JP4225630B2 - 電圧発生回路 - Google Patents

電圧発生回路 Download PDF

Info

Publication number
JP4225630B2
JP4225630B2 JP14858299A JP14858299A JP4225630B2 JP 4225630 B2 JP4225630 B2 JP 4225630B2 JP 14858299 A JP14858299 A JP 14858299A JP 14858299 A JP14858299 A JP 14858299A JP 4225630 B2 JP4225630 B2 JP 4225630B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
circuit
external power
supply wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14858299A
Other languages
English (en)
Other versions
JP2000339042A (ja
JP2000339042A5 (ja
Inventor
慎一 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP14858299A priority Critical patent/JP4225630B2/ja
Priority to US09/437,094 priority patent/US6340852B1/en
Priority to TW088121256A priority patent/TW454112B/zh
Priority to KR1019990058150A priority patent/KR100347442B1/ko
Priority to CNB001016571A priority patent/CN1179259C/zh
Publication of JP2000339042A publication Critical patent/JP2000339042A/ja
Publication of JP2000339042A5 publication Critical patent/JP2000339042A5/ja
Application granted granted Critical
Publication of JP4225630B2 publication Critical patent/JP4225630B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Control Of Electrical Variables (AREA)
  • Dram (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電圧発生回路に関し、より特定的には内部電源電圧の定格電圧より高い外部電源電圧が与えられた場合においても、定格電圧を超えない内部電源電圧を安定的に供給することが可能な電圧発生回路に関する。
【0002】
【従来の技術】
近年の半導体装置の大容量化、高速化の要求に応えるため、デバイス素子の微細化が進められている。この微細化に伴うデバイス素子の耐圧強度の低下に対応するために、動作電源電圧を従来の5Vから3.3Vに下げることが行なわれている。このため半導体デバイス素子を搭載したICについても動作保証電圧の定格値が、従来の5Vのものに加えて、3.3Vのものが製品化されるようになっている。
【0003】
このような背景の下、パソコン等に装備されているスロット、たとえばPCカードスロットのように、ICを搭載した回路においては、内部電源電圧の定格値が5Vのみのもの、3.3Vのみのもの、および5V/3.3Vのいずれが印加されてもよい5V/3.3V両単一電圧であるものなどが混在している。
【0004】
よって、動作補償電圧3.3VのICを実装する場合でも、ボードとして5V/3.3V両単一電圧による動作を保証するためには、入力電圧が5Vおよび3.3Vのどちらの場合であっても、出力電源電圧として3.3Vを安定的に出力することができる電圧発生回路が求められている。
【0005】
このような用途に使用する電圧発生回路として、特開平6−149395号公報に開示された半導体装置内に組込まれた電圧発生回路の構成(以下、従来の技術という)を適用することができる。
【0006】
図12は、従来の技術の電圧発生回路500の全体構成を示す概略ブロック図である。
【0007】
図12を参照して、電圧発生回路500は、外部電源端子510に外部電源電圧VCEを受けて、内部回路電源配線590に内部電源電圧Vccを供給する回路である。内部回路電源配線590より、内部回路550に対して動作電源電圧が供給される。内部回路550は、デコーダ回路555、センスアンプ回路556および制御回路557等を含む。
【0008】
電圧発生回路500は、外部電源電圧VCEを内部電源電圧Vccに変換する降圧回路520と、外部電源電圧VCEの大きさを検出して切換回路を制御する制御信号を送出する電源電圧検出回路530と、電源電圧検出回路530の出力する制御信号に応じて降圧回路520の出力と外部電源電圧VCEとのいずれか一方を内部回路電源配線590に伝達する切り替え回路540とを備える。
【0009】
電圧発生回路500は、外部電源電圧が5V/3.3Vのいずれの場合であっても、内部回路550に、その内部電源電圧の定格値である3.3Vを安定して供給する。
【0010】
図13は、切り替え回路540の構成を示す回路図である。
図13を参照して、切り替え回路540は、外部電源配線570と内部回路電源配線590の間を制御信号MO1に応じて接続するトランスファゲートを構成するP型MOSトランジスタQ31およびN型MOSトランジスタQ32を含む。切り替え回路540は、さらに、降圧回路520と内部回路電源配線590の間を制御信号MO2に応じて接続するトランスファゲートを構成するP型MOSトランジスタQ33およびN型MOSトランジスタQ34を含む。
【0011】
これにより、外部電源電圧VCEが5Vである場合には、制御信号MO1がHレベルとなるとともに制御信号MO2がLレベルとなることによって、降圧回路520の出力が内部回路電源配線590に伝達される。一方、外部電源電圧VCEが3.3Vである場合には、制御信号MO1がLレベルとなるとともに制御信号MO2がHレベルとなることによって、外部電源電圧VCEが直接内部回路電源配線590に伝達される。
【0012】
図14は、電源電圧検出回路530の構成を示す回路図である。
図14を参照して、電源電圧検出回路530は、外部電源電圧配線570と接地配線580との間に直列に接続されるP型MOSトランジスタQ21,Q22およびN型MOSトランジスタQ23を含む。トランジスタQ21の基板領域は、外部電源配線570と接続される。トランジスタQ22の基板領域、トランジスタQ21のゲートおよびトランジスタQ22のソースは、トランジスタQ21のドレインと接続される。トランジスタQ22のゲートおよびドレインはノードNxと接続される。トランジスタQ23は、ノードNxと接地配線580との間に接続され、接地配線580と接続されるゲートを有する。
