JPH10195505A - Metallic superfine particle and production thereof - Google Patents

Metallic superfine particle and production thereof

Info

Publication number
JPH10195505A
JPH10195505A JP9001940A JP194097A JPH10195505A JP H10195505 A JPH10195505 A JP H10195505A JP 9001940 A JP9001940 A JP 9001940A JP 194097 A JP194097 A JP 194097A JP H10195505 A JPH10195505 A JP H10195505A
Authority
JP
Japan
Prior art keywords
solution
thiol
ultrafine
amine
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9001940A
Other languages
Japanese (ja)
Inventor
Koichi Mizuma
浩一 水間
Toyoji Hayashi
豊治 林
Takashi Kawaseki
孝志 河関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP9001940A priority Critical patent/JPH10195505A/en
Publication of JPH10195505A publication Critical patent/JPH10195505A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce metallic superfine particles stably present, furthermore easy to work, wide in the selection range in the product forms and excellent in operability by adding thiol or a thiol soln. to a soln. obtd. by reducing a soln. in which metallic salt and amine are dissolved. SOLUTION: As metallic salt, the halide of gold or the like are given, as amine, ethylamine or the like are given, and, as a solvent, acetone or the like are given. In the case the soln. thereof is added with the hydroxide of iodine or the like as a reducing agent, the soln. contg. metallic superfine particles whose surfaces are protected by amine can be obtd. In the case this is added with thiol or a thiol soln., the metallic superfine particles whose surfaces are protected by thiol can be obtd. As thiol, methanethiol or the like are given. The thiol soln. is the one in which thiol is dissolved in the above solvent. Since the obtd. superfine particles can be discharged as powder without being coagulated with each other, the mixing thereof with the other compositional components and superfine particles is made easy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、信号灯等に利用さ
れる光波長カットフィルターなどの光学材料、導電体や
抵抗体等に利用される電子材料、加圧により電気抵抗値
の変化を感知できる感圧材料、磁気記録等に利用される
磁性材料、位相共役波発生や光双安定現象などを利用す
る非線形光電子材料、触媒反応性材料や無機材料原料な
どに用いられる金属超微粒子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical material such as an optical wavelength cut filter used for a signal light, an electronic material used for a conductor or a resistor, and a change in electric resistance value can be sensed by pressing. It relates to a method for producing pressure-sensitive materials, magnetic materials used for magnetic recording, etc., nonlinear optoelectronic materials utilizing phase conjugate wave generation and optical bistability, and ultrafine metal particles used for catalytically reactive materials and inorganic material raw materials. .

【0002】[0002]

【従来の技術】超微粒子とは粒子径が1〜100nmの
粒子をいう。このような小粒子径の超微粒子において
は、通常の機械的な粉砕などによって製造される粒子径
がマイクロメートル以上の粉体と比べて、さまざまな光
学的、磁気的及び電気的性質やその化学的反応性に際だ
った差異が見られ、導電性材料などの電子デバイスや非
線形光学材料などの光電子デバイスとしての利用が注目
されている。
2. Description of the Related Art Ultrafine particles refer to particles having a particle size of 1 to 100 nm. Ultra-fine particles with such a small particle size have various optical, magnetic and electrical properties and chemical properties compared to powders with a particle size of micrometer or more produced by ordinary mechanical grinding or the like. There is a remarkable difference in thermal reactivity, and attention has been paid to its use as an electronic device such as a conductive material and an optoelectronic device such as a nonlinear optical material.

【0003】金属超微粒子の製造方法としては、保護ポ
リマー存在のもと金属塩を溶液中で還元する手法により
コロイド溶液としては古くから種々合成されている。水
溶液中での合成として、塩化ロジウムとポリビニルアル
コールの水溶液に水酸化ナトリウムを加えて水酸化ロジ
ウムに変えた後、水素還元することで金属ロジウムコロ
イド溶液を得た例、(J.Colloid.Sci.,
Vol.3,363〜366(1948))また、過塩
素酸銀をポリリン酸ナトリウム存在下、水素化ホウ素ナ
トリウムを添加して還元、銀超微粒子コロイド溶液を得
るという方法がある(J.Am.Chem.Soc.,
Vol.112,4657〜4664(1990))。
As a method for producing ultrafine metal particles, various methods have been used for a long time as a colloid solution by a technique of reducing a metal salt in a solution in the presence of a protective polymer. As an example of synthesis in an aqueous solution, sodium hydroxide is added to an aqueous solution of rhodium chloride and polyvinyl alcohol to convert it to rhodium hydroxide, and then hydrogen reduction is performed to obtain a metal rhodium colloid solution, (J. Colloid. Sci. ,
Vol. 3,363-366 (1948)) There is a method in which silver perchlorate is reduced by adding sodium borohydride in the presence of sodium polyphosphate to obtain a silver ultrafine particle colloid solution (J. Am. Chem. Soc.,
Vol. 112, 4657-4664 (1990)).

