JP2004183009A - Method of producing metal fine particle - Google Patents

Method of producing metal fine particle Download PDF

Info

Publication number
JP2004183009A
JP2004183009A JP2002348441A JP2002348441A JP2004183009A JP 2004183009 A JP2004183009 A JP 2004183009A JP 2002348441 A JP2002348441 A JP 2002348441A JP 2002348441 A JP2002348441 A JP 2002348441A JP 2004183009 A JP2004183009 A JP 2004183009A
Authority
JP
Japan
Prior art keywords
fine particles
metal fine
metal
organic solvent
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002348441A
Other languages
Japanese (ja)
Other versions
JP4248857B2 (en
Inventor
Emiko Ekusa
恵美子 江草
Kotaro Kuroda
浩太郎 黒田
Shigehiko Hayashi
茂彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2002348441A priority Critical patent/JP4248857B2/en
Publication of JP2004183009A publication Critical patent/JP2004183009A/en
Application granted granted Critical
Publication of JP4248857B2 publication Critical patent/JP4248857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing metal fine particles by which stable metal fine particles can easily be produced. <P>SOLUTION: The method of producing metal fine particles comprises: a stage (1) where a metal salt aqueous solution and an organic solvent which is not miscible with water are stirred and mixed in the presence of an interphase transfer agent selected from aromatic compounds and hydrocarbon compounds having at least one functional group among a carboxyl group, a nitrile group and an amino group, and metallic ions are interphase-transferred to the organic solvent; a stage (2) where the organic solvent comprising metallic ions and a reducing agent are stirred and mixed in the presence of a protective agent selected from nitrile compounds and amine compounds to produce a metal fine particle colloidal solution; and a stage (3) where the solvent is removed, and the surface-protected metal fine particles are obtained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は触媒、光学材料、電子材料、感圧材料などに用いられるナノサイズ金属微粒子の製造方法に関する。
【0002】
【従来の技術】
数十nm以下の粒径を有する貴金属の微粒子は、バルク金属には見られない微粒子に特有の性質を活かして、化学的に安定な着色剤、カラーフィルター、導電性ペースト、化学反応の触媒、透明導電膜等、その応用を拡大している。従来のリソグラフィー技術に基づいたLSIの高集積化の限界を打破する目的で研究が進められている単一電子デバイスにおいては、その一構成要素である量子ドットとして金属微粒子の利用も検討されている。
【0003】
このような金属微粒子を製造する方法として、気相法と液相法がある。気相法にはガス中蒸発法、スパッタリング法等があり、例えばガス中蒸発法では、不活性ガスを導入した真空容器内で金属を蒸発させ、有機溶剤で被覆した状態の金属微粒子が得られる。高濃度の金属微粒子分散液を製造可能である利点を有するが、金属微粒子の粒径分布を制御することは困難である。また、特別な装置を必要とするためコスト面の問題もある。
【0004】
一方、液相法は、金属イオン含有溶液に紫外光を照射あるいは還元剤を加えて金属イオンを還元することによって金属微粒子を得る方法である。なかでも還元剤を用いる方法は、特別な装置を必要とすることなく、比較的容易に粒径分布の狭い金属微粒子を製造することが可能であるといった特徴がある。このような手法として具体的には、保護ポリマーの存在下、金属塩を溶液中で還元してコロイド溶液を得る手法が古くから用いられており、これを応用した技術として、溶媒中に金属塩とアミンを溶解した溶液を還元することにより得られた溶液に、チオールまたはチオール溶液を添加することにより得られる表面がチオールで保護された金属超微粒子を作製する手法が開示されている。(特許文献1参照)
【0005】