【0013】
電源電圧検出回路530は、さらにノードNxの電圧レベルを反転してノードNyに伝達するインバータを構成するP型MOSトランジスタQ24およびN型MOSトランジスタQ25と、ノードNyの電圧レベルを反転してノードNzに伝達するインバータを構成するP型MOSトランジスタQ26およびN型MOSQ27とをさらに含む。
【0014】
トランジスタQ24およびQ25は、外部電源配線570と接地配線580との間に直列に接続され、それぞれのゲートはノードNxと接続される。トランジスタQ26およびQ27は、外部電源配線570と接地配線580との間に接続され、内部ノードNyと接続されたゲートを有する。制御信号MO1の電圧レベルは、ノードNzの電圧レベルに等しく、制御信号MO1の電圧レベルは、ノードNyの電圧レベルに等しい。制御信号MO1およびMO2は、切換回路540に伝達される。
【0015】
電源電圧検出回路530においては、ノードNxの電圧レベルが、外部電源電圧VCEのレベルに応じて変化する。
【0016】
まず、外部電源電圧VCE≦2・|VTP|(VTP:P型MOSトランジスタのしきい電圧)である場合には、トランジスタQ21およびQ22はオフ状態であるため、ノードNxの電圧は0V(接地電圧)となる。またこのとき、トランジスタQ24〜Q27で構成されるインバータによって、ノードNyおよびNzの電圧レベルは、それぞれVCEおよび0Vとなる。すなわち、制御信号MO1はLレベルとなり、制御信号MO2はHレベルとなる。
【0017】
つぎに、外部電源電圧が、VCE≧2・|VTP|+VI(VI:インバータの論理しきい電圧)である場合には、ノードNxの電圧レベルは0VからVCEに変化するため、ノードNyおよびNzの電圧レベルの変化に伴って制御信号MO1およびMO2の極性も反転し、制御信号MO1はHレベルとなり、制御信号MO2はLレベルとなる。
【0018】
このような構成とすることにより、P型トランジスタのしきい値電圧VTPと、インバータの論理しきい値VIとを適切に設計することによって、電圧発生回路500は、外部電源電圧VCEと所定の電圧レベルとの比較結果に応じて、内部回路に対して直接外部電源電圧を供給するか降圧回路520の出力を供給するかを選択することができる。
【0019】
【発明が解決しようとする課題】
しかしながら、従来の技術の電圧発生回路500においては、外部電源配線570が駆動される前、すなわち外部電源配線570に対して実際に電圧が供給される前の時点においては、VCE=0Vであるので、制御信号MO1はLレベルとなり、外部電源配線570と内部回路電源配線590とは切り替え回路540によって接続される。
【0020】
この状態で、外部電源が起動され、外部電源電圧VCEが0Vから5Vに立上がった場合を考える。この場合には、外部電源電圧VCEの上昇に伴って、切り替え回路540の内部回路電源配線590への出力を外部電源配線570から降圧回路520に切替えることによって、内部回路550に定格電圧である3.3Vを超えない電源電圧を安定して供給することが必要となる。
【0021】
しかし、実際に、電源電圧検出回路530中のノードNx、NyおよびNzの電圧レベルが変化し、制御信号MO1およびMO2の極性が反転することによって、内部回路電源配線590と外部電源配線570との接続が切換回路によって切離されるまでには、一定の時間遅れが存在する。
【0022】
この時間遅れの存在により、外部電源起動の直後においては、内部回路電源配線590と外部電源配線570とが接続されたままの状態で外部電源電圧VCEが上昇し、内部電源電圧のピークが最大入力電圧レベル(5V)となってしまう可能性がある。このような現象が発生すると、内部回路550内の各回路に搭載された内部電源電圧が3.3VのICは、定格電圧値を超えてしまい、破壊される可能性がある。
【0023】
また、動作定格電圧の異なるICを混載した回路群を共通の外部電源配線の下で動作させる場合にも、同様の理由から、外部電源配線に供給される電圧レベルにかかわらず、低電圧側の動作電圧(3.3V)を安定して供給することができる電圧発生回路が必要となる。
【0024】
この発明は、このような問題点を解決するためになされたものであって、外部電源電圧が定格電圧より高い場合においても、定格電圧を超えない内部電源電圧を安定的に供給することが可能な電圧発生回路を提供することを目的とするものである。
【0025】
【課題を解決するための手段】
請求項1記載の電圧発生回路は、外部電源電圧を受けて、予め定められた定格電圧の動作電源電圧を発生する電圧発生回路であって、外部電源電圧を伝達するための外部電源配線と、動作電源電圧を伝達するための内部電源配線と、制御ノードと、制御ノードの電圧レベルに応じて活性化され、外部電源配線と内部電源配線とを接続する出力切換回路と、外部電源配線と内部電源配線との間に接続され、制御ノードの電圧レベルに応じて出力切換回路と相補的に活性化されて、内部電源配線に定格電圧を供給する補助電圧発生回路と、制御ノードの電圧を切換えることによって、外部電源配線の電圧レベルが定格電圧よりも低く設定される基準電圧以上となるまでの起動期間においては、補助電圧発生回路を活性化し、外部電源配線の電圧レベルが基準電圧以上となった時刻以降においては、外部電源配線の電圧レベルが安定した後に、外部電源配線の電圧レベルに応じて、出力切換回路を活性化する電圧切換制御回路とを備える。
【0026】
請求項2記載の電圧発生回路は、請求項1記載の電圧発生回路であって、電圧切換制御回路は、外部電源配線の電圧レベルが基準電圧以上となった時刻から、外部電源電圧が定常状態に達するまでの時間である所定時間経過後において、外部電源配線の電圧レベルに応じて出力切換回路を活性化する。
【0027】
請求項3記載の電圧発生回路は、請求項2記載の電圧発生回路であって、電圧切換制御回路は、制御ノードの電圧レベルを、出力切換回路を活性化するための第1の電圧および補助電圧発生回路を活性化するための第2の電圧のいずれか一方に設定し、電圧切換制御回路は、外部電源配線の電圧レベルが定格電圧よりも高く設定される基準電圧以上である場合に、第1の制御信号を活性化する第1の電圧比較回路と、外部電源配線の電圧レベルが基準電圧以上である場合に、基準電圧以上となった時刻から所定時間が経過した後に、第2の制御信号を活性化する第2の電圧比較回路と、第1の制御信号が非活性化され、かつ、第2の制御信号が活性化される場合に、制御ノードの電圧レベルを第1の電圧に設定する論理演算回路とを含む。
【0028】
請求項4記載の電圧発生回路は、請求項3記載の電圧発生回路であって、第1の電圧比較回路は、第1の電圧供給する補助電源配線と、外部電源配線と制御ノードとを電気的に接続するために配置されるトランジスタと、補助電源配線からトランジスタの入力電極に向かう方向を順方向として接続され、降伏電圧が第1の電圧であるツェナーダイオードと、外部電源配線とトランジスタの入力電極との間に接続される第1の抵抗器と、トランジスタと補助電源配線との間に接続される第2の抵抗器とを含む。
【0029】