【0004】水と有機溶媒との混合溶媒系、または有機
溶媒中での金属超微粒子合成例も報告されている。メタ
ノール/水混合溶媒中でポリビニルアルコール存在下、
塩化パラジウムを加熱還元してパラジウム超微粒子コロ
イド溶液を、酸化オスミウムを加熱還元してオスミウム
超微粒子コロイド溶液を合成している。同様な手法で、
ポリビニルピロリドン存在のもとエタノール中では硝酸
銀、塩化パラジウム、酸化オスミウムを加熱還元して各
々、銀超微粒子コロイド溶液、パラジウム超微粒子コロ
イド溶液、オスミウム超微粒子コロイド溶液を合成した
例、更にはメタノール中では水酸化ナトリウム共存のも
と、硝酸銀、塩化白金酸、塩化金酸を加熱還元して銀超
微粒子コロイド溶液、白金超微粒子コロイド溶液、金超
微粒子コロイド溶液を合成するという方法がある(表
面、Vol.17,279〜289(1979))。
[0004] Examples of synthesizing ultrafine metal particles in a mixed solvent system of water and an organic solvent or in an organic solvent have also been reported. In the presence of polyvinyl alcohol in a methanol / water mixed solvent,
The colloidal solution of ultrafine palladium particles is synthesized by heating and reducing palladium chloride, and the colloidal solution of ultrafine osmium particles is synthesized by heating and reducing osmium oxide. In a similar way,
In the presence of polyvinylpyrrolidone, silver nitrate, palladium chloride, and osmium oxide were heated and reduced in ethanol to synthesize a silver ultrafine particle colloid solution, a palladium ultrafine particle colloid solution, and an osmium ultrafine particle colloid solution, respectively. There is a method in which silver nitrate, chloroplatinic acid, and chloroauric acid are heated and reduced in the presence of sodium hydroxide to synthesize a silver ultrafine particle colloid solution, a platinum ultrafine particle colloid solution, and a gold ultrafine particle colloid solution (surface, Vol. 17, 279-289 (1979)).

【0005】ポリマー以外の保護剤を使用した例として
は、半導体超微粒子の合成例が報告されている。チオフ
ェノール化物により表面がチオフェニル基で保護された
セレン化カドミウムの超微粒子を得るという方法(J.
Am.Chem.Soc.,Vol.110,3046
〜3050(1988))や、チオフェノールにより表
面がチオフェニル基で保護された硫化カドミウム超微粒
子を得るという方法(J.Am.Chem.Soc.,
Vol.112,1322〜1326(1990))が
ある。これらの方法により得られた超微粒子は、表面が
チオフェニル基によって覆われた安定化された超微粒子
であり、さらにこの超微粒子を溶液中で濃縮した場合
や、粉末として取り出した場合でも、超微粒子同士の凝
集・凝結による粒子径増大が防止され、溶媒中への再分
散が可能であることなどの性質をもつ、安定化された超
微粒子が得られる。
As an example of using a protective agent other than a polymer, an example of synthesizing semiconductor ultrafine particles has been reported. A method of obtaining ultrafine particles of cadmium selenide whose surface is protected with a thiophenyl group by a thiophenol compound (J.
Am. Chem. Soc. , Vol. 110,3046
-3030 (1988)) and a method of obtaining ultrafine cadmium sulfide particles whose surface is protected with thiophenyl groups by thiophenol (J. Am. Chem. Soc.,
Vol. 112, 1322-1326 (1990)). The ultrafine particles obtained by these methods are stabilized ultrafine particles whose surfaces are covered with thiophenyl groups, and even when these ultrafine particles are concentrated in a solution or taken out as a powder, Increased particle diameter due to aggregation and coagulation of the particles is prevented, and stabilized ultrafine particles having properties such as redispersibility in a solvent are obtained.

【0006】しかし、この方法を金属超微粒子の合成に
適用すると、溶液中においてはチオールは金属超微粒子
の原料となる金属塩と反応してチオールの金属塩を生じ
安定化することが知れれており(化学大辞典9,P.2
37)、超微粒子化することは困難であるという技術的
欠点があり、その改良が要請されている。
However, when this method is applied to the synthesis of ultrafine metal particles, it is known that thiol reacts with a metal salt as a raw material of the ultrafine metal particles in a solution to form a thiol metal salt and is stabilized. Ori (Chemical Encyclopedia 9, P.2
37) There is a technical disadvantage that it is difficult to form ultrafine particles, and improvement is required.

【0007】[0007]

【発明が解決しようとする課題】本発明はこの前記問題
点を解決するために、金属超微粒子が安定に存在し、か
つ加工が容易で製品形態の選択幅が広く操作性に優れた
金属超微粒子を製造することを目的とするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention aims to solve the above-mentioned problems by providing metal ultrafine particles which are stably present, are easy to process, have a wide selection of product forms, and are excellent in operability. The purpose is to produce fine particles.

【0008】[0008]

【課題を解決するための手段】本発明者は上記の課題を
解決するために、金属塩とアミン共存の溶液を還元する
ことにより、表面がアミンで保護された金属超微粒子を
形成し、これにチオールまたはチオール溶液を添加する
ことにより、金属超微粒子表面を保護しているアミンを
チオールに置換することが有効であることを見いだし、
本発明を完成させた。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventor reduced a solution in which a metal salt and an amine coexisted to form ultrafine metal particles whose surface was protected with an amine. By adding a thiol or a thiol solution to the above, it was found that it was effective to replace the amine protecting the surface of the ultrafine metal particles with a thiol,
The present invention has been completed.

【0009】即ち、本発明は、溶媒中に金属塩とアミン
を溶解した溶液を還元することにより得られた溶液に、
チオールまたはチオール溶液を添加することにより得ら
れる表面がチオールで保護された金属超微粒子を提供す
るものである。
That is, the present invention provides a solution obtained by reducing a solution in which a metal salt and an amine are dissolved in a solvent,
It is intended to provide ultrafine metal particles whose surface obtained by adding a thiol or a thiol solution is protected by a thiol.

