangement | positioning of a heat exchanger etc. and cooling a rough dispersion liquid previously.
 上記したように、この解砕効果が得られる分散処理では、キャビテーションの発生を抑制できるので、時として懸念されるキャビテーションに起因した炭素ナノ繊維の損傷、特に、気泡が消滅する際の衝撃波に起因した炭素ナノ繊維の損傷を抑制することができる。加えて、炭素ナノ繊維への気泡の付着や、気泡の発生によるエネルギーロスを抑制して、比表面積が大きい炭素ナノ繊維であっても、均一かつ効率的に分散させることができる。
 なお、炭素ナノ繊維への気泡の付着の抑制による分散性の向上効果は、BET比表面積が大きい炭素ナノ繊維、特に、BET比表面積が600m2/g以上の炭素ナノ繊維において非常に大きい。炭素ナノ繊維の比表面積が大きく、表面に気泡が付着し易い炭素ナノ繊維であるほど、気泡が発生して付着した際に分散性が低下し易いからである。
As described above, in the dispersion treatment that can obtain this crushing effect, it is possible to suppress the occurrence of cavitation, which is sometimes caused by damage to carbon nanofibers caused by cavitation, which is sometimes a concern, particularly due to shock waves when bubbles disappear. Damage to the carbon nanofibers can be suppressed. In addition, it is possible to uniformly and efficiently disperse even carbon nanofibers having a large specific surface area by suppressing the adhesion of bubbles to the carbon nanofibers and energy loss due to the generation of bubbles.
The effect of improving dispersibility by suppressing the adhesion of bubbles to the carbon nanofibers is very large in carbon nanofibers having a large BET specific surface area, particularly carbon nanofibers having a BET specific surface area of 600 m 2 / g or more. This is because the larger the specific surface area of the carbon nanofibers and the easier the carbon nanofibers to adhere to the surface, the more easily the dispersibility decreases when bubbles are generated and attached.
 以上のような構成を有する分散システムとしては、例えば、製品名「BERYU SYSTEM PRO」(株式会社美粒製)に多段降圧器を組み合わせてなる分散システムなどがある。このような分散システムを用い、分散条件を適切に制御することで、分散処理を実施することができる。 As a distributed system having the above-described configuration, for example, there is a distributed system in which a product name “BERYU SYSTEM PRO” (manufactured by Migrain Co., Ltd.) is combined with a multistage step-down device. By using such a distributed system and appropriately controlling the distribution conditions, distributed processing can be performed.
(第一の複合材料)
 本発明の第一の複合材料は、上述しためっき液を用いて基材表面にめっき処理を施すことにより、めっき皮膜として得られる。そして、このようにして得られた本発明の第一の複合材料は、炭素ナノ繊維が良好に分散しており、金属と炭素ナノ繊維とが良好に複合化しているので、導電性および熱伝導性などに優れている。
(First composite material)
The 1st composite material of this invention is obtained as a plating film by performing a plating process on the base-material surface using the plating solution mentioned above. In the first composite material of the present invention thus obtained, the carbon nanofibers are well dispersed, and the metal and the carbon nanofibers are well composited. Excellent in properties.
 ここで、めっき処理方法としては、電解めっきに限らず、無電解めっきを適用することもできる。また、電解めっきの場合、直流めっき法に限定されることはなく、電流反転めっき法やパルスめっき法も採用することができる。また、めっき処理条件は、特に限定されず、常法に従えばよい。なお、めっき処理中、めっき液の分散状態を維持するため、例えばスターラー等でめっき液を撹拌することが好ましい。
 また、基材の材料についても特に限定されるものではなく、通常の電解めっき、無電解めっきで使用される材料を用いることができる。
Here, the plating method is not limited to electrolytic plating, and electroless plating can also be applied. In the case of electrolytic plating, the method is not limited to the direct current plating method, and a current reversal plating method or a pulse plating method can also be employed. Moreover, the plating treatment conditions are not particularly limited, and may be according to a conventional method. In addition, in order to maintain the dispersion state of a plating solution during a plating process, it is preferable to stir a plating solution with a stirrer etc., for example.
Moreover, it does not specifically limit about the material of a base material, The material used by normal electrolytic plating and electroless plating can be used.
 以上、本発明の第一の複合材料について説明したが、本発明の第一の複合材料は、めっき液中に炭素ナノ繊維を分散させて、めっき処理を行うことにより得られるものである。従って、本発明の第一の複合材料は、例えば、基材上にCNTを形成し、その後基材に対して垂直配向のCNTを倒伏・圧縮して水平配向にしてから、CNTを銅などのめっき液中に浸漬し、電解めっきする方法で得られる複合材料とは異なるものである。 Although the first composite material of the present invention has been described above, the first composite material of the present invention is obtained by dispersing carbon nanofibers in a plating solution and performing a plating process. Therefore, in the first composite material of the present invention, for example, CNTs are formed on a base material, and then CNTs vertically aligned with the base material are collapsed and compressed to be horizontally aligned, and then the CNTs are made of copper or the like. It is different from a composite material obtained by a method of dipping in a plating solution and electrolytic plating.
(第二の複合材料)
 本発明の第二の複合材料は、銅と炭素ナノ構造体とが複合化された銅複合材料であり、X線回折分析において、亜酸化銅に帰属されるX線回折ピークの回折強度が検出限界以下であることを必要とする。即ち、本発明の第二の複合材料としての銅複合材料は、亜酸化銅を実質的に含んでおらず、亜酸化銅の存在に由来する問題を実用上有しない。そのため、当該銅複合材料は、優れた導電性および熱伝導性を発揮することができる。
(Second composite material)
The second composite material of the present invention is a copper composite material in which copper and carbon nanostructures are combined, and in the X-ray diffraction analysis, the diffraction intensity of the X-ray diffraction peak attributed to cuprous oxide is detected. It needs to be below the limit. That is, the copper composite material as the second composite material of the present invention does not substantially contain cuprous oxide and does not have a problem in practice due to the presence of cuprous oxide. Therefore, the copper composite material can exhibit excellent conductivity and thermal conductivity.
<炭素ナノ構造体>
 「炭素ナノ構造体」とは、炭素原子から構成されるナノサイズの物質の総称である。
 炭素ナノ構造体の具体例としては、例えば、単層または多層のカーボンナノチューブ、コイル状のカーボンナノコイル、カーボンナノチューブに捩れを与えたカーボンナノツイスト、カーボンナノチューブ上にビーズが形成されたビーズ付カーボンナノチューブ、幅が数nm程度のカーボンナノリボン、カーボンナノチューブが多数林立されたカーボンナノブラシ、球殻状のフラーレン、ナノサイズの炭素繊維である微細炭素繊維等が挙げられる。これらの炭素ナノ構造体は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 なお、これらの炭素ナノ構造体は、例えば、国際公開第2005/118473号に開示される、原料ガスを用いた触媒化学気相成長法等により、製造することができる。
<Carbon nanostructure>
“Carbon nanostructure” is a general term for nano-sized substances composed of carbon atoms.
Specific examples of the carbon nanostructure include, for example, a single-walled or multi-walled carbon nanotube, a coiled carbon nanocoil, a carbon nanotwist obtained by twisting the carbon nanotube, and a beaded carbon in which beads are formed on the carbon nanotube. Examples thereof include nanotubes, carbon nanoribbons having a width of several nanometers, carbon nanobrushes in which a large number of carbon nanotubes are erected, spherical fullerenes, and fine carbon fibers that are nano-sized carbon fibers. These carbon nanostructures may be used alone or in combination of two or more.
These carbon nanostructures can be manufactured by, for example, a catalytic chemical vapor deposition method using a raw material gas disclosed in International Publication No. 2005/118473.
 銅複合材料に含まれる炭素ナノ構造体の割合は、所望の効果を十分に得る観点から、1質量%以上であることが好ましく、5質量%以上であることが更に好ましい。また、銅複合材料の曲げ特性等の機械的特性の悪化を抑制する観点から、炭素ナノ構造体の割合は、60質量%以下であることが好ましく、50質量%以下であることが更に好ましい。 The proportion of the carbon nanostructures contained in the copper composite material is preferably 1% by mass or more, and more preferably 5% by mass or more from the viewpoint of sufficiently obtaining a desired effect. Further, from the viewpoint of suppressing deterioration of mechanical properties such as bending properties of the copper composite material, the proportion of the carbon nanostructure is preferably 60% by mass or less, and more preferably 50% by mass or less.
[単層カーボンナノチューブ(SWCNT)]
 本発明の第二の複合材料としての銅複合材料は、炭素ナノ構造体として、単層カーボンナノチューブ(以下、「SWCNT」ともいう。)を含むことが好ましい。
 SWCNTは、多層カーボンナノチューブ等の他の炭素ナノ構造体と比較して、径が小さく比表面積が大きいため、銅と複合化するために必要な量を低減することができると共に、均質な複合化を実現することができる。これにより、銅複合材料の導電性および熱伝導性を向上させることが可能となる。
[Single-walled carbon nanotube (SWCNT)]
The copper composite material as the second composite material of the present invention preferably contains a single-walled carbon nanotube (hereinafter also referred to as “SWCNT”) as the carbon nanostructure.
SWCNT has a small diameter and a large specific surface area compared to other carbon nanostructures such as multi-walled carbon nanotubes, so it can reduce the amount required to form a composite with copper and make a uniform composite Can be realized. Thereby, it becomes possible to improve the electroconductivity and thermal conductivity of a copper composite material.