請求項5記載の電圧発生回路は、外部電源電圧を受けて、予め定められた定格電圧の動作電源電圧を発生する電圧発生回路であって、外部電源電圧を伝達するための外部電源配線と、動作電源電圧を伝達するための内部電源配線と、制御ノードと、制御ノードの電圧レベルに応じて活性化され、外部電源配線と内部電源配線とを接続する出力切換回路と、外部電源配線と内部電源配線との間に接続され、出力切換回路と相補的に活性化されて、内部電源配線に定格電圧を供給する補助電圧発生回路と、外部電源電圧の電圧レベルが定格電圧よりも高く設定される第1の基準電圧以下である場合においては、出力切換回路を活性化する電圧切換制御回路と、外部電源配線の電圧レベルが定格電圧よりも低く設定される第2の基準電圧以上となった第1の時刻から外部電源電圧が定常状態に達するまでの時間である所定時間経過するまでの間、内部電源配線に対する外部電源配線および補助電圧発生回路による電圧供給を停止するための電圧供給遮断回路とを備える。
【0031】
請求項記載の電圧発生回路は、請求項記載の電圧発生回路であって、電圧供給遮断回路は、補助電圧発生回路の出力端子および出力切換回路と接続される第1のノードと、外部電源電圧の電圧レベルが第2の基準電圧以上となり、かつ、所定時間が経過するまでの間、遮断制御信号を活性化する電圧比較回路と、遮断制御信号に応じて、第1のノードと内部電源配線との間を遮断する電圧遮断スイッチとを含む。
【0032】
請求項記載の電圧発生回路は、請求項記載の電圧発生回路であって、電圧供給遮断回路は、補助電圧発生回路の入力端子および出力切換回路と接続される第2のノードと、外部電源電圧の電圧レベルが第2の基準電圧以上となり、かつ、所定時間が経過するまでの間、遮断制御信号を活性化する電圧比較回路と、遮断制御信号に応じて、第2のノードと内部電源配線との間を遮断する電圧遮断スイッチとを含む。
【0033】
請求項記載の電圧発生回路は、請求項記載の電圧発生回路であって、電圧切換制御回路は、制御ノードの電圧レベルを、出力切換回路を活性化するための第1の電圧および補助電圧発生回路を活性化するための第2の電圧のいずれか一方に設定し、電圧切換制御回路は、記第1の電圧比較回路は、第1の電圧供給する補助電源配線と、外部電源配線と制御ノードとを電気的に接続するために配置されるトランジスタと、補助電源配線からトランジスタの入力電極に向かう方向を順方向として接続され、降伏電圧が第1の電圧であるツェナーダイオードと、外部電源配線とトランジスタの入力電極との間に接続される第1の抵抗器と、トランジスタと補助電源配線との間に接続される第1の抵抗器とを含む。
【0035】
【発明の実施の形態】
以下において、本発明の実施の形態について図面を参照して詳しく説明する。なお、図中における同一符号は同一または相当部分を示す。
【0036】
[実施の形態1]
図1は、本発明の実施の形態の電圧発生回路を説明するための電圧発生回路100の構成を示す回路図である。
【0037】
電圧発生回路100は、従来の技術の電圧発生回路500と同様に、外部電源電圧VCEの電圧レベルに応じて、外部電源配線10およびレギュレータ回路30の出力とのいずれか一方を内部電源配線20と接続することによって、負荷へ内部電源電圧Vccを供給するものである。
【0038】
なお、本発明の実施の形態においては、外部電源配線より5Vおよび3.3Vのいずれか一方を定格値とする外部電源電圧VCEが供給される場合に、定格値(3.3V)の内部電源電圧を安定して供給することが可能な電圧発生回路の構成について説明するが、電圧レベルを5Vおよび3.3Vとするのは単なる例示であって、本発明の適用をこのような場合に限定するものではない。
【0039】
図1を参照して、電圧発生回路100は、外部電源電圧VCEが伝達される外部電源配線10と、負荷に対して内部電源電圧Vccを供給するための内部電源配線20と、外部電源配線を入力端子に受けて内部電源電圧Vccの定格値である3.3Vを出力端子より出力するレギュレータ回路30と、ノードNaの電圧レベルに応じて活性化されて外部電源配線10と内部電源配線20とを接続する電圧切換トランジスタ50とを備える。
【0040】
レギュレータ回路30は、出力制御端子CNTをさらに有し、出力制御端子CNTにレベルの信号が入力されている場合には、レギュレータ回路30は非活性化され、出力端子OUTへの出力電圧(3.3V)の生成を停止する。すなわち、ノードNaの電圧レベルに応じて、レギュレータ回路30および電圧切換トランジスタ50のいずれか一方が相補的に活性化される。
【0041】
電圧発生回路100は、外部電源電圧VCEに応じて、Naの電圧レベルを定めるコンパレータ40をさらに備える。
【0042】
コンパレータ40は、外部電源電圧VCEが基準電圧V1より高い場合においてノードNaにHレベルを出力する。コンパレータ40は、オペアンプを用いた差動増幅回路等によって構成される。基準電圧V1は、内部電源電圧Vccの定格値より高く、かつ外部電源電圧のピーク値よりも低い電圧に設定すればよく、図1においては、例えば3.9Vに設定される。
【0043】
電圧発生回路100は、さらに、外部電源配線10および内部電源配線20の電圧を安定化するためのキャパシタCiおよびCoとをさらに備える。
【0044】
電圧発生回路100は、外部電源電圧VCEが、3.3V(≦V1)である場合には、コンパレータ40によってノードNaの電圧をLレベルとすることにより、レギュレータ回路30を非活性化し出力電圧の発生を停止させるとともに、電圧切換トランジスタ50をオンさせることによって、外部電源配線10と内部電源配線20とを接続する。これにより、外部電源電圧VCEが3.3Vである場合には、外部電源配線VCEより直接内部電源電圧が内部電源配線20に供給される。
【0045】
一方、外部電源電圧VCEが5V(≧V1)である場合には、コンパレータ40によってノードNaにHレベルの電圧が出力される。これにより、電圧切換トランジスタ50はオフするとともに、レギュレータ回路30の動作が活性化される。よって、外部電源電圧VCEが5Vである場合には、内部電源配線20と外部電源配線10とは遮断され、レギュレータ回路30の出力電圧が内部電源配線20に供給される。
【0046】
このように、外部電源電圧が内部電源電圧の定格値を超える場合には、レギュレータ回路によって降圧された電圧を内部電源電圧として供給し、外部電源電圧が内部電源電圧の定格値である場合には、レギュレータ回路を非活性化して外部電源配線より直接内部電源電圧を供給する構成とすることによって、電圧発生回路100は、全体の消費電力を低減しつつ安定的に内部電源電圧を供給することができる。
【0047】
しかし、電圧発生回路100においては、従来の技術で述べたのと同様の問題があり、外部電源電圧VCEが起動時に0Vから5Vに立上がる場合には、コンパレータ回路40の応答特性によっては、ノードNaの電圧レベルがLレベルからHレベルに変化するまでの間に、外部電源配線10の電位が上昇し、内部電源電圧VCCのピークが、外部電源電圧の最大レベル(5V)まで上昇してしまう可能性がある。
【0048】
図2は、本発明の実施の形態1の電圧発生回路110の構成を示す回路図である。
【0049】