【0010】また、本発明は、溶媒中に金属塩とアミン
を溶解した溶液を還元することにより得られた溶液に、
チオールまたはチオール溶液を添加することにより得ら
れる表面がチオールで保護された金属超微粒子の製造方
法を提供するものである。
The present invention also provides a solution obtained by reducing a solution in which a metal salt and an amine are dissolved in a solvent,
It is an object of the present invention to provide a method for producing ultrafine metal particles whose surface obtained by adding thiol or a thiol solution is protected by thiol.

【0011】[0011]

【発明の実施の形態】本発明における超微粒子とは、1
〜100nm、好ましくは1〜20nmの平均粒子直径
のものである。この直径は、1次粒子のそれであっても
良いし、また1次粒子が凝集して形成する2次粒子の直
径であっても良い。
BEST MODE FOR CARRYING OUT THE INVENTION Ultrafine particles in the present invention are:
It has an average particle diameter of 100100 nm, preferably 1-20 nm. This diameter may be that of the primary particles, or the diameter of the secondary particles formed by aggregation of the primary particles.

【0012】本発明における溶媒としては、製造する金
属超微粒子の原料として用いる金属塩と、溶液中に共存
するアミンを溶解するものであればよい。具体的には、
水または非水溶媒、好ましくは比較的極性の大きな有機
溶媒であればよく、より具体的にはアセトン、メチルエ
チルケトンなどのケトン類、アセトニトリル、プロピル
ニトリルなどのニトリル類、メタノール、エタノール、
プロパノール、ブチルアルコールなどのアルコール類、
ジオキサンなどのエーテル類やジメチルホルムアミド、
ジエチルホルムアミドなどのアミド類、ジメチルスルホ
キシドなど、またはこれらの混合溶媒、またはこれらを
含有する混合溶媒であってもよい。
As the solvent in the present invention, any solvent may be used as long as it dissolves a metal salt used as a raw material of the produced ultrafine metal particles and an amine which coexists in a solution. In particular,
Water or a non-aqueous solvent, preferably a relatively large organic solvent, more specifically acetone, ketones such as methyl ethyl ketone, acetonitrile, nitriles such as propyl nitrile, methanol, ethanol,
Alcohols such as propanol and butyl alcohol,
Ethers such as dioxane and dimethylformamide,
An amide such as diethylformamide, dimethyl sulfoxide, or a mixed solvent thereof, or a mixed solvent containing these may be used.

【0013】本発明における金属塩としては、用いる溶
媒に溶解するものであればよく特に制限はなく、例え
ば、金、銀、銅、白金、パラジウム、ロジウム、オスミ
ウム、鉄、ニッケル、ルテニウム等のハロゲン化物、過
塩素酸塩、硝酸塩、酢酸塩、有機酸塩、アセチルアセト
ナートなどが用いられる。
The metal salt in the present invention is not particularly limited as long as it is soluble in the solvent used. For example, halogens such as gold, silver, copper, platinum, palladium, rhodium, osmium, iron, nickel, ruthenium and the like can be used. Chloride, perchlorate, nitrate, acetate, organic acid salt, acetylacetonate and the like are used.

【0014】本発明におけるアミンとしては、用いる溶
媒に溶解するものであればよく特に制限はないが、具体
的には、エチルアミン、t−ブチルアミン、シクロヘキ
シルアミン、アニリンなどの第一アミン類、ジメチルア
ミン、ジアリルアミン、ジフェニルアミンなどの第二ア
ミン類、トリメチルアミン、トリアリルアミン、トリフ
ェニルアミンなどの第三アミン類、エチレンジアミンな
どのジアミン類やポリアミン類、ピリジンなどの環式ア
ミン類、またはこれらのアミン類の混合物を例としてあ
げることができる。
The amine in the present invention is not particularly limited as long as it can be dissolved in the solvent used. Specific examples thereof include primary amines such as ethylamine, t-butylamine, cyclohexylamine and aniline, and dimethylamine. , Secondary amines such as diallylamine and diphenylamine, tertiary amines such as trimethylamine, triallylamine and triphenylamine, diamines and polyamines such as ethylenediamine, cyclic amines such as pyridine, and mixtures of these amines Can be given as an example.

【0015】溶媒に溶解する金属塩の濃度は、使用する
溶媒中の室温での溶解度以下の重量に相当する濃度であ
ればよく特に制限はない。溶液中のアミンの濃度は、使
用する溶媒中の室温での溶解度以下の重量に相当する濃
度であればよく特に制限はない。
The concentration of the metal salt dissolved in the solvent is not particularly limited as long as it is a concentration corresponding to the weight of the metal salt in the solvent used at room temperature or lower. The concentration of the amine in the solution is not particularly limited as long as it is a concentration corresponding to a weight equal to or lower than the solubility at room temperature in the solvent used.