更にこれら手法の他に、金属微粒子の製造方法としては、脂肪酸と水酸化ナトリウムを反応させ鹸化後、硝酸銀と反応させることにより脂肪酸塩銀を作製し、窒素存在下250℃で該金属塩を熱分解させることにより銀超微粒子を作製する技術も提案されている。(非特許文献1参照)
【0006】
【非特許文献1】
長澤浩、他5名、「金属錯体の固相熱分解法による銀超微粒子の合成と評価」、超微粒子とクラスター懇談会 第2回研究会公演予稿集、1998年4月22日、P45−48
【特許文献1】
特開平10−195505号公報
【0007】
【発明が解決しようとする課題】
しかし、液相法においても、一般的に粒径分布の狭い金属微粒子を得ることは非常に厳密な条件を必要とし、より厳密に制御された平均粒径及び粒径分布を有する金属微粒子を得ることは困難であるという問題があった。更に、副生成物が多く、安定な銀コロイドが作製できないといった問題も有するものであった。また、熱分解を行う方法においては、不活性ガスの存在下で熱分解を行うことが必要であるために大掛かりな装置を必要とし、また高温条件下で製造を行なう必要がある。本発明はこのような問題点に注目し、安定な金属微粒子を容易に製造することのできる金属微粒子の製造方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
すなわち本願請求項1記載の発明は、金属微粒子の製造方法において、(1)少なくともカルボキシル基、ニトリル基、アミノ基のいずれか1つの官能基を有する芳香族化合物もしくは炭化水素化合物から選ばれてなる相間移動剤の存在下、金属塩水溶液と水と相溶しない有機溶媒を攪拌混合し、有機溶媒に金属イオンを相間移動させる工程、(2)ニトリル化合物もしくはアミン化合物から選ばれてなる保護剤の存在下、金属イオンを含有する有機溶媒と還元剤を攪拌混合し、金属微粒子コロイド溶液を作製する工程、(3)溶媒を除去し、表面保護されたを金属微粒子を得る工程、を含むことを特徴とする。
【0009】
請求項2記載の発明は、請求項1記載の金属微粒子の製造方法にあって、前記金属微粒子が銀微粒子である。
【0010】
請求項3記載の発明は、請求項2記載の金属微粒子の製造方法にあって、前記相間移動剤が安息香酸である。
【0011】
請求項4記載の発明は、請求項1乃至3のいずれかに記載の金属微粒子の製造方法にあって、前記還元剤が水素化ホウ素ナトリウムである。
【0012】
請求項5記載の発明は、請求項1乃至4のいずれかに記載の金属微粒子の製造方法にあって、前記保護剤がアミン化合物である。
【0013】
【発明の実施の形態】
以下、本発明の金属微粒子の製造方法について詳細に説明する。
本発明の製造方法は、(1)少なくともカルボキシル基、ニトリル基、アミノ基のいずれか1つの官能基を有する芳香族化合物もしくは炭化水素化合物から選ばれてなる相間移動剤の存在下、金属塩水溶液と水と相溶しない有機溶媒を攪拌混合し、有機溶媒に金属イオンを相間移動させる工程、(2)ニトリル化合物もしくはアミン化合物から選ばれてなる保護剤の存在下、前記有機溶媒と還元剤を攪拌混合し、金属微粒子コロイド溶液を作製する工程、(3)溶媒を除去し、表面保護されたを金属微粒子を得る工程、を含むことを特徴とする。
【0014】
本発明の対象となる金属微粒子としては、金、銀、銅、白金、パラジウム、ロジウム、ルテニウム、イリジウム、鉄、ニッケル等が挙げられる。金属塩としては、塩化金酸、塩化第一金、塩化第二金、硝酸銀、亜硝酸銀、塩化銀、硫酸銅、硝酸銅、塩化第一白金、塩化第一白金アンモニウム、塩化パラジウム、四塩化パラジウムアンモニウム、六塩化パラジウムアンモニウム、酢酸パラジウム、硝酸パラジウム、三塩化ロジウム、六塩化ロジウムアンモニウム、六塩化ロジウムカリウム、塩化ヘキサミンロジウム、酢酸ロジウム、ニトロソ硝酸ルテニウム、塩化ルテニウム、塩化ルテニウムアンモニウム、塩化ルテニウムカリウム、塩化ルテニウムナトリウム、酢酸ルテニウム、三塩化イリジウム、四塩化イリジウム、六塩化イリジウムアンモニウム、六塩化イリジウム三カリウム、酢酸イリジウム等が挙げられる。前記金属塩の水溶液は濃度0.1mM以上に調整されてなることが望ましい。
【0015】
まず(1)特定の相間移動剤の存在下、前記金属塩水溶液と水と相溶しない有機溶媒を攪拌混合する。
相間移動剤とは、金属イオンに配位して、有機相に金属イオンを移動させるものであって、具体的には、カルボキシル基、ニトリル基、アミノ基のいずれか1つの官能基を有する芳香族化合物もしくは炭化水素化合物から選ばれてなる物質であって、炭素数6以上のものが好ましく用いられる。具体的には、オクチルアミン、ドデカンニトリル、ドデカン酸、安息香酸などが挙げられる。なかでも本発明者らは知見するところによれば、金属が銀である場合、安息香酸が好ましい。これらは単独に限らず、2種以上を併用して用いることができる。また相間移動剤は後工程において、保護剤としての役割も担うと考えられる。
【0016】
有機溶媒は特に限定されず、ノルマルヘキサン、シクロヘキサン、ノルマルペンタン、ノルマルヘプタン、トルエン、メチルイソブチルケトン、キシレン、ベンゼン、クロロホルム、四塩化炭素、メチルエチルケトン、酢酸エチル、酢酸ブチル、酢酸イソブチル、エチルベンゼン等が挙げられる。
【0017】
相間移動剤は、溶液に直接添加してもよいし、あらかじめ有機溶媒に溶解させていても良い。溶液中の相間移動剤の濃度は、金属種にもよるが金属イオンに対して2〜100倍モル程度であることが望ましい。また相間移動時間としては、用いられる金属ならびに相間移動剤などによって異なるが、例えば金属が銀である場合、オクチルアミン、ドデカンニトリル、ドデカン酸などは24時間以上であることが好ましいが、安息香酸の場合は数時間程度でもかまわない。
【0018】
続いて、(2)特定の保護剤の存在下、前記金属イオンを含有する有機溶媒と還元剤を攪拌混合し、金属微粒子コロイド溶液を作製する。
前記保護剤は、有機溶媒中で金属微粒子の凝集による二次粒子の生成を妨げ、金属微粒子を安定化するものであって、ニトリル化合物あるいはアミン化合物が好適に用いられる。具体的には、ニトリル化合物としてはデカンニトリル、ドデカンニトリルなどがある。アミン化合物としては、第1アミン類、第2アミン類、第3アミン類、ジアミン類、ポリアミン類、環式アミン類があげられ、なかでもプロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ペプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン等のアルキルアミンが好適に用いられる。これら保護剤は金属イオンに対して0.1〜10倍モル程度の量を滴下することによって添加する。これらは単独または2種以上を併用して用いることができる。