図2を参照して、電圧発生回路110は、電圧発生回路100と比較して、コンパレータ回路40を内包する電圧切換制御回路60を備える点で異なる。
【0050】
電圧発生回路110においては、ノードNaの電圧レベルは、コンパレータ回路40の出力によって直接設定されるのではなく、電圧切換制御回路60によって制御される。
【0051】
電圧発生回路110は、電圧切換制御回路60の作用によって、外部電源電圧の立上がりタイミングにおいても、内部電源電圧が安定的に定格値を超えないように制御することを目的とする。
【0052】
電圧切換制御回路60は、図1で説明したコンパレータ40と、コンパレータ40とノードNaとの間に配置される切換設定回路45とを含む。
【0053】
切換設定回路45は、コンパレータ40の出力を反転するインバータ62と、外部電源電圧VCEが基準電圧V2を超えたときに所定時間td経過後にHレベルの電圧信号を出力する遅延回路付コンパレータ65と、インバータ62と遅延回路付コンパレータ65との出力を受けてNAND演算結果を出力するNANDゲート64とを含む。
【0054】
コンパレータ40は、電圧発生回路100の場合と同様に、外部電源電圧VCEが基準電圧V1以上となった場合にHレベルを出力する。また、基準電圧V2は、内部電源電圧Vccの定格値より低い電圧に設定すればよい。定格電圧が3.3Vである本実施の形態の場合には、一例として、V1=3.9V,V2=2.6Vと設定すればよい。
【0055】
次に、電圧発生回路110において、外部電源電圧が起動時に上昇する場合の電圧発生回路110の動作について説明する。
【0056】
図3は、外部電源電圧が0Vから5Vに立上がる場合の電圧発生回路110の動作を説明するための動作波形図である。
【0057】
図3を参照して、時刻t0において外部電源が起動されて外部電源電圧VCEが立上がりを開始する。外部電源電圧VCEは、時刻t1において遅延回路付コンパレータ65の基準電圧であるV2(2.6V)に達するが、遅延回路の作用により所定の遅延時間tdが経過するまでの間、遅延回路付コンパレータ65の出力はLレベルに維持される。
【0058】
時刻t2において、外部電源電圧VCEは、コンパレータ40の基準電圧V1(3.9V)に達するため、コンパレータ40の出力はHレベルに変化する。これに応じてインバータ62の出力もLレベルに変化する。
【0059】
時刻t1から所定の遅延時間td経過後の時刻t3において、遅延回路付コンパレータ65の出力はHレベルに立上がる。遅延時間tdを、外部電源電圧VCEが定常状態に達するまでの時間を考慮して設定することにより、遅延回路付コンパレータ65の出力がHレベルに切換わるタイミングにおいては、インバータ62の出力は、すでにLレベルとなっている。
【0060】
これにより、ノードNaの電圧レベルは、Hレベルのまま維持される。この間トランジス50はオフ状態を維持するため、内部電源配線20には常にレギュレータ回路30の出力電圧が供給される。よって、外部電源電圧が0Vから5Vに立上がる場合において、内部電源配線20に直接外部電源電圧VCEが伝達されることはなく、コンパレータの応答速度によらず内部電源電圧における定格(3.3V)を超える電圧の発生を回避できる。
【0061】
図4は、外部電源電圧が0Vから3.3Vに立上がる場合の電圧発生回路110の動作を説明するための動作波形図である。
【0062】
図4を参照して、時刻t0において外部電源が起動されて外部電源電圧VCEが立上がりを開始する。外部電源電圧VCEは、時刻t11において遅延回路付コンパレータ65の基準電圧V2(2.6V)に達するが、遅延回路の作用により所定の遅延時間tdが経過するまでの間、遅延回路付コンパレータ65の出力はLレベルに維持される。
【0063】
一方、外部電源電圧の定常値(3.3V)は、コンパレータ40の基準電圧V1(3.9V)よりも低いため、コンパレータ40の出力はLレベルのまま一定である。これに応じて、インバータ62の出力もHレベルを維持する。
【0064】
よって、遅延回路付コンパレータ65の出力はLレベルに維持される間、ノードNaの電圧レベルはHレベルであり、トランジスタ50はオフ状態であるとともに、レギュレータ回路30は活性化される。この間、内部電源配線20には、レギュレータ回路30の出力電圧が供給されるので、内部電源電圧に定格(3.3V)を超える電圧が生じることを回避できる。
【0065】
時刻t11から所定の遅延時間td経過後の時刻t12において、遅延回路付コンパレータ65の出力がHレベルに立上がると、インバータ62の出力がHレベルに維持されていることから、ノードNaの電圧レベルは、HレベルからLレベルに変化する。
【0066】
これにより、時刻t12において、内部電源配線20と外部電源配線とがトランジスタ50のオンによって接続される。しかし、遅延時間tdは外部電源電圧VCEが定常状態に達するまでの時間を考慮して設定されるので、内部電源配線20に外部電源電圧VCEを供給しても、内部電源配線20に定格(3.3V)を超える過渡的なピーク電圧が生じるおそれはない。
【0067】
よって、外部電源電圧が0Vから3.3Vに立上がる場合においても、内部電源電圧における定格(3.3V)を超える電圧の発生を回避できる。さらに、外部電源電圧VCEが定常状態に達した後において、レギュレータ回路30を非活性とすることで、消費電力の低減を図ることが可能となる。
【0068】
このように、外部電源電圧が3.3Vおよび5Vのいずれの場合であっても、定格電圧を超える過渡的なピーク電圧の発生が回避された安定した電圧を、起動直後より内部電源配線に供給することが可能となる。
【0069】
なお、電圧切換トランジスタ50に、オン抵抗の小さいMOSトランジスタを採用することによって、この場合における外部電源電圧VCEと、内部電源電圧Vccとの間に生ずる電圧降下を小さく抑えることができる。
【0070】
また、基準電圧V1およびV2を、それぞれ3.9Vおよび2.6Vとしたのは例示にすぎない。すなわち、コンパレータ40の基準電圧となるV1を内部電源電圧Vccの定格電圧よりも高く設定し、遅延回路付コンパレータ65の基準電圧V2を定格電圧よりも低く設定することによって、所定の効果を得ることができる。
【0071】
遅延回路付コンパレータ65で設定される遅延時間tdは、既に述べたように、外部電源配線10に供給される外部電源電圧VCEが安定状態となるまでの間、コンパレータの出力電圧レベルがHレベルに切換わらないように設定すればよく、外部電源電圧VCEの立上がり時における安定性を評価および確認した後に決定すればよい。
【0072】
[実施の形態1の変形例]
図5は、本発明の実施の形態1の変形例である電圧発生回路120の全体構成を示す回路図である。
【0073】
図5を参照して、電圧発生回路120は、実施の形態1の電圧発生回路110と比較して、コンパレータ40に代えて電圧比較回路41を備える点で異なる。その他の構成および動作については、電圧発生回路110の場合と同様であるの説明は繰返さない。
【0074】
電圧比較回路41は、外部電源配線10とインバータ62の入力ノードとを電気的に接続するために設けられたPNPトランジスタ47と、トランジスタ47のコレクタと接地配線15との間に設けられた抵抗器46と、ノードNbとトランジスタ47のベースとの間に設けられた抵抗器44と、外部電源配線10とノードNとの間に接続される抵抗器42と、ノードNbと接地配線15との間に接続される降伏電圧V1であるツェナーダイオード48とを含む。ツェナーダイオード48に生じる電圧降下により、トランジスタ47のベースと接続されるノードNbの電圧レベルは基準電圧V1以下に維持される。
【0075】
これにより、外部電源電圧VCEが基準電圧V1以上となった場合においてトランジスタ47のベースエミッタ間電圧が上昇し、トランジスタ47は導通状態となる。すなわち、このような構成とすることにより、電圧比較回路41は、電圧発生回路110のコンパレータ40と同様の効果を奏する。
【0076】
電圧発生回路120は、その動作は電圧発生回路110と同様であるが、オペアンプを使用するコンパレータ40に代えて、ツェナダイオード、トランジスタおよび抵抗器で構成される電圧比較回路41によって同等の効果を奏するので、コスト的により有利な構成とすることが可能である。
【0077】
[実施の形態2]
図6は、本発明の実施の形態2の電圧発生回路200の構成を示す回路図である。
【0078】
図6を参照して、電圧発生回路200は、図1の電圧発生回路100と比較して、レギュレータ回路30の出力端子および電圧切換トランジスタ50に接続される出力ノードNoと内部電源配線20との間に電圧遮断制御回路70をさらに備える点で異なる。電圧発生回路200は、電圧遮断制御回路70の作用によって、外部電源電圧VCEの立上がり時の一定期間において、内部電源配線20への電源電圧の供給を一時的に停止することにより、内部電源電圧Vccが、定格電圧を超えることがないように制御することを目的とする。
【0079】
レギュレータ回路30、コンパレータ40および電圧切換トランジスタ50の動作については電圧発生回路110の場合と同様であるので説明は繰返さない。
【0080】
電圧遮断制御回路70は、入力電圧が基準電圧V2以上になった場合に所定遅延時間td経過後にHレベルを出力する遅延回路付コンパレータ72と、遅延回路付コンパレータ72の出力を反転するインバータ74と、インバータ74の出力をゲートに受けレギュレータ回路30の出力端子と内部電源配線20とを電気的に接続するために設けられる電圧遮断トランジスタ76とを含む。
【0081】
実施の形態1の場合と同様に、コンパレータ40は、外部電源電圧VCEが基準電圧V1以上となった場合にHレベルを出力する。基準電圧V1は、内部電源電圧Vccの定格電圧(たとえば3.3V)以上の3.9Vに設定され、基準電圧V2は、定格電圧以下の2.6Vに設定される。
【0082】
電圧発生回路200においては、外部電源電圧が安定状態になるまでの一定期間電圧遮断トランジスタ76をオフすることによって、内部電源配線20への電圧供給をストップし、その後外部電源電圧VCEが安定状態となった後に電圧遮断トランジスタ76をオンして内部電源配線20への内部電源電圧の供給を開始する。
【0083】
図7は、外部電源電圧が0Vから5Vに立上がる場合の電圧発生回路200の動作を説明するための動作波形図である。
【0084】
図7を参照して、時刻t0において外部電源が起動されて外部電源電圧VCEが立上がりを開始する。外部電源電圧VCEは、時刻t1において遅延回路付コンパレータ72の基準電圧であるV2(2.6V)に達するが、遅延回路の作用により所定の遅延時間tdが経過するまでの間、遅延回路付コンパレータ72の出力はLレベルであり、電圧遮断トランジスタ76もオフ状態を維持する。電圧遮断トランジスタ76がオフ状態の間は、内部電源配線に電圧は供給されない。
【0085】
時刻t2において、外部電源電圧VCEは、コンパレータ40の基準電圧V1(3.9V)に達するため、コンパレータ40の出力はHレベルに変化する。これに応じて、電圧切換トランジスタ50のターンオフによって外部電源配線と内部電源配線との間が遮断されるとともに、レギュレータ回路30が活性化されて内部電源電圧の生成を開始する。
【0086】
時刻t1から所定の遅延時間td経過後の時刻t3において、遅延回路付コンパレータ72の出力はHレベルに立上がり、これに応じた電圧遮断トランジスタ76のオンによって、内部電源配線への電圧供給が開始される。
【0087】
ここで、遅延時間tdを、外部電源電圧VCEの起動時の応答特性を考慮して設定することにより、内部電源配線20に対して常にレギュレータ回路30の出力電圧を供給することができる。よって、外部電源電圧が0Vから5Vに立上がる場合において、内部電源配線20に直接外部電源電圧VCEが伝達されることはなく、コンパレータの応答速度によらず内部電源電圧における定格(3.3V)を超える電圧の発生を回避できる。
【0088】
図8は、外部電源電圧が0Vから3.3Vに立上がる場合の電圧発生回路200の動作を説明するための動作波形図である。
【0089】
図8を参照して、時刻t0において外部電源が起動されて外部電源電圧VCEが立上がりを開始する。外部電源電圧VCEは、時刻t11において遅延回路付コンパレータ72の基準電圧V2(2.6V)に達するが、遅延回路の作用により所定の遅延時間tdが経過するまでの間、遅延回路付コンパレータ72の出力はLレベルに維持されるため、電圧遮断トランジスタ76もオフ状態を維持する。電圧遮断トランジスタ76がオフ状態の間は、内部電源配線には電圧が供給されない。
【0090】
一方、外部電源電圧の定常値(3.3V)は、コンパレータ40の基準電圧V1(3.9V)よりも低いため、コンパレータ40の出力はLレベルのまま一定である。これに応じて、電圧切換トランジスタ50はオンを維持する。しかし、電圧遮断トランジスタ76がオフ状態であるため、内部電源配線に電圧は供給されない。
【0091】
時刻t11から所定の遅延時間td経過後の時刻t12において、遅延回路付コンパレータ72の出力がHレベルに立上がると、これに応じて、トランジスタ電圧遮断トランジスタ76は、オンする。
【0092】
時刻t12においては、電圧切換トランジスタ50はオンを維持しており、レギュレータ回路30は非活性化されたままである。よって、トランジスタ50のオンによって、外部電源配線10と内部電源配線20とが接続される。
【0093】
遅延時間tdを外部電源電圧VCEが定常状態に達するまでの時間を考慮して設定することにより、内部電源配線20に外部電源電圧VCEを直接供給しても、内部電源配線20に定格(3.3V)を超える過渡的なピーク電圧が生じるおそれはない。
【0094】
よって、外部電源電圧が0Vから3.3Vに立上がる場合においても、内部電源電圧における定格(3.3V)を超える電圧の発生を回避できる。さらに、レギュレータ回路30を非活性化することで、消費電力の低減を図ることが可能となる。
【0095】
電圧発生回路10の場合と同様に、電圧切換トランジスタ50および電圧遮断トランジスタ76に、オン抵抗の小さいMOSトランジスタを採用することによって、この場合における外部電源電圧VCEと、内部電源電圧Vccとの間に生ずる電圧降下を小さく抑えることができる。
【0096】