【0016】本発明における還元とは、還元剤による還
元を示す。還元剤としては特に制限はないが、好ましく
はヨウ素、ホウ素、アルミニウム、ケイ素、スズ等の水
素化物類または水素錯化合物類、一酸化炭素、二酸化硫
黄、亜硫酸塩等の低級酸化物類または低級酸素酸の塩
類、アルカリ金属、マグネシウム、カルシウム、アルミ
ニウム、亜鉛などの電気的陽性の大きい金属類またはそ
れらのアマルガム類、アルデヒド、糖、ギ酸、シュウ
酸、ヒドラジン等の有機化合物類が用いられる。
The term “reduction” in the present invention means reduction with a reducing agent. The reducing agent is not particularly limited, but is preferably a hydride or a hydrogen complex compound such as iodine, boron, aluminum, silicon, or tin, or a lower oxide or a lower oxygen such as carbon monoxide, sulfur dioxide, or sulfite. Acid-salts, highly electropositive metals such as alkali metals, magnesium, calcium, aluminum and zinc, or amalgams thereof, and organic compounds such as aldehydes, sugars, formic acid, oxalic acid and hydrazine are used.

【0017】還元剤による還元を行う場合、直接溶液中
に還元剤を添加する方法、またはあらかじめ還元剤を溶
媒に溶解した溶液を添加する方法がとられることはいう
までもない。還元剤を溶媒に溶解した溶液とは、金属塩
とアミンを溶解した溶液を調製するのに使用した溶媒と
同一の溶媒を使用して、所定の濃度の還元剤を溶解した
溶液、または金属塩とアミンを溶解した溶液の調製に使
用した溶媒と異なる溶媒を使用する場合には、金属塩と
アミンを溶解した溶液の調製に使用した溶媒と相溶性が
良好である溶媒により調製した溶液のことであることは
いうまでもない。還元剤の濃度は、直接溶液に還元剤を
添加する場合、溶液を調製するのに使用した溶媒中の室
温での溶解度以下の重量に相当する濃度であればよく特
に制限はない。
When reducing with a reducing agent, it goes without saying that a method of adding the reducing agent directly to the solution or a method of adding a solution in which the reducing agent is dissolved in a solvent in advance is used. A solution in which a reducing agent is dissolved in a solvent is a solution in which a reducing agent of a predetermined concentration is dissolved using the same solvent as that used to prepare a solution in which a metal salt and an amine are dissolved, or a metal salt. When using a solvent different from the solvent used to prepare the solution in which the amine and the amine are dissolved, a solution prepared with a solvent that is compatible with the solvent used to prepare the solution in which the metal salt and the amine are dissolved is used. Needless to say, When the reducing agent is directly added to the solution, the concentration of the reducing agent is not particularly limited as long as it is a concentration corresponding to a weight equal to or lower than the solubility at room temperature in the solvent used for preparing the solution.

【0018】還元剤を溶媒に溶解した溶液を添加する場
合には、還元剤を溶媒に溶解した溶液を調製するのに使
用した溶媒中の室温での溶解度以下の重量に相当する濃
度であればよく特に制限はない。還元するときの温度
は、特に制限はないが、反応の相を溶液状態に保つのに
必要な温度であればよい。 還元時間も、特に制限はな
いが、通常0.1分〜200時間である。
When a solution in which a reducing agent is dissolved in a solvent is added, a solution having a concentration equivalent to or less than the solubility at room temperature in the solvent used for preparing the solution in which the reducing agent is dissolved in the solvent is used. There is no particular limitation. The temperature for the reduction is not particularly limited, but may be any temperature required to keep the reaction phase in a solution state. The reduction time is not particularly limited, but is usually 0.1 minute to 200 hours.

【0019】続いて、還元することによって生成したア
ミンで表面を保護された金属超微粒子を含む溶液に、チ
オールまたはチオール溶液を添加することにより表面が
チオールで保護された金属超微粒子を得る。
Subsequently, a thiol or a thiol solution is added to a solution containing the ultrafine metal particles whose surface is protected by the amine generated by the reduction to obtain ultrafine metal particles whose surface is protected by thiol.

【0020】本発明におけるチオールとは、用いる溶媒
に溶解するものであればよく特に制限はなく、例えば、
メタンチオール、エタンチオール、プロパンチオール、
イソプロピルチオール、アリルチオール、アミノエタン
チオール等の脂肪族チオール類、チオフェノール、アミ
ノチオフェノール等の芳香族チオール類、シクロヘキシ
ルチオール等の脂環式チオール類、2−メルカプトピリ
ジン、2−メルカプトチアゾリン等の複素環式チオール
類、ビス(トリメチルシリル)サルファイド、フェニル
トリメチルシリルメチルサルファイド等のチオール化物
類、または1,2−エタンジチオール、1,4−ベンゼ
ンジチオール等のジチオール類やポリチオール類、また
はこれらの混合物を例として挙げることができる。チオ
ールの添加量は、アミン1重量部に対して0.01〜1
00重量部であり、好ましくは1〜10重量部である。
The thiol in the present invention is not particularly limited as long as it is soluble in the solvent used.
Methanethiol, ethanethiol, propanethiol,
Aliphatic thiols such as isopropyl thiol, allyl thiol and aminoethane thiol, aromatic thiols such as thiophenol and aminothiophenol, alicyclic thiols such as cyclohexyl thiol, 2-mercaptopyridine, 2-mercaptothiazoline and the like Examples include heterocyclic thiols, thiols such as bis (trimethylsilyl) sulfide and phenyltrimethylsilylmethylsulfide, or dithiols and polythiols such as 1,2-ethanedithiol and 1,4-benzenedithiol, and mixtures thereof. It can be mentioned as. The addition amount of thiol is 0.01 to 1 with respect to 1 part by weight of amine.
00 parts by weight, preferably 1 to 10 parts by weight.

【0021】本発明におけるチオール溶液とは、金属塩
とアミンを溶解した溶液を調製するのに使用した溶媒と
同一の溶媒を使用して所定の濃度のチオールを溶解した
溶液、または金属塩とアミンを溶解した溶液の調製に使
用した溶媒と異なる溶媒を使用する場合には、金属塩と
アミンを溶解した溶液の調製に使用した溶媒と相溶性が
良好でありかつ還元することにより生成した表面をアミ
ンで保護された金属超微粒子を溶液中で安定に分散させ
ることが可能な溶媒により調製した溶液のことである。
The thiol solution in the present invention refers to a solution in which a predetermined concentration of thiol is dissolved using the same solvent as used for preparing a solution in which a metal salt and an amine are dissolved, or a metal salt and an amine. When using a solvent different from the solvent used for preparing the solution in which the metal salt and the amine are dissolved, the solvent is good in compatibility with the solvent used in preparing the solution in which the metal salt and the amine are dissolved, and the surface generated by the reduction is used. A solution prepared by using a solvent capable of stably dispersing ultrafine metal particles protected by an amine in a solution.

【0022】チオールを添加する際にチオール溶液とし
て使用する場合の、チオール溶液の濃度は、所定の金属
塩と所定のアミンを溶解した溶液を調製するのに使用し
た溶媒中の室温での溶解度以下の濃度であればよく特に
制限はない。チオールまたはチオール溶液を還元後の液
に添加するときの温度は、特に制限はないが、反応の相
を溶液状態に保つのに必要な温度であればよい。 時間
も、特に制限はないが、通常0.1分〜200時間であ
る。
When the thiol solution is used as a thiol solution when adding the thiol, the concentration of the thiol solution is not more than the solubility at room temperature in the solvent used to prepare the solution in which the predetermined metal salt and the predetermined amine are dissolved. There is no particular limitation as long as the concentration is. The temperature at which the thiol or thiol solution is added to the solution after reduction is not particularly limited, and may be any temperature required to keep the reaction phase in a solution state. Although the time is not particularly limited, it is usually 0.1 minute to 200 hours.

【0023】[0023]

【実施例】以下、本発明を実施例に基づき、更に詳細を
述べる。 実施例1 塩化金酸四水和物(HAuCl4・4H2O)2.5×1
ー3M 及びアニリン7.5×10ー3M濃度のメタノー
ル溶液500mlを三角フラスコに入れる。室温でこの
溶液を攪はんしながら、 水素化ホウ素ナトリウム(N
aBH4)1.0×10ー2M濃度のメタノール溶液15
0mlを添加すると溶液は赤茶色に変化する。この溶液
に500mlの溶液量に対して、7.5×10ー3M濃度
に相当するチオフェノールを一気に滴下することにより
溶液は、ワインレッド色に変化し白色沈澱物が生成す
る。この溶液の上澄み液の紫外可視吸収スペクトルを測
定したところ、波長530nmに金超微粒子の表面プラ
ズモンに起因する極大が、また透過型電子顕微鏡観察に
より、粒子直径 5〜15nmの大きさの分布を有する
金超微粒子が観測された。
EXAMPLES Hereinafter, the present invention will be described in more detail based on examples. Example 1 chloroauric acid tetrahydrate (HAuCl 4 · 4H 2 O) 2.5 × 1
0-3 M and aniline 7.5 × 10 -3 M concentration of the methanol solution 500ml Add an Erlenmeyer flask. While stirring this solution at room temperature, sodium borohydride (N
aBH 4) 1.0 × 10 over 2 M concentration of the methanol solution 15
The solution turns red-brown when 0 ml is added. By dropping thiophenol corresponding to a concentration of 7.5 × 10 −3 M at a stroke with respect to 500 ml of the solution in this solution, the solution changes to a wine red color and a white precipitate is formed. When the ultraviolet-visible absorption spectrum of the supernatant of this solution was measured, the maximum attributable to the surface plasmon of the ultrafine gold particles was observed at a wavelength of 530 nm, and the particle size was found to be 5 to 15 nm by transmission electron microscope observation. Ultrafine gold particles were observed.

【0024】この溶液を濾過することで白色沈澱物を取
り除いた溶液を、ロータリーエバポレーターにより濃縮
し黒紫色の粉体(安定化された金超微粒子)を得ること
が出来る。この粉体をメタノールに再溶解した溶液の紫
外可視吸収スペクトルを測定したところ、波長530n
mに金超微粒子の表面プラズモンに起因する極大が、ま
た透過型電子顕微鏡観察により、粒子直径 5〜15n
mの大きさの分布を有する金超微粒子が観測されたこと
から、金超微粒子は凝集することなく安定に粉体として
とり出せることがわかる。
The solution from which the white precipitate has been removed by filtering this solution is concentrated by a rotary evaporator to obtain a black-purple powder (stabilized ultrafine gold particles). The ultraviolet-visible absorption spectrum of a solution obtained by re-dissolving this powder in methanol was measured.
m has a maximum due to the surface plasmon of the ultrafine gold particles, and a particle size of 5 to 15 n
Observation of ultrafine gold particles having a distribution of m indicates that the ultrafine gold particles can be stably taken out as a powder without agglomeration.

【0025】実施例2 硝酸銀(AgNO3)2.5×10ー3M 及びアニリン
7.5×10ー3M濃度のメタノール溶液500mlを三
角フラスコに入れる。室温でこの溶液を攪はんしなが
ら、 水素化ホウ素ナトリウム(NaBH4)1.0×1
ー2M濃度のメタノール溶液150mlを添加すると溶
液は黄灰色に変化する。この溶液に500mlの溶液量
に対して、7.5×10ー3M濃度に相当するチオフェノ
ールを一気に滴下することにより溶液は、茶黄色に変化
し灰色の沈澱物が生成する。この溶液の上澄み液の紫外
可視吸収スペクトルを測定したところ、波長405nm
に銀超微粒子の表面プラズモンに起因する極大が、また
透過型電子顕微鏡観察により、平均粒子直径3nmの銀
超微粒子が観測された。
EXAMPLE 2 500 ml of a methanol solution having a concentration of 2.5 × 10 −3 M silver nitrate (AgNO 3 ) and 7.5 × 10 −3 M aniline was placed in an Erlenmeyer flask. While stirring this solution at room temperature, sodium borohydride (NaBH 4 ) 1.0 × 1
0 over 2 M is added a methanol solution 150ml of concentrated solutions is changed to yellow gray. To this solution, thiophenol corresponding to a concentration of 7.5 × 10 −3 M with respect to 500 ml of the solution was dropped at once, and the solution turned brownish yellow and a gray precipitate was formed. When the ultraviolet-visible absorption spectrum of the supernatant of this solution was measured, the wavelength was 405 nm.
The maximum due to the surface plasmon of the ultrafine silver particles was observed, and the ultrafine silver particles having an average particle diameter of 3 nm were observed by transmission electron microscopy.

【0026】この溶液を濾過することで灰色沈澱物を取
り除いた溶液を、ロータリーエバポレーターにより濃縮
し茶黒色の粉体(安定化された銀超微粒子)を得ること
が出来る。この粉体をメタノールに再溶解した溶液の紫
外可視吸収スペクトルを測定したところ、波長405n
mに銀超微粒子の表面プラズモンに起因する極大が、ま
た透過型電子顕微鏡観察により、平均粒子直径3nmの
銀超微粒子が観測されたことから、銀超微粒子は凝集す
ることなく安定に粉体としてとり出せることがわかる。
The solution from which the gray precipitate has been removed by filtering this solution is concentrated by a rotary evaporator to obtain brownish black powder (stabilized ultrafine silver particles). When a UV-visible absorption spectrum of a solution obtained by re-dissolving this powder in methanol was measured, the wavelength was 405 n.
Since the maximum due to the surface plasmon of the ultrafine silver particles was observed in m, and the ultrafine silver particles with an average particle diameter of 3 nm were observed by transmission electron microscopy, the ultrafine silver particles were stably converted into powder without aggregation. You can see that it can be taken out.

【0027】比較例1 塩化金酸四水和物(HAuCl4・4H2O)2.5×1
ー3M濃度のメタノール溶液500ml(黄色透明溶
液)に7.5×10ー3M濃度に相当する量のチオフェノ
ールを添加すると、一気に黄色白濁化する。この溶液を
攪はんしながら、水素化ほう素ナトリウム(NaB
4)1.0×10ー2M濃度のメタノール溶液150m
lを一気に添加すると急激に白色沈澱物を生成し、上澄
み液は黄色透明溶液となる。上澄み液の吸収スペクトル
を測定したところ、320nmにピークを有する塩化金
酸四水和物のスペクトルを示し、金超微粒子が生成して
いないことがわかる。したがって、実施例1との比較か
ら、チオールを添加する前にアミンを共存させておくこ
とによって、チオールで表面が保護された超微粒子を形
成することができる。
Comparative Example 1 Chloroauric acid tetrahydrate (HAuCl 4 .4H 2 O) 2.5 × 1
When 0 over 3 M adding a concentration of the methanol solution 500 ml (yellow clear solution) in an amount corresponding to 7.5 × 10 over 3 M concentration thiophenol, a stroke yellow cloudiness. While stirring this solution, sodium borohydride (NaB
H 4 ) 150m of a 1.0 × 10-2 M methanol solution
When 1 was added all at once, a white precipitate was rapidly formed, and the supernatant was a yellow transparent solution. When the absorption spectrum of the supernatant was measured, it showed a spectrum of chloroauric acid tetrahydrate having a peak at 320 nm, which indicates that ultrafine gold particles were not generated. Therefore, as compared with Example 1, by coexisting the amine before adding the thiol, it is possible to form ultrafine particles whose surface is protected by the thiol.

【0028】[0028]