 炭素ナノ構造体中のSWCNTの割合は、得られる銅複合材料の性能の観点から、1質量%以上とすることが好ましく、10質量%以上とすることが更に好ましい。なお、炭素ナノ構造体全量をSWCNTとしてもよい。 From the viewpoint of the performance of the obtained copper composite material, the SWCNT ratio in the carbon nanostructure is preferably 1% by mass or more, and more preferably 10% by mass or more. The total amount of carbon nanostructures may be SWCNT.
 以下、第二の複合材料としての銅複合材料において用いられる単層カーボンナノチューブ(SWCNT)の特性について記載する。 Hereinafter, the characteristics of the single-walled carbon nanotube (SWCNT) used in the copper composite material as the second composite material will be described.
 SWCNTの比表面積(BET比表面積)は、銅複合材料の導電性や熱伝導性を良好に向上させる観点、および、後述の解砕効果が得られる分散処理時におけるSWCNTの分散性を向上させると共にSWCNTの損傷を十分に防止する観点から、未開口状態で600m2/g以上とすることが好ましく、800m2/g以上とすることが更に好ましく、また、1200m2/g以下とすることが好ましい。 The SWCNT specific surface area (BET specific surface area) improves the conductivity and thermal conductivity of the copper composite material, and improves the dispersibility of the SWCNTs during the dispersion treatment to obtain the crushing effect described below. From the viewpoint of sufficiently preventing SWCNT damage, it is preferably 600 m 2 / g or more, more preferably 800 m 2 / g or more, and preferably 1200 m 2 / g or less in the unopened state. .
 また、SWCNTは、ラマン分光法を用いて評価した際に、Radial Breathing Mode(RBM)のピークを有することが好ましい。なお、3層以上の多層カーボンナノチューブのラマンスペクトルにはRBMが存在しない。 In addition, SWCNT preferably has a peak of Radial Breathing Mode (RBM) when evaluated using Raman spectroscopy. Note that there is no RBM in the Raman spectrum of multi-walled carbon nanotubes of three or more layers.
 更に、SWCNTのラマンスペクトルにおける、Dバンドピーク強度に対するGバンドピーク強度の比(G/D比)は、SWCNTの分散性の観点、および、SWCNTの配合量が少量の場合でも銅複合材料の導電性や熱伝導性を十分に向上させる観点から、1以上20以下であることが好ましい。 Furthermore, the ratio of the G band peak intensity to the D band peak intensity (G / D ratio) in the Raman spectrum of SWCNT is the viewpoint of the dispersibility of SWCNT and the conductivity of the copper composite material even when the amount of SWCNT is small. From the viewpoint of sufficiently improving the property and thermal conductivity, it is preferably 1 or more and 20 or less.
 更に、SWCNTの平均直径(Av)に対する直径分布(3σ)の比(3σ/Av)は、SWCNTの配合量が少量の場合でも銅複合材料の導電性や熱伝導性を十分に向上させる観点から、0.20超であることが好ましく、0.25超であることが更に好ましく、0.50超であることが特に好ましく、また、0.60未満であることが好ましい。即ち、SWCNTは、平均直径(Av)と直径分布(3σ)とが、関係式:0.20<(3σ/Av)<0.60を満たすことが好ましい。
 そして、SWCNTとしては、測定した直径を横軸に、その頻度を縦軸に取ってプロットし、ガウシアンで近似した際に、正規分布を取るものが通常使用される。
Further, the ratio (3σ / Av) of the diameter distribution (3σ) to the average diameter (Av) of SWCNT is from the viewpoint of sufficiently improving the conductivity and thermal conductivity of the copper composite material even when the amount of SWCNT is small. , More than 0.20, more preferably more than 0.25, particularly preferably more than 0.50, and preferably less than 0.60. That is, in SWCNT, the average diameter (Av) and the diameter distribution (3σ) preferably satisfy the relational expression: 0.20 <(3σ / Av) <0.60.
As SWCNTs, those having a normal distribution when the measured diameter is plotted on the horizontal axis and the frequency is plotted on the vertical axis and approximated by Gaussian are usually used.
 ここで、SWCNTの平均直径(Av)としては、SWCNTの凝集を抑制して、めっき液中における分散性を高める観点から、0.5nm以上であることが好ましく、1nm以上であることが更に好ましい。また、銅複合材料の導電性および熱伝導性を向上させる観点からは、SWCNTの平均直径(Av)は、15nm以下であることが好ましく、10nm以下であることが更に好ましい。 Here, the average diameter (Av) of SWCNT is preferably 0.5 nm or more, and more preferably 1 nm or more, from the viewpoint of suppressing SWCNT aggregation and improving dispersibility in the plating solution. . From the viewpoint of improving the conductivity and thermal conductivity of the copper composite material, the average diameter (Av) of SWCNT is preferably 15 nm or less, and more preferably 10 nm or less.
 SWCNTの平均長さは、銅複合材料の導電性および熱伝導性を向上させる観点から、50μm~2000μmであることが好ましく、100μm~1000μmであることが更に好ましい。 The average length of SWCNT is preferably 50 μm to 2000 μm, and more preferably 100 μm to 1000 μm, from the viewpoint of improving the conductivity and thermal conductivity of the copper composite material.
 SWCNTは、複数の微小孔を有することが好ましく、孔径が2nmよりも小さいマイクロ孔を有することが好ましい。
 マイクロ孔の存在量は、下記の方法で求めたマイクロ孔容積(Vp)で、下限は好適には0.4mL/g以上、更に好適には0.43mL/g以上、特に好適には0.45mL/g以上であり、上限は0.65mL/g以下とすることができる。SWCNTが上記のマイクロ孔を有すれば、SWCNTの分散性を高めることができる。
 なお、マイクロ孔容積は、例えば、SWCNTの調製方法および調製条件を適宜変更することによって調整することができる。
 ここで、「マイクロ孔容積(Vp)」は、SWCNTの液体窒素温度(77K)での窒素吸着等温線を測定し、相対圧P/P0=0.19における窒素吸着量をVとして、式(I):Vp=(V/22414)×(M/ρ)より、算出することができる。ここで、Pは吸着平衡時の測定圧力、P0は測定時の液体窒素の飽和蒸気圧であり、式(I)中、Mは吸着質(窒素)の分子量28.010、ρは吸着質(窒素)の77Kにおける密度0.808g/cm3である。
SWCNTs preferably have a plurality of micropores, and preferably have micropores having a pore diameter smaller than 2 nm.
The amount of micropores is the micropore volume (Vp) determined by the following method, and the lower limit is preferably 0.4 mL / g or more, more preferably 0.43 mL / g or more, and particularly preferably 0. It is 45 mL / g or more, and an upper limit can be 0.65 mL / g or less. If SWCNT has the above-mentioned micropores, the dispersibility of SWCNT can be improved.
The micropore volume can be adjusted, for example, by appropriately changing the SWCNT preparation method and preparation conditions.
Here, the “micropore volume (Vp)” is a formula in which the nitrogen adsorption isotherm at the liquid nitrogen temperature (77 K) of SWCNT is measured, and the nitrogen adsorption amount at relative pressure P / P0 = 0.19 is V. I): Vp = (V / 22414) × (M / ρ). Here, P is a measurement pressure at the time of adsorption equilibrium, P0 is a saturated vapor pressure of liquid nitrogen at the time of measurement, and in formula (I), M is an adsorbate (nitrogen) molecular weight of 28.010, and ρ is an adsorbate ( Density) at 77K of 0.808 g / cm 3 .
 また、SWCNTは、開口処理されておらず(すなわち未開口であり)、吸着等温線から得られるt-プロットが上に凸な形状を示すのが好ましい。当該t-プロットは、SWCNTについて窒素ガス吸着法で測定された吸着等温線において、相対圧を窒素ガス吸着層の平均厚みt(nm)に変換することによって得られる(de Boerらによるt-プロット法)。t-プロットが上に凸な形状であることは、SWCNTの全比表面積に対する内部比表面積の割合が大きく、SWCNTの側壁に多数の開口が形成されていることを示す。 Further, it is preferable that the SWCNT is not subjected to opening treatment (that is, is not open), and the t-plot obtained from the adsorption isotherm shows an upwardly convex shape. The t-plot is obtained by converting the relative pressure to the average thickness t (nm) of the nitrogen gas adsorption layer in the adsorption isotherm measured by the nitrogen gas adsorption method for SWCNT (t-plot by de Boer et al. Law). The convex shape of the t-plot indicates that the ratio of the internal specific surface area to the total specific surface area of SWCNT is large, and a large number of openings are formed on the sidewalls of SWCNT.
 更に、SWCNTは、前述のt-プロットにおいて、その屈曲点が、0.2≦t(nm)≦1.5の範囲にあることが好ましく、0.45≦t(nm)≦1.5の範囲にあることが更に好ましく、0.55≦t(nm)≦1.0の範囲にあることが特に好ましい。 Furthermore, the SWCNT preferably has an inflection point in the range of 0.2 ≦ t (nm) ≦ 1.5 in the above-described t-plot, and 0.45 ≦ t (nm) ≦ 1.5. More preferably, it is in the range of 0.55 ≦ t (nm) ≦ 1.0.