このように、外部電源電圧の立上がりタイミングにおいて、外部電源電圧が安定状態に至るまでの一定期間の間、内部電源配線20への電圧供給を遮断することによっても、起動直後において内部電源電圧を供給することははできないものの、内部電源電圧が安定的に定格電圧を超えないように制御することが可能となる。
【0097】
[実施の形態2の変形例]
図9は、本発明の実施の形態2の変形例の電圧発生回路210の構成を示す回路図である。
【0098】
図9を参照して、電圧発生回路210は、実施の形態2の電圧発生回路200と比較して、コンパレータ40に代えて電圧比較回路41を備える点で異なる。その他の構成および動作については、電圧発生回路200の場合と同様であるの説明は繰返さない。
【0099】
また、電圧比較回路41の構成および動作は、実施の形態1の変形例の電圧発生回路120の場合と同様であるので、説明は繰り返さない。
【0100】
電圧比較回路41は、電圧発生回路200におけるコンパレータ40と同様の効果を奏する。電圧発生回路210は、その動作は電圧発生回路200と同様であるが、オペアンプを使用するコンパレータ40に代えて、ツェナダイオード、トランジスタおよび抵抗器で構成される電圧比較回路41によって同等の効果を奏するので、よりコスト的に有利な構成とすることが可能である。
【0101】
[実施の形態3]
図10は、本発明の実施の形態3の電圧発生回路300の構成を示す回路図である。
【0102】
図10を参照して、電圧発生回路300は、電圧発生回路100と比較して、レギュレータ回路の入力端子および電圧切換トランジスタ50に接続される入力ノードNiと外部電源配線10との間に電圧遮断制御回路70をさらに備える点で異なる。
【0103】
電圧発生回路300は、外部電源電圧VCEが安定状態に至るまでの間、レギュレータ回路30および電圧切換トランジスタ50と外部電源配線10との間を遮断することにより、内部電源配線20への電圧供給を停止する。また、外部電源電圧VCEが安定となった後においては、電圧遮断トランジスタ76をオンさせることにより、電圧発生回路100と同様の動作を行なう。
【0104】
コンパレータ40、遅延回路付コンパレータ72、トランジスタ62および電圧切換トランジスタ50の動作タイミングについては、図7および8で説明した電圧発生回路200の場合と同様であるので、説明は繰り返さない。
【0105】
このような構成によっても、電圧発生回路200と同様に、起動直後において内部電源電圧を供給することははできないものの、外部電源電圧VCEの立上がり時においても内部電源電圧Vccが瞬時的に定格以上となることを確実に回避することができ、負荷である内部回路に定格以上の電圧が印加され素子破壊に至ることを回避できる。
【0106】
[実施の形態3の変形例]
図11は、本発明の実施の形態3の変形例の電圧発生回路310の構成を示す回路図である。
【0107】
図11を参照して、電圧発生回路310は、実施の形態3の電圧発生回路300と比較して、コンパレータ40に代えて電圧比較回路41を備える点で異なる。その他の構成および動作については、電圧発生回路300の場合と同様であるの説明は繰返さない。
【0108】
また、電圧比較回路41の構成および動作は、実施の形態1の変形例の電圧発生回路120の場合と同様であるので、説明は繰り返さない。
【0109】
電圧比較回路41は、電圧発生回路300におけるコンパレータ40と同様の効果を奏する。電圧発生回路310は、その動作は電圧発生回路300と同様であるが、オペアンプを使用するコンパレータ40に代えて、ツェナダイオード、トランジスタおよび抵抗器で構成される電圧比較回路41によって同等の効果を奏するので、よりコスト的に有利な構成とすることが可能である。
【0110】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0111】
【発明の効果】
請求項1記載の電圧発生回路は、外部電源配線の電圧レベルが安定するまでの間は、補助電圧発生回路によって内部電源配線に電圧を供給し、外部電源配線の電圧レベルが安定した後は、外部電源配線の電圧レベルに応じて、内部電源配線に直接外部電源配線より電圧を供給するので、起動時(起動期間)より定格を超えることにない安定した電圧を内部電源配線に供給することができるとともに、補助電圧発生回路を非活性化することによって消費電力の低減を図ることが可能となる。
【0112】
請求項2、3記載の電圧発生回路は、所定時間の経過によって外部電源配線の電圧レベルが安定したものとみなすので、請求項1記載の電圧発生回路の奏する効果を、より簡易な回路構成の下で享受することが可能である。特に、外部より供給される外部電源電圧の過渡応答特性に応じて、内部電源電圧が定格電圧を超えることがないように制御することが可能である。
【0113】
請求項4記載の電圧発生回路は、電圧比較回路を演算増幅器を用いずに構成できるので、請求項3記載の電圧発生回路の奏する効果をコスト的により有利な回路構成の下で享受することが可能である。
【0114】
請求項5〜7記載の電圧発生回路は、電圧供給遮断回路の作用によって、外部電源電圧の立上がり時の一定期間において、内部電源配線への電圧供給を一時的に停止するので、内部電源電圧が定格電圧を超えることがないように制御することが可能である。また、所定時間の経過によって外部電源配線の電圧レベルが安定したものとみなすので、より簡易な回路構成の下で上記効果を享受することが可能である。
【0116】
請求項記載の電圧発生回路は、電圧比較回路を演算増幅器を用いずに構成できるので、請求項記載の電圧発生回路の奏する効果を、コスト的により有利な回路構成の下で享受することが可能である。
【図面の簡単な説明】
【図1】 実施の形態1の電圧発生回路の構成を説明するための電圧発生回路100の構成を示す回路図である。
【図2】 実施の形態1の電圧発生回路110の全体構成を示す回路図である。
【図3】 外部電源電圧が0Vから5Vに立上がる場合の電圧発生回路110の動作を説明するための動作波形図である。
【図4】 外部電源電圧が0Vから3.3Vに立上がる場合の電圧発生回路110の動作を説明するための動作波形図である。
【図5】 実施の形態1の変形例の電圧発生回路120の全体構成を示す回路図である。
【図6】 実施の形態2の電圧発生回路200の全体構成を示す回路図である。
【図7】 外部電源電圧が0Vから5Vに立上がる場合の電圧発生回路200の動作を説明するための動作波形図である。
【図8】 外部電源電圧が0Vから3.3Vに立上がる場合の電圧発生回路200の動作を説明するための動作波形図である。
【図9】 実施の形態2の変形例の電圧発生回路210の全体構成を示す回路図である。
【図10】 実施の形態3の電圧発生回路300の全体構成を示す回路図である。
【図11】 実施の形態3の変形例の電圧発生回路310の全体構成を示す回路図である。
【図12】 従来の技術の電圧発生回路500の全体構成を示す概略ブロック図である。
【図13】 切り替え回路540の構成を示す回路図である。
【図14】 電源電圧検出回路530の構成を示す回路図である。
【符号の説明】
10 外部電源配線、20 内部電源配線、30 レギュレータ回路、40 コンパレータ、50 電圧切換トランジスタ、60 電圧切換制御回路、70 電圧遮断回路。

Claims (8)

  1. 外部電源電圧を受けて、予め定められた定格電圧の動作電源電圧を発生する電圧発生回路であって、
    前記外部電源電圧を伝達するための外部電源配線と、
    前記動作電源電圧を伝達するための内部電源配線と、
    制御ノードと、
    前記制御ノードの電圧レベルに応じて活性化され、前記外部電源配線と前記内部電源配線とを接続する出力切換回路と、
    前記外部電源配線と前記内部電源配線との間に接続され、前記制御ノードの電圧レベルに応じて前記出力切換回路と相補的に活性化されて、前記内部電源配線に前記定格電圧を供給する補助電圧発生回路と、
    前記制御ノードの電圧を切換えることによって、前記外部電源配線の電圧レベルが前記定格電圧よりも低く設定される基準電圧以上となるまでの起動期間においては、前記補助電圧発生回路を活性化し、前記外部電源配線の電圧レベルが前記基準電圧以上となった時刻以降においては、前記外部電源配線の電圧レベルが安定した後に、前記外部電源配線の電圧レベルに応じて、前記出力切換回路を活性化する電圧切換制御回路とを備える、電圧発生回路。
  2. 前記電圧切換制御回路は、前記外部電源配線の電圧レベルが前記基準電圧以上となった時刻から、前記外部電源電圧が定常状態に達するまでの時間である所定時間経過後において、前記外部電源配線の電圧レベルに応じて前記出力切換回路を活性化する、請求項1記載の電圧発生回路。
  3. 前記電圧切換制御回路は、前記制御ノードの電圧レベルを、前記出力切換回路を活性化するための第1の電圧および前記補助電圧発生回路を活性化するための第2の電圧のいずれか一方に設定し、
    前記電圧切換制御回路は、
    前記外部電源配線の電圧レベルが前記定格電圧よりも高く設定される基準電圧以上である場合に、第1の制御信号を活性化する第1の電圧比較回路と、
    前記外部電源配線の電圧レベルが前基準電圧以上である場合に、前記基準電圧以上となった時刻から前記所定時間が経過した後に、第2の制御信号を活性化する第2の電圧比較回路と、
    前記第1の制御信号が非活性化され、かつ、前記第2の制御信号が活性化される場合に、前記制御ノードの電圧レベルを前記第1の電圧に設定する論理演算回路とを含む、請求項2記載の電圧発生回路。
  4. 前記第1の電圧比較回路は、
    前記第1の電圧供給する補助電源配線と、
    前記外部電源配線と前記制御ノードとを電気的に接続するために配置されるトランジスタと、
    前記補助電源配線から前記トランジスタの入力電極に向かう方向を順方向として接続され、降伏電圧が前記第1の電圧であるツェナーダイオードと、
    前記外部電源配線と前記トランジスタの入力電極との間に接続される第1の抵抗器と、
    前記トランジスタと前記補助電源配線との間に接続される第2の抵抗器とを含む、請求項3記載の電圧発生回路。
  5. 外部電源電圧を受けて、予め定められた定格電圧の動作電源電圧を発生する電圧発生回路であって、
    前記外部電源電圧を伝達するための外部電源配線と、
    前記動作電源電圧を伝達するための内部電源配線と、
    制御ノードと、
    前記制御ノードの電圧レベルに応じて活性化され、前記外部電源配線と前記内部電源配線とを接続する出力切換回路と、
    前記外部電源配線と前記内部電源配線との間に接続され、前記出力切換回路と相補的に活性化されて、前記内部電源配線に前記定格電圧を供給する補助電圧発生回路と、
    前記外部電源電圧の電圧レベルが前記定格電圧よりも高く設定される第1の基準電圧以下である場合においては、前記出力切換回路を活性化する電圧切換制御回路と、
    前記外部電源配線の電圧レベルが前記定格電圧よりも低く設定される第2の基準電圧以上となった第1の時刻から前記外部電源電圧が定常状態に達するまでの時間である所定時間経過するまでの間、前記内部電源配線に対する前記外部電源配線および前記補助電圧発生回路による電圧供給を停止するための電圧供給遮断回路とを備える、電圧発生回路。
  6. 前記電圧供給遮断回路は、
    前記補助電圧発生回路の出力端子および前記出力切換回路と接続される第1のノードと、
    前記外部電源電圧の電圧レベルが前記第2の基準電圧以上となり、かつ、前記所定時間が経過するまでの間、遮断制御信号を活性化する電圧比較回路と、
    前記遮断制御信号に応じて、前記第1のノードと前記内部電源配線との間を遮断する電圧遮断スイッチとを含む、請求項記載の電圧発生回路。
  7. 前記電圧供給遮断回路は、
    前記補助電圧発生回路の入力端子および前記出力切換回路と接続される第2のノードと、
    前記外部電源電圧の電圧レベルが前記第2の基準電圧以上となり、かつ、前記所定時間が経過するまでの間、遮断制御信号を活性化する電圧比較回路と、
    前記遮断制御信号に応じて、前記第2のノードと前記内部電源配線との間を遮断する電圧遮断スイッチとを含む、請求項記載の電圧発生回路。
  8. 前記電圧切換制御回路は、前記制御ノードの電圧レベルを、前記出力切換回路を活性化するための第1の電圧および前記補助電圧発生回路を活性化するための第2の電圧のいずれか一方に設定し、
    前記電圧切換制御回路は、記第1の電圧比較回路は、
    前記第1の電圧供給する補助電源配線と、
    前記外部電源配線と前記制御ノードとを電気的に接続するために配置されるトランジスタと、
    前記補助電源配線から前記トランジスタの入力電極に向かう方向を順方向として接続され、降伏電圧が前記第1の電圧であるツェナーダイオードと、
    前記外部電源配線と前記トランジスタの入力電極との間に接続される第1の抵抗器と、
    前記トランジスタと前記補助電源配線との間に接続される第1の抵抗器とを含む、請求項記載の電圧発生回路。
JP14858299A 1999-05-27 1999-05-27 電圧発生回路 Expired - Fee Related JP4225630B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14858299A JP4225630B2 (ja) 1999-05-27 1999-05-27 電圧発生回路
US09/437,094 US6340852B1 (en) 1999-05-27 1999-11-09 Voltage generating circuit capable of stably supplying power supply voltage less than rated voltage
TW088121256A TW454112B (en) 1999-05-27 1999-12-04 Voltage generation circuit
KR1019990058150A KR100347442B1 (ko) 1999-05-27 1999-12-16 정격전압을 초과하지 않는 전원전압을 안정적으로공급하는 것이 가능한 전압발생회로
CNB001016571A CN1179259C (zh) 1999-05-27 2000-01-24 可稳定供给不超过额定电压的电源电压的电压发生电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14858299A JP4225630B2 (ja) 1999-05-27 1999-05-27 電圧発生回路

Publications (3)

Publication Number Publication Date
JP2000339042A JP2000339042A (ja) 2000-12-08
JP2000339042A5 JP2000339042A5 (ja) 2005-10-27
JP4225630B2 true JP4225630B2 (ja) 2009-02-18

Family

ID=15455978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14858299A Expired - Fee Related JP4225630B2 (ja) 1999-05-27 1999-05-27 電圧発生回路

Country Status (5)

Country Link
US (1) US6340852B1 (ja)
JP (1) JP4225630B2 (ja)
KR (1) KR100347442B1 (ja)
CN (1) CN1179259C (ja)
TW (1) TW454112B (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493275B2 (en) * 2000-08-07 2002-12-10 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit device and electronic equipment
US7523337B2 (en) 2004-08-19 2009-04-21 Intel Corporation Power delivery system in which power supply and load exchange power consumption measurements via digital bus
CN100412753C (zh) * 2004-11-20 2008-08-20 鸿富锦精密工业(深圳)有限公司 主机板芯片组工作电压产生电路
DE102004058612A1 (de) * 2004-12-04 2006-06-08 Infineon Technologies Ag Spannungsversorgungsschaltung, insbesondere für eine DRAM-Speicherschaltung sowie ein Verfahren zum Steuern einer Versorgungsquelle
KR100672196B1 (ko) 2005-03-15 2007-01-19 씨멘스 오토모티브 주식회사 엔진제어유닛의 전원 상태에 따른 프로그램 시작 제어 방법
US7564230B2 (en) * 2006-01-11 2009-07-21 Anadigics, Inc. Voltage regulated power supply system
KR100711272B1 (ko) * 2006-11-17 2007-05-02 황국주 전선연결 변경이 가능한 송배전 선로장치
WO2010134228A1 (ja) 2009-05-19 2010-11-25 パナソニック株式会社 電源発生回路及び集積回路
CN101860188B (zh) * 2010-06-07 2013-08-28 鸿富锦精密工业(深圳)有限公司 开关电源电路
CN102035385A (zh) * 2010-12-29 2011-04-27 苏州华芯微电子股份有限公司 电压切换电路
JP5829072B2 (ja) * 2011-08-11 2015-12-09 ルネサスエレクトロニクス株式会社 電圧発生回路
JP2013191913A (ja) * 2012-03-12 2013-09-26 Renesas Electronics Corp ワイヤレス充電回路、ワイヤレス充電システム及び半導体装置
DE102014113426A1 (de) * 2014-09-17 2016-03-17 Rheotec Messtechnik Gmbh Schaltungsanordnung zur Wandlung einer elektrischen Größe, insbesondere zur Wandlung einer Eingangsspannung UE an einem Spannungseingang in eine Ausgangsspannung UA an einem Spannungsausgang der Schaltungsanordnung
JP6466761B2 (ja) * 2015-03-31 2019-02-06 ラピスセミコンダクタ株式会社 半導体装置、及び電源供給方法
US10812138B2 (en) 2018-08-20 2020-10-20 Rambus Inc. Pseudo-differential signaling for modified single-ended interface
US10823101B1 (en) * 2019-11-05 2020-11-03 GM Global Technology Operations LLC System and method for learning an injector compensation
TWI713287B (zh) 2020-03-19 2020-12-11 捷拓科技股份有限公司 寬輸入電壓範圍的輔助電源供應電路
CN113433996B (zh) * 2020-03-23 2023-05-23 捷拓科技股份有限公司 宽输入电压范围的辅助电源供应电路
CN115237191B (zh) * 2021-04-23 2024-02-20 世界先进积体电路股份有限公司 电压追踪电路以及电子电路

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730122A (en) * 1986-09-18 1988-03-08 International Business Machines Corporation Power supply adapter systems
JPH02136097A (ja) * 1988-11-17 1990-05-24 Canon Inc 電源装置
FR2651343A1 (fr) * 1989-08-22 1991-03-01 Radiotechnique Compelec Circuit destine a fournir une tension de reference.
US5424629A (en) * 1991-04-11 1995-06-13 Matsushita Electric Industrial Co., Ltd. Power circuit for a semiconductor apparatus
JPH06149395A (ja) 1992-11-12 1994-05-27 Nec Corp 半導体装置
US5373227A (en) * 1993-03-26 1994-12-13 Micron Semiconductor, Inc. Control circuit responsive to its supply voltage level
JP3239581B2 (ja) * 1994-01-26 2001-12-17 富士通株式会社 半導体集積回路の製造方法及び半導体集積回路
US5514951A (en) * 1994-04-11 1996-05-07 Rockwell International Corporation Supply-discriminating supply-adaptive electronic system
JPH09231339A (ja) * 1996-02-27 1997-09-05 Mitsubishi Electric Corp メモリカード
KR100206566B1 (ko) * 1996-08-21 1999-07-01 윤종용 액정 표시 장치의 구동 전압 발생 회로
JPH1074394A (ja) 1996-08-30 1998-03-17 Fujitsu Ltd 半導体記憶装置
JPH10144079A (ja) * 1996-11-07 1998-05-29 Mitsubishi Electric Corp 半導体記憶装置
JP3315621B2 (ja) * 1997-04-11 2002-08-19 富士通株式会社 半導体装置の内部降圧電源回路
US5973489A (en) * 1998-12-08 1999-10-26 Philips Electronics N.A. Corporation Expanded input voltage range for switch-mode power supply in broadband network
JP2000228084A (ja) * 1999-02-05 2000-08-15 Mitsubishi Electric Corp 電圧発生回路
US5982158A (en) * 1999-04-19 1999-11-09 Delco Electronics Corporaiton Smart IC power control
JP3784594B2 (ja) * 1999-11-30 2006-06-14 富士通株式会社 電流制御回路
US6188210B1 (en) * 2000-01-13 2001-02-13 Ophir Rf, Inc. Methods and apparatus for soft start and soft turnoff of linear voltage regulators

Also Published As

Publication number Publication date
KR100347442B1 (ko) 2002-08-03
TW454112B (en) 2001-09-11
JP2000339042A (ja) 2000-12-08
CN1179259C (zh) 2004-12-08
US6340852B1 (en) 2002-01-22
CN1275727A (zh) 2000-12-06
KR20000075439A (ko) 2000-12-15

Similar Documents

Publication Publication Date Title
JP4225630B2 (ja) 電圧発生回路
US6914461B2 (en) Power-on reset circuits including first and second signal generators and related methods
JP3034176B2 (ja) 起動回路を有する基準電圧発生回路
US6807039B2 (en) Inrush limiter circuit
KR960003529B1 (ko) 반도체 메모리 장치의 칩 초기화 신호 발생회로
JP2000165220A (ja) 起動回路及び半導体集積回路装置
JP5103947B2 (ja) 突入電流防止回路
JP2010010920A (ja) 半導体集積回路
JP2004260730A (ja) パルス発生回路及びそれを用いたハイサイドドライバ回路
KR20040108011A (ko) 반도체 장치용 내부전압 발생기
JP6926982B2 (ja) 電源制御回路および環境発電装置
US6300810B1 (en) Voltage down converter with switched hysteresis
JP2002208849A (ja) 誘導性負荷駆動回路
JP2006295326A (ja) 保護機能付きスイッチング回路および保護回路
JP2005291865A (ja) 電源電圧監視回路
CN113364442A (zh) 启动电路及芯片
JP2703890B2 (ja) 半導体集積回路
CN115411697A (zh) 一种欠压保护装置
JP4086049B2 (ja) パワーオン・リセット回路
US6281722B1 (en) Bias source control circuit
JP2005039635A (ja) パワーオンリセット回路
CN219436662U (zh) 电源监测电路、电源管理***和存储主控芯片
JP5687091B2 (ja) 電源電圧検出回路
KR100715601B1 (ko) 파워온 리셋 회로
JP2006279765A (ja) ヒステリシスコンパレータ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees