JP2003193118A - Method of producing metallic fine particle - Google Patents

Method of producing metallic fine particle

Info

Publication number
JP2003193118A
JP2003193118A JP2001399112A JP2001399112A JP2003193118A JP 2003193118 A JP2003193118 A JP 2003193118A JP 2001399112 A JP2001399112 A JP 2001399112A JP 2001399112 A JP2001399112 A JP 2001399112A JP 2003193118 A JP2003193118 A JP 2003193118A
Authority
JP
Japan
Prior art keywords
fine particles
metal
organic solvent
producing
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001399112A
Other languages
Japanese (ja)
Inventor
Masahiro Izumoto
政博 巖本
Kotaro Kuroda
浩太郎 黒田
Shigehiko Hayashi
茂彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2001399112A priority Critical patent/JP2003193118A/en
Publication of JP2003193118A publication Critical patent/JP2003193118A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing metallic fine particles by which metallic fine particles whose average particle diameter and particle diameter distribution are controlled, can easily be produced. <P>SOLUTION: The method of producing the metallic fine particles from an aqueous solution of metallic salt has a stage (1) where a reducing agent is added to an aqueous solution of metallic salt to form metallic fine particles, a stage (2) where a protective colloid dissolved into a first organic solvent which is not compatible with water is added thereto to produce a dual phase mixture, a stage (3) where the dual phase mixture is stirred to transfer the metallic fine particles into the first organic solvent in an interfacial way, a stage (4) where the water and first organic solvent are removed, and a stage (5) where the metallic fine particles are redispersed into the second organic solvent. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はナノサイズ金属微粒
子の製造方法に係り、詳しくは平均粒径及び粒径分布が
制御された金属微粒子の製造方法に関わる。
TECHNICAL FIELD The present invention relates to a method for producing nano-sized metal fine particles, and more particularly to a method for producing fine metal particles having a controlled average particle size and particle size distribution.

【0002】[0002]

【従来の技術】数十nm以下の粒径を有する貴金属の微
粒子は、バルク金属には見られない微粒子に特有の性質
を活かして、化学的に安定な着色剤、カラーフィルタ
ー、導電性ペースト、化学反応の触媒、透明導電膜等、
その応用を拡大している。従来のリソグラフィー技術に
基づいたLSIの高集積化の限界を打破する目的で研究
が進められている単一電子デバイスにおいては、その一
構成要素である量子ドットとして金属微粒子の利用も検
討されている。
2. Description of the Related Art Fine particles of a noble metal having a particle diameter of several tens of nm or less utilize a characteristic peculiar to fine particles not found in bulk metal, and are chemically stable colorants, color filters, conductive pastes, Chemical reaction catalyst, transparent conductive film, etc.
Its application is expanding. In a single-electron device, which is being researched for the purpose of breaking down the limit of high integration of LSIs based on the conventional lithography technology, the use of metal fine particles as quantum dots, which is one of the constituent elements, is also being considered. .

【0003】前記各種応用において、金属微粒子の平均
粒径及び粒径分布を制御することが重要な問題となって
いる。具体的には、着色剤の用途においては、金属微粒
子の平均粒径の違いが、得られる色相、明度、及び彩度
に直接影響を与える問題があり、各種化学反応に幅広く
用いられている担持型金属微粒子触媒は、その触媒活性
を有効に発現させるためには、金属微粒子の粒径をより
小さくすることが要求される。また透明導電膜の用途に
おいては、不均一な粒径分布により膜特性が不均一にな
る問題がある。さらに単一電子デバイスの一要素として
の用途においては、室温での動作を達成するためには、
粒径2nm以下の金属微粒子を他の構成要素とともに基
板上に整列させる必要がある。しかもデバイスの高集積
化のためには、金属微粒子の粒径のばらつきを厳格に抑
える必要がある。このようにいずれの用途においても金
属微粒子の平均粒径及び粒径分布を制御することが必要
不可欠となっている。
In the above-mentioned various applications, controlling the average particle size and particle size distribution of metal fine particles has become an important issue. Specifically, in the use of colorants, there is a problem that the difference in the average particle size of the metal fine particles directly affects the hue, lightness, and saturation that are obtained, and it is widely used in various chemical reactions. In order to effectively exhibit its catalytic activity, the type metal fine particle catalyst is required to have a smaller particle size of the metal fine particles. Further, in the use of the transparent conductive film, there is a problem that the film characteristics become non-uniform due to the non-uniform particle size distribution. Further, in an application as a component of a single electronic device, in order to achieve operation at room temperature,
It is necessary to align metal fine particles having a particle diameter of 2 nm or less on the substrate together with other constituent elements. Moreover, in order to achieve high integration of the device, it is necessary to strictly suppress the variation in particle size of the metal fine particles. Thus, in any application, it is essential to control the average particle size and particle size distribution of the metal particles.