 前述の通り、t-プロットが上に凸な形状を示すSWCNTは、全比表面積に対する内部比表面積の割合が大きいものとなる。全比表面積S1に対する内部比表面積S2の割合(S2/S1)は、0.05≦S2/S1≦0.30を満たすのが好ましい。
 ここで、全比表面積S1は、600~1800m2/gであることが好ましく、800~1500m2/gであることが更に好ましい。また、内部比表面積S2は、30~540m2/gであることが好ましい。なお、全比表面積S1および内部比表面積S2は、前述のt-プロットから求めることができる。
As described above, SWCNTs whose t-plot has an upwardly convex shape have a large ratio of the internal specific surface area to the total specific surface area. The ratio of the internal specific surface area S2 to the total specific surface area S1 (S2 / S1) preferably satisfies 0.05 ≦ S2 / S1 ≦ 0.30.
Here, the total specific surface area S1 is preferably 600 to 1800 m 2 / g, and more preferably 800 to 1500 m 2 / g. The internal specific surface area S2 is preferably 30 to 540 m 2 / g. The total specific surface area S1 and the internal specific surface area S2 can be obtained from the above-described t-plot.
 前述のSWCNTの、マイクロ孔容積の測定、吸着等温線やt-プロットの作成、並びに、t-プロット解析に基づく全比表面積S1および内部比表面積S2の算出は、例えば、市販の測定装置である「BELSORP(登録商標)-mini」(日本ベル(株)社製)を用いて行うことができる。 The above-described SWCNT measurement of micropore volume, creation of adsorption isotherm and t-plot, and calculation of total specific surface area S1 and internal specific surface area S2 based on t-plot analysis are, for example, commercially available measuring devices. “BELSORP (registered trademark) -mini” (manufactured by Nippon Bell Co., Ltd.) can be used.
 SWCNTの製造方法としては、特に限定されることなく、化学気相成長法(CVD法)、アーク放電法、レーザーアブレーション法等が挙げられ、特に、前述したスーパーグロース法が好ましい。 The SWCNT production method is not particularly limited, and includes a chemical vapor deposition method (CVD method), an arc discharge method, a laser ablation method, and the like, and the super growth method described above is particularly preferable.
[SWCNTの平均直径よりも大きい平均直径を有する繊維状炭素ナノ構造体]
 また、本発明の第二の複合材料としての銅複合材料は、炭素ナノ構造体として、上記単層カーボンナノチューブ(SWCNT)と、SWCNTの平均直径よりも大きい平均直径を有する繊維状炭素ナノ構造体(以下、「大径炭素ナノ構造体」ともいう。)とを併用してもよい。
 大径炭素ナノ構造体を用いることによって、フォノンの移動が容易となるため、銅複合材料の熱伝導性を一層高めることが可能となる。
[Fibrous carbon nanostructure having an average diameter larger than that of SWCNT]
Further, the copper composite material as the second composite material of the present invention is a carbon nanostructure, the single-walled carbon nanotube (SWCNT), and a fibrous carbon nanostructure having an average diameter larger than the average diameter of SWCNT. (Hereinafter also referred to as “large-diameter carbon nanostructure”) may be used in combination.
By using the large-diameter carbon nanostructure, the movement of phonons is facilitated, so that the thermal conductivity of the copper composite material can be further enhanced.
 なお、炭素ナノ構造体中の大径炭素ナノ構造体の割合は、所望の効果を十分に得る観点から、1質量%以上であることが好ましく、5質量%以上であることが更に好ましい。また、銅複合材料の曲げ特性等の機械的特性の悪化を抑制する観点から、大径炭素ナノ構造体の割合は、60質量%以下であることが好ましく、50質量%以下であることが更に好ましい。 In addition, the ratio of the large-diameter carbon nanostructure in the carbon nanostructure is preferably 1% by mass or more, and more preferably 5% by mass or more from the viewpoint of sufficiently obtaining a desired effect. Further, from the viewpoint of suppressing deterioration of mechanical properties such as bending properties of the copper composite material, the ratio of the large-diameter carbon nanostructure is preferably 60% by mass or less, and more preferably 50% by mass or less. preferable.
 大径炭素ナノ構造体は、ナノサイズの炭素繊維である。大径炭素ナノ構造体としては、例えば、多層カーボンナノチューブや微細炭素繊維等が挙げられる。
 大径炭素ナノ構造体の平均直径は、SWCNTの平均直径よりも大きければ特に限定されないが、例えば、10nm以上200nm以下とすることができる。
Large-diameter carbon nanostructures are nano-sized carbon fibers. Examples of the large-diameter carbon nanostructure include multi-walled carbon nanotubes and fine carbon fibers.
The average diameter of the large-diameter carbon nanostructure is not particularly limited as long as it is larger than the average diameter of SWCNT, and can be, for example, 10 nm or more and 200 nm or less.
 大径炭素ナノ構造体は、特に限定されることなく、例えば、前述の国際公開第2005/118473号に記載の方法に従って製造することができる。 The large-diameter carbon nanostructure is not particularly limited and can be produced, for example, according to the method described in the above-mentioned International Publication No. 2005/118473.
(銅複合材料の製造方法)
 本発明の第二の複合材料としての銅複合材料は、例えば、炭素ナノ構造体を、分散剤の存在下において分散媒中で、キャビテーション効果または解砕効果が得られる分散処理に供することによって、炭素ナノ構造体を分散媒に分散させて、炭素ナノ構造体分散液を得る分散工程(A)と、前記炭素ナノ構造体分散液と銅めっき液の材料とを混合して、炭素ナノ構造体分散銅めっき液を得る混合工程(B)と、前記炭素ナノ構造体分散銅めっき液を用いて基板表面にめっき処理を行うめっき工程(C)とを含む、本発明の銅複合材料の製造方法により、効率的に製造することができる。
 なお、第二の複合材料としての銅複合材料の製造においては、前述した第一の複合材料を製造する場合とは異なり、分散剤としてイオン性界面活性剤と高分子系界面活性剤とを併用しなくてもよい。
(Method for producing copper composite material)
The copper composite material as the second composite material of the present invention, for example, by subjecting the carbon nanostructure to a dispersion treatment in which a cavitation effect or a crushing effect is obtained in a dispersion medium in the presence of a dispersant, Dispersing the carbon nanostructure in a dispersion medium to obtain a carbon nanostructure dispersion liquid (A), and mixing the carbon nanostructure dispersion liquid and the copper plating solution material, the carbon nanostructure The manufacturing method of the copper composite material of this invention including the mixing process (B) which obtains a dispersion | distribution copper plating solution, and the plating process (C) which plate-processes a substrate surface using the said carbon nanostructure dispersion | distribution copper plating solution. Therefore, it can manufacture efficiently.
In the production of the copper composite material as the second composite material, unlike the case of producing the first composite material described above, an ionic surfactant and a polymer surfactant are used in combination as a dispersant. You don't have to.
 ここで、炭素ナノ構造体をめっき液中で分散させて炭素ナノ構造体が分散しためっき液を調製する、従来の銅複合材料の製造方法では、用いる炭素ナノ構造体内部には通常、酸素が存在するため、得られる銅複合材料内に亜酸化銅が生じてしまう。ここで、亜酸化銅の電気抵抗は、未酸化の銅の電気抵抗と比較してはるかに大きい。従って、銅複合材料中に亜酸化銅が生じた場合、銅複合材料の導電性が著しく低下し、また、銅複合材料の熱伝導性も低下する。 Here, in the conventional method for producing a copper composite material in which a carbon nanostructure is dispersed in a plating solution to prepare a plating solution in which the carbon nanostructure is dispersed, oxygen is usually contained inside the carbon nanostructure to be used. Since it exists, cuprous oxide will be produced in the obtained copper composite material. Here, the electrical resistance of cuprous oxide is much larger than that of unoxidized copper. Therefore, when cuprous oxide is generated in the copper composite material, the conductivity of the copper composite material is remarkably lowered, and the thermal conductivity of the copper composite material is also lowered.
 一方、本発明の銅複合材料の製造方法では、先に炭素ナノ構造体を分散させて分散液(炭素ナノ構造体分散液)を調製し、その後、炭素ナノ構造体分散液とめっき液とを混合するため、炭素ナノ構造体に含まれる酸素とめっき液中の銅成分との接触を効果的に抑制することができる。従って、銅複合材料中で発生する亜酸化銅を著しく低減し、これにより、亜酸化銅を含まない銅複合材料を得ることができる。 On the other hand, in the method for producing a copper composite material of the present invention, a carbon nanostructure is first dispersed to prepare a dispersion (carbon nanostructure dispersion), and then the carbon nanostructure dispersion and the plating solution are used. Since they are mixed, contact between oxygen contained in the carbon nanostructure and the copper component in the plating solution can be effectively suppressed. Therefore, cuprous oxide generated in the copper composite material can be significantly reduced, and thereby a copper composite material containing no cuprous oxide can be obtained.
 以下、本発明の銅複合材料の製造方法の各工程について記載する。
<分散工程(A)>
 本発明の銅複合材料の製造方法では、まず、炭素ナノ構造体を、分散剤の存在下、分散媒中で、キャビテーション効果または解砕効果が得られる分散処理に供することによって、炭素ナノ構造体を分散媒に分散させて、炭素ナノ構造体分散液を得る(分散工程(A))。
Hereinafter, it describes about each process of the manufacturing method of the copper composite material of this invention.
<Dispersing step (A)>
In the method for producing a copper composite material of the present invention, first, the carbon nanostructure is subjected to a dispersion treatment in which a cavitation effect or a crushing effect is obtained in a dispersion medium in the presence of a dispersing agent, whereby a carbon nanostructure is obtained. Is dispersed in a dispersion medium to obtain a carbon nanostructure dispersion liquid (dispersion step (A)).