【0019】
還元剤は通常使用されるもので特に限定されず、水素化ホウ素ナトリウム、水素化ホウ素カリウムなどの水素化ホウ素金属塩、水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウム等の水素化アルミニウム塩、ヒドラジン化合物、クエン酸及びその塩、コハク酸及びその塩、アスコルビン酸及びその塩等がある。還元剤の添加方法としては、直接溶液中に還元剤を添加する方法、または予め還元剤を溶解させた溶液を添加する方法のどちらでもよいが、前記各種還元剤を水あるいはエタノール、プロパノール等のアルコールに溶解した状態で、前記金属イオンを含む有機溶媒に添加することが好ましい。
【0020】
前記混合物全体を、攪拌子等を用いて1時間以上混合攪拌した後静置することによって、各金属微粒子に特有の色に着色した有機相を得る。この金属微粒子コロイド溶液は、例えば金微粒子の場合、520nm付近に、銀微粒子の場合、420nm付近に特有の吸収を示し、それによって各金属微粒子の生成が確認される。
【0021】
そして(3)溶媒を除去し、表面保護されたを金属微粒子を得る。
前記有機相のみを分離し、乾燥させることにより、保護剤によって表面保護された金属微粒子を得る。尚、有機相に貧溶媒(溶質に対して溶解度の小さい溶媒)を加えることで迅速に金属微粒子を沈殿せしめることができる。有機相のみを分離するには、分液ロートを用いる方法、有機相のみを吸引する方法、あるいは単純にデカンテーションによってもよい。この沈殿物を洗浄し、不純物を除去することにより、高濃度の金属微粒子を得ることができる。
また、得られた金属微粒子を別の有機溶媒に再分散させることにより、制御された平均粒径及び粒径分布を有する金属微粒子を得ることもできる。ここで再分散させる有機溶媒としては、例えばトルエン、イソオクタン、キシレン、ヘキサン、ジエチルベンゼン、テルピネオール、ヘキサデカン、あるいはシクロヘキサンが好ましい。
【0022】
【実施例】
以下、本発明の金属微粒子の製造方法について、実施例を示しさらに詳細に説明する。
硝酸銀水溶液(3.0×10−2mol/l)4mlに、表1の相間移動剤を溶解させたトルエン溶液(5.0×10−2mol/l)64mlを加えて、室温雰囲気下で10分間攪拌した後静置し、金属イオンの相間移動速度について評価した。尚、評価は静置してから5時間、24時間後の溶液に還元剤を滴下して銀微粒子が生成を観察することにより判断した。表1に結果を示す。
【0023】
【表1】

Figure 2004183009
【0024】
結果、カルボキシル基、ニトリル基、アミノ基を官能基として有さない化合物を相間移動剤として使用した試料では、24時間経過後も有機相に銀イオンの存在が確認されなかった。また安息香酸を相間移動剤として使用した場合は、銀イオンの相間移動速度が早いことが判明した。
【0025】
次に、硝酸銀水溶液(3.0×10−2mol/l)4mlに、相間移動剤を溶解させたトルエン溶液(5.0×10−2mol/l)64mlを加えて、室温雰囲気下で10分間攪拌した後、24時間静置した。続いて、保護剤を0.10g加えて10分間攪拌した後、水酸化ホウ素ナトリウム水溶液(0.4mol/l)を加え、3時間以上攪拌した。相間移動剤、保護剤は表2に示す組合せで使用し、得られた有機相の着色の有無を観測して銀微粒子コロイド生成状況を評価した。尚、銀微粒子コロイド溶液は茶黄色を呈することが知られており、結果を表2に併記する。
【0026】
【表2】
Figure 2004183009
【0027】
結果、アミン化合物、ニトリル化合物以外の化合物を保護剤として使用した試料では銀微粒子コロイドの生成がみられなかった。また保護剤としてニトリル化合物を使用した場合、銀微粒子コロイドは生成されるものの、有機相と水相の相間や壁面に副生成物が観察されることがあった。
【0028】
次に、上記コロイド溶液の有機相を分離し、エタノールを加えた後、吸引濾過により褐色の沈殿物を得た。この沈殿物をトルエンに再分散して、紫外可視吸収スペクトルを測定したところ、図1に示すように銀微粒子に起因すると考えられる波長433.5nmに極大値が見られた。また透過型電子顕微鏡により、図2に示すように粒子径2〜10nmの大きさの銀微粒子が観測された。これらの結果より、銀微粒子が合成できたことが確認できた。
【0029】
【発明の効果】
以上説明したように、本願請求項記載の発明は、金属微粒子の製造方法において、(1)少なくともカルボキシル基、ニトリル基、アミノ基のいずれか1つの官能基を有する芳香族化合物もしくは炭化水素化合物から選ばれてなる相間移動剤の存在下、金属塩水溶液と水と相溶しない有機溶媒を攪拌混合し、有機溶媒に金属イオンを相間移動させる工程、(2)ニトリル化合物もしくはアミン化合物から選ばれてなる保護剤の存在下、金属イオンを含有する有機溶媒と還元剤を攪拌混合し、金属微粒子コロイド溶液を作製する工程、(3)溶媒を除去し、表面保護されたを金属微粒子を得る工程、を含むことを特徴とする金属微粒子の製造方法であって、簡易に安定な金属微粒子を製造することができる。また金属が銀の場合、特定の相間移動剤を用いることで、金属イオンの相間移動速度が速くなり、生産性が高まることを知見した。更に特定の保護剤を用いることにより、副生成物が少なく、より安定な金属微粒子が得られることが判った。
【図面の簡単な説明】
【図1】実施例により得られた沈殿物をトルエンに再分散させた物質の紫外可視吸収スペクトル(UV−VIS)である。
【図2】実施例により得られた沈殿物をトルエンに再分散させた物質の透過型電子顕微鏡(TEM)像である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing nano-sized metal fine particles used for a catalyst, an optical material, an electronic material, a pressure-sensitive material, and the like.