【発明の効果】本発明によれば、従来技術で達成されな
かったチオールで表面が保護された金属超微粒子を溶液
中で合成することができる。即ち、本発明の範囲外であ
る比較例1は、アミンが添加されていないため、金属塩
はチオールと優先的に金属塩を形成し安定化してしまう
ため、超微粒子化することはできない。これに対し、金
属超微粒子の製造において、溶媒中に金属塩とアミンを
溶解した溶液を還元することにより得られた溶液に、チ
オールを添加する本発明の範囲内である実施例1は、超
微粒子化することができ、しかも、超微粒子同士は凝結
することなく粉体として取り出すことができる。従っ
て、本発明の金属超微粒子は、粉体の形であることか
ら、他の組成成分や超微粒子との混合が容易であり、製
品形態の選択の幅も広く、量産性に優れた中間材料とし
て、光学材料、電子材料、感圧材料、磁性材料、非線形
光電子材料、触媒材料、無機材料への利用に好適であ
る。
According to the present invention, ultrafine metal particles whose surface is protected by thiol, which has not been achieved by the prior art, can be synthesized in a solution. That is, in Comparative Example 1, which is out of the scope of the present invention, since no amine is added, the metal salt preferentially forms a metal salt with thiol and is stabilized, so that ultrafine particles cannot be formed. In contrast, in the production of ultrafine metal particles, Example 1, which is within the scope of the present invention in which a thiol is added to a solution obtained by reducing a solution in which a metal salt and an amine are dissolved in a solvent, Fine particles can be formed, and the ultrafine particles can be taken out as a powder without coagulation. Therefore, since the metal ultrafine particles of the present invention are in the form of a powder, they can be easily mixed with other composition components and ultrafine particles, have a wide selection of product forms, and have excellent mass productivity. It is suitable for use in optical materials, electronic materials, pressure-sensitive materials, magnetic materials, nonlinear optoelectronic materials, catalyst materials, and inorganic materials.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶媒中に金属塩とアミンを溶解した溶液
を還元することにより得られた溶液に、チオールまたは
チオール溶液を添加することにより得られる表面がチオ
ールで保護された金属超微粒子。
1. Ultrafine metal particles obtained by adding a thiol or a thiol solution to a solution obtained by reducing a solution obtained by dissolving a metal salt and an amine in a solvent and protected by thiol.
【請求項2】 溶媒中に金属塩とアミンを溶解した溶液
を還元することにより得られた溶液に、チオールまたは
チオール溶液を添加することにより得られる表面がチオ
ールで保護された金属超微粒子の製造方法。
2. Production of ultrafine metal particles whose surface is protected by thiol by adding a thiol or a thiol solution to a solution obtained by reducing a solution obtained by dissolving a metal salt and an amine in a solvent. Method.
JP9001940A 1997-01-09 1997-01-09 Metallic superfine particle and production thereof Pending JPH10195505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9001940A JPH10195505A (en) 1997-01-09 1997-01-09 Metallic superfine particle and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9001940A JPH10195505A (en) 1997-01-09 1997-01-09 Metallic superfine particle and production thereof

Publications (1)

Publication Number Publication Date
JPH10195505A true JPH10195505A (en) 1998-07-28

Family

ID=11515619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9001940A Pending JPH10195505A (en) 1997-01-09 1997-01-09 Metallic superfine particle and production thereof

Country Status (1)

Country Link
JP (1) JPH10195505A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013999A1 (en) * 2000-08-11 2002-02-21 Ishihara Sangyo Kaisha, Ltd. Colloidal metal solution, process for producing the same, and coating material containing the same
JP2002275654A (en) * 2001-03-13 2002-09-25 Japan Science & Technology Corp Production method for water repelling-oil repelling surface and structure having the same surface
JP2004204354A (en) * 2004-03-12 2004-07-22 Daiken Kagaku Kogyo Kk Metallic superfine particle and its manufacturing method
WO2006059664A1 (en) * 2004-12-03 2006-06-08 Japan Science And Technology Agency Stabilized inorganic nanoparticle, stabilized inorganic nanoparticles, process for producing stabilized inorganic nanoparticle, and method of utilizing stabilized inorganic nanoparticle
JP2006336073A (en) * 2005-06-02 2006-12-14 Tokyo Univ Of Science Platinum hyperfine particle with different shape, method for refining platinum hyperfine particle, and method for producing high quality platinum hyperfine particle
JP2007046162A (en) * 2005-08-08 2007-02-22 Samsung Electro-Mechanics Co Ltd Method for producing metal nanoparticle and conductive ink
WO2007034922A1 (en) * 2005-09-22 2007-03-29 Nippon Shokubai Co., Ltd. Metal nanoparticle, metal nanoparticle colloid, method for storing metal nanoparticle colloid, and metal coating film
JP2007184516A (en) * 2006-01-03 2007-07-19 Jiaotong Univ Manufacturing method of polymer nanocomposite for light emitting diode
WO2008032733A1 (en) * 2006-09-12 2008-03-20 Nippon Shokubai Co., Ltd. Metal nanoparticle dispersion, metal coating film and method for producing metal nanoparticle
JP2008524395A (en) * 2004-12-16 2008-07-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Silver-containing inkjet ink
JP2009191298A (en) * 2008-02-12 2009-08-27 Noritake Co Ltd Method for producing metal particulate-dispersed liquid
US7744834B2 (en) 2006-07-10 2010-06-29 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing metal nanoparticles
JPWO2017043039A1 (en) * 2015-09-10 2018-08-09 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery, method for producing nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013999A1 (en) * 2000-08-11 2002-02-21 Ishihara Sangyo Kaisha, Ltd. Colloidal metal solution, process for producing the same, and coating material containing the same
US7557149B2 (en) 2000-08-11 2009-07-07 Ishihara Sangyo Kaisha, Ltd. Colloidal metal solution, process for producing the same, and coating material containing the same
US7897675B2 (en) 2000-08-11 2011-03-01 Ishihara Sangyo Kaisha, Ltd. Colloidal metal solution, process for producing the same and paint using the same
US7902292B2 (en) 2000-08-11 2011-03-08 Ishihara Sangyo Kaisha, Ltd. Colloidal metal solution, process for producing the same and paint using the same
JP4695278B2 (en) * 2001-03-13 2011-06-08 独立行政法人科学技術振興機構 Method for producing water / oil repellent surface and structure having the surface
JP2002275654A (en) * 2001-03-13 2002-09-25 Japan Science & Technology Corp Production method for water repelling-oil repelling surface and structure having the same surface
JP2004204354A (en) * 2004-03-12 2004-07-22 Daiken Kagaku Kogyo Kk Metallic superfine particle and its manufacturing method
US7875352B2 (en) 2004-12-03 2011-01-25 Japan Science And Technology Agency Stabilized inorganic nanoparticle, stabilized inorganic nanoparticle material, method for producing stabilized inorganic nanoparticle, and method for using stabilized inorganic nanoparticle
WO2006059664A1 (en) * 2004-12-03 2006-06-08 Japan Science And Technology Agency Stabilized inorganic nanoparticle, stabilized inorganic nanoparticles, process for producing stabilized inorganic nanoparticle, and method of utilizing stabilized inorganic nanoparticle
JP4642779B2 (en) * 2004-12-03 2011-03-02 独立行政法人科学技術振興機構 Stabilized inorganic nanoparticles, stabilized inorganic nanoparticles, method for producing stabilized inorganic nanoparticles, and method for using stabilized inorganic nanoparticles
JPWO2006059664A1 (en) * 2004-12-03 2008-06-05 独立行政法人科学技術振興機構 Stabilized inorganic nanoparticles, stabilized inorganic nanoparticles, method for producing stabilized inorganic nanoparticles, and method for using stabilized inorganic nanoparticles
JP2008524395A (en) * 2004-12-16 2008-07-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Silver-containing inkjet ink
JP2006336073A (en) * 2005-06-02 2006-12-14 Tokyo Univ Of Science Platinum hyperfine particle with different shape, method for refining platinum hyperfine particle, and method for producing high quality platinum hyperfine particle
JP2007046162A (en) * 2005-08-08 2007-02-22 Samsung Electro-Mechanics Co Ltd Method for producing metal nanoparticle and conductive ink
JP4520966B2 (en) * 2005-08-08 2010-08-11 サムソン エレクトロ−メカニックス カンパニーリミテッド. Method for producing metal nanoparticles and conductive ink
JP2007084879A (en) * 2005-09-22 2007-04-05 Nippon Shokubai Co Ltd Method for producing metallic nanoparticles, and colloid of particles obtained by the method
WO2007034922A1 (en) * 2005-09-22 2007-03-29 Nippon Shokubai Co., Ltd. Metal nanoparticle, metal nanoparticle colloid, method for storing metal nanoparticle colloid, and metal coating film
JP2007184516A (en) * 2006-01-03 2007-07-19 Jiaotong Univ Manufacturing method of polymer nanocomposite for light emitting diode
US7744834B2 (en) 2006-07-10 2010-06-29 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing metal nanoparticles
WO2008032733A1 (en) * 2006-09-12 2008-03-20 Nippon Shokubai Co., Ltd. Metal nanoparticle dispersion, metal coating film and method for producing metal nanoparticle
JP2009191298A (en) * 2008-02-12 2009-08-27 Noritake Co Ltd Method for producing metal particulate-dispersed liquid
JPWO2017043039A1 (en) * 2015-09-10 2018-08-09 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery, method for producing nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
Deng et al. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature
Deng et al. Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution
KR100809982B1 (en) Method for manufacturing copper nanoparticles using microwave
US8529963B2 (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
Nalawade et al. Green synthesis of gold nanoparticles using glycerol as a reducing agent
US10226822B2 (en) Method for preparing metal nanoparticles using a multi-functional polymer and a reducing agent
Quinn et al. Surface-mediated formation of gold particles in basic methanol
TW200811055A (en) Nanoparticles, methods of making, and applications using same
JPH10195505A (en) Metallic superfine particle and production thereof
JPH03134106A (en) Microcrystalline amorphous metal and/or alloy powder and metal and/or alloy dissolved in organic solvent in the absence of protective colloid
Zou et al. Controlled growth of silver nanoparticles in a hydrothermal process
JP2009120940A (en) Method of manufacturing metal nanoparticle
JP2006089786A (en) Method for producing metallic nano-particle dispersed in polar solvent
Alruqi et al. Role of surfactants: One step facile synthesis of hetero structured Ag-Ni alloy by seed less approach
Togashi et al. Solvent-free synthesis of monodisperse Cu nanoparticles by thermal decomposition of an oleylamine-coordinated Cu oxalate complex
JP4812370B2 (en) Method for producing noble metal nanoparticles
Huang et al. Fabrication of fully covered Cu–Ag core–shell nanoparticles by compound method and anti-oxidation performance
JP2009203484A (en) Method for synthesizing wire-shaped metal particle
JP5647415B2 (en) Preparation of nanoparticles containing iron and titanium
Mares-Briones et al. Bimetallic Ag@ Pt core-shell nanoparticles and their catalytic activity by a green approach
Ismail et al. Investigation the parameters affecting on the synthesis of silver nanoparticles by chemical reduction method and printing a conductive pattern
JPH0557324B2 (en)
JPH1160581A (en) Reaction reagent of gold ultrafine particle
Ding et al. Reversible assembly and disassembly of gold nanoparticles directed by a zwitterionic polymer
JP2008179836A (en) Method of synthesizing wire-shaped metal particle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306