[分散剤]
 分散工程(A)で用いる分散剤としては、特に限定されることなく、炭素ナノ構造体の分散を補助し得る既知の分散剤を用いることができる。分散剤としては、例えば、イオン性界面活性剤、非イオン性界面活性剤、多糖類等が挙げられ、特に、界面活性剤が好ましい。
[Dispersant]
The dispersant used in the dispersion step (A) is not particularly limited, and a known dispersant that can assist the dispersion of the carbon nanostructure can be used. Examples of the dispersant include ionic surfactants, nonionic surfactants, polysaccharides, and the like, and surfactants are particularly preferable.
 イオン性(カチオン性、アニオン性)界面活性剤および非イオン性(ノニオン性)界面活性剤としては、特に、炭素ナノ構造体の充分な分散性を確保する観点から、アニオン性界面活性剤が好ましい。
 カチオン性界面活性剤としては、例えば、ドデシルトリメチルアンモニウムブロミド、セチルトリメチルアンモニウムブロミド、ジステアリルジメチルアンモニウムクロライド等の第四級アンモニウム塩;塩化テトラブチルホスホニウム、塩化テトラペンチルホスホニウム、塩化トリオクチルメチルホスホニウム、塩化ペンチルトリフェニルホスホニウム等の第四級ホスホニウム塩;等が挙げられる。
 アニオン性界面活性剤としては、例えば、ドデシル硫酸ナトリウム、デオキシコール酸ナトリウム、コール酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルジフェニルオキシドジスルホン酸ナトリウム等が挙げられる。
 非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル等のエーテル型非イオン性界面活性剤;グリセリンエステルのポリオキシエチレンエーテル等のエーテルエステル型非イオン性界面活性剤;ポリエチレングリコール脂肪酸エステル;グリセリンエステル;等が挙げられる。
As the ionic (cationic, anionic) surfactant and the nonionic (nonionic) surfactant, anionic surfactants are particularly preferable from the viewpoint of ensuring sufficient dispersibility of the carbon nanostructure. .
Examples of the cationic surfactant include quaternary ammonium salts such as dodecyltrimethylammonium bromide, cetyltrimethylammonium bromide, distearyldimethylammonium chloride; tetrabutylphosphonium chloride, tetrapentylphosphonium chloride, trioctylmethylphosphonium chloride, Quaternary phosphonium salts such as pentyltriphenylphosphonium; and the like.
Examples of the anionic surfactant include sodium dodecyl sulfate, sodium deoxycholate, sodium cholate, sodium dodecylbenzenesulfonate, sodium dodecyldiphenyloxide disulfonate, and the like.
Examples of nonionic surfactants include ether type nonionic surfactants such as polyoxyethylene alkyl ether; ether ester type nonionic surfactants such as polyoxyethylene ether of glycerin ester; polyethylene glycol fatty acid ester Glycerin ester; and the like.
 多糖類としては、ヒドロキシプロピルセルロース、アラビアゴム、カルボキシメチルセルロースナトリウム塩、カルボキシメチルセルロースアンモニウム塩、ヒドロキシエチルセルロース等が挙げられる。 Examples of the polysaccharide include hydroxypropylcellulose, gum arabic, carboxymethylcellulose sodium salt, carboxymethylcellulose ammonium salt, hydroxyethylcellulose and the like.
[分散媒]
 分散工程(A)で用いる分散媒としては、分散剤によりミセルを形成させる観点から、通常、水が用いられる。なお、分散媒としては、ミセル形成を阻害しない限り、例えば、エーテル系溶媒、アルコール系溶媒、エステル系溶媒およびケトン系溶媒等を水と併用することができる。
[Dispersion medium]
As the dispersion medium used in the dispersion step (A), water is usually used from the viewpoint of forming micelles with a dispersant. As the dispersion medium, for example, an ether solvent, an alcohol solvent, an ester solvent, a ketone solvent, and the like can be used in combination with water as long as micelle formation is not inhibited.
 なお、分散媒中における分散剤の濃度は、臨界ミセル濃度以上であれば、特に限定されない。
 分散媒に分散させる炭素ナノ構造体の量は、充分な特性を有する銅複合材料を得る観点から、0.01g/L以上であることが好ましく、0.1g/L以上であることが更に好ましい。また、分散媒中での分散性を向上させる観点から、分散媒に分散させる炭素ナノ構造体の量は、20g/L以下であることが好ましく、10g/L以下であることが更に好ましい。
The concentration of the dispersant in the dispersion medium is not particularly limited as long as it is equal to or higher than the critical micelle concentration.
The amount of carbon nanostructures to be dispersed in the dispersion medium is preferably 0.01 g / L or more, more preferably 0.1 g / L or more, from the viewpoint of obtaining a copper composite material having sufficient characteristics. . Further, from the viewpoint of improving the dispersibility in the dispersion medium, the amount of the carbon nanostructure dispersed in the dispersion medium is preferably 20 g / L or less, and more preferably 10 g / L or less.
[分散処理]
 分散工程(A)で用いる分散処理(キャビテーション効果または解砕効果が得られる分散処理)は、上述した分散媒に上述した分散剤および炭素ナノ構造体を添加して得た粗分散液に対して行うこと以外は、前述した第一の複合材料の調製に使用するめっき液の製造方法において用い得る「キャビテーション効果または解砕効果が得られる分散処理」と同様にして行うことができる。即ち、分散工程(A)のキャビテーション効果が得られる分散処理は、上記[キャビテーション効果が得られる分散処理]の項目に記載されている内容を、「溶媒」を「分散媒」と、「イオン性界面活性剤および高分子系界面活性剤」を「分散剤」と、「炭素ナノ繊維」を「炭素ナノ構造体」と読み替えて実施することができる。また、分散工程(A)の解砕効果が得られる分散処理は、上記[解砕効果が得られる分散処理]の項目に記載されている内容を、「溶媒」を「分散媒」と、「イオン性界面活性剤および高分子系界面活性剤」を「分散剤」と、「炭素ナノ繊維」を「炭素ナノ構造体」と読み替えて実施することができる。
[Distributed processing]
The dispersion treatment used in the dispersion step (A) (dispersion treatment for obtaining a cavitation effect or a crushing effect) is performed on the coarse dispersion obtained by adding the above-described dispersant and carbon nanostructure to the above-described dispersion medium. Except for carrying out, it can be carried out in the same manner as the “dispersion treatment that provides a cavitation effect or a crushing effect” that can be used in the method for producing the plating solution used for the preparation of the first composite material described above. That is, the dispersion treatment that can obtain the cavitation effect in the dispersion step (A) is the same as that described in the item [Dispersion treatment that can obtain the cavitation effect], with “solvent” as “dispersion medium” and “ionic properties”. “Surfactant and polymeric surfactant” can be read as “dispersing agent”, and “carbon nanofiber” can be read as “carbon nanostructure”. In addition, the dispersion treatment in which the crushing effect in the dispersion step (A) is obtained is the content described in the above item [Dispersion treatment in which the crushing effect is obtained], “solvent” as “dispersion medium”, “ It can be carried out by replacing “ionic surfactant and polymeric surfactant” with “dispersing agent” and “carbon nanofiber” with “carbon nanostructure”.
 なお、分散工程(A)において分散処理にジェットミルを用いる場合には、多糖類の分散剤に比べて粘性が低く、装置への負荷を軽減できることから、分散剤として界面活性剤(イオン性界面活性剤、非イオン性界面活性剤)を用いることが好ましい。 When a jet mill is used for the dispersion treatment in the dispersion step (A), the viscosity is lower than that of the polysaccharide dispersant and the load on the apparatus can be reduced. Therefore, a surfactant (ionic interface) is used as the dispersant. It is preferable to use an activator or a nonionic surfactant.
 また、分散工程(A)において分散剤としてノニオン性界面活性剤を用いる場合には、分散剤の機能をより良好に発揮させるため、分散剤が凍らない若しくはノニオン性界面活性剤の曇点を下回らない程度の低温で、分散処理を行うことが好ましい。 Further, when a nonionic surfactant is used as a dispersant in the dispersion step (A), the dispersant does not freeze or falls below the cloud point of the nonionic surfactant in order to make the function of the dispersant better. It is preferable to perform the dispersion treatment at a low temperature.
<混合工程(B)>
 次いで、本発明の銅複合材料の製造方法では、炭素ナノ構造体分散液と銅めっき液の材料とを混合して、炭素ナノ構造体分散銅めっき液を得る(混合工程(B))。
 なお、炭素ナノ構造体分散液と銅めっき液の材料との混合に関しては、所望の炭素ナノ構造体分散銅めっき液が得られれば、(i)炭素ナノ構造体分散液と、予め調製しておいた銅めっき液(銅めっき液の材料を含む溶液)とを混合することによって行ってもよいし、(ii)炭素ナノ構造体分散液に対して銅めっき液の材料を個別にまたは同時に添加して、これらを混合することによって行ってもよいし、(iii)上記(i)と上記(ii)とを併用することによって行ってもよい。
<Mixing step (B)>
Next, in the method for producing a copper composite material of the present invention, the carbon nanostructure dispersion liquid and the copper plating liquid material are mixed to obtain a carbon nanostructure dispersion copper plating liquid (mixing step (B)).
Regarding the mixing of the carbon nanostructure dispersion liquid and the copper plating liquid material, if a desired carbon nanostructure dispersion copper plating liquid is obtained, (i) the carbon nanostructure dispersion liquid and It may be performed by mixing with a copper plating solution (solution containing a material of the copper plating solution), or (ii) the material of the copper plating solution is added individually or simultaneously to the carbon nanostructure dispersion liquid. Then, it may be carried out by mixing these, or (iii) the above (i) and (ii) may be used in combination.