[0002]
[Prior art]
Noble metal particles having a particle size of several tens of nanometers or less make use of the unique properties of fine particles not found in bulk metals, and use chemically stable coloring agents, color filters, conductive pastes, catalysts for chemical reactions, Its applications, such as transparent conductive films, are expanding. In single-electron devices, which are being studied for breaking the limits of high integration of LSIs based on conventional lithography technology, the use of metal fine particles as quantum dots, which is one of the components, is also being studied. .
[0003]
Methods for producing such metal fine particles include a gas phase method and a liquid phase method. The vapor phase method includes a gas evaporation method, a sputtering method, and the like. For example, in the gas evaporation method, metal is evaporated in a vacuum vessel into which an inert gas is introduced, and metal fine particles coated with an organic solvent are obtained. . Although it has the advantage of being able to produce a metal particle dispersion having a high concentration, it is difficult to control the particle size distribution of the metal particles. In addition, there is a problem in terms of cost because a special device is required.
[0004]
On the other hand, the liquid phase method is a method of obtaining metal fine particles by irradiating a metal ion-containing solution with ultraviolet light or adding a reducing agent to reduce metal ions. Among them, the method using a reducing agent has a feature that metal fine particles having a narrow particle size distribution can be produced relatively easily without requiring a special apparatus. As such a technique, specifically, a technique of obtaining a colloid solution by reducing a metal salt in a solution in the presence of a protective polymer has been used for a long time. Discloses a method for producing ultrafine metal particles whose surface is protected by thiol by adding a thiol or a thiol solution to a solution obtained by reducing a solution obtained by dissolving an amine and an amine. (See Patent Document 1)
[0005]
In addition to these methods, as a method for producing metal fine particles, a fatty acid is reacted with sodium hydroxide, saponified, and then reacted with silver nitrate to produce silver salt of a fatty acid, and the metal salt is heated at 250 ° C. in the presence of nitrogen. A technique for producing ultrafine silver particles by decomposition is also proposed. (See Non-Patent Document 1)
[0006]
[Non-patent document 1]
Hiroshi Nagasawa and 5 others, "Synthesis and evaluation of silver ultrafine particles by solid-phase pyrolysis of metal complex", Ultrafine Particles and Cluster Roundtable, 2nd Workshop, April 22, 1998, P45- 48
[Patent Document 1]
JP 10-195505 A
[Problems to be solved by the invention]
However, even in the liquid phase method, it is generally necessary to obtain very fine metal fine particles having a narrow particle size distribution, and to obtain metal fine particles having a more strictly controlled average particle size and particle size distribution. There was a problem that it was difficult. Further, there is a problem that many by-products cannot be produced and a stable silver colloid cannot be produced. Further, in the method of performing thermal decomposition, it is necessary to perform thermal decomposition in the presence of an inert gas, so a large-scale apparatus is required, and production must be performed under high temperature conditions. An object of the present invention is to pay attention to such a problem and to provide a method for producing fine metal particles that can easily produce stable fine metal particles.
[0008]
[Means for Solving the Problems]
That is, the invention according to claim 1 of the present application is the method for producing metal fine particles, wherein (1) an aromatic compound or a hydrocarbon compound having at least one functional group of a carboxyl group, a nitrile group, and an amino group. A step of stirring and mixing an aqueous metal salt solution and an organic solvent incompatible with water in the presence of a phase transfer agent to phase-transfer metal ions to the organic solvent; (2) a step of preparing a protective agent selected from a nitrile compound or an amine compound; A step of preparing a metal fine particle colloid solution by stirring and mixing an organic solvent containing a metal ion and a reducing agent in the presence thereof, and (3) a step of removing the solvent to obtain surface-protected metal fine particles. Features.
[0009]
According to a second aspect of the present invention, in the method for producing metal fine particles according to the first aspect, the metal fine particles are silver fine particles.
[0010]
The invention according to claim 3 is the method for producing metal fine particles according to claim 2, wherein the phase transfer agent is benzoic acid.
[0011]
The invention according to claim 4 is the method for producing metal fine particles according to any one of claims 1 to 3, wherein the reducing agent is sodium borohydride.
[0012]
The invention according to claim 5 is the method for producing metal fine particles according to any one of claims 1 to 4, wherein the protective agent is an amine compound.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the method for producing metal fine particles of the present invention will be described in detail.
