JP2007138250A - Method for producing silver grain, silver grain-containing composition comprising the obtained silver grain and its use - Google Patents

Method for producing silver grain, silver grain-containing composition comprising the obtained silver grain and its use Download PDF

Info

Publication number
JP2007138250A
JP2007138250A JP2005333534A JP2005333534A JP2007138250A JP 2007138250 A JP2007138250 A JP 2007138250A JP 2005333534 A JP2005333534 A JP 2005333534A JP 2005333534 A JP2005333534 A JP 2005333534A JP 2007138250 A JP2007138250 A JP 2007138250A
Authority
JP
Japan
Prior art keywords
silver
silver particles
salt
low molecular
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005333534A
Other languages
Japanese (ja)
Other versions
JP5059317B2 (en
Inventor
Hirotsuyo Mizoguchi
大剛 溝口
Yoshiaki Takada
佳明 高田
Masahito Murouchi
聖人 室内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Original Assignee
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Mitsubishi Materials Corp filed Critical Dai Nippon Toryo KK
Priority to JP2005333534A priority Critical patent/JP5059317B2/en
Publication of JP2007138250A publication Critical patent/JP2007138250A/en
Application granted granted Critical
Publication of JP5059317B2 publication Critical patent/JP5059317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To easily produce a plate-like silver grain using silver ions, copper ions, a low molecular dispersant and a reducing agent. <P>SOLUTION: In the method for producing a silver grain mainly having a plate-like shape, a silver salt, a copper salt and a low molecular dispersant are added to water to prepare an aqueous solution of the silver salt, the copper salt and the low molecular dispersant; a prescribed ratio of reducing agent is added to the aqueous solution to prepare a mixed solution; the mixed solution is kept still at 20 to 40°C to bring silver ions in the mixed solution into reduction reaction; wherein the additive ratio of the silver salt, the low molecule based dispersant, the copper salt and the reducing agent is 1:(0.1 to 100): (0.01 to 100): (0.001 to 100) by molar ratios. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、可視光や近赤外光の特定波長に対する選択的吸収機能を有する粒子径がナノオーダのプレート状銀粒子を簡易的に製造する方法及び得られた該銀粒子を含有する銀粒子含有組成物並びにその用途に関する。   The present invention is a method for easily producing plate-like silver particles having a nano-order particle size having a selective absorption function for a specific wavelength of visible light or near-infrared light, and silver particles containing the obtained silver particles The present invention relates to a composition and its use.

貴金属のコロイドは化学的に変化し難く、粒径が数nm〜数十nm程度の、いわゆるナノ粒子を構成する。また各コロイド特有の色を発色し、塗料や樹脂組成物の着色剤への用途を含む各種用途への適用が期待されている。
このような発色金属粒子の製造方法として、例えば、非結晶銀粒子の懸濁液に700nm未満の波長を有する光源を晒すことで銀結晶を形成するナノプリズムの形成方法が開示されている(例えば、特許文献1参照。)。この方法によりプレート状の銀の単結晶が形成される。また、クエン酸三ナトリウムと硝酸銀が溶解している水溶液中で、水素化ホウ素ナトリウムにより銀イオンを還元して合成した球状銀コロイド中にBSPP(Bis(p-sulfonatophenyl) phenylphosphine dehydrate dipotassium salt)を滴下した水溶液に、蛍光灯を照射することで銀ナノプリズムを合成する方法が開示されている(例えば、非特許文献1参照。)。また、クエン酸三ナトリウムとBSPPが溶解している水溶液中で、水素化ホウ素ナトリウムにより銀イオンを還元して合成した銀コロイドに、フィルターで選択した2種類の波長の可視光線を照射することで、銀ナノプリズムの吸収波長を制御する方法がある。また、銀ナノプリズムの辺の長さが長くなるにつれ、プラズモン吸収が長波長側にシフトすることが知られている(例えば、非特許文献2参照。)。また、クエン酸三ナトリウムとBSPPあるいはPVPが溶解している水溶液中で、水素化ホウ素ナトリウムにより銀イオンを還元して合成した銀コロイドに、蛍光灯→フィルターで選択した1種類の波長の可視光線を照射することで、銀ナノプレートの吸収波長を制御する方法がある(例えば、非特許文献3参照。)。
Noble metal colloids hardly change chemically and constitute so-called nanoparticles having a particle size of about several nanometers to several tens of nanometers. In addition, it is expected to be applied to various uses, including the use as a colorant for paints and resin compositions, by developing colors specific to each colloid.
As a method for producing such colored metal particles, for example, a nanoprism forming method is disclosed in which a silver crystal is formed by exposing a suspension of amorphous silver particles to a light source having a wavelength of less than 700 nm (for example, , See Patent Document 1). By this method, a plate-like silver single crystal is formed. Also, BSPP (Bis (p-sulfonatophenyl) phenylphosphine dehydrate dipotassium salt) is dropped into a spherical silver colloid synthesized by reducing silver ions with sodium borohydride in an aqueous solution in which trisodium citrate and silver nitrate are dissolved. A method of synthesizing silver nanoprisms by irradiating the aqueous solution with a fluorescent lamp is disclosed (for example, see Non-Patent Document 1). In addition, silver colloid synthesized by reducing silver ions with sodium borohydride in an aqueous solution in which trisodium citrate and BSPP are dissolved is irradiated with visible light with two wavelengths selected by a filter. There is a method for controlling the absorption wavelength of the silver nanoprism. Further, it is known that plasmon absorption shifts to the longer wavelength side as the length of the side of the silver nanoprism becomes longer (for example, see Non-Patent Document 2). In addition, a silver colloid synthesized by reducing silver ions with sodium borohydride in an aqueous solution in which trisodium citrate and BSPP or PVP are dissolved is combined with visible light of one wavelength selected by fluorescent lamp → filter. There is a method of controlling the absorption wavelength of the silver nanoplate by irradiating (see Non-Patent Document 3, for example).

また、金属微粒子に光を照射したときに生じるプラズモン吸収と呼ばれる共鳴吸収現象を利用して塗料としての着色性や溶液の安定性を高めた塗料が開発されている(例えば、特許文献2及び3参照。)。特許文献2では、貴金属又は銅の化合物を、溶媒に溶解し、高分子量顔料分散剤を加えた後、貴金属又は銅に還元することで彩度が高く、十分な着色性を有し、塗料や樹脂に添加しても凝集しない貴金属又は銅のコロイド溶液の製造方法が開示されている。この特許文献2によると、貴金属コロイドによる発色は、電子のプラズマ振動に起因し、プラズモン吸収と呼ばれる発色機構によるものであり、プラズモン吸収による発色は、金属中の自由電子が光電場により揺さぶられ、粒子表面に電荷が現れ、非線形分極が生じるためとある。特許文献3では、水相の貴金属又は銅のイオンを還元することにより、貴金属又は銅の生成と、水相から、水と非混和性の有機溶媒相への貴金属又は銅の相間移動とを生ぜしめ、有機溶媒相内に安定な貴金属又は銅のコロイド粒子を得る製造方法が開示されている。特許文献3に示される方法により得られた貴金属又は銅のコロイドは安定でかつ高濃度で存在するようになり、濃色で彩度が高く、着色剤として好適であると記載されている。   In addition, paints have been developed that improve the colorability of the paint and the stability of the solution by utilizing a resonance absorption phenomenon called plasmon absorption that occurs when the metal fine particles are irradiated with light (for example, Patent Documents 2 and 3). reference.). In Patent Document 2, a noble metal or copper compound is dissolved in a solvent, and after adding a high molecular weight pigment dispersant, it is reduced to the noble metal or copper so that it has high chroma and has sufficient coloration properties. A method for producing a colloidal solution of noble metal or copper that does not aggregate when added to a resin is disclosed. According to this Patent Document 2, the color development due to the noble metal colloid is caused by the plasma vibration of electrons and is due to a color development mechanism called plasmon absorption. The color development due to plasmon absorption is caused by free electrons in the metal being shaken by the photoelectric field, This is because charges appear on the particle surface and nonlinear polarization occurs. In Patent Document 3, by reducing the noble metal or copper ions in the aqueous phase, generation of the noble metal or copper and interphase transfer of the noble metal or copper from the aqueous phase to the organic solvent phase immiscible with water are produced. In other words, a production method for obtaining colloidal particles of stable noble metal or copper in an organic solvent phase is disclosed. The noble metal or copper colloid obtained by the method disclosed in Patent Document 3 is stable and exists in a high concentration, and is described as being dark and highly saturated, and suitable as a colorant.

また、銀塩のアンミン錯体及び還元反応の際に媒晶剤として機能する重金属塩のアンミン錯体を含むスラリーと、還元剤である亜硫酸カリ及び保護コロイドとしてのゼラチンを含有する溶液とを一時に混合して該銀塩のアンミン錯体を還元し、生成した銀粒子を回収することで1次粒子の粒径が5〜10μmの六角板状結晶銀微粒子を製造する方法が知られている(例えば、特許文献4参照。)。また、2つの主面を有する略板状の粒子であり、該粒子の厚さが50nm以下、長径が5000nm以下であることを特徴とする銀微粒子が知られている(例えば、特許文献5参照。)。この特許文献5に示される方法では少なくとも高分子化合物、還元剤、及び銀塩を溶解してなる溶液を、25℃以上、60℃以下の温度にて攪拌することで銀微粒子を製造している。更に、厚みが50nm以下かつ長径が5000nm以下の板状金属微粒子を含有してなることを特徴とする金属薄膜形成用塗料が知られている(例えば、特許文献6参照。)。この特許文献6によると、この板状金属微粒子は例えば、硝酸銀や塩化白金酸を含む水溶液にクエン酸を加え、この水溶液中の金属イオンとクエン酸との比或いは金属イオン濃度等を調整することにより、金属微粒子の厚み及び長径を制御し、その後、加熱還元することにより製造することができるとある。
米国特許出願公開第2003/0136223号明細書(claim 1、Fig. 7) 特開平11−80647号公報(請求項7、段落[0004]、段落[0012]) 特開平11−319538号公報(請求項1、段落[0081]) 特開平11−106806号公報(請求項2、段落[0004]) 特開2005−105376号公報(請求項1、請求項5) 特開2005−15647号公報(請求項1、段落[0019]) R.Jin et al, SCIENCE, Vol.294, 30 november 2001, p.1901-1903 R.Jin et al, Letter to Nature, Vol.425, 2 october 2003, p.487-490 A.Callegari et al, NANO LETTERS, Vol.3, No.11, 2003, p.1565-1568
Also, a slurry containing a silver salt ammine complex and a heavy metal salt ammine complex that functions as a crystallizing agent during the reduction reaction, and a solution containing a reducing agent potassium sulfite and gelatin as a protective colloid are mixed at a time. Then, a method of producing hexagonal plate-like crystal silver fine particles having a primary particle size of 5 to 10 μm by reducing the silver salt ammine complex and recovering the produced silver particles is known (for example, (See Patent Document 4). Further, there is known a silver fine particle which is a substantially plate-like particle having two main surfaces, the particle having a thickness of 50 nm or less and a major axis of 5000 nm or less (for example, see Patent Document 5). .) In the method disclosed in Patent Document 5, silver fine particles are produced by stirring a solution obtained by dissolving at least a polymer compound, a reducing agent, and a silver salt at a temperature of 25 ° C. or higher and 60 ° C. or lower. . Furthermore, a coating for forming a metal thin film characterized by containing plate-like metal fine particles having a thickness of 50 nm or less and a major axis of 5000 nm or less is known (for example, see Patent Document 6). According to Patent Document 6, for example, the plate-like fine metal particles are prepared by adding citric acid to an aqueous solution containing silver nitrate or chloroplatinic acid, and adjusting the ratio of metal ions to citric acid or the concentration of metal ions in the aqueous solution. Thus, it can be manufactured by controlling the thickness and the major axis of the metal fine particles, and then heating and reducing.
US Patent Application Publication No. 2003/0136223 (claim 1, Fig. 7) JP-A-11-80647 (Claim 7, paragraph [0004], paragraph [0012]) JP 11-319538 A (Claim 1, paragraph [0081]) JP-A-11-106806 (Claim 2, paragraph [0004]) JP-A-2005-105376 (Claims 1 and 5) JP 2005-15647 A (Claim 1, paragraph [0019]) R.Jin et al, SCIENCE, Vol.294, 30 november 2001, p.1901-1903 R.Jin et al, Letter to Nature, Vol.425, 2 october 2003, p.487-490 A. Callegari et al, NANO LETTERS, Vol.3, No.11, 2003, p.1565-1568

上記特許文献1や非特許文献1〜3に記載されている銀プリズムや銀プレートの製造においては、銀イオンを球状銀コロイドに還元する第一工程と、第一工程で還元した銀コロイドに光照射して銀プリズムや銀プレートへと形状変化させる第二工程といった、多段階の製造工程が必要とされていた。また形状変化させる際に特定波長光を長時間照射することから、大量生産には不向きであった。また、特定波長の光を照射するためには、バンドパスフィルターなど用意する必要があり、大量生産のために高価な設備投資が必要であった。更に、得られる銀微粒子表面には高分子量の分散剤が吸着しており、別な化学物質を銀表面に修飾しにくいという問題もあった。   In the production of the silver prism and silver plate described in Patent Document 1 and Non-Patent Documents 1 to 3, the first step of reducing silver ions to a spherical silver colloid and the silver colloid reduced in the first step with light. A multi-step manufacturing process was required, such as a second step of irradiation to change the shape into a silver prism or silver plate. Moreover, since the specific wavelength light is irradiated for a long time when the shape is changed, it is not suitable for mass production. Moreover, in order to irradiate the light of a specific wavelength, it was necessary to prepare a band pass filter etc., and expensive capital investment was required for mass production. Furthermore, there is a problem that a high molecular weight dispersant is adsorbed on the surface of the obtained silver fine particles, and it is difficult to modify another chemical substance on the silver surface.

また、特許文献2や特許文献3に示される方法では、球状の貴金属コロイドを着色剤として使用しており、プレート状の微粒子を着色剤として用いたものではないため、着色のバリエーションが得られない。また、特許文献2に示される貴金属又は銅のコロイドは、高分子量顔料分散剤が保護コロイドとして機能するため、別の化学物質を銀表面に修飾しにくいという問題があった。特許文献4及び特許文献5に示される銀微粒子の製造方法では、分散剤として高分子化合物を使用しているため、得られる銀微粒子には高分子化合物が吸着しており、別の化学物質を銀表面に修飾し難いという問題があった。また、特許文献6に示される板状金属微粒子の製造方法では、金属微粒子の厚み及び長径を制御した後に加熱還元を行う必要があり、製造工程が煩雑となっていた。   Further, in the methods shown in Patent Document 2 and Patent Document 3, since a spherical noble metal colloid is used as a colorant and plate-shaped fine particles are not used as a colorant, variations in coloring cannot be obtained. . Further, the noble metal or copper colloid disclosed in Patent Document 2 has a problem that it is difficult to modify another chemical substance on the silver surface because the high molecular weight pigment dispersant functions as a protective colloid. In the method for producing silver fine particles shown in Patent Document 4 and Patent Document 5, since a polymer compound is used as a dispersant, the polymer compound is adsorbed on the obtained silver fine particles, and another chemical substance is used. There was a problem that it was difficult to modify the silver surface. Further, in the method for producing plate-like metal fine particles disclosed in Patent Document 6, it is necessary to carry out heat reduction after controlling the thickness and the major axis of the metal fine particles, which makes the production process complicated.

本発明の目的は、銀イオン、銅塩、低分子系分散剤及び還元剤を用いてプレート状銀粒子を簡便に製造する方法及び得られた該銀粒子を含有する銀粒子含有組成物並びにその用途を提供することにある。   An object of the present invention is to provide a method for easily producing plate-like silver particles using silver ions, a copper salt, a low molecular weight dispersant and a reducing agent, a silver particle-containing composition containing the obtained silver particles, and To provide a use.

請求項1に係る発明は、水に銀塩、銅塩及び低分子系分散剤を加えて銀塩、銅塩及び低分子系分散剤の水溶液を調製し、水溶液に所定の割合で還元剤を添加して混合液を調製し、混合液を20〜40℃で静置して混合液中の銀イオンを還元反応させることにより、主として形状がプレート状の銀粒子を製造する方法であって、銀塩と低分子系分散剤と銅塩と還元剤の添加割合がモル比率で銀塩:低分子系分散剤:銅塩:還元剤=1:(0.1〜100):(0.01〜100):(0.001〜100)であることを特徴とする銀粒子の製造方法である。
請求項2に係る発明は、請求項1に係る発明であって、低分子系分散剤がクエン酸、リンゴ酸、酒石酸及びコハク酸からなる群より選ばれた1種又は2種以上の有機酸又はその塩である製造方法である。
請求項3に係る発明は、請求項1に係る発明であって、還元剤がジメチルアミンボラン、ヒドラジン及び水素化ホウ素塩からなる群より選ばれた1種又は2種以上の化合物である製造方法である。
請求項4に係る発明は、請求項1に係る発明であって、得られるプレート状銀粒子の粒子径が10〜1000nmである製造方法である。
The invention according to claim 1 prepares an aqueous solution of a silver salt, a copper salt and a low molecular weight dispersant by adding a silver salt, a copper salt and a low molecular weight dispersant to water, and adds a reducing agent to the aqueous solution at a predetermined ratio. It is a method for producing silver particles mainly having a shape by adding a mixture to prepare a mixed solution, and allowing the mixed solution to stand at 20 to 40 ° C. to cause silver ions in the mixed solution to undergo a reduction reaction, Addition ratio of silver salt, low molecular weight dispersant, copper salt and reducing agent is molar ratio: silver salt: low molecular weight dispersant: copper salt: reducing agent = 1: (0.1-100) :( 0.01 ˜100): (0.001 to 100) is a method for producing silver particles.
The invention according to claim 2 is the invention according to claim 1, wherein the low molecular dispersant is one or more organic acids selected from the group consisting of citric acid, malic acid, tartaric acid and succinic acid. Or the manufacturing method which is its salt.
The invention according to claim 3 is the method according to claim 1, wherein the reducing agent is one or more compounds selected from the group consisting of dimethylamine borane, hydrazine and borohydride salts. It is.
The invention according to claim 4 is the manufacturing method according to claim 1, wherein the obtained plate-like silver particles have a particle diameter of 10 to 1000 nm.

請求項5に係る発明は、請求項1ないし4いずれか1項に記載の製造方法により得られた銀粒子を含有することを特徴とする銀粒子含有組成物である。
請求項6に係る発明は、請求項5記載の銀粒子含有組成物を用いて形成されたコーティング組成物、塗膜又はフィルムである。
請求項7に係る発明は、請求項1ないし4いずれか1項に記載の製造方法により得られた銀粒子を含有する光学フィルタ、配線材料、電極材料、触媒、着色剤、化粧品、近赤外線吸収剤、偽造防止インク、電磁波シールド材、表面増強蛍光センサ、生体マーカ、記録素子、薬物送達システム(Drug Delivery System;以下DDSという。)用薬物保持体、バイオセンサ、DNAチップ、検査薬又はラマン増強用試薬である。
The invention according to claim 5 is a silver particle-containing composition comprising silver particles obtained by the production method according to any one of claims 1 to 4.
The invention which concerns on Claim 6 is a coating composition, a coating film, or a film formed using the silver particle containing composition of Claim 5.
The invention according to claim 7 is an optical filter, a wiring material, an electrode material, a catalyst, a colorant, a cosmetic, a near-infrared absorption containing silver particles obtained by the production method according to any one of claims 1 to 4. Agent, anti-counterfeiting ink, electromagnetic shielding material, surface-enhanced fluorescent sensor, biomarker, recording element, drug carrier for drug delivery system (DDS), biosensor, DNA chip, test drug or Raman enhancement Reagent.

本発明の銀粒子の製造方法は、水に銀塩、銅塩及び低分子系分散剤を加えて銀塩、銅塩及び低分子系分散剤の水溶液を調製し、水溶液に所定の割合で還元剤を添加して混合液を調製し、混合液を20〜40℃で静置して混合液中の銀イオンを還元反応させることにより、主として形状がプレート状の銀粒子を製造する方法であって、銀塩と低分子系分散剤と銅塩と還元剤の添加割合がモル比率で銀塩:低分子系分散剤:銅塩:還元剤=1:(0.1〜100):(0.01〜100):(0.001〜100)であることを特徴とする。モル比率が上記範囲内となるように銀塩、銅塩、低分子系分散剤及び還元剤を添加して混合液を調製し、この混合液を20〜40℃で静置して混合液中の銀イオンを還元反応させることにより、所定の粒子径を有するプレート状銀粒子を簡便に製造することができる。特に、銅塩の添加量を調整することによってプレート状銀粒子の粒子径を制御することが可能であり、任意の波長にプラズモン吸収を有するプレート状銀粒子を製造することができる。また低分子系分散剤としてクエン酸、リンゴ酸、酒石酸及びコハク酸からなる群より選ばれた1種又は2種以上の有機酸又はその塩を用いることで、プレート状銀粒子が安定に分散した水溶液を得ることができ、プレート状銀粒子を効率よく製造することができる。還元剤としてジメチルアミンボラン、ヒドラジン及び水素化ホウ素塩からなる群より選ばれた1種又は2種以上の化合物を用いることで、プレート状銀粒子を再現良く得ることができる。 In the method for producing silver particles of the present invention, a silver salt, a copper salt and a low molecular weight dispersant are added to water to prepare an aqueous solution of a silver salt, a copper salt and a low molecular weight dispersant, and the aqueous solution is reduced to a predetermined ratio. This is a method for producing silver particles mainly having a plate shape by preparing a mixed solution by adding an agent, and allowing the mixed solution to stand at 20 to 40 ° C. to cause a reduction reaction of silver ions in the mixed solution. The addition ratio of silver salt, low molecular weight dispersant, copper salt and reducing agent is a molar ratio of silver salt: low molecular weight dispersant: copper salt: reducing agent = 1: (0.1 to 100): (0 .01 to 100): (0.001 to 100). A silver salt, a copper salt, a low molecular weight dispersing agent and a reducing agent are added so that the molar ratio is within the above range to prepare a mixed solution, and this mixed solution is left at 20 to 40 ° C. in the mixed solution. By reducing the silver ions, plate-like silver particles having a predetermined particle diameter can be easily produced. In particular, the particle diameter of the plate-like silver particles can be controlled by adjusting the amount of copper salt added, and plate-like silver particles having plasmon absorption at an arbitrary wavelength can be produced. In addition, by using one or more organic acids selected from the group consisting of citric acid, malic acid, tartaric acid and succinic acid or salts thereof as the low molecular weight dispersant, the plate-like silver particles are stably dispersed. An aqueous solution can be obtained and plate-like silver particles can be produced efficiently. By using one or more compounds selected from the group consisting of dimethylamine borane, hydrazine and borohydride as the reducing agent, plate-like silver particles can be obtained with good reproducibility.

また、本発明の製造方法により得られた銀粒子は、銀粒子含有組成物として利用することができる。また、銀粒子とともに染料、顔料、蛍光体、金属酸化物、球状金属粒子及びロッド状金属粒子(金属ナノロッド)からなる群より選ばれた1種又は2種以上を含有することで銀粒子含有組成物として利用することができる。この銀粒子含有組成物は、コーティング組成物、塗膜又はフィルムなどの各種形態で利用することができる。
更に、本発明の製造方法により得られた銀粒子は光学フィルタ、配線材料、電極材料、触媒、着色剤、化粧品、近赤外線吸収剤、偽造防止インク、電磁波シールド材、表面増強蛍光センサ、生体マーカ、記録素子、薬物送達システム用薬物保持体、バイオセンサ、DNAチップ、検査薬又はラマン増強用試薬などに広く利用することができる。
Moreover, the silver particle obtained by the manufacturing method of this invention can be utilized as a silver particle containing composition. Moreover, silver particle containing composition by containing 1 type, or 2 or more types chosen from the group which consists of dye, a pigment, fluorescent substance, a metal oxide, a spherical metal particle, and a rod-shaped metal particle (metal nanorod) with silver particle It can be used as a thing. This silver particle containing composition can be utilized with various forms, such as a coating composition, a coating film, or a film.
Furthermore, the silver particles obtained by the production method of the present invention are optical filters, wiring materials, electrode materials, catalysts, colorants, cosmetics, near infrared absorbers, anti-counterfeiting inks, electromagnetic wave shielding materials, surface-enhanced fluorescent sensors, biomarkers. It can be widely used for a recording element, a drug holder for a drug delivery system, a biosensor, a DNA chip, a test agent, a Raman enhancement reagent, and the like.

次に本発明を実施するための最良の形態を説明する。
本発明で「プレート状銀粒子」とは、2つの主面を有する略板状の銀粒子である。略板状の銀粒子の主面は、略三角形状、略五角形状、略六角形状等の形状が選択される。この粒子形状において、角や辺が一部欠けた不定形状の粒子を一部含有していても構わない。銀粒子の2つの主面の幅は40nm以下であり、粒子の主面の最大長さとなる粒子径は10〜1000nmである。プレート状銀粒子のアスペクト比(プレート状銀粒子の主面の最大長さ/主面の幅)は3以上である。
Next, the best mode for carrying out the present invention will be described.
In the present invention, “plate-like silver particles” are substantially plate-like silver particles having two main surfaces. The main surface of the substantially plate-like silver particles is selected from shapes such as a substantially triangular shape, a substantially pentagonal shape, and a substantially hexagonal shape. This particle shape may contain a part of irregularly shaped particles with some missing corners and sides. The width of the two main surfaces of the silver particles is 40 nm or less, and the particle diameter that is the maximum length of the main surfaces of the particles is 10 to 1000 nm. The aspect ratio of the plate-like silver particles (the maximum length of the main surface of the plate-like silver particles / the width of the main surface) is 3 or more.

本発明の銀粒子の製造方法は、水に銀塩、銅塩及び低分子系分散剤を加えて銀塩、銅塩及び低分子系分散剤の水溶液を調製し、水溶液に所定の割合で還元剤を添加して混合液を調製し、混合液を20〜40℃で静置して混合液中の銀イオンを還元反応させることにより、主として形状がプレート状の銀粒子を製造する方法である。その特徴ある構成は、銀塩と低分子系分散剤と銅塩と還元剤の添加割合がモル比率で銀塩:低分子系分散剤:銅塩:還元剤=1:(0.1〜100):(0.01〜100):(0.001〜100)であるところにある。モル比率が上記範囲内となるように銀塩、銅塩、低分子系分散剤及び還元剤を添加して混合液を調製し、この混合液を20〜40℃で静置して混合液中の銀イオンを還元反応させることにより、所定の粒子径を有するプレート状銀粒子を簡便に製造することができる。特に、銅塩の添加量を調整することによってプレート状銀粒子の粒子径を制御することが可能であり、任意の波長にプラズモン吸収を有するプレート状銀粒子を製造することができる。   In the method for producing silver particles of the present invention, a silver salt, a copper salt and a low molecular weight dispersant are added to water to prepare an aqueous solution of a silver salt, a copper salt and a low molecular weight dispersant, and the aqueous solution is reduced to a predetermined ratio. This is a method of mainly producing plate-shaped silver particles by preparing a mixed solution by adding an agent, and allowing the mixed solution to stand at 20 to 40 ° C. to cause a reduction reaction of silver ions in the mixed solution. . The characteristic structure is that the addition ratio of silver salt, low molecular weight dispersant, copper salt and reducing agent is a molar ratio of silver salt: low molecular weight dispersant: copper salt: reducing agent = 1: (0.1 to 100 ): (0.01 to 100): (0.001 to 100). A silver salt, a copper salt, a low molecular weight dispersing agent and a reducing agent are added so that the molar ratio is within the above range to prepare a mixed solution, and this mixed solution is left at 20 to 40 ° C. in the mixed solution. By reducing the silver ions, plate-like silver particles having a predetermined particle diameter can be easily produced. In particular, the particle diameter of the plate-like silver particles can be controlled by adjusting the amount of copper salt added, and plate-like silver particles having plasmon absorption at an arbitrary wavelength can be produced.

使用する銀塩としては、硝酸銀、硫酸銀、酢酸銀、ハロゲン化銀等が挙げられる。このうち、硝酸銀が水への溶解性が高いため特に好適である。混合液を調製する際には、銀塩は水に溶解して水溶液として添加混合することが好適である。銀塩は水溶液中で銀イオン及び陰イオンとして存在する。製造する際の銀濃度は10〜100000μmol/Lの範囲が適当であり、100〜10000μmol/Lの濃度範囲が特に好ましい。銀濃度が下限値未満ではプレート状銀粒子の製造効率が低下してしまい、上限値を越えると銀粒子の均一な成長が妨げられ、プレート状銀粒子の形状再現性が低下する。   Examples of the silver salt used include silver nitrate, silver sulfate, silver acetate and silver halide. Of these, silver nitrate is particularly preferred because of its high solubility in water. When preparing the mixed solution, the silver salt is preferably dissolved in water and added and mixed as an aqueous solution. Silver salts exist as silver ions and anions in aqueous solutions. The silver concentration in the production is suitably in the range of 10 to 100,000 μmol / L, particularly preferably in the range of 100 to 10,000 μmol / L. If the silver concentration is less than the lower limit, the production efficiency of the plate-like silver particles decreases, and if it exceeds the upper limit, uniform growth of the silver particles is hindered, and the shape reproducibility of the plate-like silver particles decreases.

使用する銅塩としては、硝酸銅、硫酸銅等が挙げられる。銅塩は水に混合して銅塩を溶解した水溶液とした後に、この銅塩を溶解した水溶液と銀塩を溶解した水溶液、後述する低分子系分散剤を溶解した水溶液とを混合して銀塩、銅塩及び低分子系分散剤の水溶液を調製するのが好ましい。混合液を調製する際には、銅塩は水に溶解して水溶液として添加混合することが好適である。銅塩は水溶液中で銅イオン及び陰イオンとして存在する。銅塩は、銀塩とのモル比率が銀塩:銅塩=1:(0.1〜100)の範囲内となるように添加する。例えば、銀1μmolに対して0.1〜100μmolのモル割合となるように添加する。製造する際の銅塩の濃度は0.1〜10000000μmol/Lの範囲が適当であり、1〜1000000μmol/Lの濃度範囲がより好ましい。銅塩の濃度が下限値未満では、銅イオンを添加したことによる銀粒子の粒子径調整効果が得られ難い。銅塩の濃度が上限値を越えると、銀イオンの還元反応が進行し難くなり、プレート状銀粒子の生成量が減少する。そのためプレート状銀粒子を製造するコストが上昇してしまう不具合を生じる。なお、銅イオンを添加したことによる効果のメカニズムの詳細は判明していないものの、還元剤と銅イオンが錯体を形成することで、銀イオンの急激な還元を抑制するため、球状粒子が成長するのではなくプレート状粒子が成長するものと推察される。また銅イオン自体は、還元途中工程では銅に還元される可能性があるが、銀イオンよりもイオン化傾向が大きいため、銀イオン還元後の最終的な形態はイオンの状態であると推察される。   Examples of the copper salt used include copper nitrate and copper sulfate. The copper salt is mixed with water to make an aqueous solution in which the copper salt is dissolved, and then mixed with an aqueous solution in which the copper salt is dissolved, an aqueous solution in which the silver salt is dissolved, and an aqueous solution in which a low molecular weight dispersant described later is dissolved. It is preferable to prepare an aqueous solution of a salt, a copper salt and a low molecular weight dispersant. When preparing the mixed solution, it is preferable that the copper salt is dissolved in water and added and mixed as an aqueous solution. Copper salts exist as copper ions and anions in aqueous solutions. The copper salt is added so that the molar ratio with the silver salt is in the range of silver salt: copper salt = 1: (0.1 to 100). For example, it adds so that it may become a molar ratio of 0.1-100 micromol with respect to 1 micromol of silver. The concentration of the copper salt during production is suitably in the range of 0.1 to 10000000 μmol / L, more preferably in the range of 1 to 1000000 μmol / L. When the concentration of the copper salt is less than the lower limit, it is difficult to obtain the effect of adjusting the particle size of the silver particles due to the addition of copper ions. When the copper salt concentration exceeds the upper limit, the silver ion reduction reaction becomes difficult to proceed, and the amount of plate-like silver particles produced decreases. Therefore, the malfunction which raises the cost which manufactures plate-like silver particle arises. Although the details of the mechanism of the effect of adding copper ions are not known, spherical particles grow in order to suppress rapid reduction of silver ions by forming a complex with the reducing agent and copper ions. It is presumed that plate-like particles grow instead. In addition, copper ions themselves may be reduced to copper during the reduction process, but since the ionization tendency is greater than that of silver ions, the final form after reduction of silver ions is presumed to be in an ionic state. .

使用する低分子系分散剤としては、クエン酸、リンゴ酸、酒石酸及びコハク酸からなる群より選ばれた1種又は2種以上の有機酸又はその塩が挙げられる。上記種類の低分子系分散剤を用いることによって、凝集することなく銀粒子が安定に分散した水溶液を得ることができ、効率よく銀粒子を製造することができる。低分子系分散剤は水に混合して低分子系分散剤を溶解した水溶液とした後に、この低分子系分散剤を溶解した水溶液と銀塩を溶解した水溶液とを混合して銀塩及び低分子系分散剤の水溶液を調製するのが好ましい。低分子系分散剤は、銀塩とのモル比率が銀塩:低分子系分散剤=1:(0.1〜100)の範囲内となるように添加する。例えば、銀1μmolに対して0.1〜100μmolのモル割合となるように添加する。製造する際の低分子系分散剤の濃度は1〜10000000μmol/Lの範囲が適当であり、10〜1000000μmol/Lの濃度範囲がより好ましい。低分子系分散剤の濃度が下限値未満では、銀イオンの還元反応が急激に進行してしまうためプレート状銀粒子が製造し難くなるだけでなく、銀粒子の分散安定性が悪くなって凝集し易くなる。低分子系分散剤の濃度が上限値を越えると、球状銀粒子の生成割合が増加し、プレート状銀粒子の生成量が減少する。そのためプレート状銀粒子を製造するコストが上昇してしまう不具合を生じる。   Examples of the low molecular weight dispersant used include one or more organic acids selected from the group consisting of citric acid, malic acid, tartaric acid, and succinic acid, or salts thereof. By using the above kind of low molecular weight dispersant, an aqueous solution in which silver particles are stably dispersed without aggregation can be obtained, and silver particles can be produced efficiently. The low molecular weight dispersant is mixed with water to make an aqueous solution in which the low molecular weight dispersant is dissolved, and then the aqueous solution in which the low molecular weight dispersant is dissolved and the aqueous solution in which the silver salt is dissolved are mixed to form a silver salt and a low molecular weight dispersant. It is preferable to prepare an aqueous solution of a molecular dispersant. The low molecular weight dispersant is added so that the molar ratio with the silver salt falls within the range of silver salt: low molecular weight dispersant = 1: (0.1 to 100). For example, it adds so that it may become a molar ratio of 0.1-100 micromol with respect to 1 micromol of silver. The concentration of the low molecular weight dispersant during production is suitably in the range of 1 to 10000000 μmol / L, more preferably in the range of 10 to 1000000 μmol / L. If the concentration of the low molecular weight dispersant is less than the lower limit, the reduction reaction of silver ions proceeds rapidly, so that not only plate-like silver particles are difficult to produce, but also the dispersion stability of the silver particles deteriorates and agglomerates. It becomes easy to do. When the concentration of the low molecular weight dispersant exceeds the upper limit, the production rate of spherical silver particles increases and the production amount of plate-like silver particles decreases. Therefore, the malfunction which raises the cost which manufactures plate-like silver particle arises.

使用する還元剤としては、ジメチルアミンボラン、ヒドラジン、水素化ホウ素塩からなる群より選ばれた1種又は2種以上の化合物が挙げられる。還元剤を添加する際には、局所的に還元剤の濃度が偏らないよう、調製した銀塩及び低分子系分散剤の水溶液を攪拌しながら還元剤を添加することが好ましい。還元剤は、銀塩とのモル比率が銀塩:還元剤=1:(0.001〜100)の範囲内となるように添加する。還元剤は使用する種類によって、以下のような適切な割合で添加することが好ましい。   Examples of the reducing agent used include one or more compounds selected from the group consisting of dimethylamine borane, hydrazine, and borohydride. When adding the reducing agent, it is preferable to add the reducing agent while stirring the aqueous solution of the prepared silver salt and low molecular weight dispersant so that the concentration of the reducing agent is not locally biased. The reducing agent is added so that the molar ratio with the silver salt falls within the range of silver salt: reducing agent = 1: (0.001 to 100). The reducing agent is preferably added at an appropriate ratio as follows depending on the type used.

ジメチルアミンボランは水に混合して任意の濃度の水溶液とした後に、このジメチルアミンボランを溶解した水溶液と銀塩、銅塩及び低分子系分散剤の水溶液とを混合して混合液を調製する。還元剤にジメチルアミンボランを使用した場合の添加量は、モル比で銀塩:還元剤=1:(0.1〜100)が好ましい。銀塩に対する還元剤の添加量が上記割合よりも少ないと、混合液中の銀イオンの還元反応が不十分となり、プレート状銀粒子の収率が悪くなる。また、還元剤の添加量が上記割合よりも多いと、還元反応が急激に進行してしまい、球状銀粒子が多く発生し、プレート状銀粒子の生成量が少なくなる。
ヒドラジンは原液若しくは水に混合して任意の濃度の水溶液とした後に、ヒドラジン原液若しくはヒドラジンを溶解した水溶液と銀塩、銅塩及び低分子系分散剤の水溶液とを混合して混合液を調製する。還元剤にヒドラジンを使用した場合の添加量は、モル比で銀塩:ヒドラジン=1:(0.1〜10)が好ましい。銀塩に対するヒドラジンの添加量が上記割合よりも少ないと、混合液中の銀イオンの還元が不十分となり、プレート状銀粒子の収率が悪くなる。また、ヒドラジンの添加量が上記割合よりも多いと、還元反応が急激に進行してしまい、球状銀粒子が多く発生し、プレート状銀粒子の生成量が少なくなる。
水素化ホウ素塩は水に混合して任意の濃度の水溶液とした後に、この水素化ホウ素塩を溶解した水溶液と銀塩、銅塩及び低分子系分散剤の水溶液とを混合して混合液を調製する。水素化ホウ素塩としては、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウムなどが使用可能である。還元剤に水素化ホウ素塩を使用した場合の添加量は、モル比で銀塩:水素化ホウ素塩=1:(0.01〜100)が好ましい。銀塩に対する水素化ホウ素塩の添加量が上記割合よりも少ないと、混合液中の銀イオンの還元が不十分となり、プレート状銀粒子の収率が悪くなる。また、水素化ホウ素塩の添加量が上記割合よりも多いと、還元反応が急激に進行してしまい、球状銀粒子が多く発生し、プレート状銀粒子の生成量が少なくなる。
Dimethylamine borane is mixed with water to make an aqueous solution of any concentration, and then an aqueous solution in which dimethylamine borane is dissolved is mixed with an aqueous solution of a silver salt, a copper salt, and a low molecular weight dispersant to prepare a mixed solution. . The addition amount when dimethylamine borane is used as the reducing agent is preferably silver salt: reducing agent = 1: (0.1 to 100) in molar ratio. When the addition amount of the reducing agent with respect to the silver salt is less than the above ratio, the reduction reaction of silver ions in the mixed solution becomes insufficient, and the yield of the plate-like silver particles is deteriorated. Moreover, when there are more addition amounts of a reducing agent than the said ratio, a reductive reaction will advance rapidly, many spherical silver particles will generate | occur | produce, and the production amount of plate-like silver particles will decrease.
Hydrazine is mixed with an undiluted solution or water to make an aqueous solution of any concentration, and then a mixed solution is prepared by mixing an hydrazine undiluted solution or an aqueous solution in which hydrazine is dissolved with an aqueous solution of a silver salt, a copper salt, and a low molecular weight dispersant. . The addition amount when hydrazine is used as the reducing agent is preferably silver salt: hydrazine = 1: (0.1 to 10) in molar ratio. If the amount of hydrazine added to the silver salt is less than the above ratio, the reduction of silver ions in the mixed solution will be insufficient, and the yield of plate-like silver particles will deteriorate. On the other hand, when the amount of hydrazine added is larger than the above ratio, the reduction reaction proceeds rapidly, a large amount of spherical silver particles are generated, and the amount of plate-like silver particles produced is reduced.
The borohydride salt is mixed with water to make an aqueous solution of an arbitrary concentration, and then the aqueous solution in which the borohydride salt is dissolved is mixed with an aqueous solution of a silver salt, a copper salt and a low molecular weight dispersant to form a mixed solution. Prepare. As the borohydride salt, sodium borohydride, potassium borohydride, lithium borohydride and the like can be used. When the borohydride is used as the reducing agent, the addition amount is preferably silver salt: borohydride = 1: (0.01-100) in molar ratio. If the amount of borohydride added relative to the silver salt is less than the above ratio, the reduction of silver ions in the mixed solution will be insufficient, and the yield of plate-like silver particles will deteriorate. On the other hand, when the amount of borohydride added is higher than the above ratio, the reduction reaction proceeds rapidly, a large amount of spherical silver particles are generated, and the amount of plate-like silver particles produced is reduced.

銀塩、銅塩及び低分子系分散剤の水溶液に還元剤を添加して混合液を調製した後は、この混合液を20〜40℃で1〜120時間静置して混合液中の銀イオンを還元反応させることにより、主として形状がプレート状の銀粒子が得られる。混合液の静置は遮光条件下が好ましい。
更に、本発明の製造方法では、上記銀塩、銅塩、低分子系分散剤及び還元剤の他に、必要に応じて各種添加剤を添加してもよい。具体的にはレベリング剤、消泡剤、スリップ剤、防腐剤等が挙げられる。
After preparing a mixed solution by adding a reducing agent to an aqueous solution of a silver salt, a copper salt, and a low molecular weight dispersant, this mixed solution is allowed to stand at 20 to 40 ° C. for 1 to 120 hours to obtain silver in the mixed solution. By reducing the ions, silver particles mainly having a plate shape are obtained. The mixture is preferably left under light shielding conditions.
Furthermore, in the manufacturing method of this invention, you may add various additives as needed other than the said silver salt, copper salt, a low molecular weight dispersing agent, and a reducing agent. Specific examples include leveling agents, antifoaming agents, slip agents, preservatives, and the like.

本発明の製造方法によれば、粒子径10〜1000nmのプレート状銀粒子を水溶液中に分散した状態で得ることができる。得られるプレート状銀粒子の粒子径は、使用する低分子系分散剤の種類や添加量、還元剤の種類や添加量によってもその大きさを調整することができるが、特に銅塩の添加量を調整することで粒子径の制御を容易に行える。例えば、低分子系分散剤や還元剤を少量に添加することにより、得られる銀粒子の粒子径は大きくなる傾向があり、低分子系分散剤や還元剤を多量に添加することにより、得られる銀粒子の粒子径は小さくなる傾向がある。また、銅塩を少量に添加することにより、得られる銀粒子の粒子径は小さくなる傾向があり、銅塩を多量に添加することにより、得られる銀粒子の粒子径は大きくなる傾向がある。なお、本発明の銀粒子の製造方法によれば、プレート状銀粒子とともに球状銀粒子や多面体の銀粒子のような様々な形状の銀粒子が副生成粒子として得られる。この副生成粒子の生成量は、使用する還元剤の種類や添加量を調整することにより増減が可能である。例えば、還元剤の添加量を少量にすることにより、副生成粒子の生成量は減少する傾向があり、還元剤の添加量を多量にすることにより、副生成粒子の生成量は増加する傾向がある。   According to the production method of the present invention, plate-like silver particles having a particle diameter of 10 to 1000 nm can be obtained in a dispersed state in an aqueous solution. The particle size of the obtained plate-like silver particles can be adjusted depending on the type and amount of the low molecular weight dispersant used and the type and amount of the reducing agent used. The particle diameter can be easily controlled by adjusting the. For example, the addition of a low molecular weight dispersant or a reducing agent in a small amount tends to increase the particle diameter of the resulting silver particles, and it can be obtained by adding a large amount of a low molecular weight dispersant or a reducing agent. The particle diameter of silver particles tends to be small. Moreover, the particle diameter of the silver particle obtained tends to become small by adding copper salt in a small amount, and the particle diameter of the silver particle obtained tends to become large by adding a large amount of copper salt. According to the method for producing silver particles of the present invention, silver particles having various shapes such as spherical silver particles and polyhedral silver particles are obtained as by-product particles together with plate-like silver particles. The production amount of the by-product particles can be increased or decreased by adjusting the type and addition amount of the reducing agent to be used. For example, by reducing the amount of reducing agent added, the amount of by-product particles tends to decrease, and by increasing the amount of reducing agent added, the amount of by-product particles tends to increase. is there.

本発明の銀粒子含有組成物は、上記製造方法により得られた銀粒子を含有することを特徴とする。上記製造方法により得られた銀粒子は水溶液中に分散した状態で得られるが、この銀粒子を表面処理することで、水以外の非水系溶媒中にも安定して分散させることができる。非水系溶媒に対して親和性を有する側鎖を備えた非水系分散剤で銀粒子を表面処理することにより、非水系溶媒中に銀粒子が良好に分散した分散液を得ることができる。非水系分散剤としては銀粒子に対して高い吸着性を有する窒素原子や硫黄原子を含有するものが好ましい。窒素原子を含有する分散剤としては、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン等が挙げられる。また硫黄原子を含有する分散剤としては、例えばブタンチオール、ヘキサンチオール、オクタンチオール、デカンチオール、ドデカンチオール等が挙げられる。このような銀粒子の非水系溶媒分散液は、銀粒子含有組成物の原料として用いることができる。例えば、銀粒子とともに樹脂等のバインダと分散媒とを含有した塗料組成物などを得ることができる。   The silver particle containing composition of this invention contains the silver particle obtained by the said manufacturing method, It is characterized by the above-mentioned. Although the silver particle obtained by the said manufacturing method is obtained in the state disperse | distributed in aqueous solution, it can disperse | distribute stably also in non-aqueous solvents other than water by surface-treating this silver particle. By subjecting the silver particles to surface treatment with a non-aqueous dispersant having a side chain having an affinity for the non-aqueous solvent, a dispersion in which the silver particles are well dispersed in the non-aqueous solvent can be obtained. As the non-aqueous dispersant, those containing nitrogen atoms or sulfur atoms having high adsorptivity to silver particles are preferable. Examples of the dispersant containing a nitrogen atom include hexylamine, octylamine, decylamine, and dodecylamine. Examples of the dispersant containing a sulfur atom include butanethiol, hexanethiol, octanethiol, decanethiol, and dodecanethiol. Such a non-aqueous solvent dispersion of silver particles can be used as a raw material for the silver particle-containing composition. For example, a coating composition containing a binder such as a resin and a dispersion medium together with silver particles can be obtained.

本発明の製造方法により得られる銀粒子の水分散液には、製造の際に使用された低分子系分散剤が含まれており、低分子系分散剤を含んだ状態で銀粒子を回収して導電性材料などの用途に使用すると、低分子系分散剤が絶縁作用を示すため、高い導電性が得られない傾向がある。そのため、銀粒子を製造した後は、水分散液中に含まれる低分子系分散剤を低減ないし除去することが好ましい。銀粒子100重量部に対して低分子系分散剤50重量部以下、好ましくは15重量部以下まで低減させたものが導電性材料として好適であり、低分子系分散剤の割合がそれ以上であると高い導電率が得られず、実用的ではない。製造した銀粒子の水分散液から低分子系分散剤を低減ないし除去する方法としては、凝集による沈降法や遠心分離法などが挙げられる。凝集による沈降法は、例えばpH調整剤や電解質を銀粒子水分散液に所定の割合で添加して銀粒子の分散安定性を減少させ、銀粒子同士を軽く凝集・沈降させて、上澄み液に残存する低分子系分散剤を除去する方法である。この方法では銀粒子水分散液から低分子系分散剤を完全に除去しないため、再分散することが可能である。遠心分離法は、銀粒子水分散液に遠心力をかけて銀粒子を沈降させ、上澄み液に残存する低分子系分散剤を除去する方法である。これらの方法を組合せることによって低分子系分散剤を効率的に低減ないし除去することができる。例えば、低分子系分散剤としてクエン酸三ナトリウムを使用して製造された銀粒子水分散液にpH調整剤として水酸化ナトリウムを添加することで、銀粒子の分散安定性を減少させて銀粒子同士を軽く凝集させ、続いてこの凝集物の沈降スピードを加速するために遠心分離を行い、銀粒子を短時間で沈降させることで、上澄み液に析出・残存するクエン酸三ナトリウムを除去すると同時に、銀粒子の濃縮が可能となる。   The aqueous dispersion of silver particles obtained by the production method of the present invention contains the low molecular weight dispersant used in the production, and the silver particles are recovered in a state containing the low molecular weight dispersant. When used in applications such as conductive materials, the low molecular dispersant exhibits an insulating action, so that high conductivity tends not to be obtained. Therefore, after the silver particles are produced, it is preferable to reduce or remove the low molecular weight dispersant contained in the aqueous dispersion. A low molecular weight dispersant reduced to 50 parts by weight or less, preferably 15 parts by weight or less with respect to 100 parts by weight of silver particles is suitable as the conductive material, and the proportion of the low molecular weight dispersant is more than that. High electrical conductivity cannot be obtained, which is not practical. Examples of the method for reducing or removing the low molecular weight dispersant from the aqueous dispersion of the silver particles produced include a precipitation method by aggregation and a centrifugal separation method. The sedimentation method by agglomeration is, for example, adding a pH adjusting agent or an electrolyte to the silver particle aqueous dispersion at a predetermined ratio to reduce the dispersion stability of the silver particles, and lightly agglomerate and settle the silver particles to form a supernatant. This is a method of removing the remaining low molecular weight dispersant. In this method, since the low molecular weight dispersant is not completely removed from the silver particle aqueous dispersion, it can be redispersed. Centrifugation is a method in which silver particles are precipitated by applying centrifugal force to an aqueous dispersion of silver particles, and the low molecular weight dispersant remaining in the supernatant is removed. By combining these methods, the low molecular weight dispersant can be efficiently reduced or removed. For example, by adding sodium hydroxide as a pH adjuster to a silver particle aqueous dispersion manufactured using trisodium citrate as a low molecular weight dispersant, the dispersion stability of the silver particles is reduced. At the same time as removing trisodium citrate depositing and remaining in the supernatant liquid by lightly aggregating each other and then centrifuging to accelerate the sedimentation speed of the agglomerates and allowing the silver particles to settle in a short time The silver particles can be concentrated.

本発明の製造方法により得られる銀粒子には、プレート状銀粒子だけでなく球状銀粒子等の副生成粒子が混在しているため、この銀粒子を含有する銀粒子含有組成物を用いて塗膜(配線)を形成したとき、形状が球状のみの銀粒子や、プレート状のみの銀粒子よりも粒子間の接触確率が高まり、導電用途などの場合は比抵抗値が低くなるといった利点がある。   Since the silver particles obtained by the production method of the present invention contain not only plate-like silver particles but also by-product particles such as spherical silver particles, coating is performed using a silver particle-containing composition containing these silver particles. When a film (wiring) is formed, there is an advantage that the contact probability between particles is higher than that of silver particles having only a spherical shape or silver particles having only a plate shape, and the specific resistance value is lowered in the case of conductive use. .

本発明の製造方法により得られた銀粒子は、低分子系分散剤を使用して製造しているため、銀粒子水分散液に用途に応じて選定した適切な分散剤を更に添加することで銀粒子への表面修飾が容易に可能となる。例えば、導電性用途の場合、加熱すると揮発するような分散剤を添加すると低温焼結が可能となり、かつ分散安定性が向上した導電性ペーストが得られる。このような分散剤としては、アミノ基やチオール基、カルボキシル基を有する低分子化合物を使用することが好適である。   Since the silver particles obtained by the production method of the present invention are produced using a low molecular weight dispersant, an appropriate dispersant selected according to the use can be further added to the silver particle aqueous dispersion. Surface modification to silver particles can be easily performed. For example, in the case of conductive use, if a dispersant that volatilizes when heated is added, low temperature sintering becomes possible and a conductive paste with improved dispersion stability can be obtained. As such a dispersant, it is preferable to use a low molecular compound having an amino group, a thiol group, or a carboxyl group.

本発明の製造方法により得られた銀粒子は、適当な分散剤によって表面処理し、これに分散媒、バインダを加えた銀粒子含有組成物として利用することができる。バインダとしては、通常塗料用や成形用に利用されている可視光線から近赤外光領域の光に対して透過性がある各種樹脂が特に制限無く使用できる。例えば、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコール等の有機樹脂や、ラジカル重合性のオリゴマーやモノマー(必要に応じて硬化剤やラジカル重合剤開始剤を併用してもよい。)、アルコキシシランを樹脂骨格に用いたゾルゲル溶液などが代表的なものとして挙げられる。   The silver particles obtained by the production method of the present invention can be used as a silver particle-containing composition in which a surface treatment is performed with an appropriate dispersant and a dispersion medium and a binder are added thereto. As the binder, various resins that are normally transmissive for visible light to near infrared light, which are used for paints and moldings, can be used without any particular limitation. For example, acrylic resins, polyester resins, alkyd resins, urethane resins, silicone resins, fluororesins, epoxy resins, polycarbonate resins, polyvinyl chloride resins, polyvinyl alcohol, and other organic resins, radical polymerizable oligomers and monomers (if necessary Typical examples include a sol-gel solution using an alkoxysilane as a resin skeleton.

上記銀粒子含有組成物において、必要に応じて配合する溶媒としては、バインダが溶解若しくは安定に分散するようなものを適宜選択すればよい。具体的には、水の他に、メタノール、エタノール、プロパノール、ヘキサノール、エチレングリコール、α−テルピネオール等のアルコール、エチレングリコール等のグリコール、デカン、テレピン油等の炭化水素、キシレン、トルエン等の芳香族炭化水素、シクロヘキサン等の脂環式炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、エチレングリコールモノブチルエーテル等のエーテル類、あるいはこれらの混合物が代表的なものとして挙げられる。なお、溶媒は上記列挙したものには限定されず、バインダが溶解若しくは安定に分散するようなものであれば、従来より知られている溶媒を使用することが可能である。   In the silver particle-containing composition, as the solvent to be blended as necessary, a solvent in which the binder is dissolved or stably dispersed may be appropriately selected. Specifically, in addition to water, alcohols such as methanol, ethanol, propanol, hexanol, ethylene glycol and α-terpineol, glycols such as ethylene glycol, hydrocarbons such as decane and turpentine oil, and aromatics such as xylene and toluene Typical examples include hydrocarbons, cycloaliphatic hydrocarbons such as cyclohexane, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, esters such as ethyl acetate and butyl acetate, ethers such as ethylene glycol monobutyl ether, and mixtures thereof. It is mentioned as a thing. The solvent is not limited to those listed above, and conventionally known solvents can be used as long as the binder is dissolved or stably dispersed.

上記銀粒子含有組成物において、銀粒子の含有量はバインダ100重量部に対して0.1〜10000重量部が適当であり、好ましくは、導電性用途であればバインダ100重量部に対して550〜9900重量部がよい。銀粒子の添加量が下限値未満では、バインダによる絶縁効果の影響が大きくなり、高い導電特性が得られ難い。一方、銀粒子の添加量が上限値を越えると、銀粒子同士の凝集が起こり易くなるため保存安定性が低下する。   In the silver particle-containing composition, the content of silver particles is suitably 0.1 to 10,000 parts by weight with respect to 100 parts by weight of the binder, preferably 550 with respect to 100 parts by weight of the binder for conductive use. ~ 9900 parts by weight are preferred. If the amount of silver particles added is less than the lower limit, the influence of the insulating effect by the binder becomes large, and it is difficult to obtain high conductive properties. On the other hand, when the addition amount of silver particles exceeds the upper limit value, aggregation of silver particles tends to occur, so that storage stability is lowered.

本発明の銀粒子含有組成物は、目的に応じて、染料、顔料、蛍光体、金属酸化物、球状金属粒子及びロッド状金属粒子(金属ナノロッド)からなる群より選ばれた1種又は2種以上を更に添加してもよい。また必要に応じてレべリング剤、消泡剤その他の各種添加剤を添加してもよい。   The silver particle-containing composition of the present invention is one or two selected from the group consisting of a dye, a pigment, a phosphor, a metal oxide, a spherical metal particle, and a rod-shaped metal particle (metal nanorod) depending on the purpose. The above may be further added. Moreover, you may add a leveling agent, an antifoamer, and other various additives as needed.

本発明の銀粒子含有組成物は、塗料組成物、塗膜、フィルム又は板材など多様な形態で用いることができ、この組成物によって形成された塗膜を有する基材を得ることができる。例えば、電磁波を遮蔽したい基材に直接に塗布若しくは印刷し、電磁波遮蔽フィルタを形成することができる。また、本発明の組成物をフィルム状や板状等に形成して、形成した組成物を電磁波遮蔽したい基材に積層したり、基材を包囲してもよい。また、本発明の組成物によって形成した上記塗膜やフィルムなどの形成物を基材に積層させて積層体を形成し、積層体を電磁波遮蔽フィルタとして電磁波を遮蔽したい基材に更に積層若しくは包囲して用いてもよい。上記各使用形態において、フィルタの厚さは、概ね0.01μm〜1mmが適当であり、コストや光透過性等を考慮すると0.1μm〜200μmが好ましい。本発明の銀粒子含有組成物によって形成した塗膜やフィルム、板材などをフィルタ層として有するものは、例えば、配線、電磁波遮蔽フィルタなどの導電率に優れた基材、フィルタとして用いることができる。   The silver particle containing composition of this invention can be used with various forms, such as a coating composition, a coating film, a film, or a board | plate material, and can obtain the base material which has the coating film formed with this composition. For example, an electromagnetic wave shielding filter can be formed by directly applying or printing on a base material to be shielded from electromagnetic waves. Further, the composition of the present invention may be formed into a film shape, a plate shape, or the like, and the formed composition may be laminated on a base material to be shielded against electromagnetic waves, or the base material may be surrounded. In addition, a laminate is formed by laminating a formation such as the above-described coating film or film formed by the composition of the present invention on a substrate, and the laminate is further laminated or enclosed as a substrate for shielding electromagnetic waves as an electromagnetic wave shielding filter. May be used. In each of the above usage forms, the thickness of the filter is suitably about 0.01 μm to 1 mm, and preferably 0.1 μm to 200 μm in view of cost, light transmittance, and the like. What has a coating film, a film, a board | plate material, etc. which were formed with the silver particle containing composition of this invention as a filter layer can be used as a base material and a filter excellent in electrical conductivity, such as a wiring and an electromagnetic wave shielding filter, for example.

本発明の製造方法により得られた銀粒子は、高い耐熱性、耐候性、耐薬品性、特定波長吸収能を有するので、光学フィルタ、着色剤、化粧品、近赤外線吸収剤、偽造防止インク、表面増強蛍光センサ用増感剤、生体マーカ、DDS用薬物保持体、バイオセンサ、DNAチップ、検査薬、ラマン増強用試薬などの材料として好適である。また、銀は高い導電性を示すことから配線材料、電極材料、電磁波シールド材として使用可能である。この他に、形状異方性に基づいて記録素子として使用可能である。更に、粒子で表面積が大きいので、触媒反応の場を提供する材料として好適である。なお、触媒やラマン増強用試薬など、銀粒子表面に目的物質が吸着するような用途では、製造で使用した低分子系分散剤を極力低減させてから使用することが好ましい。   Since the silver particles obtained by the production method of the present invention have high heat resistance, weather resistance, chemical resistance, and specific wavelength absorption ability, optical filters, colorants, cosmetics, near infrared absorbers, anti-counterfeit inks, surface It is suitable as a material for sensitizers for enhanced fluorescence sensors, biomarkers, drug holders for DDS, biosensors, DNA chips, test agents, Raman enhancement reagents, and the like. Moreover, since silver shows high electroconductivity, it can be used as a wiring material, an electrode material, and an electromagnetic wave shielding material. In addition, it can be used as a recording element based on shape anisotropy. Furthermore, since the particles have a large surface area, they are suitable as materials for providing a field for catalytic reaction. In applications where the target substance is adsorbed on the surface of silver particles, such as a catalyst or a Raman enhancing reagent, it is preferable to use the low molecular weight dispersant used in the production after reducing it as much as possible.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、銀塩を溶解した水溶液として10mM濃度の硝酸銀水溶液6000μl(60μmol)を、銅塩を溶解した水溶液として24mM濃度の硝酸銅水溶液2500μl(60μmol)、低分子系分散剤を溶解した水溶液として100mM濃度のクエン酸三ナトリウム水溶液1000μl(100μmol)を、還元剤を溶解した水溶液として40mM濃度のジメチルアミンボラン水溶液2500μl(100μmol)をそれぞれ用意した。次いで、低分子系分散剤を溶解した水溶液を水50mlに添加して希釈し、更に銀塩が溶解した水溶液と銅塩が溶解した水溶液を添加して銀塩、銅塩及び低分子系分散剤の水溶液を調製した。次に、銀塩、銅塩及び低分子系分散剤の水溶液に還元剤を溶解した水溶液を攪拌しながら添加して混合液を調製し、10分間攪拌し続けた後、この混合液を遮光条件下、30℃で静置した状態で48時間保管することにより銀粒子を製造した。得られた銀粒子には粒子径が10〜100nmのプレート状の銀粒子が含まれていた。またプレート状銀粒子以外には球状銀粒子や多面体の銀粒子のような様々な形状の銀粒子が副生成粒子として形成されていた。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, 6000 μl (60 μmol) of a 10 mM silver nitrate aqueous solution as an aqueous solution in which a silver salt is dissolved, 2500 μl (60 μmol) of a 24 mM copper nitrate aqueous solution as an aqueous solution in which a copper salt is dissolved, and 100 mM concentration as an aqueous solution in which a low molecular weight dispersant is dissolved. As an aqueous solution in which a reducing agent was dissolved, 2500 μl (100 μmol) of a 40 mM aqueous dimethylamine borane solution was prepared. Next, an aqueous solution in which a low molecular weight dispersant is dissolved is added to 50 ml of water and diluted, and then an aqueous solution in which a silver salt is dissolved and an aqueous solution in which a copper salt is dissolved are added to add a silver salt, a copper salt, and a low molecular weight dispersant. An aqueous solution of was prepared. Next, an aqueous solution in which a reducing agent is dissolved in an aqueous solution of a silver salt, a copper salt and a low molecular weight dispersant is added with stirring to prepare a mixed solution. After stirring for 10 minutes, the mixed solution is subjected to light shielding conditions. The silver particles were manufactured by storing for 48 hours in the state which left still under 30 degreeC. The obtained silver particles contained plate-like silver particles having a particle diameter of 10 to 100 nm. In addition to the plate-like silver particles, various shaped silver particles such as spherical silver particles and polyhedral silver particles were formed as by-product particles.

<実施例2>
還元剤を溶解した水溶液として40mM濃度の水素化ホウ素ナトリウム水溶液2500μl(100μmol)を用いた以外は、実施例1と同様の条件で銀粒子を製造した。得られた銀粒子には粒子径が10〜50nmのプレート状の銀粒子が含まれていた。またプレート状銀粒子以外には球状銀粒子や多面体の銀粒子のような様々な形状の銀粒子が副生成粒子として形成されていた。
<実施例3>
還元剤を溶解した水溶液として10重量%濃度のヒドラジン水溶液10μl(20μmol)を用いた以外は、実施例1と同様の条件で銀粒子を製造した。得られた銀粒子には粒子径が100〜400nmのプレート状の銀粒子が含まれていた。またプレート状銀粒子以外には球状銀粒子や多面体の銀粒子のような様々な形状の銀粒子が副生成粒子として形成されていた。
<実施例4>
還元剤を溶解した水溶液として10重量%濃度のヒドラジン水溶液50μl(100μmol)を用いた以外は、実施例1と同様の条件で銀粒子を製造した。得られた銀粒子には粒子径が10〜100nmのプレート状の銀粒子が含まれていた。またプレート状銀粒子以外には球状銀粒子や多面体の銀粒子のような様々な形状の銀粒子が副生成粒子として形成されていた。
<Example 2>
Silver particles were produced under the same conditions as in Example 1, except that 2500 μl (100 μmol) of a 40 mM sodium borohydride aqueous solution was used as the aqueous solution in which the reducing agent was dissolved. The obtained silver particles contained plate-like silver particles having a particle diameter of 10 to 50 nm. In addition to the plate-like silver particles, various shaped silver particles such as spherical silver particles and polyhedral silver particles were formed as by-product particles.
<Example 3>
Silver particles were produced under the same conditions as in Example 1 except that 10 μl (20 μmol) of a 10% by weight hydrazine aqueous solution was used as the aqueous solution in which the reducing agent was dissolved. The obtained silver particles contained plate-like silver particles having a particle diameter of 100 to 400 nm. In addition to the plate-like silver particles, various shaped silver particles such as spherical silver particles and polyhedral silver particles were formed as by-product particles.
<Example 4>
Silver particles were produced under the same conditions as in Example 1 except that 50 μl (100 μmol) of a 10 wt% hydrazine aqueous solution was used as the aqueous solution in which the reducing agent was dissolved. The obtained silver particles contained plate-like silver particles having a particle diameter of 10 to 100 nm. In addition to the plate-like silver particles, various shaped silver particles such as spherical silver particles and polyhedral silver particles were formed as by-product particles.

<実施例5>
銅塩を溶解した水溶液として24mM濃度の硝酸銅水溶液5000μl(120μmol)を用いた以外は、実施例4と同様の条件で銀粒子を製造した。得られた銀粒子には粒子径が50〜200nmのプレート状の銀粒子が含まれていた。またプレート状銀粒子以外には球状銀粒子や多面体の銀粒子のような様々な形状の銀粒子が副生成粒子として形成されていた。
<実施例6>
銅塩を溶解した水溶液として24mM濃度の硝酸銅水溶液7500μl(180μmol)を用いた以外は、実施例4と同様の条件で銀粒子を製造した。得られた銀粒子には粒子径が100〜300nmのプレート状の銀粒子が含まれていた。またプレート状銀粒子以外には球状銀粒子や多面体の銀粒子のような様々な形状の銀粒子が副生成粒子として形成されていた。
<Example 5>
Silver particles were produced under the same conditions as in Example 4 except that 5000 μl (120 μmol) of a 24 mM aqueous copper nitrate solution was used as the aqueous solution in which the copper salt was dissolved. The obtained silver particles contained plate-like silver particles having a particle diameter of 50 to 200 nm. In addition to the plate-like silver particles, various shaped silver particles such as spherical silver particles and polyhedral silver particles were formed as by-product particles.
<Example 6>
Silver particles were produced under the same conditions as in Example 4 except that 7500 μl (180 μmol) of a 24 mM aqueous copper nitrate solution was used as the aqueous solution in which the copper salt was dissolved. The obtained silver particles contained plate-like silver particles having a particle diameter of 100 to 300 nm. In addition to the plate-like silver particles, various shaped silver particles such as spherical silver particles and polyhedral silver particles were formed as by-product particles.

<実施例7>
低分子系分散剤を溶解した水溶液として100mM濃度のクエン酸1000μl(100μmol)を用いた以外は、実施例4と同様の条件で銀粒子を製造した。得られた銀粒子には粒子径が10〜100nmのプレート状の銀粒子が含まれていた。またプレート状銀粒子以外には球状銀粒子や多面体の銀粒子のような様々な形状の銀粒子が副生成粒子として形成されていた。
<実施例8>
低分子系分散剤を溶解した水溶液として100mM濃度のリンゴ酸1000μl(100μmol)を用いた以外は、実施例4と同様の条件で銀粒子を製造した。得られた銀粒子には粒子径が10〜100nmのプレート状の銀粒子が含まれていた。またプレート状銀粒子以外には球状銀粒子や多面体の銀粒子のような様々な形状の銀粒子が副生成粒子として形成されていた。
<実施例9>
低分子系分散剤を溶解した水溶液として100mM濃度の酒石酸1000μl(100μmol)を用いた以外は、実施例4と同様の条件で銀粒子を製造した。得られた銀粒子には粒子径が10〜100nmのプレート状の銀粒子が含まれていた。またプレート状銀粒子以外には球状銀粒子や多面体の銀粒子のような様々な形状の銀粒子が副生成粒子として形成されていた。
<実施例10>
低分子系分散剤を溶解した水溶液として100mM濃度のコハク酸1000μl(100μmol)を用いた以外は、実施例4と同様の条件で銀粒子を製造した。得られた銀粒子には粒子径が10〜100nmのプレート状の銀粒子が含まれていた。またプレート状銀粒子以外には球状銀粒子や多面体の銀粒子のような様々な形状の銀粒子が副生成粒子として形成されていた。
<Example 7>
Silver particles were produced under the same conditions as in Example 4 except that 1000 μl (100 μmol) of 100 mM citric acid was used as the aqueous solution in which the low molecular weight dispersant was dissolved. The obtained silver particles contained plate-like silver particles having a particle diameter of 10 to 100 nm. In addition to the plate-like silver particles, various shaped silver particles such as spherical silver particles and polyhedral silver particles were formed as by-product particles.
<Example 8>
Silver particles were produced under the same conditions as in Example 4 except that 1000 μl (100 μmol) of 100 mM malic acid was used as an aqueous solution in which a low molecular weight dispersant was dissolved. The obtained silver particles contained plate-like silver particles having a particle diameter of 10 to 100 nm. In addition to the plate-like silver particles, various shaped silver particles such as spherical silver particles and polyhedral silver particles were formed as by-product particles.
<Example 9>
Silver particles were produced under the same conditions as in Example 4 except that 1000 μl (100 μmol) of tartaric acid having a concentration of 100 mM was used as the aqueous solution in which the low molecular dispersant was dissolved. The obtained silver particles contained plate-like silver particles having a particle diameter of 10 to 100 nm. In addition to the plate-like silver particles, various shaped silver particles such as spherical silver particles and polyhedral silver particles were formed as by-product particles.
<Example 10>
Silver particles were produced under the same conditions as in Example 4 except that 1000 μl (100 μmol) of succinic acid having a concentration of 100 mM was used as the aqueous solution in which the low molecular dispersant was dissolved. The obtained silver particles contained plate-like silver particles having a particle diameter of 10 to 100 nm. In addition to the plate-like silver particles, various shaped silver particles such as spherical silver particles and polyhedral silver particles were formed as by-product particles.

<比較例1>
低分子系分散剤を溶解した水溶液として1000mM濃度のクエン酸三ナトリウム5000μl(5000μmol)を用いた以外は、実施例1と同様の条件で銀粒子を製造した。得られた銀粒子には粒子径が10〜30nmの球状銀粒子が形成されており、プレート状銀粒子は存在していなかった。
<比較例2>
低分子系分散剤であるクエン酸三ナトリウムを添加しない以外は、実施例1と同様の条件で銀粒子を製造した。得られた銀粒子は低分子系分散剤が入っていないため凝集し、塊状沈降物が観察された。
<Comparative Example 1>
Silver particles were produced under the same conditions as in Example 1, except that 5000 μl (5000 μmol) of trisodium citrate having a concentration of 1000 mM was used as the aqueous solution in which the low molecular weight dispersant was dissolved. In the obtained silver particles, spherical silver particles having a particle diameter of 10 to 30 nm were formed, and no plate-like silver particles were present.
<Comparative example 2>
Silver particles were produced under the same conditions as in Example 1 except that trisodium citrate, which is a low molecular weight dispersant, was not added. Since the obtained silver particles did not contain a low molecular weight dispersant, they aggregated and a massive sediment was observed.

<比較試験1>
実施例1〜10及び比較例1,2における銀粒子の製造条件を次の表1に示す。また、透過型電子顕微鏡(TEM)により撮影した実施例3で得られた銀粒子の写真を図1(a)及び図1(b)に、TEMにより撮影した実施例4で得られた銀粒子の写真を図2(a)、図2(b)にそれぞれ示す。なお、図1(b)、図2(b)は図1(a)、図2(a)の部分拡大図である。
<Comparison test 1>
The production conditions of the silver particles in Examples 1 to 10 and Comparative Examples 1 and 2 are shown in Table 1 below. Moreover, the silver particle obtained in Example 4 image | photographed by TEM to the photograph of the silver particle obtained in Example 3 image | photographed with the transmission electron microscope (TEM) in FIG. 1 (a) and FIG.1 (b). These photographs are shown in FIG. 2 (a) and FIG. 2 (b), respectively. FIGS. 1B and 2B are partially enlarged views of FIGS. 1A and 2A.

また、実施例1、3〜6及び比較例1で得られた銀粒子水分散液を所定の割合で水で希釈して希釈液を調製し、この希釈液に対して分光光度計(V−570;日本分光社製)を用いて300〜1300nmにおける波長吸収特性を測定した。実施例1、3及び4の波長吸収特性結果を図3に、実施例4〜6の波長吸収特性結果を図4に、比較例1の波長吸収特性結果を図5に示す。   Moreover, the silver particle aqueous dispersion obtained in Examples 1, 3 to 6 and Comparative Example 1 was diluted with water at a predetermined ratio to prepare a diluted solution, and a spectrophotometer (V− 570; manufactured by JASCO Corporation), the wavelength absorption characteristics at 300 to 1300 nm were measured. FIG. 3 shows the results of wavelength absorption characteristics of Examples 1, 3 and 4, FIG. 4 shows the results of wavelength absorption characteristics of Examples 4 to 6, and FIG. 5 shows the results of wavelength absorption characteristics of Comparative Example 1.

図1(a)、図1(b)及び図2(a)、図2(b)より明らかなように、水分散液中にはプレート状の銀粒子と球状の銀粒子の双方が分散した状態で存在していた。
図5から明らかなように、比較例1の銀粒子では、400nm付近の波長でシャープな吸収が観察されていた。400nm付近での吸収は球状銀粒子による吸収を示している。一方図3や図4から明らかなように、実施例1、実施例3〜6の銀粒子では、400nm付近の波長だけでなく、400nm付近より長波長側にも吸収が観察されていた。400nm付近より長波長側でのプラズモン吸収はプレートの辺の長さに応じた吸収が得られていることを示している。これは実施例1、実施例3〜6で得られた銀粒子には、球状銀粒子とプレート状銀粒子の双方が含まれていることを裏付けるものである。また実施例1、実施例3〜6では、400nm付近より長波長側でのプラズモン吸収波長に違いがあることから、製造条件の違いによって異なる大きさのプレート状銀粒子が製造されることが判った。なお、実施例2、実施例7〜10の銀微粒子についても、実施例1、実施例3〜6の銀粒子と同様に、400nm付近の波長だけでなく、400nm付近より長波長側にも吸収が観察されていた。
As is clear from FIGS. 1A, 1B, 2A, and 2B, both plate-like silver particles and spherical silver particles are dispersed in the aqueous dispersion. Existed in a state.
As is clear from FIG. 5, sharp absorption was observed in the silver particles of Comparative Example 1 at a wavelength near 400 nm. Absorption around 400 nm indicates absorption by spherical silver particles. On the other hand, as is clear from FIG. 3 and FIG. 4, in the silver particles of Examples 1 and 3 to 6, absorption was observed not only at a wavelength near 400 nm but also at a longer wavelength side than near 400 nm. Plasmon absorption on the longer wavelength side from around 400 nm indicates that absorption according to the length of the side of the plate is obtained. This confirms that the silver particles obtained in Example 1 and Examples 3 to 6 contain both spherical silver particles and plate-like silver particles. Moreover, in Example 1 and Examples 3-6, since there is a difference in the plasmon absorption wavelength on the longer wavelength side from around 400 nm, it is understood that plate-like silver particles having different sizes are produced depending on the production conditions. It was. In addition, the silver fine particles of Example 2 and Examples 7 to 10 are also absorbed not only at a wavelength near 400 nm but also at a longer wavelength side than near 400 nm, similarly to the silver particles of Examples 1 and 3 to 6. Was observed.

<実施例11>
先ず、実施例1で製造した銀粒子水分散液を12000rpmで遠心分離し、分散液中の上澄み液を除去して2重量%の銀粒子濃縮水分散液とした。次いで、6重量%ポリビニルアルコール水溶液1.0g中に濃縮した分散液を0.5g添加して塗料化した。次に、この塗料をバーコーターを用いてガラス板表面に塗布し、塗布したガラス板を60℃で30分間乾燥しガラス板表面に塗膜を形成した。得られた塗膜は緑色を呈し、分光光度計(V−570;日本分光社製)を用いて300〜1300nmにおける波長吸収特性を測定したところ、図6に示すように、約800nmの波長を吸収した。
<実施例12>
先ず、実施例3で製造した銀粒子水分散液を12000rpmで遠心分離し、分散液中の上澄み液を除去して2重量%の銀粒子濃縮水分散液とした。次いで、濃縮した分散液1.0g中にエチレングリコール0.5gを添加しペースト化した。次に、このペーストをバーコーターを用いてガラス板表面に塗布し、塗布したガラス板を250℃で30分間乾燥しガラス板表面に塗膜を形成した。得られた塗膜の比抵抗値を4端針法の抵抗率計(ロレスタGP;三菱化学社製)によって測定したところ、6×10-6Ω・cmと高い導電性が得られた。これは塗膜を形成する銀粒子がプレート状銀粒子だけでなく、球状銀粒子等の副生成粒子が混在して、各粒子間の接触確率が高まっているためと考えられる。
<Example 11>
First, the silver particle aqueous dispersion produced in Example 1 was centrifuged at 12000 rpm, and the supernatant in the dispersion was removed to obtain a 2% by weight silver particle concentrated aqueous dispersion. Next, 0.5 g of a dispersion liquid concentrated in 1.0 g of a 6% by weight aqueous polyvinyl alcohol solution was added to form a paint. Next, this paint was applied to the surface of the glass plate using a bar coater, and the applied glass plate was dried at 60 ° C. for 30 minutes to form a coating film on the surface of the glass plate. The obtained coating film was green and the wavelength absorption characteristics at 300 to 1300 nm were measured using a spectrophotometer (V-570; manufactured by JASCO Corporation). As shown in FIG. Absorbed.
<Example 12>
First, the silver particle aqueous dispersion produced in Example 3 was centrifuged at 12000 rpm, and the supernatant in the dispersion was removed to obtain a 2% by weight silver particle concentrated aqueous dispersion. Next, 0.5 g of ethylene glycol was added to 1.0 g of the concentrated dispersion to form a paste. Next, this paste was applied to the glass plate surface using a bar coater, and the applied glass plate was dried at 250 ° C. for 30 minutes to form a coating film on the glass plate surface. When the specific resistance value of the obtained coating film was measured by a resistivity meter (Loresta GP; manufactured by Mitsubishi Chemical Corporation) using a four-end needle method, high conductivity of 6 × 10 −6 Ω · cm was obtained. This is presumably because the silver particles forming the coating film contain not only plate-like silver particles but also by-product particles such as spherical silver particles, and the contact probability between the particles is increased.

実施例3で得られた銀粒子の透過型電子顕微鏡写真図。The transmission electron micrograph figure of the silver particle obtained in Example 3. FIG. 実施例4で得られた銀粒子の透過型電子顕微鏡写真図。4 is a transmission electron micrograph of the silver particles obtained in Example 4. FIG. 実施例1、3及び4における銀粒子の特定波長吸収特性図。The specific wavelength absorption characteristic figure of the silver particle in Examples 1, 3, and 4. FIG. 実施例4〜6における銀粒子の特定波長吸収特性図。The specific wavelength absorption characteristic figure of the silver particle in Examples 4-6. 比較例1における銀粒子の特定波長吸収特性図。The specific wavelength absorption characteristic figure of the silver particle in the comparative example 1. 実施例11で得られた塗膜の特定波長吸収特性図。The specific wavelength absorption characteristic figure of the coating film obtained in Example 11. FIG.

Claims (7)

水に銀塩、銅塩及び低分子系分散剤を加えて銀塩、銅塩及び低分子系分散剤の水溶液を調製し、前記水溶液に所定の割合で還元剤を添加して混合液を調製し、前記混合液を20〜40℃で静置して前記混合液中の銀イオンを還元反応させることにより、主として形状がプレート状の銀粒子を製造する方法であって、
前記銀塩と低分子系分散剤と銅塩と還元剤の添加割合がモル比率で銀塩:低分子系分散剤:銅塩:還元剤=1:(0.1〜100):(0.01〜100):(0.001〜100)であることを特徴とする銀粒子の製造方法。
Add silver salt, copper salt and low molecular weight dispersant to water to prepare an aqueous solution of silver salt, copper salt and low molecular weight dispersant, and add a reducing agent to the aqueous solution at a predetermined ratio to prepare a mixed solution Then, the mixed solution is allowed to stand at 20 to 40 ° C., and the silver ions in the mixed solution are reduced, thereby producing mainly silver particles having a plate shape,
The silver salt, the low molecular weight dispersant, the copper salt, and the reducing agent are added in a molar ratio of silver salt: low molecular weight dispersant: copper salt: reducing agent = 1: (0.1 to 100) :( 0. 01-100): (0.001-100) The manufacturing method of the silver particle characterized by the above-mentioned.
低分子系分散剤がクエン酸、リンゴ酸、酒石酸及びコハク酸からなる群より選ばれた1種又は2種以上の有機酸又はその塩である請求項1記載の製造方法。   The production method according to claim 1, wherein the low molecular weight dispersant is one or more organic acids selected from the group consisting of citric acid, malic acid, tartaric acid and succinic acid, or a salt thereof. 還元剤がジメチルアミンボラン、ヒドラジン及び水素化ホウ素塩からなる群より選ばれた1種又は2種以上の化合物である請求項1記載の製造方法。   The production method according to claim 1, wherein the reducing agent is one or more compounds selected from the group consisting of dimethylamine borane, hydrazine and borohydride. 得られるプレート状銀粒子の粒子径が10〜1000nmである請求項1記載の製造方法。   The production method according to claim 1, wherein the obtained plate-like silver particles have a particle size of 10 to 1000 nm. 請求項1ないし4いずれか1項に記載の製造方法により得られた銀粒子を含有することを特徴とする銀粒子含有組成物。   A silver particle-containing composition comprising silver particles obtained by the production method according to any one of claims 1 to 4. 請求項5記載の銀粒子含有組成物を用いて形成されたコーティング組成物、塗膜又はフィルム。   The coating composition, coating film, or film formed using the silver particle containing composition of Claim 5. 請求項1ないし4いずれか1項に記載の製造方法により得られた銀粒子を含有する光学フィルタ、配線材料、電極材料、触媒、着色剤、化粧品、近赤外線吸収剤、偽造防止インク、電磁波シールド材、表面増強蛍光センサ、生体マーカ、記録素子、薬物送達システム用薬物保持体、バイオセンサ、DNAチップ、検査薬又はラマン増強用試薬。   An optical filter, a wiring material, an electrode material, a catalyst, a colorant, a cosmetic, a near-infrared absorber, an anti-counterfeit ink, an electromagnetic wave shield containing silver particles obtained by the production method according to any one of claims 1 to 4. Materials, surface-enhanced fluorescent sensors, biomarkers, recording elements, drug carriers for drug delivery systems, biosensors, DNA chips, test drugs, or Raman-enhancing reagents.
JP2005333534A 2005-11-18 2005-11-18 Method for producing silver particles Active JP5059317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005333534A JP5059317B2 (en) 2005-11-18 2005-11-18 Method for producing silver particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005333534A JP5059317B2 (en) 2005-11-18 2005-11-18 Method for producing silver particles

Publications (2)

Publication Number Publication Date
JP2007138250A true JP2007138250A (en) 2007-06-07
JP5059317B2 JP5059317B2 (en) 2012-10-24

Family

ID=38201485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005333534A Active JP5059317B2 (en) 2005-11-18 2005-11-18 Method for producing silver particles

Country Status (1)

Country Link
JP (1) JP5059317B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087918A1 (en) * 2008-01-06 2009-07-16 Dowa Electronics Materials Co., Ltd. Silver micropowder, silver ink, silver coating, and methods for production of these materials
JP2009221140A (en) * 2008-03-14 2009-10-01 National Institute Of Advanced Industrial & Technology Colored nanoparticles for cosmetic and its manufacturing method
JP2010189681A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Method for producing oxidation resistant copper nanoparticle, and joining method using the same
EP2368857A2 (en) 2009-11-06 2011-09-28 Fujifilm Corporation Heat ray-shielding material comprising a metal particle layer
WO2011152169A1 (en) 2010-06-03 2011-12-08 富士フイルム株式会社 Heat-ray shielding material
WO2012063747A1 (en) * 2010-11-08 2012-05-18 ナミックス株式会社 Metal particles and manufacturing method for same
CN102717091A (en) * 2012-05-15 2012-10-10 同济大学 Method for preparing NiCo nanometer material having hexagon sheet structure
JP2013504191A (en) * 2009-09-04 2013-02-04 ビーエーエスエフ ソシエタス・ヨーロピア Composition for printing conductor tracks and method for producing solar cell
JP2017025391A (en) * 2015-07-24 2017-02-02 国立大学法人大阪大学 Method for producing silver particle, silver particle, and silver paste
JP2018095705A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Decorative film
JP2020125483A (en) * 2014-10-17 2020-08-20 シー3ナノ・インコーポレイテッドC3Nano Inc. Transparent films with control of light hue using nanoscale colorants
CN113593772A (en) * 2021-07-27 2021-11-02 哈尔滨工业大学(深圳) Nano silver-copper solid solution and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013999A1 (en) * 2000-08-11 2002-02-21 Ishihara Sangyo Kaisha, Ltd. Colloidal metal solution, process for producing the same, and coating material containing the same
JP2005015647A (en) * 2003-06-26 2005-01-20 Sumitomo Osaka Cement Co Ltd Coating material for forming metal thin film, metal thin film, and its preparation method
JP2005105376A (en) * 2003-09-30 2005-04-21 Sumitomo Osaka Cement Co Ltd Silver fine particle and its production method
WO2005053885A1 (en) * 2003-12-01 2005-06-16 Kojima Chemicals Co., Ltd. Process for producing metal micropowder having particle diameter uniformalized

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013999A1 (en) * 2000-08-11 2002-02-21 Ishihara Sangyo Kaisha, Ltd. Colloidal metal solution, process for producing the same, and coating material containing the same
JP2005015647A (en) * 2003-06-26 2005-01-20 Sumitomo Osaka Cement Co Ltd Coating material for forming metal thin film, metal thin film, and its preparation method
JP2005105376A (en) * 2003-09-30 2005-04-21 Sumitomo Osaka Cement Co Ltd Silver fine particle and its production method
WO2005053885A1 (en) * 2003-12-01 2005-06-16 Kojima Chemicals Co., Ltd. Process for producing metal micropowder having particle diameter uniformalized

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916068B2 (en) 2008-01-06 2014-12-23 Dowa Electronics Materials Co., Ltd. Silver micropowder, silver ink, silver coating, and methods for production of these materials
WO2009087918A1 (en) * 2008-01-06 2009-07-16 Dowa Electronics Materials Co., Ltd. Silver micropowder, silver ink, silver coating, and methods for production of these materials
JP2009221140A (en) * 2008-03-14 2009-10-01 National Institute Of Advanced Industrial & Technology Colored nanoparticles for cosmetic and its manufacturing method
JP2010189681A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Method for producing oxidation resistant copper nanoparticle, and joining method using the same
JP2013504191A (en) * 2009-09-04 2013-02-04 ビーエーエスエフ ソシエタス・ヨーロピア Composition for printing conductor tracks and method for producing solar cell
EP2368857A2 (en) 2009-11-06 2011-09-28 Fujifilm Corporation Heat ray-shielding material comprising a metal particle layer
US9738559B2 (en) 2009-11-06 2017-08-22 Fujifilm Corporation Heat ray-shielding material
WO2011152169A1 (en) 2010-06-03 2011-12-08 富士フイルム株式会社 Heat-ray shielding material
CN102933990A (en) * 2010-06-03 2013-02-13 富士胶片株式会社 Heat-ray shielding material
US9186727B2 (en) 2010-11-08 2015-11-17 Namics Corporation Metal particle
JP5848711B2 (en) * 2010-11-08 2016-01-27 ナミックス株式会社 Method for producing silver particles
WO2012063747A1 (en) * 2010-11-08 2012-05-18 ナミックス株式会社 Metal particles and manufacturing method for same
US9789546B2 (en) 2010-11-08 2017-10-17 Namics Corporation Method for producing a metal particle
CN102717091A (en) * 2012-05-15 2012-10-10 同济大学 Method for preparing NiCo nanometer material having hexagon sheet structure
JP2020125483A (en) * 2014-10-17 2020-08-20 シー3ナノ・インコーポレイテッドC3Nano Inc. Transparent films with control of light hue using nanoscale colorants
JP7145906B2 (en) 2014-10-17 2022-10-03 シー3ナノ・インコーポレイテッド Transparency film with light hue controlled using nanoscale colorants
WO2017018359A1 (en) * 2015-07-24 2017-02-02 国立大学法人大阪大学 Method for producing silver particles, silver particles and silver paste
EP3326740A4 (en) * 2015-07-24 2019-04-10 Osaka University Method for producing silver particles, silver particles and silver paste
CN107848037A (en) * 2015-07-24 2018-03-27 国立大学法人大阪大学 Argent grain manufacture method, Argent grain and silver paste
US10875097B2 (en) 2015-07-24 2020-12-29 Osaka University Silver particle producing method, silver particles, and silver paste
JP2017025391A (en) * 2015-07-24 2017-02-02 国立大学法人大阪大学 Method for producing silver particle, silver particle, and silver paste
JP2018095705A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Decorative film
CN113593772A (en) * 2021-07-27 2021-11-02 哈尔滨工业大学(深圳) Nano silver-copper solid solution and preparation method and application thereof

Also Published As

Publication number Publication date
JP5059317B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5059317B2 (en) Method for producing silver particles
JP4821951B2 (en) Wire-shaped gold fine particles, production method thereof, containing composition and use
JP2007138249A (en) Method for producing silver grain, silver grain-containing composition containing the obtained silver grain and its use
JP4665499B2 (en) Metal fine particles, production method thereof, composition containing the same, and use thereof
KR101125491B1 (en) Method for producing metal fine particle, metal fine particle produced thereby, composition containing same, light absorbing material, and application thereof
KR101951452B1 (en) Coated metal microparticle and manufacturing method thereof
Chen et al. Synthesis and performance of ZnO quantum dots water-based fluorescent ink for anti-counterfeiting applications
KR101239563B1 (en) Silver microparticle-containing composition, and paste containing the silver microparticle
Amran et al. Optical absorption and photoluminescence studies of gold nanoparticles deposited on porous silicon
JP5556176B2 (en) Particles and inks and films using them
KR101526233B1 (en) Silver micropowder, silver ink, silver coating, and methods for production of these materials
JP2007154292A (en) Method for producing silver particle, silver particle-containing composition containing the silver particle and its use
WO2014024630A1 (en) Silver particle ink, silver particle sintered body and method for manufacturing silver particle ink
JP4529160B2 (en) METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF
WO2013099818A1 (en) Silver fine particles, production process therefor, and conductive paste, conductive membrane and electronic device, containing said silver fine particles
KR20110030556A (en) Metal microparticle containing composition and process for production of the same
JP2006089786A (en) Method for producing metallic nano-particle dispersed in polar solvent
Ider et al. Rapid synthesis of silver nanoparticles by microwave-polyol method with the assistance of latex copolymer
JP2006118010A (en) Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
WO2010137080A1 (en) Process for producing metallic nanoparticle with low-temperature sinterability, metallic nanoparticle, and process for producing dispersion containing the same
JP5264626B2 (en) A multilayer film substrate in which metal fine particles are formed in multiple layers and a method for producing the same.
Ismail et al. Investigation the parameters affecting on the synthesis of silver nanoparticles by chemical reduction method and printing a conductive pattern
US9567349B2 (en) Preparing method of Ag nano-particle and hydrophobic spherical Ag nano-particle prepared using the same
JP2012048949A (en) Gold support particle and method for producing the same, and conductive film prepared using the gold support particle and method for producing the conductive film
Brahma et al. Contrast in luminescence characteristics (intense UV to bright visible light) of Zn O nanostructures with the variation in microstructure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5059317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250