[銅めっき液の材料]
 銅めっき液の材料としては、銅イオン源、キレート剤、pH調整剤等のめっき液中で通常用いられるものが挙げられる。
 具体的には、銅イオン源としては、例えば、硫酸銅五水和物等が挙げられる。キレート剤としては、例えば、エチレンジアミン四酢酸二ナトリウム塩、エチレンジアミン、トリエタノールアミン、チオ尿素、ロッシェル塩、酒石酸等が挙げられる。pH調整剤としては、例えば、水酸化カリウム等が挙げられる。
 そして、これらの銅めっき液の材料を水などの溶媒に溶解させることにより、上記(i)の銅めっき液を得ることができる。
[Material of copper plating solution]
Examples of the material for the copper plating solution include those commonly used in plating solutions such as a copper ion source, a chelating agent, and a pH adjusting agent.
Specifically, examples of the copper ion source include copper sulfate pentahydrate. Examples of the chelating agent include ethylenediaminetetraacetic acid disodium salt, ethylenediamine, triethanolamine, thiourea, Rochelle salt, and tartaric acid. Examples of the pH adjuster include potassium hydroxide.
And the copper plating solution of said (i) can be obtained by dissolving the materials of these copper plating solutions in solvents, such as water.
 炭素ナノ構造体分散銅めっき液中における銅イオン源の濃度は、充分な特性を有する銅複合材料を得る観点から、0.01mol/L以上であることが好ましく、0.05mol/L以上であることが更に好ましい。また、銅イオン源の濃度は、炭素ナノ構造体の充分な分散性を確保する観点から、1.0mol/L以下であることが好ましく、0.5mol/L以下であることが更に好ましい。 From the viewpoint of obtaining a copper composite material having sufficient characteristics, the concentration of the copper ion source in the carbon nanostructure-dispersed copper plating solution is preferably 0.01 mol / L or more, and 0.05 mol / L or more. More preferably. In addition, the concentration of the copper ion source is preferably 1.0 mol / L or less, and more preferably 0.5 mol / L or less, from the viewpoint of ensuring sufficient dispersibility of the carbon nanostructure.
 なお、炭素ナノ構造体分散液と銅めっき液との混合は、炭素ナノ構造体の充分な分散性を確保する観点から、得られる炭素ナノ構造体分散銅めっき液の温度が90℃以下となるように適宜温度調整して行うことが好ましい。
 また、炭素ナノ構造体分散銅めっき液のpHは、所望の銅複合材料を効率的に得る観点から、8以上とすることが好ましい。
In addition, the mixing of the carbon nanostructure dispersion liquid and the copper plating solution is such that the temperature of the obtained carbon nanostructure-dispersed copper plating solution is 90 ° C. or less from the viewpoint of ensuring sufficient dispersibility of the carbon nanostructure. It is preferable to carry out the temperature adjustment as appropriate.
The pH of the carbon nanostructure-dispersed copper plating solution is preferably 8 or more from the viewpoint of efficiently obtaining a desired copper composite material.
<めっき工程(C)>
 更に、本発明の銅複合材料の製造方法では、炭素ナノ構造体分散銅めっき液を用いて基板表面にめっき処理を行う(めっき工程(C))。そして、めっき工程(C)では、第二の複合材料としての銅複合材料がめっき皮膜として得られる。
<Plating process (C)>
Furthermore, in the method for producing a copper composite material of the present invention, the surface of the substrate is plated using a carbon nanostructure-dispersed copper plating solution (plating step (C)). In the plating step (C), a copper composite material as the second composite material is obtained as a plating film.
[めっき処理]
 ここで、めっき処理方法としては、電解めっきや無電解めっきが挙げられ、特に、亜酸化銅の発生を抑制する観点から、電解めっきが好ましい。
 電解めっきの場合、直流めっき法に限定されることはなく、電流反転めっき法やパルスめっき法も用いることができる。めっき処理条件は、特に限定されることなく、常法に従うものとしてよい。
 なお、めっき処理の間、炭素ナノ構造体分散銅めっき液の分散状態を維持するため、当該炭素ナノ構造体分散銅めっき液を、スターラー等を用いて撹拌することが好ましい。
[Plating treatment]
Here, examples of the plating method include electrolytic plating and electroless plating, and electrolytic plating is particularly preferable from the viewpoint of suppressing the generation of cuprous oxide.
In the case of electrolytic plating, it is not limited to direct current plating, and current reversal plating or pulse plating can also be used. The plating treatment conditions are not particularly limited, and may be in accordance with ordinary methods.
In addition, in order to maintain the dispersion state of the carbon nanostructure-dispersed copper plating solution during the plating treatment, it is preferable to stir the carbon nanostructure-dispersed copper plating solution using a stirrer or the like.
 なお、めっき工程(C)において電解めっきを用いる場合、電流密度は、銅複合材料を効率的に製造する観点から、0.1Adm-2以上であることが好ましく、0.5Adm-2以上であることが更に好ましい。また、電流密度は、充分な特性を有する銅複合材料を得る観点から、6Adm-2以下であることが好ましく、4Adm-2以下であることが更に好ましい。 In the case of using the electrolytic plating in the plating step (C), current density, from the viewpoint of producing a copper composite material efficiently, it is preferably 0.1Adm -2 or more, is 0.5Adm -2 or More preferably. The current density is preferably 6 Adm −2 or less, and more preferably 4 Adm −2 or less, from the viewpoint of obtaining a copper composite material having sufficient characteristics.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
 なお、以下の実施例1-1~実施例1-3において使用したカーボンナノチューブは、以下の方法で合成した。また、調製しためっき液の評価は、以下の方法を使用して行った。 Note that the carbon nanotubes used in Examples 1-1 to 1-3 below were synthesized by the following method. Moreover, evaluation of the prepared plating solution was performed using the following method.
(カーボンナノチューブの合成)
 国際公開第2006/011655号の記載に従い、スーパーグロース法によりCNT(SGCNT-1)を調製した。なお、SGCNT-1の調製時には、基材表面への触媒層の形成をウェットプロセスにより行い、アセチレンを主成分とする原料ガスを用いた。
 得られたSGCNT-1は、BET比表面積が1050m2/g(未開口)、マイクロ孔容積が0.44mL/gであり、ラマン分光光度計での測定において、単層CNTに特長的な100~300cm-1の低波数領域にラジアルブリージングモード(RBM)のスペクトルが観察された。また、透過型電子顕微鏡を用い、無作為に100本のSGCNT-1の直径を測定した結果、平均直径(Av)が3.3nm、直径の標準偏差(σ)に3を乗じた値(3σ)が1.9nm、それらの比(3σ/Av)が0.58であった。
(Synthesis of carbon nanotubes)
CNT (SGCNT-1) was prepared by the super-growth method according to the description in International Publication No. 2006/011655. In the preparation of SGCNT-1, the catalyst layer was formed on the surface of the substrate by a wet process, and a raw material gas mainly composed of acetylene was used.
The obtained SGCNT-1 has a BET specific surface area of 1050 m 2 / g (unopened) and a micropore volume of 0.44 mL / g, and is characteristic of single-walled CNT in measurement with a Raman spectrophotometer. A spectrum of radial breathing mode (RBM) was observed in the low wavenumber region of ˜300 cm −1 . Further, as a result of measuring the diameter of 100 SGCNT-1 randomly using a transmission electron microscope, the average diameter (Av) was 3.3 nm, and the standard deviation (σ) of the diameter was multiplied by 3 (3σ ) Was 1.9 nm, and the ratio (3σ / Av) was 0.58.
(評価方法)
 得られためっき液を、温度60℃の条件下にて1週間スターラーを用いて撹拌した。その後、めっき液を超遠心分離機により処理(遠心分離条件:8000G、20℃、4時間)し、処理後のめっき液中のCNT凝集物の有無を目視により観察して、CNTの分散性を評価した。
(Evaluation methods)
The obtained plating solution was stirred using a stirrer under the condition of a temperature of 60 ° C. for 1 week. Thereafter, the plating solution is treated with an ultracentrifuge (centrifugation conditions: 8000 G, 20 ° C., 4 hours), and the presence or absence of CNT aggregates in the treated plating solution is visually observed to determine the dispersibility of CNTs. evaluated.
(実施例1-1)
 炭素ナノ繊維としてのSGCNT-1の濃度が0.2g/L、イオン性界面活性剤としてのドデシル硫酸ナトリウム(SDS)および高分子系界面活性剤としてのヒドロキシプロピルセルロースの濃度がそれぞれ1g/Lの水溶液を調製し、30分間スターラーを用いて撹拌して粗分散液を得た。この粗分散液に対し、キャビテーション効果を利用した分散装置であるジェットミル(常光社製、製品名「JN-20」)を用いて、50MPaの条件にて20回分散処理を行うことにより、SGCNT-1を含む分散液を得た。次いで、SGCNT-1を含む分散液を撹拌しながら、めっき可能な金属イオンを与える金属化合物としての硫酸銅五水和物0.1モル/L、および、キレート剤としてのエチレンジアミン四酢酸二ナトリウム塩0.2モル/Lを加えた後、水酸化カリウム水溶液を用いて溶液のpHを約12に調整することにより、SGCNT-1を含む銅めっき液1を得た。得られた銅めっき液1を1mLとり、スライドグラスに滴下したときの様子を図1に示す。
 そして、上述した方法に従って銅めっき液1中のCNTの分散性を評価したところ、CNT凝集物は全く観察されず、分散安定性に優れていることが確認された。
Example 1-1
The concentration of SGCNT-1 as the carbon nanofiber is 0.2 g / L, the concentration of sodium dodecyl sulfate (SDS) as the ionic surfactant and the concentration of hydroxypropyl cellulose as the polymeric surfactant is 1 g / L, respectively. An aqueous solution was prepared and stirred with a stirrer for 30 minutes to obtain a crude dispersion. This coarse dispersion is subjected to a dispersion process 20 times under the condition of 50 MPa using a jet mill (product name: “JN-20”, manufactured by Joko Co., Ltd.), which is a dispersion apparatus utilizing the cavitation effect. A dispersion containing -1 was obtained. Next, while stirring the dispersion containing SGCNT-1, copper sulfate pentahydrate 0.1 mol / L as a metal compound giving a metal ion capable of plating, and ethylenediaminetetraacetic acid disodium salt as a chelating agent After adding 0.2 mol / L, the pH of the solution was adjusted to about 12 using an aqueous potassium hydroxide solution to obtain a copper plating solution 1 containing SGCNT-1. FIG. 1 shows a state when 1 mL of the obtained copper plating solution 1 is taken and dropped on a slide glass.
And when the dispersibility of CNT in the copper plating solution 1 was evaluated according to the method described above, no CNT aggregates were observed, and it was confirmed that the dispersion stability was excellent.
(実施例1-2)
 イオン性界面活性剤としてドデシル硫酸ナトリウム(SDS)に替えてデオキシコール酸ナトリウム(DOC)を用いた以外は実施例1-1と同様にして、SGCNT-1を含む銅めっき液2を得た。
 得られた銅めっき液2中のCNTの分散性を評価したところ、CNT凝集物は全く観察されず、分散安定性に優れていることが確認された。
Example 1-2
A copper plating solution 2 containing SGCNT-1 was obtained in the same manner as in Example 1-1 except that sodium deoxycholate (DOC) was used instead of sodium dodecyl sulfate (SDS) as the ionic surfactant.
When the dispersibility of CNT in the obtained copper plating solution 2 was evaluated, no CNT aggregates were observed, and it was confirmed that the dispersion stability was excellent.
(実施例1-3)
 高分子系界面活性剤としてヒドロキシプロピルセルロースに替えてポリビニルピロリドンを用いた以外は実施例1-1と同様にして、SGCNT-1を含む銅めっき液3を得た。
 得られた銅めっき液3中のCNTの分散性を評価したところ、CNT凝集物は全く観察されず、分散安定性に優れていることが確認された。
(Example 1-3)
A copper plating solution 3 containing SGCNT-1 was obtained in the same manner as in Example 1-1 except that polyvinylpyrrolidone was used in place of hydroxypropylcellulose as the polymeric surfactant.
When the dispersibility of CNT in the obtained copper plating solution 3 was evaluated, no CNT aggregates were observed, and it was confirmed that the dispersion stability was excellent.
 また、以下の実施例2-1~実施例2-3において使用した単層カーボンナノチューブは、以下の方法で合成した。 The single-walled carbon nanotubes used in the following Examples 2-1 to 2-3 were synthesized by the following method.
(単層カーボンナノチューブの合成)
<SWCNT-1の合成>
 炭素ナノ構造体としての単層カーボンナノチューブ(SWCNT-1)を、国際公開第2006/011655号の記載に従って、スーパーグロース法により調製した。なお、触媒層としての鉄薄膜層の厚さは2nmとした。
 得られたSWCNT-1は、BET比表面積が1050m2/g(未開口状態)、マイクロ孔容積が0.45mL/gであった。また、SWCNT-1は、ラマン分光光度計での測定において、単層CNTに特長的な100~300cm-1の低波数領域にラジアルブリージングモード(RBM)のスペクトルが観察された。更に、透過型電子顕微鏡を用いて、無作為に100本のSWCNT-1の直径を測定した結果、平均直径(Av)が3.3nm、直径分布(3σ)が1.9nm、(3σ/Av)が0.58であった。また、未開口状態におけるt-プロットは上に凸な形状を示し、その屈曲点は0.55≦t(nm)≦1.0の範囲にあり、全比表面積S1と内部比表面積S2との比は0.05≦S2/S1≦0.30を満たしていた。
(Synthesis of single-walled carbon nanotubes)
<Synthesis of SWCNT-1>
Single-walled carbon nanotubes (SWCNT-1) as carbon nanostructures were prepared by the super-growth method according to the description in WO 2006/011655. In addition, the thickness of the iron thin film layer as a catalyst layer was 2 nm.
The obtained SWCNT-1 had a BET specific surface area of 1050 m 2 / g (unopened state) and a micropore volume of 0.45 mL / g. In SWCNT-1, a spectrum of radial breathing mode (RBM) was observed in a low wavenumber region of 100 to 300 cm −1 characteristic of single-walled CNTs when measured with a Raman spectrophotometer. Furthermore, as a result of randomly measuring the diameter of 100 SWCNT-1 using a transmission electron microscope, the average diameter (Av) was 3.3 nm, the diameter distribution (3σ) was 1.9 nm, and (3σ / Av ) Was 0.58. In addition, the t-plot in the unopened state shows an upwardly convex shape, the inflection point is in the range of 0.55 ≦ t (nm) ≦ 1.0, and the total specific surface area S1 and the internal specific surface area S2 The ratio satisfied 0.05 ≦ S2 / S1 ≦ 0.30.
 触媒層としての鉄薄膜層の厚さを4nmに変更した点以外はSWCNT-1の場合と同様にして、単層カーボンナノチューブ(SWCNT-2)を調製した。
 得られたSWCNT-2は、BET比表面積が820m2/g(未開口状態)、マイクロ孔容積が0.41mL/gであった。また、SWCNT-2は、ラマン分光光度計での測定において、単層CNTに特長的な100~300cm-1の低波数領域にラジアルブリージングモード(RBM)のスペクトルが観察された。更に、透過型電子顕微鏡を用いて、無作為に100本のSWCNT-2の直径を測定した結果、平均直径(Av)は5.9nm、直径分布(3σ)は3.2nm、(3σ/Av)は0.54であった。また、未開口状態におけるt-プロットは上に凸な形状を示し、その屈曲点は0.55≦t(nm)≦1.0の範囲にあり、全比表面積S1と内部比表面積S2との比は0.05≦S2/S1≦0.30を満たしていた。
Single-walled carbon nanotubes (SWCNT-2) were prepared in the same manner as in SWCNT-1, except that the thickness of the iron thin film layer as the catalyst layer was changed to 4 nm.
The obtained SWCNT-2 had a BET specific surface area of 820 m 2 / g (unopened state) and a micropore volume of 0.41 mL / g. In SWCNT-2, when measured with a Raman spectrophotometer, a spectrum of radial breathing mode (RBM) was observed in a low wavenumber region of 100 to 300 cm −1 characteristic of single-walled CNT. Furthermore, as a result of measuring the diameter of 100 SWCNT-2 at random using a transmission electron microscope, the average diameter (Av) was 5.9 nm, the diameter distribution (3σ) was 3.2 nm, (3σ / Av ) Was 0.54. In addition, the t-plot in the unopened state shows an upwardly convex shape, the inflection point is in the range of 0.55 ≦ t (nm) ≦ 1.0, and the total specific surface area S1 and the internal specific surface area S2 The ratio satisfied 0.05 ≦ S2 / S1 ≦ 0.30.
(実施例2-1)
 炭素ナノ構造体としてのSWCNT-1の濃度が0.2g/L、分散剤としてのドデシル硫酸ナトリウム(SDS)およびヒドロキシプロピルセルロースの濃度がいずれも1g/Lとなるように溶液を調製し、この溶液をスターラーを用いて30分間撹拌した。この溶液(粗分散液)に対して、キャビテーション効果が得られる分散装置であるジェットミル(常光社製、製品名:JN-20)を用いて、50MPaの条件で20回分散処理を行うことによって、SWCNT-1を分散させ、SWCNT-1を含む分散液(炭素ナノ構造体分散液)を得た(分散工程(A))。
 次いで、撹拌中の炭素ナノ構造体分散液に対して、0.1mol/Lの硫酸銅五水和物水溶液、0.2mol/Lのエチレンジアミン四酢酸二ナトリウム塩水溶液を加え、その後、溶液のpHを、水酸化カリウム水溶液を用いて約12に調整することによって、SWCNT-1を含む銅めっき液(炭素ナノ構造体分散銅めっき液)を得た(混合工程(B))。なお、得られた炭素ナノ構造体分散銅めっき液の温度は約50℃であった。
 更に、表面を活性化処理した銅基板をめっき槽のアノード側に取り付け、50℃に保持し、スターラーを用いて撹拌速度450rpmで撹拌された炭素ナノ構造体分散銅めっき液中に浸漬した。そして、電流密度1Adm-2の条件下、通電量136.4Cになるように電解めっき処理を行った(めっき工程(C))。
 上記方法により、銅とSWCNT-1とからなる銅複合材料1を得た。
Example 2-1
A solution was prepared so that the concentration of SWCNT-1 as a carbon nanostructure was 0.2 g / L, and the concentration of sodium dodecyl sulfate (SDS) and hydroxypropyl cellulose as a dispersant was 1 g / L. The solution was stirred for 30 minutes using a stirrer. By subjecting this solution (crude dispersion) to 20 times of dispersion treatment at 50 MPa using a jet mill (manufactured by Joko, manufactured by JN-20) which is a dispersion device capable of obtaining a cavitation effect. Then, SWCNT-1 was dispersed to obtain a dispersion liquid (carbon nanostructure dispersion liquid) containing SWCNT-1 (dispersion step (A)).
Next, 0.1 mol / L copper sulfate pentahydrate aqueous solution and 0.2 mol / L ethylenediaminetetraacetic acid disodium salt aqueous solution were added to the carbon nanostructure dispersion liquid under stirring, and then the pH of the solution Was adjusted to about 12 using an aqueous potassium hydroxide solution to obtain a copper plating solution (carbon nanostructure-dispersed copper plating solution) containing SWCNT-1 (mixing step (B)). In addition, the temperature of the obtained carbon nanostructure dispersion | distribution copper plating solution was about 50 degreeC.
Further, the copper substrate whose surface was activated was attached to the anode side of the plating tank, maintained at 50 ° C., and immersed in a carbon nanostructure-dispersed copper plating solution stirred at a stirring speed of 450 rpm using a stirrer. And the electroplating process was performed so that it might become the energization amount 136.4C on the conditions of current density 1Adm- 2 (plating process (C)).
By the above method, a copper composite material 1 composed of copper and SWCNT-1 was obtained.
 得られた銅複合材料1の表面を、走査型電子顕微鏡(日立製作所製、製品名:SU8000)を用いて観察した。図2(A)に、銅複合材料1の表面の写真を示し、図2(B)に、拡大写真を示す。走査型電子顕微鏡観察の結果から、作製した銅複合材料1では、マトリックスである銅とSWCNT-1とがナノレベルで複合化されている様子が観察された。
 また、得られた銅複合材料1の表面元素分析を、X線回析装置(島津製作所製、製品名:XRD-6000)を用いて行った。図3に、結果を示す。X線回析装置を用いた分析では、亜酸化銅由来のピークが全く観察されなかった。この結果から、銅複合材料1は、亜酸化銅を含まないことが確認された。
The surface of the obtained copper composite material 1 was observed using a scanning electron microscope (manufactured by Hitachi, Ltd., product name: SU8000). FIG. 2 (A) shows a photograph of the surface of the copper composite material 1, and FIG. 2 (B) shows an enlarged photograph. From the results of observation with a scanning electron microscope, it was observed that in the produced copper composite material 1, the matrix copper and SWCNT-1 were composited at the nano level.
Further, surface elemental analysis of the obtained copper composite material 1 was performed using an X-ray diffraction apparatus (manufactured by Shimadzu Corporation, product name: XRD-6000). FIG. 3 shows the results. In the analysis using an X-ray diffraction apparatus, no peak derived from cuprous oxide was observed. From this result, it was confirmed that the copper composite material 1 does not contain cuprous oxide.
(実施例2-2)
 用いる炭素ナノ構造体をSWCNT-2に代えた点、および、炭素ナノ構造体の分散を、解砕効果が得られる分散処理により行った点以外は実施例2-1と同様にして、銅とSWCNT-2とからなる銅複合材料2を得た。ここで、分散処理は、多段降圧器を有する高圧ホモジナイザー(株式会社美粒製、製品名:BERYU SYSTEM PRO)を用いて、100MPaの条件で4回行った。
 得られた銅複合材料2を、実施例2-1と同様にして観察および分析したところ、走査型電子顕微鏡を用いた観察の結果から、銅複合材料2では、マトリックスである銅とSWCNT-2とがナノレベルで複合化されている様子が観察された。また、X線回析装置を用いた分析では、亜酸化銅由来のピークが全く観察されず、その結果、銅複合材料2は、亜酸化銅を含まないことが確認された。
(Example 2-2)
In the same manner as in Example 2-1, except that the carbon nanostructure to be used was replaced with SWCNT-2, and the dispersion of the carbon nanostructure was performed by a dispersion treatment capable of obtaining a crushing effect, copper and A copper composite material 2 composed of SWCNT-2 was obtained. Here, the dispersion treatment was performed 4 times under the condition of 100 MPa using a high-pressure homogenizer having a multi-stage step-down device (product name: BERYU SYSTEM PRO).
The obtained copper composite material 2 was observed and analyzed in the same manner as in Example 2-1. As a result of observation using a scanning electron microscope, the copper composite material 2 had a matrix of copper and SWCNT-2. It was observed that and were compounded at the nano level. Moreover, in the analysis using the X-ray diffraction apparatus, no peak derived from cuprous oxide was observed, and as a result, it was confirmed that the copper composite material 2 did not contain cuprous oxide.
(実施例2-3)
 炭素ナノ構造体として、SWCNT-1に加えて、大径炭素ナノ構造体であるVGCF-H(昭和電工製、平均直径150nm)(微細炭素繊維)を用いた点以外は実施例1と同様にして、銅とSWCNT-1およびVGCF-Hとからなる銅複合材料3を得た。ここで、SWCNT-1およびVGCF-Hの分散液(炭素ナノ構造体分散液)中における濃度は、それぞれ0.5g/Lおよび0.5g/Lとした。
 得られた銅複合材料3を、実施例1と同様にして観察および分析した。走査型電子顕微鏡を用いた観察の結果から、銅複合材料3では、マトリックスである銅と、SWCNT-1およびVGCF-Hとがナノレベルで高度なネットワークを形成しながら複合化されている様子が観察された。また、X線回析装置を用いた分析の結果から、銅複合材料3では、亜酸化銅由来のピークが全く観察されず、銅複合材料3は亜酸化銅を含まないことが確認された。
(Example 2-3)
As carbon nanostructure, in addition to SWCNT-1, VGCF-H (manufactured by Showa Denko, average diameter 150 nm) (fine carbon fiber) (fine carbon fiber) which is a large-diameter carbon nanostructure was used. Thus, a copper composite material 3 composed of copper and SWCNT-1 and VGCF-H was obtained. Here, the concentrations of SWCNT-1 and VGCF-H in the dispersion liquid (carbon nanostructure dispersion liquid) were 0.5 g / L and 0.5 g / L, respectively.
The obtained copper composite material 3 was observed and analyzed in the same manner as in Example 1. From the results of observation using a scanning electron microscope, it can be seen that in the copper composite material 3, the matrix copper, SWCNT-1 and VGCF-H are compounded while forming an advanced network at the nano level. Observed. Moreover, from the result of the analysis using an X-ray diffraction apparatus, in the copper composite material 3, no peak derived from cuprous oxide was observed, and it was confirmed that the copper composite material 3 does not contain cuprous oxide.
 本発明によれば、液中に炭素ナノ繊維が良好に分散しためっき液を提供することができる。
 また、本発明によれば、導電性および熱伝導性に優れる複合材料を提供することができる。
According to the present invention, a plating solution in which carbon nanofibers are well dispersed in the solution can be provided.
In addition, according to the present invention, a composite material having excellent conductivity and thermal conductivity can be provided.

Claims (13)

  1.  めっき可能な金属イオンと、キレート剤と、イオン性界面活性剤と、高分子系界面活性剤と、炭素ナノ繊維とを含む、めっき液。 A plating solution containing metal ions that can be plated, a chelating agent, an ionic surfactant, a polymeric surfactant, and carbon nanofibers.
  2.  前記炭素ナノ繊維の平均直径が5nm以下である、請求項1に記載のめっき液。 The plating solution according to claim 1, wherein an average diameter of the carbon nanofibers is 5 nm or less.
  3.  前記めっき可能な金属イオンが銅イオンである、請求項1または2に記載のめっき液。 The plating solution according to claim 1 or 2, wherein the metal ion capable of plating is a copper ion.
  4.  アルカリ性である、請求項1~3の何れかに記載のめっき液。 The plating solution according to any one of claims 1 to 3, which is alkaline.
  5.  前記炭素ナノ繊維がカーボンナノチューブである、請求項1~4の何れかに記載のめっき液。 The plating solution according to any one of claims 1 to 4, wherein the carbon nanofiber is a carbon nanotube.
  6.  前記カーボンナノチューブは、平均直径(Av)と直径の標準偏差(σ)とが、関係式:0.20<(3σ/Av)<0.60を満たす、請求項5に記載のめっき液。 The plating solution according to claim 5, wherein the carbon nanotube has an average diameter (Av) and a standard deviation of diameter (σ) satisfying a relational expression: 0.20 <(3σ / Av) <0.60.
  7.  請求項1~6の何れかに記載のめっき液の製造方法であって、
     炭素ナノ繊維を、イオン性界面活性剤および高分子系界面活性剤の存在下で、キャビテーション効果または解砕効果が得られる分散処理によって溶媒に分散させる分散工程を含む、めっき液の製造方法。
    A method for producing a plating solution according to any one of claims 1 to 6,
    A method for producing a plating solution, comprising a dispersion step of dispersing carbon nanofibers in a solvent by a dispersion treatment capable of obtaining a cavitation effect or a crushing effect in the presence of an ionic surfactant and a polymer surfactant.
  8.  請求項1~6の何れかに記載のめっき液を用いて基材表面に電解めっき処理または無電解めっき処理を行って得られる、複合材料。 A composite material obtained by performing electrolytic plating treatment or electroless plating treatment on the surface of a substrate using the plating solution according to any one of claims 1 to 6.
  9.  銅と炭素ナノ構造体とが複合化された銅複合材料であって、
     前記銅複合材料は、X線回折分析において、亜酸化銅に帰属されるX線回折ピークの回折強度が検出限界以下であることを特徴とする、銅複合材料。
    A copper composite material in which copper and a carbon nanostructure are combined,
    The copper composite material is characterized in that, in the X-ray diffraction analysis, the diffraction intensity of an X-ray diffraction peak attributed to cuprous oxide is below the detection limit.
  10.  前記炭素ナノ構造体は、比表面積600m2/g以上の単層カーボンナノチューブを含む、請求項9に記載の銅複合材料。 The copper composite material according to claim 9, wherein the carbon nanostructure includes single-walled carbon nanotubes having a specific surface area of 600 m 2 / g or more.
  11.  前記単層カーボンナノチューブの平均直径(Av)と直径分布(3σ)とは、0.20<(3σ/Av)<0.60を満たす、請求項10に記載の銅複合材料。 The copper composite material according to claim 10, wherein the average diameter (Av) and the diameter distribution (3σ) of the single-walled carbon nanotube satisfy 0.20 <(3σ / Av) <0.60.
  12.  炭素ナノ構造体を、分散剤の存在下分散媒中で、キャビテーション効果または解砕効果が得られる分散処理に供することによって、炭素ナノ構造体を分散媒に分散させて、炭素ナノ構造体分散液を得る分散工程(A)と、
     前記炭素ナノ構造体分散液と銅めっき液の材料とを混合して、炭素ナノ構造体分散銅めっき液を得る混合工程(B)と、
     前記炭素ナノ構造体分散銅めっき液を用いて基板表面にめっき処理を行うめっき工程(C)と、
    を含むことを特徴とする、銅複合材料の製造方法。
    The carbon nanostructure is dispersed in a dispersion medium by subjecting the carbon nanostructure to a dispersion treatment in which a cavitation effect or a crushing effect is obtained in a dispersion medium in the presence of a dispersant. A dispersion step (A) to obtain
    Mixing the carbon nanostructure dispersion liquid and the copper plating liquid material to obtain a carbon nanostructure dispersion copper plating liquid (B),
    A plating step (C) for plating the substrate surface using the carbon nanostructure-dispersed copper plating solution;
    A method for producing a copper composite material, comprising:
  13.  前記めっき処理は、電解めっき処理である、請求項12に記載の銅複合材料の製造方法。 The method for producing a copper composite material according to claim 12, wherein the plating process is an electrolytic plating process.
PCT/JP2015/003679 2014-07-23 2015-07-22 Plating solution and method for producing same, composite material, copper composite material, and method for producing same WO2016013219A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016535798A JP6606076B2 (en) 2014-07-23 2015-07-22 Plating solution and method for producing the same, and composite material, copper composite material and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014149926 2014-07-23
JP2014149931 2014-07-23
JP2014-149926 2014-07-23
JP2014-149931 2014-07-23

Publications (1)

Publication Number Publication Date
WO2016013219A1 true WO2016013219A1 (en) 2016-01-28

Family

ID=55162761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003679 WO2016013219A1 (en) 2014-07-23 2015-07-22 Plating solution and method for producing same, composite material, copper composite material, and method for producing same

Country Status (2)

Country Link
JP (1) JP6606076B2 (en)
WO (1) WO2016013219A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190091010A (en) * 2018-01-26 2019-08-05 삼성전자주식회사 Plating solution and metal composite and method of manufacturing the same
WO2021239722A3 (en) * 2020-05-26 2022-02-10 University College Dublin, National University Of Ireland Improved electrodeposition
US11643328B2 (en) 2017-03-16 2023-05-09 Zeon Corporation Method of producing surface-treated carbon nanostructures
WO2023105747A1 (en) * 2021-12-10 2023-06-15 日本カニゼン株式会社 Nickel plating solution, and method for manufacturing nickel or nickel alloy plating coating
JP7393939B2 (en) 2019-12-24 2023-12-07 古河電気工業株式会社 Composite plating, plated metal substrates and terminals for electrical contacts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091345A1 (en) * 2004-03-24 2005-09-29 Japan Science And Technology Agency Carbon nanotube-containing metal thin film
JP2006057129A (en) * 2004-08-19 2006-03-02 Shinano Kenshi Co Ltd Composite metal body, method for producing the same, metal grain and method for producing the same
WO2006043431A1 (en) * 2004-10-21 2006-04-27 Shinano Kenshi Kabushiki Kaisha Composite metal article and method for preparation thereof
US20070036978A1 (en) * 2005-05-20 2007-02-15 University Of Central Florida Carbon nanotube reinforced metal composites
JP2011058061A (en) * 2009-09-11 2011-03-24 Shinshu Univ ELECTROLESS Cu PLATING LIQUID, ELECTROLESS Cu PLATING METHOD, AND CNT DISPERSANT INTO ELECTROLESS Cu PLATING LIQUID
WO2012091139A1 (en) * 2010-12-28 2012-07-05 独立行政法人産業技術総合研究所 Carbon nanotube metal composite material and production method for same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091345A1 (en) * 2004-03-24 2005-09-29 Japan Science And Technology Agency Carbon nanotube-containing metal thin film
JP2006057129A (en) * 2004-08-19 2006-03-02 Shinano Kenshi Co Ltd Composite metal body, method for producing the same, metal grain and method for producing the same
WO2006043431A1 (en) * 2004-10-21 2006-04-27 Shinano Kenshi Kabushiki Kaisha Composite metal article and method for preparation thereof
US20070036978A1 (en) * 2005-05-20 2007-02-15 University Of Central Florida Carbon nanotube reinforced metal composites
JP2011058061A (en) * 2009-09-11 2011-03-24 Shinshu Univ ELECTROLESS Cu PLATING LIQUID, ELECTROLESS Cu PLATING METHOD, AND CNT DISPERSANT INTO ELECTROLESS Cu PLATING LIQUID
WO2012091139A1 (en) * 2010-12-28 2012-07-05 独立行政法人産業技術総合研究所 Carbon nanotube metal composite material and production method for same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11643328B2 (en) 2017-03-16 2023-05-09 Zeon Corporation Method of producing surface-treated carbon nanostructures
KR20190091010A (en) * 2018-01-26 2019-08-05 삼성전자주식회사 Plating solution and metal composite and method of manufacturing the same
US20210222311A1 (en) * 2018-01-26 2021-07-22 Samsung Electronics Co., Ltd. Plating solution and metal composite and method of manufacturing the same
KR102562279B1 (en) * 2018-01-26 2023-07-31 삼성전자주식회사 Plating solution and metal composite and method of manufacturing the same
JP7393939B2 (en) 2019-12-24 2023-12-07 古河電気工業株式会社 Composite plating, plated metal substrates and terminals for electrical contacts
WO2021239722A3 (en) * 2020-05-26 2022-02-10 University College Dublin, National University Of Ireland Improved electrodeposition
GB2609813A (en) * 2020-05-26 2023-02-15 Univ College Dublin Nat Univ Ireland Dublin Improved electrodeposition
WO2023105747A1 (en) * 2021-12-10 2023-06-15 日本カニゼン株式会社 Nickel plating solution, and method for manufacturing nickel or nickel alloy plating coating

Also Published As

Publication number Publication date
JP6606076B2 (en) 2019-11-13
JPWO2016013219A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6606076B2 (en) Plating solution and method for producing the same, and composite material, copper composite material and method for producing the same
Fu et al. An approach for fabricating Ni@ graphene reinforced nickel matrix composites with enhanced mechanical properties
JP6520724B2 (en) Carbon nanotube fiber and method for producing the same
JP6004507B2 (en) Graphene fiber and method for forming the same
KR102512338B1 (en) Carbon nanotube film and method for producing same
Moraes et al. The effect of different chemical treatments on the structure and stability of aqueous dispersion of iron-and iron oxide-filled multi-walled carbon nanotubes
JP7131543B2 (en) Method for producing surface-treated carbon nanostructure
Ravula et al. Kitchen‐Inspired Nanochemistry: Dispersion, Exfoliation, and Hybridization of Functional MoS2 Nanosheets Using Culinary Hydrocolloids
Peng et al. Ultrasound-assisted fabrication of dispersed two-dimensional copper/reduced graphene oxide nanosheets nanocomposites
US10995223B2 (en) Fibrous carbon nanostructure dispersion liquid
JP6483616B2 (en) Method for producing metal composite material
Peng et al. Ultrasonic-assisted fabrication of highly dispersed copper/multi-walled carbon nanotube nanowires
JP2016183395A (en) Metal matrix composite and production method thereof
JP7023112B2 (en) Method for manufacturing composite materials
KR20110033652A (en) Manufacturing method of highly electrically conductive carbon nanotube-metal composite
JP2011213500A (en) Method for producing carbon nanotube dispersion
WO2016013245A1 (en) Catalyst material and method for producing same
TWI409828B (en) Combined Preparation of Carbon Nanotube Composite Conductive Films with Metal Nanoparticles
JP6551725B2 (en) Dispersion for composite plating treatment in which carbon nanofiber material is dispersed, composite plating solution containing the same, composite plating treatment method using composite plating solution, and surface plating of cutting tool for forming surface plating film using composite plating treatment Processing method
JP2018104651A (en) Grease composition and manufacturing method therefor
JPWO2017104769A1 (en) Fibrous carbon nanostructure dispersion
WO2021131920A1 (en) Fibrous carbon nanostructure, and method for manufacturing surface-modified fibrous carbon nanostructure
Chen et al. In situ assembly of Ag2O nanoparticles on low defect density carbon nanotubes
Kong et al. Graphene-Inorganic Hybrids (II)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535798

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824139

Country of ref document: EP

Kind code of ref document: A1