The production method of the present invention comprises: (1) an aqueous metal salt solution in the presence of a phase transfer agent selected from an aromatic compound or a hydrocarbon compound having at least one functional group of a carboxyl group, a nitrile group, and an amino group And mixing an organic solvent that is incompatible with water with water to phase-transfer the metal ion into the organic solvent. (2) The organic solvent and the reducing agent are mixed in the presence of a protective agent selected from a nitrile compound or an amine compound. It is characterized by comprising a step of stirring and mixing to prepare a metal fine particle colloid solution, and (3) a step of removing a solvent to obtain surface-protected metal fine particles.
[0014]
Examples of the metal fine particles targeted by the present invention include gold, silver, copper, platinum, palladium, rhodium, ruthenium, iridium, iron, nickel and the like. Metal salts include chloroauric acid, gold (II) chloride, gold (II) chloride, silver nitrate, silver nitrite, silver chloride, copper sulfate, copper nitrate, platinum (l) chloride, ammonium (l) platinum chloride, palladium chloride, palladium tetrachloride Ammonium, palladium ammonium chloride, palladium acetate, palladium nitrate, rhodium trichloride, rhodium ammonium chloride, rhodium potassium chloride, hexamine rhodium chloride, rhodium acetate, ruthenium nitrosonitrate, ruthenium chloride, ruthenium ammonium chloride, ruthenium potassium chloride, chloride Examples thereof include ruthenium sodium, ruthenium acetate, iridium trichloride, iridium tetrachloride, iridium ammonium hexachloride, tripotassium iridium hexachloride, and iridium acetate. The aqueous solution of the metal salt is desirably adjusted to a concentration of 0.1 mM or more.
[0015]
First, (1) in the presence of a specific phase transfer agent, the metal salt aqueous solution and an organic solvent incompatible with water are stirred and mixed.
The phase transfer agent is a substance which coordinates a metal ion and transfers the metal ion to an organic phase, and specifically, an aromatic compound having any one of a carboxyl group, a nitrile group and an amino group. A substance selected from group compounds or hydrocarbon compounds and having 6 or more carbon atoms is preferably used. Specific examples include octylamine, dodecanenitrile, dodecanoic acid, benzoic acid, and the like. Among them, the present inventors have found that when the metal is silver, benzoic acid is preferred. These can be used alone or in combination of two or more. Further, it is considered that the phase transfer agent also plays a role as a protective agent in a later step.
[0016]
The organic solvent is not particularly limited, and examples thereof include normal hexane, cyclohexane, normal pentane, normal heptane, toluene, methyl isobutyl ketone, xylene, benzene, chloroform, carbon tetrachloride, methyl ethyl ketone, ethyl acetate, butyl acetate, isobutyl acetate, and ethylbenzene. Can be
[0017]
The phase transfer agent may be added directly to the solution, or may be previously dissolved in an organic solvent. The concentration of the phase transfer agent in the solution depends on the metal species, but is preferably about 2 to 100 times the molar amount of the metal ion. Further, the phase transfer time varies depending on the metal used and the phase transfer agent, etc., for example, when the metal is silver, octylamine, dodecanenitrile, dodecanoic acid and the like are preferably 24 hours or more. In this case, it may be several hours.
[0018]
Subsequently, (2) the organic solvent containing the metal ion and the reducing agent are stirred and mixed in the presence of the specific protective agent to prepare a metal fine particle colloid solution.
The protective agent prevents secondary particles due to aggregation of metal fine particles in an organic solvent and stabilizes the metal fine particles, and a nitrile compound or an amine compound is preferably used. Specifically, examples of the nitrile compound include decannitrile and dodecanenitrile. Examples of the amine compound include primary amines, secondary amines, tertiary amines, diamines, polyamines, and cyclic amines, among which propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, and octyl. Alkylamines such as amine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine and hexadecylamine are preferably used. These protective agents are added by dropwise addition in an amount of about 0.1 to 10 times the mole of the metal ion. These can be used alone or in combination of two or more.
[0019]
The reducing agent is commonly used and is not particularly limited. Examples thereof include sodium borohydride, metal borohydride salts such as potassium borohydride, lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, and beryllium aluminum hydride. , Aluminum hydride salts such as aluminum magnesium hydride and calcium aluminum hydride, hydrazine compounds, citric acid and its salts, succinic acid and its salts, ascorbic acid and its salts, and the like. As a method of adding the reducing agent, either a method of directly adding the reducing agent to the solution or a method of adding a solution in which the reducing agent is dissolved in advance may be used, but the various reducing agents may be water or ethanol, propanol or the like. It is preferable to add the solution dissolved in alcohol to the organic solvent containing the metal ion.
[0020]
The whole mixture is mixed and stirred using a stirrer or the like for at least one hour and then allowed to stand to obtain an organic phase colored in a color unique to each metal fine particle. This colloidal solution of metal fine particles shows a specific absorption around 520 nm in the case of gold fine particles and around 420 nm in the case of silver fine particles, thereby confirming the generation of each metal fine particle.
[0021]
Then, (3) the solvent is removed to obtain metal fine particles whose surface is protected.
By separating and drying only the organic phase, metal fine particles whose surface is protected by a protective agent are obtained. In addition, by adding a poor solvent (a solvent having a low solubility to a solute) to the organic phase, metal fine particles can be precipitated quickly. To separate only the organic phase, a method using a separating funnel, a method of sucking only the organic phase, or simply decantation may be used. By washing this precipitate and removing impurities, high-concentration metal fine particles can be obtained.
Further, by re-dispersing the obtained metal fine particles in another organic solvent, it is also possible to obtain metal fine particles having a controlled average particle size and a controlled particle size distribution. Here, as the organic solvent to be redispersed, for example, toluene, isooctane, xylene, hexane, diethylbenzene, terpineol, hexadecane, or cyclohexane is preferable.
[0022]
【Example】
Hereinafter, the method for producing metal fine particles of the present invention will be described in more detail with reference to examples.
To 4 ml of an aqueous silver nitrate solution (3.0 × 10 −2 mol / l), 64 ml of a toluene solution (5.0 × 10 −2 mol / l) in which the phase transfer agent of Table 1 was dissolved was added, and the mixture was stirred at room temperature. After stirring for 10 minutes, the mixture was allowed to stand, and the phase transfer speed of metal ions was evaluated. The evaluation was made by observing the formation of fine silver particles by dropping a reducing agent into the solution 5 hours and 24 hours after standing. Table 1 shows the results.
[0023]
[Table 1]
Figure 2004183009
[0024]
As a result, in a sample using a compound having no carboxyl group, nitrile group or amino group as a functional group as a phase transfer agent, the presence of silver ions in the organic phase was not confirmed even after 24 hours. It was also found that when benzoic acid was used as a phase transfer agent, the phase transfer speed of silver ions was high.
[0025]
Next, 64 ml of a toluene solution (5.0 × 10 −2 mol / l) in which a phase transfer agent was dissolved was added to 4 ml of an aqueous silver nitrate solution (3.0 × 10 −2 mol / l), and the mixture was added at room temperature. After stirring for 10 minutes, the mixture was allowed to stand for 24 hours. Subsequently, 0.10 g of a protective agent was added, and the mixture was stirred for 10 minutes. Then, an aqueous sodium borohydride solution (0.4 mol / l) was added, and the mixture was stirred for 3 hours or more. The phase transfer agent and the protective agent were used in combinations shown in Table 2, and the presence or absence of coloring of the obtained organic phase was observed to evaluate the state of silver fine particle colloid formation. The silver fine particle colloid solution is known to exhibit a brown yellow color, and the results are also shown in Table 2.
[0026]
[Table 2]
Figure 2004183009
[0027]
As a result, in the sample using a compound other than the amine compound and the nitrile compound as the protective agent, no silver fine particle colloid was formed. When a nitrile compound is used as a protective agent, a silver fine particle colloid is generated, but by-products are sometimes observed between the organic phase and the aqueous phase or on the wall surface.
[0028]
Next, the organic phase of the colloid solution was separated, ethanol was added, and then a brown precipitate was obtained by suction filtration. This precipitate was re-dispersed in toluene and the ultraviolet-visible absorption spectrum was measured. As a result, as shown in FIG. 1, a maximum value was observed at a wavelength of 433.5 nm, which is considered to be caused by silver fine particles. Further, as shown in FIG. 2, silver fine particles having a particle size of 2 to 10 nm were observed by a transmission electron microscope. From these results, it was confirmed that silver fine particles could be synthesized.
[0029]
【The invention's effect】
As described above, the invention as claimed in the present application provides a method for producing metal fine particles, which comprises the steps of (1) using an aromatic compound or a hydrocarbon compound having at least one functional group of a carboxyl group, a nitrile group, and an amino group. A step of mixing and stirring a metal salt aqueous solution and an organic solvent that is incompatible with water in the presence of the selected phase transfer agent to cause phase transfer of metal ions to the organic solvent; (2) a step selected from a nitrile compound or an amine compound A step of preparing a metal fine particle colloid solution by stirring and mixing an organic solvent containing a metal ion and a reducing agent in the presence of a protective agent to form a metal fine particle colloid solution; and (3) removing the solvent to obtain surface-protected metal fine particles. And producing stable metal fine particles easily. In addition, it has been found that when the metal is silver, the use of a specific phase transfer agent increases the phase transfer speed of metal ions and increases productivity. Furthermore, it has been found that by using a specific protective agent, more stable metal fine particles can be obtained with less by-products.
[Brief description of the drawings]
FIG. 1 is an ultraviolet-visible absorption spectrum (UV-VIS) of a substance obtained by redispersing a precipitate obtained in an example in toluene.
FIG. 2 is a transmission electron microscope (TEM) image of a substance obtained by redispersing a precipitate obtained in an example in toluene.