【0004】このような金属微粒子を製造する方法とし
て、気相法と液相法がある。気相法には例えばガス中蒸
発法、スパッタリング法等があり、ガス中蒸発法では、
不活性ガスを導入した真空容器内で金属を蒸発させ、有
機溶剤で被覆した状態の金属微粒子が得られる。高濃度
の金属微粒子分散液を製造可能である利点を有するが、
金属微粒子の粒径分布を制御することは困難である。ま
た、特別な装置を必要とするコスト面の問題もある。
As a method for producing such metal fine particles, there are a vapor phase method and a liquid phase method. The vapor phase method includes, for example, an in-gas evaporation method, a sputtering method, etc., and in the in-gas evaporation method,
The metal is evaporated in a vacuum container into which an inert gas is introduced, and metal fine particles coated with an organic solvent are obtained. Although it has the advantage that a high-concentration metal fine particle dispersion can be produced,
It is difficult to control the particle size distribution of the fine metal particles. In addition, there is a cost problem that requires a special device.

【0005】一方液相法は、金属イオン含有溶液に紫外
光を照射あるいは還元剤を加えて金属イオンを還元する
ことによって金属微粒子を得る方法である。特に還元剤
を用いる方法は、特別な装置を必要とすることなく、比
較的容易に粒径分布の狭い金属微粒子を製造することが
可能である。
On the other hand, the liquid phase method is a method of obtaining metal fine particles by irradiating a solution containing metal ions with ultraviolet light or adding a reducing agent to reduce the metal ions. In particular, the method using a reducing agent can relatively easily produce fine metal particles having a narrow particle size distribution without requiring a special apparatus.

【0006】[0006]

【発明が解決しようとする課題】しかし、前記液相法に
おいても、一般的に粒径分布の狭い金属微粒子を得るこ
とは非常に厳密な条件を必要とし、より厳密に制御され
た平均粒径及び粒径分布を有する金属微粒子を得ること
は困難であるという問題があった。本発明はこのような
問題点に注目し、平均粒径及び粒径分布が制御された金
属微粒子を容易に製造することのできる金属微粒子の製
造方法を提供することを目的とするものである。
However, even in the liquid phase method, it is generally necessary to obtain fine metal particles having a narrow particle size distribution under very strict conditions. Also, there is a problem that it is difficult to obtain fine metal particles having a particle size distribution. The present invention focuses on such problems, and an object thereof is to provide a method for producing metal fine particles capable of easily producing metal fine particles having a controlled average particle size and particle size distribution.

【0007】[0007]

【課題を解決するための手段】すなわち本願請求項1記
載の発明は、金属塩の水溶液から金属微粒子を製造する
金属微粒子の製造方法において、(1)金属塩の水溶液
に還元剤を添加し金属微粒子を生成させ、(2)水と相
溶しない第一の有機溶媒に溶解させた保護コロイドを添
加して二相混合物を作製し、(3)前記二相混合物を攪
拌して前記第一の有機溶媒中に金属微粒子を相間移動さ
せ、(4)前記水及び第一の有機溶媒を除去し、(5)
前記金属微粒子を第二の有機溶媒に再分散させる工程、
からなることを特徴とする金属微粒子の製造方法であ
る。
[Means for Solving the Problems] That is, the invention according to claim 1 of the present application provides a method for producing metal fine particles from an aqueous solution of a metal salt, which comprises (1) adding a reducing agent to an aqueous solution of a metal salt Fine particles are generated, (2) a protective colloid dissolved in a first organic solvent that is incompatible with water is added to prepare a two-phase mixture, and (3) the two-phase mixture is stirred to produce the first mixture. Phase transfer of the metal fine particles into the organic solvent, (4) removing the water and the first organic solvent, (5)
A step of redispersing the metal fine particles in a second organic solvent,
And a method for producing fine metal particles.

【0008】請求項1記載の発明によれば、平均粒径及
び粒径分布が制御された金属微粒子を製造することがで
きる。平均粒径及び粒径分布が制御された金属微粒子を
製造することができる。具体的には、第二の有機溶媒に
再分散することによって、再分散された金属微粒子は、
再分散前に比較して、平均粒径が小さくかつ標準偏差が
大きい特徴を有し、一方残滓として得られる金属微粒子
は、再分散前に比較して、平均粒径が大きくかつ標準偏
差が小さい特徴を有する。
According to the first aspect of the invention, it is possible to produce fine metal particles having a controlled average particle size and particle size distribution. It is possible to produce fine metal particles having a controlled average particle size and particle size distribution. Specifically, by redispersing in a second organic solvent, the redispersed metal fine particles,
Compared to before redispersion, the average particle size is small and the standard deviation is large. On the other hand, the fine metal particles obtained as a residue have a large average particle size and a small standard deviation compared to before redispersion. It has characteristics.

【0009】請求項2記載の発明は、前記金属微粒子が
金微粒子である請求項1記載の金属微粒子の製造方法で
ある。
The invention according to claim 2 is the method for producing metal particles according to claim 1, wherein the metal particles are gold particles.

【0010】請求項3記載の発明は、前記還元剤が水素
化ホウ素ナトリウムである請求項1記載の金属微粒子の
製造方法である。
The invention according to claim 3 is the method for producing fine metal particles according to claim 1, wherein the reducing agent is sodium borohydride.

【0011】請求項4記載の発明は、前記保護コロイド
がオクタンチオールである請求項1記載の金属微粒子の
製造方法である。
The invention according to claim 4 is the method for producing fine metal particles according to claim 1, wherein the protective colloid is octanethiol.

【0012】請求項5記載の発明は、前記第二の有機溶
媒がヘキサデカン、テレピネオール、シクロヘキサンか
ら選ばれたいずれか一種である請求項1記載の金属微粒
子の製造方法である。
The invention according to claim 5 is the method for producing fine metal particles according to claim 1, wherein the second organic solvent is any one selected from hexadecane, terpineol, and cyclohexane.

【0013】[0013]

【発明の実施の形態】以下、本発明の金属微粒子の製造
方法について詳細に説明する。本発明の金属微粒子の製
造方法の対象となる金属微粒子としては、金、銀、銅、
白金、パラジウム、ロジウム、ルテニウム、イリジウム
等が挙げられる。前記金属の金属微粒子は、金属塩の水
溶液に還元剤を添加し、金属イオンを還元することによ
って得られる。金属塩としては、塩化金酸、塩化第一
金、塩化第二金、硝酸銀、亜硝酸銀、塩化銀、硫酸銅、
硝酸銅、塩化第一白金、塩化第一白金アンモニウム、塩
化パラジウム、四塩化パラジウムアンモニウム、六塩化
パラジウムアンモニウム、酢酸パラジウム、硝酸パラジ
ウム、三塩化ロジウム、六塩化ロジウムアンモニウム、
六塩化ロジウムカリウム、塩化ヘキサミンロジウム、酢
酸ロジウム、ニトロソ硝酸ルテニウム、塩化ルテニウ
ム、塩化ルテニウムアンモニウム、塩化ルテニウムカリ
ウム、塩化ルテニウムナトリウム、酢酸ルテニウム、三
塩化イリジウム、四塩化イリジウム、六塩化イリジウム
アンモニウム、六塩化イリジウム三カリウム、酢酸イリ
ジウム等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing fine metal particles of the present invention will be described in detail below. The metal fine particles to be the subject of the method for producing metal fine particles of the present invention include gold, silver, copper,
Examples include platinum, palladium, rhodium, ruthenium, iridium and the like. The metal fine particles of the metal can be obtained by adding a reducing agent to an aqueous solution of a metal salt to reduce metal ions. As the metal salt, chloroauric acid, gold (I) chloride, gold (II) chloride, silver nitrate, silver nitrite, silver chloride, copper sulfate,
Copper nitrate, platinum chloride, ammonium platinum chloride, palladium chloride, palladium ammonium tetrachloride, palladium ammonium hexachloride, palladium acetate, palladium nitrate, rhodium trichloride, ammonium rhodium chloride,
Potassium rhodium hexachloride, rhodium hexamine chloride, rhodium acetate, ruthenium nitrosonitrate, ruthenium chloride, ruthenium ammonium chloride, ruthenium potassium chloride, ruthenium sodium chloride, ruthenium acetate, iridium trichloride, iridium tetrachloride, iridium ammonium hexachloride, iridium hexachloride Examples include tripotassium and iridium acetate.

【0014】濃度0.1mM以上に調整した前記金属塩
の水溶液に還元剤を添加する。還元剤は通常使用される
もので特に限定されず、水素化ホウ素ナトリウム、水素
化ホウ素カリウムなどの水素化ホウ素金属塩、水素化ア
ルミニウムリチウム、水素化アルミニウムカリウム、水
素化アルミニウムセシウム、水素化アルミニウムベリリ
ウム、水素化アルミニウムマグネシウム、水素化アルミ
ニウムカルシウム等の水素化アルミニウム塩、ヒドラジ
ン化合物、クエン酸及びその塩、コハク酸及びその塩、
アスコルビン酸及びその塩等がある。前記各種還元剤を
水あるいはエタノール、プロパノール等のアルコールに
溶解し、金属塩水溶液に、金属イオンに対して0.1〜
10倍モル程度の量を数分かけて滴下することによって
添加する。
A reducing agent is added to an aqueous solution of the metal salt adjusted to a concentration of 0.1 mM or more. The reducing agent is usually used and is not particularly limited, and sodium borohydride, potassium borohydride and other metal borohydrides, lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, beryllium aluminum hydride. Aluminum hydrides such as aluminum magnesium hydride and aluminum calcium hydride, hydrazine compounds, citric acid and its salts, succinic acid and its salts,
Examples include ascorbic acid and its salt. The various reducing agents are dissolved in water or an alcohol such as ethanol or propanol and added to an aqueous solution of a metal salt in an amount of 0.1 to the metal ions.
An amount of about 10 times mol is added dropwise over a few minutes.

【0015】続いて、水と相溶しない有機溶媒(以下、
第一の有機溶媒という)に分散させた保護コロイドを添
加する。前記保護コロイドは、水と相溶しない有機溶媒
中で金属微粒子の凝集による二次粒子の生成を妨げ、金
属微粒子を安定化するものであって、アルカンチオール
あるいはアルキルアミンが好適に用いられる。具体的に
は、アルカンチオールとしては、プロパンチオール、ブ
タンチオール、ペンタンチオール、ヘキサンチオール、
ヘプタンチオール、オクタンチオール、ノナンチオー
ル、デカンチオール、ウンデカンチオール、ドデカンチ
オール、トリデカンチオール、テトラデカンチオール、
ペンタデカンチオール、ヘキサデカンチオール、またア
ルキルアミンとしては、プロピルアミン、ブチルアミ
ン、ペンチルアミン、ヘキシルアミン、ペプチルアミ
ン、オクチルアミン、ノニルアミン、デシルアミン、ウ
ンデシルアミン、ドデシルアミン、トリデシルアミン、
テトラデシルアミン、ペンタデシルアミン、ヘキサデシ
ルアミン等が挙げられ、金属イオンに対して0.1〜1
0倍モル程度の量を数分かけて滴下することによって添
加する。
Subsequently, an organic solvent which is incompatible with water (hereinafter,
A protective colloid dispersed in a first organic solvent) is added. The protective colloid prevents generation of secondary particles due to aggregation of metal fine particles in an organic solvent which is incompatible with water, and stabilizes the metal fine particles, and alkanethiol or alkylamine is preferably used. Specifically, as the alkanethiol, propanethiol, butanethiol, pentanethiol, hexanethiol,
Heptanethiol, octanethiol, nonanethiol, decanethiol, undecanethiol, dodecanethiol, tridecanethiol, tetradecanethiol,
As pentadecanethiol, hexadecanethiol, and alkylamine, propylamine, butylamine, pentylamine, hexylamine, peptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine,
Tetradecylamine, pentadecylamine, hexadecylamine and the like can be mentioned, and the amount is 0.1 to 1 with respect to the metal ion.
An amount of about 0 times mol is added dropwise over several minutes.

【0016】前記第一の有機溶媒は特に限定されず、ノ
ルマルヘキサン、シクロヘキサン、ノルマルペンタン、
ノルマルヘプタン、トルエン、メチルイソブチルケト
ン、キシレン、ベンゼン、クロロホルム、四塩化炭素、
メチルエチルケトン、酢酸エチル、酢酸ブチル、酢酸イ
ソブチル、エチルベンゼン等が挙げられる。
The first organic solvent is not particularly limited, and normal hexane, cyclohexane, normal pentane,
Normal heptane, toluene, methyl isobutyl ketone, xylene, benzene, chloroform, carbon tetrachloride,
Methyl ethyl ketone, ethyl acetate, butyl acetate, isobutyl acetate, ethylbenzene and the like can be mentioned.

【0017】前記第一の有機溶媒に分散させた保護コロ
イドを添加して、下層部の各金属微粒子に特有の色に着
色した水相と上層部の無色透明の有機相に分離した二相
混合物を得る。前記二相混合物全体を攪拌子等を用いて
1時間以上混合攪拌した後静置することによって無色透
明の水相と、水相から金属微粒子が相間移動した結果着
色した有機相とを得る。前記有機相は、例えば金微粒子
の場合、520nm付近に、また銀微粒子の場合、42
0nm付近にそれぞれの微粒子に特有の吸収を示し、そ
れによって各金属微粒子の生成が確認される。
A two-phase mixture in which a protective colloid dispersed in the first organic solvent is added to separate an aqueous phase colored in a color peculiar to each metal fine particle in a lower layer and a colorless transparent organic phase in an upper layer. To get The entire two-phase mixture is mixed and stirred with a stirrer or the like for 1 hour or more and then left to stand to obtain a colorless and transparent aqueous phase and an organic phase which is colored as a result of phase transfer of metal fine particles from the aqueous phase. The organic phase is, for example, about 520 nm in the case of fine gold particles, and 42 in the case of fine silver particles.
Absorption peculiar to each fine particle is shown in the vicinity of 0 nm, whereby generation of each fine metal particle is confirmed.

【0018】続いて、前記有機相のみを分離し、乾燥さ
せて保護コロイドに保護された金属微粒子を得る。有機
相のみを分離するには、分液ロートを用いる方法、有機
相のみを吸引する方法、あるいは単純にデカンテーショ
ンによってもよい。得られた金属微粒子を別の有機溶媒
(以下、第二の有機溶媒という)に再分散させる。ここ
で前記第二の有機溶媒は、例えばテルピネオール、ヘキ
サデカン、あるいはシクロヘキサンが好ましい。再分散
後、ろ過等の方法によって再分散された金属微粒子と残
滓としての金属微粒子とに分離する。
Subsequently, only the organic phase is separated and dried to obtain fine metal particles protected by a protective colloid. To separate only the organic phase, a method using a separating funnel, a method of sucking only the organic phase, or simply decantation may be used. The obtained metal fine particles are redispersed in another organic solvent (hereinafter referred to as a second organic solvent). Here, the second organic solvent is preferably terpineol, hexadecane, or cyclohexane, for example. After the redispersion, the redispersed metal fine particles and the metal fine particles as the residue are separated by a method such as filtration.

【0019】[0019]

【実施例】以下本発明の金属微粒子の製造方法につい
て、実施例を示しさらに詳細に説明する。 実施例1〜3 塩化金酸水溶液48ml、水素化ホウ素ナトリウム2−
プロパノール溶液(6.0×10−3mol/l)2.
0ml、1−オクタンチオールヘキサン溶液(2.4×
10−4mol/l)50mlを調整した。塩化金酸水
溶液48mlに水素化ホウ素ナトリウム2−プロパノー
ル溶液2.0mlを数分かけて滴下し金イオンを還元し
た。その後、1−オクタンチオールヘキサン溶液50m
lを十数分かけて滴下し、約1時間攪拌して1−オクタ
ンチオールで保護された金微粒子を得た。続いて金微粒
子の分散媒(ヘキサン)を乾燥させ、第二の溶媒として
のテルピネオール(実施例1)、ヘキサデカン(実施例
2)、あるいはシクロヘキサン(実施例3)に再分散
し、ろ過によって再分散された金微粒子と残滓として得
られる金微粒子とを分離し、回収した。表1に再分散さ
れた金微粒子及び再分散の結果残滓として得られた金微
粒子の平均粒径及び標準偏差を示す。
EXAMPLES The method for producing metal fine particles of the present invention will be described in more detail below with reference to examples. Examples 1-3 48 ml of aqueous chloroauric acid solution, sodium borohydride 2-
Propanol solution (6.0 × 10 −3 mol / l) 2.
0 ml, 1-octanethiol hexane solution (2.4 x
10 −4 mol / l) 50 ml was prepared. 2.0 ml of sodium borohydride 2-propanol solution was added dropwise to 48 ml of an aqueous chloroauric acid solution over several minutes to reduce gold ions. Then, 1-octanethiol hexane solution 50m
1 was added dropwise over ten minutes and stirred for about 1 hour to obtain 1-octanethiol-protected fine gold particles. Subsequently, the dispersion medium (hexane) of the fine gold particles is dried, redispersed in terpineol (Example 1), hexadecane (Example 2), or cyclohexane (Example 3) as the second solvent, and redispersed by filtration. The formed gold fine particles and the gold fine particles obtained as a residue were separated and collected. Table 1 shows the average particle size and standard deviation of the redispersed gold fine particles and the gold fine particles obtained as a residue as a result of the redispersion.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例1においては、再分散によって大半
の金微粒子が残滓として回収され、再分散前の金微粒子
に比較して標準偏差が低下した金微粒子が得られた。実
施例2及び3においては、再分散された金微粒子は平均
粒径が再分散前に比較して小さく、残滓として得られた
金微粒子は標準偏差が再分散前に比較して著しく低下し
た結果が得られた。図1(a)に実施例2で得られた再
分散された金微粒子、及び図1(b)に残滓として得ら
れた金微粒子のTEM像を示す。再分散された金微粒子
を採用するか、あるいは残滓として得られた金微粒子を
採用するかは、目的に応じて適宜選択される。
In Example 1, most of the gold fine particles were recovered as a residue by the redispersion, and gold fine particles having a standard deviation lower than that of the gold fine particles before the redispersion were obtained. In Examples 2 and 3, the redispersed gold fine particles had a smaller average particle size than before the redispersion, and the gold fine particles obtained as the residue had a significantly reduced standard deviation as compared with that before the redispersion. was gotten. FIG. 1A shows a TEM image of the redispersed gold fine particles obtained in Example 2, and FIG. 1B shows a TEM image of the gold fine particles obtained as a residue. Whether to use the redispersed gold particles or the gold particles obtained as a residue is appropriately selected according to the purpose.

【0022】比較例1 第二の有機溶媒としてヘキサンを用い実施例と同様に金
微粒子を再分散したが、残滓としての金微粒子は得られ
ず、すべての金微粒子がそのままの状態で再分散され
た。
Comparative Example 1 Gold fine particles were redispersed in the same manner as in Example 1 except that hexane was used as the second organic solvent. However, gold fine particles as a residue were not obtained, and all gold fine particles were redispersed as they were. It was

【0023】[0023]

【発明の効果】以上説明したように、本願請求項記載の
発明は、金属塩の水溶液から金属微粒子を製造する金属
微粒子の製造方法において、(1)金属塩の水溶液に還
元剤を添加し金属微粒子を生成させ、(2)水と相溶し
ない第一の有機溶媒に溶解させた保護コロイドを添加し
て二相混合物を作製し、(3)前記二相混合物を攪拌し
て前記第一の有機溶媒中に金属微粒子を相間移動させ、
(4)前記水及び第一の有機溶媒を除去し、(5)前記
金属微粒子を第二の有機溶媒に再分散させる工程、から
なることを特徴とする金属微粒子の製造方法であって、
平均粒径及び粒径分布が制御された金属微粒子を製造す
ることができる。具体的には、第二の有機溶媒に再分散
することによって、再分散された金属微粒子は、再分散
前に比較して、平均粒径が小さくかつ標準偏差が大きい
特徴を有し、一方残滓として得られる金属微粒子は、再
分散前に比較して、平均粒径が大きくかつ標準偏差が小
さい特徴を有する。本発明の金属微粒子の製造方法によ
れば、色相、明度、及び彩度等が精密に制御された着色
剤、最適な触媒活性を発揮する触媒、均一な膜特性を有
する透明導電膜、さらには単一電子デバイスの基板上に
おいてナノメートルオーダーの精密さで配置される量子
ドットを構成する金属微粒子を容易に提供することがで
きる。
As described above, according to the invention described in the claims of the present application, in a method for producing metal fine particles from an aqueous solution of a metal salt, (1) a reducing agent is added to an aqueous solution of a metal salt. Fine particles are generated, (2) a protective colloid dissolved in a first organic solvent that is incompatible with water is added to prepare a two-phase mixture, and (3) the two-phase mixture is stirred to produce the first mixture. Phase transfer of fine metal particles into an organic solvent,
(4) a step of removing the water and the first organic solvent, and (5) redispersing the metal fine particles in a second organic solvent.
It is possible to produce fine metal particles having a controlled average particle size and particle size distribution. Specifically, by redispersing in the second organic solvent, the redispersed metal fine particles have a feature that the average particle size is small and the standard deviation is large as compared with before the redispersion, while the residue remains. The metal fine particles obtained as above have a feature that the average particle size is larger and the standard deviation is smaller than that before redispersion. According to the method for producing metal fine particles of the present invention, a colorant whose hue, lightness, and saturation are precisely controlled, a catalyst exhibiting optimum catalytic activity, a transparent conductive film having uniform film characteristics, and further It is possible to easily provide the metal fine particles forming the quantum dots arranged with the precision of nanometer order on the substrate of the single electronic device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (a)再分散された金微粒子のTEM像
(b)再分散の結果、残滓として得られた金微粒子のT
EM像
FIG. 1 (a) TEM image of redispersed gold fine particles (b) T of gold fine particles obtained as a residue as a result of redispersion
EM image

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K017 AA03 BA02 DA01 DA07 EJ01 FB07    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K017 AA03 BA02 DA01 DA07 EJ01                       FB07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属塩の水溶液から金属微粒子を製造す
る金属微粒子の製造方法において、(1)金属塩の水溶
液に還元剤を添加し金属微粒子を生成させ、(2)水と
相溶しない第一の有機溶媒に溶解させた保護コロイドを
添加して二相混合物を作製し、(3)前記二相混合物を
攪拌して前記第一の有機溶媒中に金属微粒子を相間移動
させ、(4)前記水及び第一の有機溶媒を除去し、
(5)前記金属微粒子を第二の有機溶媒に再分散させる
工程、からなることを特徴とする金属微粒子の製造方
法。
1. A method for producing metal fine particles from an aqueous solution of a metal salt, comprising: (1) adding a reducing agent to an aqueous solution of a metal salt to produce metal fine particles; A protective colloid dissolved in one organic solvent is added to prepare a two-phase mixture, and (3) the two-phase mixture is stirred to cause phase transfer of metal fine particles into the first organic solvent, (4) Removing the water and the first organic solvent,
(5) A step of redispersing the fine metal particles in a second organic solvent, the method for producing fine metal particles.
【請求項2】 前記金属微粒子が金微粒子である請求項
1記載の金属微粒子の製造方法。
2. The method for producing metal fine particles according to claim 1, wherein the metal fine particles are gold fine particles.
【請求項3】 前記還元剤が水素化ホウ素ナトリウムで
ある請求項1記載の金属微粒子の製造方法。
3. The method for producing metal fine particles according to claim 1, wherein the reducing agent is sodium borohydride.
【請求項4】 前記保護コロイドがオクタンチオールで
ある請求項1記載の金属微粒子の製造方法。
4. The method for producing metal fine particles according to claim 1, wherein the protective colloid is octanethiol.
【請求項5】 前記第二の有機溶媒がヘキサデカン、テ
レピネオール、シクロヘキサンから選ばれたいずれか一
種である請求項1記載の金属微粒子の製造方法。
5. The method for producing metal fine particles according to claim 1, wherein the second organic solvent is any one selected from hexadecane, terpineol, and cyclohexane.
JP2001399112A 2001-12-28 2001-12-28 Method of producing metallic fine particle Pending JP2003193118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001399112A JP2003193118A (en) 2001-12-28 2001-12-28 Method of producing metallic fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399112A JP2003193118A (en) 2001-12-28 2001-12-28 Method of producing metallic fine particle

Publications (1)

Publication Number Publication Date
JP2003193118A true JP2003193118A (en) 2003-07-09

Family

ID=27604273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399112A Pending JP2003193118A (en) 2001-12-28 2001-12-28 Method of producing metallic fine particle

Country Status (1)

Country Link
JP (1) JP2003193118A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089786A (en) * 2004-09-22 2006-04-06 Mitsuboshi Belting Ltd Method for producing metallic nano-particle dispersed in polar solvent
WO2008013002A1 (en) * 2006-07-28 2008-01-31 Asahi Glass Company, Limited Dispersion conatining metal fine particles, process for production of the dispersion, and articles having metal films
WO2010021386A1 (en) 2008-08-22 2010-02-25 日産化学工業株式会社 Metal microparticle-dispersing agent comprising branched polymeric compound having ammonium group
CN103406546A (en) * 2013-07-23 2013-11-27 中国计量学院 Method for preparing flower-like gold nanoparticles controllably
WO2014030825A1 (en) * 2012-08-23 2014-02-27 삼성정밀화학 주식회사 Method for manufacturing metal nanoparticles and method for manufacturing metal nanoparticle ink by same
CN104708007A (en) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 Thermally-driven metal ion phase transfer method for preparing transition metal nanometerials
CN105458282A (en) * 2015-11-24 2016-04-06 陕西师范大学 Method for synthesizing different sizes of nanogold composite materials through 2-aminoethanethiol regulation
JP5945608B2 (en) * 2012-12-21 2016-07-05 日本板硝子株式会社 Gold nanoparticle dispersion for forming conductive film, method for producing the same, and conductive coating composition containing the dispersion
CN109622985A (en) * 2018-12-11 2019-04-16 有研亿金新材料有限公司 A kind of preparation method of high decentrality submicron grade bronze

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089786A (en) * 2004-09-22 2006-04-06 Mitsuboshi Belting Ltd Method for producing metallic nano-particle dispersed in polar solvent
JP5131191B2 (en) * 2006-07-28 2013-01-30 旭硝子株式会社 Method for producing dispersion containing metal fine particles
WO2008013002A1 (en) * 2006-07-28 2008-01-31 Asahi Glass Company, Limited Dispersion conatining metal fine particles, process for production of the dispersion, and articles having metal films
US8722562B2 (en) 2008-08-22 2014-05-13 Nissan Chemical Industries, Ltd. Metal fine particle dispersant containing branched polymer compound having ammonium group
WO2010021386A1 (en) 2008-08-22 2010-02-25 日産化学工業株式会社 Metal microparticle-dispersing agent comprising branched polymeric compound having ammonium group
KR20160062202A (en) 2008-08-22 2016-06-01 닛산 가가쿠 고교 가부시키 가이샤 Metal Microparticle-Dispersing Agent Comprising Branched Polymeric Compound Having Ammonium Group
US10597491B2 (en) 2008-08-22 2020-03-24 Nissan Chemical Corporation Metal fine particle dispersant containing branched polymer compound having ammonium group
WO2014030825A1 (en) * 2012-08-23 2014-02-27 삼성정밀화학 주식회사 Method for manufacturing metal nanoparticles and method for manufacturing metal nanoparticle ink by same
CN104755200A (en) * 2012-08-23 2015-07-01 三星精密化学株式会社 Method for manufacturing metal nanoparticles and method for manufacturing metal nanoparticle ink by same
JP5945608B2 (en) * 2012-12-21 2016-07-05 日本板硝子株式会社 Gold nanoparticle dispersion for forming conductive film, method for producing the same, and conductive coating composition containing the dispersion
CN103406546A (en) * 2013-07-23 2013-11-27 中国计量学院 Method for preparing flower-like gold nanoparticles controllably
CN104708007A (en) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 Thermally-driven metal ion phase transfer method for preparing transition metal nanometerials
CN105458282A (en) * 2015-11-24 2016-04-06 陕西师范大学 Method for synthesizing different sizes of nanogold composite materials through 2-aminoethanethiol regulation
CN109622985A (en) * 2018-12-11 2019-04-16 有研亿金新材料有限公司 A kind of preparation method of high decentrality submicron grade bronze

Similar Documents

Publication Publication Date Title
Lee et al. Spontaneous formation of gold nanostructures in aqueous microdroplets
Feng et al. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process
Yang et al. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis
Chen et al. A review of plasma–liquid interactions for nanomaterial synthesis
Sun et al. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium
Sergeev Nanochemistry of metals
Granata et al. Study of the synthesis of copper nanoparticles: the role of capping and kinetic towards control of particle size and stability
US6103868A (en) Organically-functionalized monodisperse nanocrystals of metals
Choi et al. Preparation of catalytically efficient precious metallic colloids by γ-irradiation and characterization
US7988761B2 (en) Method for manufacturing metal nanoparticles comprising rod-shaped nanoparticles
Kawasaki Surfactant-free solution-based synthesis of metallic nanoparticles toward efficient use of the nanoparticles’ surfaces and their application in catalysis and chemo-/biosensing
JP2006328532A (en) Metal nano particle, method for manufacturing and conductive ink
JP4248857B2 (en) Method for producing silver fine particles
Ali et al. Development of gold tiny particles and particles in different sizes at varying precursor concentration
EP0914244A4 (en)
JP2003193118A (en) Method of producing metallic fine particle
Najafi et al. Synthesis of silver nanoparticles from electronic scrap by chemical reduction
Li et al. Facile synthesis of gold octahedra by direct reduction of HAuCl4 in an aqueous solution
Yang et al. Microfluidic synthesis of ultrasmall Co nanoparticles over reduced graphene oxide and their catalytic properties
JPH05271718A (en) Method for preparing nonaqueous dispersion of fine metal grain and/or fine metallic compound grain
CN105788756B (en) A kind of transparent metal conducting film and preparation method thereof
Nitta et al. Plasma-assisted synthesis of size-controlled monodisperse submicron gold particles using inkjet droplets
Kumar et al. Phase transfer of platinum nanoparticles from aqueous to organic solutions using fatty amine molecules
Vasudevan et al. From faceted nanoparticles to nanostructured thin film by plasma-jet redox reaction of ionic gold
CN102470441B (en) Metal nanoparticles, dispersion containing same, and process for production of same