Claims (5)

金属微粒子の製造方法において、(1)少なくともカルボキシル基、ニトリル基、アミノ基のいずれか1つの官能基を有する芳香族化合物もしくは炭化水素化合物から選ばれてなる相間移動剤の存在下、金属塩水溶液と水と相溶しない有機溶媒を攪拌混合し、有機溶媒に金属イオンを相間移動させる工程、(2)ニトリル化合物もしくはアミン化合物から選ばれてなる保護剤の存在下、金属イオンを含有する有機溶媒と還元剤を攪拌混合し、金属微粒子コロイド溶液を作製する工程、(3)溶媒を除去し、表面保護されたを金属微粒子を得る工程、を含むことを特徴とする金属微粒子の製造方法。In the method for producing metal fine particles, (1) a metal salt aqueous solution in the presence of a phase transfer agent selected from an aromatic compound or a hydrocarbon compound having at least one functional group of a carboxyl group, a nitrile group, and an amino group And mixing an organic solvent that is incompatible with water with water to phase-transfer the metal ion into the organic solvent, (2) an organic solvent containing a metal ion in the presence of a protective agent selected from a nitrile compound or an amine compound. And a reducing agent with stirring to produce a metal fine particle colloid solution, and (3) a step of removing the solvent to obtain surface-protected metal fine particles. 前記金属微粒子が銀微粒子である請求項1記載の金属微粒子の製造方法。The method for producing metal fine particles according to claim 1, wherein the metal fine particles are silver fine particles. 前記相間移動剤が安息香酸である請求項2記載の金属微粒子の製造方法。3. The method according to claim 2, wherein the phase transfer agent is benzoic acid. 前記還元剤が水素化ホウ素ナトリウムである請求項1乃至3のいずれかに記載の金属微粒子の製造方法。The method for producing metal fine particles according to any one of claims 1 to 3, wherein the reducing agent is sodium borohydride. 前記保護剤がアミン化合物である請求項1乃至4のいずれかに記載の金属微粒子の製造方法。The method for producing metal fine particles according to any one of claims 1 to 4, wherein the protective agent is an amine compound.
JP2002348441A 2002-11-29 2002-11-29 Method for producing silver fine particles Expired - Fee Related JP4248857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348441A JP4248857B2 (en) 2002-11-29 2002-11-29 Method for producing silver fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348441A JP4248857B2 (en) 2002-11-29 2002-11-29 Method for producing silver fine particles

Publications (2)

Publication Number Publication Date
JP2004183009A true JP2004183009A (en) 2004-07-02
JP4248857B2 JP4248857B2 (en) 2009-04-02

Family

ID=32751352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348441A Expired - Fee Related JP4248857B2 (en) 2002-11-29 2002-11-29 Method for producing silver fine particles

Country Status (1)

Country Link
JP (1) JP4248857B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118010A (en) * 2004-10-22 2006-05-11 Toda Kogyo Corp Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
WO2006057348A1 (en) * 2004-11-29 2006-06-01 Dainippon Ink And Chemicals, Inc. Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
WO2006082996A1 (en) 2005-02-02 2006-08-10 Dowa Electronics Materials Co., Ltd. Silver particle powder and process for producing the same
JP2007019055A (en) * 2005-07-05 2007-01-25 Dowa Holdings Co Ltd Silver particle dispersion liquid
EP1844884A1 (en) * 2005-02-02 2007-10-17 DOWA Electronics Materials Co., Ltd. Silver particle powder and process for producing the same
WO2008032733A1 (en) * 2006-09-12 2008-03-20 Nippon Shokubai Co., Ltd. Metal nanoparticle dispersion, metal coating film and method for producing metal nanoparticle
US7390440B2 (en) * 2004-03-10 2008-06-24 Asahi Glass Company, Limited Process for producing metal-containing particles having their surface coated with at least two dispersants different in vaporization temperature
JP2008521591A (en) * 2004-11-26 2008-06-26 ソウル ナショナル ユニバーシティー インダストリー ファンデーション New mass production method of monodisperse nanoparticles
JP2009114547A (en) * 2009-02-16 2009-05-28 Dowa Electronics Materials Co Ltd Silver particle powder and dispersion liquid
JP2009545657A (en) * 2006-08-03 2009-12-24 フライズ・メタルズ・インコーポレイテッド Particles and inks and films using them
CN101643201A (en) * 2008-08-07 2010-02-10 施乐公司 Silver nanoparticle process
EP2156911A1 (en) * 2008-08-18 2010-02-24 Xerox Corporation Silver nanoparticles and process for producing same
WO2010036114A2 (en) * 2008-09-29 2010-04-01 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and kit for manufacturing metal nanoparticles and metal-containing nanostructured composite materials
US7744834B2 (en) 2006-07-10 2010-06-29 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing metal nanoparticles
EP2281646A1 (en) * 2009-07-02 2011-02-09 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method and kit for manufacturing metal nanoparticles and metal-containing nanostructured composite materials
KR101236249B1 (en) * 2005-03-01 2013-02-22 도와 홀딩스 가부시키가이샤 Silver particle powder and method of manufacturing same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390440B2 (en) * 2004-03-10 2008-06-24 Asahi Glass Company, Limited Process for producing metal-containing particles having their surface coated with at least two dispersants different in vaporization temperature
JP2006118010A (en) * 2004-10-22 2006-05-11 Toda Kogyo Corp Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
JP2011224558A (en) * 2004-11-26 2011-11-10 Seoul National Univ Industry Foundation New process for large-scale production of monodisperse nanoparticles
JP2008521591A (en) * 2004-11-26 2008-06-26 ソウル ナショナル ユニバーシティー インダストリー ファンデーション New mass production method of monodisperse nanoparticles
WO2006057348A1 (en) * 2004-11-29 2006-06-01 Dainippon Ink And Chemicals, Inc. Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
US7771625B2 (en) 2004-11-29 2010-08-10 Dainippon Ink And Chemicals, Inc. Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
JP4706637B2 (en) * 2004-11-29 2011-06-22 Dic株式会社 Conductive paste and method for producing conductive paste
JPWO2006057348A1 (en) * 2004-11-29 2008-06-05 Dic株式会社 Method for producing surface-treated silver-containing powder, and silver paste using surface-treated silver-containing powder
KR101236260B1 (en) * 2005-02-02 2013-02-22 도와 일렉트로닉스 가부시키가이샤 Silver particle powder and process for producing the same
EP1844883A4 (en) * 2005-02-02 2009-08-05 Dowa Electronics Materials Co Silver particle powder and process for producing the same
EP1844884A4 (en) * 2005-02-02 2009-08-12 Dowa Electronics Materials Co Silver particle powder and process for producing the same
EP1844884A1 (en) * 2005-02-02 2007-10-17 DOWA Electronics Materials Co., Ltd. Silver particle powder and process for producing the same
EP1844883A1 (en) * 2005-02-02 2007-10-17 DOWA Electronics Materials Co., Ltd. Silver particle powder and process for producing the same
WO2006082996A1 (en) 2005-02-02 2006-08-10 Dowa Electronics Materials Co., Ltd. Silver particle powder and process for producing the same
KR101236249B1 (en) * 2005-03-01 2013-02-22 도와 홀딩스 가부시키가이샤 Silver particle powder and method of manufacturing same
JP2007019055A (en) * 2005-07-05 2007-01-25 Dowa Holdings Co Ltd Silver particle dispersion liquid
US7744834B2 (en) 2006-07-10 2010-06-29 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing metal nanoparticles
US9217088B2 (en) 2006-08-03 2015-12-22 Alpha Metals, Inc. Particles and inks and films using them
JP2009545657A (en) * 2006-08-03 2009-12-24 フライズ・メタルズ・インコーポレイテッド Particles and inks and films using them
WO2008032733A1 (en) * 2006-09-12 2008-03-20 Nippon Shokubai Co., Ltd. Metal nanoparticle dispersion, metal coating film and method for producing metal nanoparticle
CN101643201A (en) * 2008-08-07 2010-02-10 施乐公司 Silver nanoparticle process
EP2161087A1 (en) 2008-08-07 2010-03-10 Xerox Corporation Silver nanoparticle process
US8382878B2 (en) 2008-08-07 2013-02-26 Xerox Corporation Silver nanoparticle process
US8298314B2 (en) 2008-08-18 2012-10-30 Xerox Corporation Silver nanoparticles and process for producing same
EP2156911A1 (en) * 2008-08-18 2010-02-24 Xerox Corporation Silver nanoparticles and process for producing same
WO2010036114A3 (en) * 2008-09-29 2010-12-16 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and kit for manufacturing metal nanoparticles and metal-containing nanostructured composite materials
WO2010036114A2 (en) * 2008-09-29 2010-04-01 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and kit for manufacturing metal nanoparticles and metal-containing nanostructured composite materials
JP2009114547A (en) * 2009-02-16 2009-05-28 Dowa Electronics Materials Co Ltd Silver particle powder and dispersion liquid
EP2281646A1 (en) * 2009-07-02 2011-02-09 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method and kit for manufacturing metal nanoparticles and metal-containing nanostructured composite materials

Also Published As

Publication number Publication date
JP4248857B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
Bhattarai et al. Green synthesis of gold and silver nanoparticles: Challenges and opportunities
JP4248857B2 (en) Method for producing silver fine particles
US6103868A (en) Organically-functionalized monodisperse nanocrystals of metals
Yamamoto et al. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine
Huang et al. Synthesis and characterization of bovine serum albumin-conjugated copper sulfide nanocomposites
Yuan et al. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer
CN101111334B (en) Silver particle powder and process for producing the same
TWI272983B (en) Silver powder and method of preparing the same
CN105452156B (en) The carbon carrier metal nanoparticle compound for preparing the method for carbon carrier metal nanoparticle compound and being prepared by this method
EP0914244A4 (en)
JP2008106315A (en) Metal nanoparticle and production method therefor
JP2009120940A (en) Method of manufacturing metal nanoparticle
TW201430168A (en) Method for preparing nanowire having core-shell structure
WO2014119793A1 (en) Metallic silver separation method, coated silver fine particles, and thin, linear, coated metallic silver
Aziz et al. Preparation of monodispersed carboxylate-functionalized gold nanoparticles using pamoic acid as a reducing and capping reagent
Yamanoi et al. Detailed Structural Examinations of Covalently Immobilized Gold Nanoparticles onto Hydrogen‐Terminated Silicon Surfaces
JP2006089786A (en) Method for producing metallic nano-particle dispersed in polar solvent
Abutbul et al. ‘Beneficial impurities’ in colloidal synthesis of surfactant coated inorganic nanoparticles
CN102858684A (en) Method for the mass production of silver nanoparticles having a uniform size
Feng et al. Converting ultrafine silver nanoclusters to monodisperse silver sulfide nanoparticles via a reversible phase transfer protocol
Fricke et al. Miniemulsion-based process for controlling the size and shape of zinc oxide nanoparticles
JP2004051997A (en) Dispersion liquid of metallic microparticles, preparation method therefor, transparent colored film and manufacturing method therefor
Kumar et al. Sonochemistry of molten gallium
JPH10195505A (en) Metallic superfine particle and production thereof
JP2003193118A (en) Method of producing metallic fine particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4248857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees