JP4182237B2 - Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same - Google Patents

Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same Download PDF

Info

Publication number
JP4182237B2
JP4182237B2 JP26690397A JP26690397A JP4182237B2 JP 4182237 B2 JP4182237 B2 JP 4182237B2 JP 26690397 A JP26690397 A JP 26690397A JP 26690397 A JP26690397 A JP 26690397A JP 4182237 B2 JP4182237 B2 JP 4182237B2
Authority
JP
Japan
Prior art keywords
catalyst
isobutane
oxygen
less
selectivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26690397A
Other languages
Japanese (ja)
Other versions
JPH11114418A (en
Inventor
顕仙 奥迫
利明 宇井
功一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP26690397A priority Critical patent/JP4182237B2/en
Publication of JPH11114418A publication Critical patent/JPH11114418A/en
Application granted granted Critical
Publication of JP4182237B2 publication Critical patent/JP4182237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、イソブタンの気相接触酸化反応用触媒の提供並びにこれを用いてなるイソブタンからのイソブチレン、酢酸、アクリル酸、メタクロレイン及び、メタクリル酸等のアルケンおよび含酸素化合物の製造方法に関する。
【0002】
【従来の技術】
イソブチレンまたはターシャリーブタノールからメタクロレインを経由し、二段階酸化によりメタクリル酸を製造する方法はよく知られており、既に工業化が実施されている。
他方、近年イソブチレンまたはターシャリーブタノールに比べると著しく反応性は乏しいものの、これらと同じ炭素骨格を有し且つ安価であるイソブタンを原料としたメタクロレインおよび/またはメタクリル酸を製造する方法が提案されている。
【0003】
例えば、特開昭62−132832号公報には「リンまたはヒ素を中心元素として、モリブデンを含むヘテロポリ酸を含有する触媒にイソブタンと酸素を交互に接触させ、メタクロレインおよび/またはメタクリル酸を得る方法」、特開平2−42034号公報には「リンおよび/またはヒ素を中心元素として、モリブデンを含むヘテロポリ酸および/またはその塩でAg、Zn、Cd、Ti、Zr、Nb、Ta、Cr、W、Mn、Fe、Co、Ni、Rh、Sn、BiおよびTeからなる群から選ばれた少なくとも1種を触媒構成元素として含有する触媒に、イソブタンを分子状酸素を含む混合ガスを気相で接触させ、メタクロレインおよび/またはメタクリル酸を得る方法」等が知られている。
特開平5−178774号公報および特開平5−331085号公報には、イソブタンを触媒存在下に気相接触酸化して、メタクロレインおよび/またはメタクリル酸を製造するに際し、ピロリン酸ジバナジルを主成分とし、これに他の金属元素を添加し活性、選択性を改良した複合酸化物系触媒を用いることを特徴とする方法が開示されている。
【0004】
しかしながら、イソブタンはイソブチレンやターシャリーブタノールに比べ反応性が乏しいため、イソブチレンやターシャリーブタノールの酸化条件ではイソブタンの転化率は低い。そこで、酸化反応温度を上げ、転化率を高める方法が考えられるが、リン−モリブデン系ケギン型ヘテロポリ酸系触媒は耐熱性に問題があり、反応温度を上げる方法は採用し難い。他方、ピロリン酸ジバナジルを主成分とする複合酸化物系触媒を用いる場合、必ずしも満足する選択性の改良効果が得られない。また、ピロリン酸ジバナジル系触媒を調製する際、バナジウム原料として五酸化バナジウムを用いるのが一般的であるが、五酸化バナジウムは毒性が強いため、これを使用することは衛生上好ましくないとの問題を有する。
【0005】
【発明が解決しようとする課題】
かかる状況下において、本発明者らは、イソブタンを複合酸化物系触媒存在下、分子状酸素を用いて、気相接触酸化させることにより、工業的に有用であるイソブチレン、酢酸、アクリル酸、メタクロレイン及び、メタクリル酸等のアルケンおよび/または含酸素化合物を製造することを目的として、鋭意検討した結果、気相接触酸化反応に用いる触媒として、ニオブ−モリブデン−アンチモンを必須成分とする複合酸化物系触媒を用いる場合には、触媒として耐熱性に優れ、且つ転化率、選択性共に優れることを見い出し、本発明を完成するに至った。
【0006】
【課題を解決するための手段】
すなわち本発明は、焼成後、一般式 NbaMobSbcXdYeOf(式中のNbはニオブ、Moはモリブデン、Sbはアンチモン、Oは酸素を表し、Xはリン、ヒ素、ホウ素、珪素、ゲルマニウムからなる群より選ばれた少なくとも1種の元素、Yはカリウム、セシウム、ルビジウム、カルシウム、マグネシウム、タリウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、銀、鉛、ビスマス、アルミニウム、ガリウム、インジウム、スズ、亜鉛、ランタン、セリウム、イットリウム、タングステン、タンタル、ルテニウム、ロジウム、パラジウム、白金、イリジウム、オスミウム、レニウム、ハフニウムからなる群より選ばれた少なくとも1種の元素を表し、また添字a、b、c、d及びeは各元素の原子比を表し、b=12としたとき、aは0を含まない7以下の値、cは0を含まない20以下の値、dおよびeは0を含む6以下の値を表し、fは各元素の原子価および原子比によって決まる値を表す)で示される複合酸化物よりなるイソブタンの気相接触酸化反応用触媒を提供するにある。
【0007】
さらに本発明は、イソブタンを触媒存在下に分子状酸素を用いて気相接触酸化させることによりアルケンおよび/または含酸素化合物を製造する方法に於いて、触媒として一般式 NbaMobSbcXdYeOf(式中Nbはニオブ、Moはモリブデン、Sbはアンチモン、Oは酸素を表し、Xはリン、ヒ素、ホウ素、珪素、ゲルマニウム、からなる群より選ばれた少なくとも1種の元素、Yはカリウム、セシウム、ルビジウム、カルシウム、マグネシウム、タリウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、銀、鉛、ビスマス、アルミニウム、ガリウム、インジウム、スズ、亜鉛、ランタン、セリウム、イットリウム、タングステン、タンタル、ルテニウム、ロジウム、パラジウム、白金、イリジウム、オスミウム、レニウム、ハフニウムからなる群より選ばれた少なくとも1種の元素を表し、また添字a、b、c、d及びeは各元素の原子比を表し、b=12としたとき、aは0を含まない7以下の値、cは0を含まない20以下の値、dおよびeは0を含む6以下の値を表し、fは各元素の原子価および原子比によって決まる値を表す。)で示される複合酸化物系触媒であることを特徴とするアルケンおよび/または含酸素化合物の製造方法を提供するにある。
【0008】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明の特徴は、イソブタンを分子状酸素を用いて気相接触酸化させ、イソブチレン、メタクロレイン、メタクリル酸等のアルケンおよび/または含酸素化合物を製造するに際し、適用触媒として一般式 NbaMobSbcXdYeOf(式中の記号は前記と同じ)で示されるNb−Mo−Sbを必須成分とする、即ちb=12のとき、aは0<a≦7、好ましくは0<a≦5、cは0<c≦20、好ましくは0<c≦12の原子比よりなる複合酸化物を提供するにある。本発明においては、これらの触媒組成のいずれの成分が欠如しても満足しうる触媒効果、主として選択率の改善効果が得られない。
【0009】
本発明に用いる触媒調製法に関しては特に制限はない。触媒は公知の種々の方法により調製できる。例えば、モリブデン、ニオブ、アンチモンからなる複合酸化物系触媒は、パラモリブデン酸アンモニウム水溶液に五酸化ニオブと三酸化アンチモンを添加し、蒸発乾固の後、焼成することにより所定の触媒を得ることができる。
モリブデン原料としては、三酸化モリブデン、モリブデン酸、パラモリブデン酸アンモニウム、モリブデン酸ナトリウム等を用いることができる。また、ニオブ、アンチモンおよび上記一般式中X、Yで表した元素をも含め、本発明の触媒構成物質は、触媒調製過程で酸化物に分解され得る化合物、例えば、酸化物、水酸化物、硝酸塩、アンモニウム塩、炭酸塩、塩化物、有機酸塩、アルコキサイド、金属酸アンモニウム塩等として添加使用される。より具体的には、ニオブ原料としては、シュウ酸水素ニオブ、五酸化ニオブ、五塩化ニオブ、ニオブエトキシド等、アンチモン原料としては、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、酢酸アンチモン、硫酸アンチモン、アンチモンエトキシド等、X成分としては、リン酸、ピロリン酸、ポリリン酸、ヒ酸、ホウ酸、ホウ酸アンモニウム、二酸化珪素、二酸化ゲルマニウム等、Y成分としては、硝酸カリウム、塩化カリウム、硫酸カリウム、硝酸セシウム、塩化セシウム、硫酸セシウム、水酸化セシウム、硝酸ルビジウム、硫酸ルビジウム、硝酸カルシウム、塩化カルシウム、硫酸カルシウム、酸化カルシウム、硝酸マグネシウム、塩化マグネシウム、硫酸マグネシウム、酸化マグネシウム、水酸化マグネシウム、硝酸タリウム、硝酸クロム、酢酸クロム、硫酸クロム、塩化クロム、乳酸マンガン、硝酸マンガン、シュウ酸マンガン、硫酸マンガン、硝酸鉄、硫酸鉄、シュウ酸鉄アンモニウム、シュウ酸鉄、酢酸コバルト、塩化コバルト、硝酸コバルト、硫酸コバルト、水酸化コバルト、硝酸銅、塩化銅、硫酸銅、安息香酸銀、硝酸銀、炭酸銀、塩化銀、酸化銀、酢酸ビスマス、硝酸ビスマス、酸化ビスマス、酸化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、塩化ガリウム、水酸化ガリウム、硝酸ガリウム、酸化ガリウム、塩化インジウム、硝酸インジウム、酢酸錫、安息香酸錫、塩化錫、蟻酸錫、水酸化錫、硫酸錫、シュウ酸錫、硝酸亜鉛、塩化亜鉛、シュウ酸亜鉛、酸化亜鉛、炭酸ランタン、塩化ランタン、シュウ酸ランタン、硝酸ランタン、硫酸ランタン、酸化セリウム、酢酸セリウム、硝酸セリウム、硝酸イットリウム、蟻酸イットリウム、炭酸イットリウム、硫酸イットリウム、酸化タングステン、タングステン酸、パラタングステン酸アンモニウム、タンタルエトキシド、水酸化タンタル、五酸化タンタル、塩化ルテニウム、酸化ルテニウム、硫酸ルテニウム、塩化ロジウム、酸化ロジウム、硫酸ロジウム、塩化パラジウム、水酸化パラジウム、硝酸パラジウム、塩化白金、塩化イリジウム、酸化イリジウム、塩化オスミウム、酸化オスミウム、塩化レニウム、酸化レニウム、塩化ハフニウム、酸化ハフニウム等が挙げられる。上記一般式中X、Yで表した元素は必須成分ではないが、砒素、ホウ素、ゲルマニウム、鉛、亜鉛、ガリウム等の添加は選択性の向上が、タリウム、クロム、鉄、コバルト、ニッケル、銅、銀、ビスマス、スズ、ランタン、イットリウム、パラジウム、白金、オスミウム、レニウム、ハフニウム等は活性の向上に寄与し得る。
【0010】
触媒は担体に担持および/または希釈混合した形で用いることができる。担体および/または希釈剤としては、例えばシリカ、アルミナ、シリカ−アルミナ、マグネシア、チタニア、ゼオライト、ジルコニア、シリコン−カーバイト等が挙げられ、担持量や希釈剤と触媒との希釈混合比に制限はない。また、触媒の形状はタブレット、リング、球、押し出し品等限定はない。成型法は圧縮成形、押し出し成形、噴霧乾燥造粒等公知の方法で行うことができる。
【0011】
反応に供する原料ガス中のイソブタン濃度は、約1モル%〜85モル%、好ましくは3モル%〜70モル%である。
【0012】
分子状酸素のイソブタンに対するモル比は0.05〜4.0、好ましくは0.1〜3.5が適当である。分子状酸素の供給源としては、空気、純酸素、酸素富化空気などが用いられる。
【0013】
反応原料ガス中に水蒸気を含有させてもよいが、水蒸気は必ずしも必要としない。
【0014】
原料ガス中には、貴ガス、窒素、一酸化炭素、二酸化炭素等が含まれていてもよい。また、イソブチレンが原料に含まれていても、イソブチレンはイソブタン同様メタクロレインやメタクリル酸に転換される。
【0015】
未反応のイソブタンは、燃料として使用することもできるが、回収し再循環することもできる。イソブチレンやメタクロレインも回収、再循環することにより、メタクリル酸に転換できる。また、純酸素或いは酸素富化空気を用いた場合には、未反応の酸素も回収し再利用することが好ましい。
【0016】
反応温度は250〜550℃の範囲で選択できるが、好ましくは300〜500℃である。反応圧力は減圧から加圧まで幅広く選べるが通常100〜400kPa、好ましくは100〜200kPaの範囲である。
【0017】
本発明の方法は、固定床、移動床、流動床等いずれの反応形式でも実施できる。固定床方式で使用する場合、空間速度に特に制限はないが、空間速度が小さすぎると生産性が低下するため工業的に不利である。また逆に空間速度が大きすぎると、反応活性が低下するため反応温度を高くしなければならない。そこで、通常は400〜5000h-1、好ましくは、600〜2000-1の範囲である。
【0018】
生成したアルケン及び各種含酸素化合物は抽出、蒸留等の操作により、各々の生成物に分離精製することができる。
【0019】
【実施例】
次に実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。転化率(%)および選択率(%)はそれぞれ次式で表す。
イソブタン転化率(%)=(反応したイソブタンのモル数)÷(供給したイソブタンのモル数)×100
イソブチレン選択率(%)=(生成したイソブチレンのモル数)÷(反応したイソブタンのモル数)×100
メタクロレイン選択率(%)=(生成したメタクロレインのモル数)÷(反応したイソブタンのモル数)×100
メタクリル酸選択率(%)=(生成したメタクリル酸のモル数)÷(反応したイソブタンのモル数)×100
有効成分の選択率(%)=(生成したイソブチレンのモル数+生成したメタクロレインのモル数+生成したメタクリル酸のモル数)÷(反応したイソブタンのモル数)×100
また、反応生成物はガスクロマトグラフィーを用いて分析した。
【0020】
実施例1
イオン交換水600mlにシュウ酸水素ニオブ{Nb(HC2 4 5 ・nH2 O}102.37gを溶解し、均一な溶液とした(A液)。次いで、イオン交換水75mlにモリブデン酸アンモニウム{(NH4 6 Mo7 24 ・4H2 O}53.10gを添加し撹拌溶解した(B液)後、B液をA液に全量注入し、さらに三酸化アンチモン{Sb2 3 }32.85gを撹拌しながら添加した。この混合液を1リットルオートクレーブに移し、120℃で17時間熟成した後、得られたスラリー溶液を25%アンモニア水を用いpHをほぼ中性に調整した。
このようにして得られたスラリー溶液を加熱撹拌しつつ濃縮乾固し、さらに120℃にて6時間乾燥し、粉砕、篩別し4〜8メッシュの粒子を得、これを窒素気流中600℃で2時間焼成してMo12Nb4.5 Sb9 Oxの組成を有する触媒を得た。
このようにして得た触媒6gを直径15mmのパイレックスガラス製反応管に充填し、これにイソブタン/酸素/窒素/水蒸気の割合(モル%)が40/20/40/0からなる原料ガスを供給し、反応圧力152kPa、空間速度1000/hrの条件で酸化反応を検討したところ、反応温度421℃においてイソブタン転化率は2.7%、イソブチレン、メタクロレイン及びメタクリル酸への選択率はそれぞれ43.7%、13.8%、1.9%であった。反応温度(反応器壁温度)400℃〜450℃の間を詳細に検討した結果、イソブタン転化率5%時の有効成分への選択率は50.6%であった。
【0021】
実施例2
イオン交換水1200mlにシュウ酸水素ニオブ{Nb(HC2 4 )5・nH2 O}204.7gを溶解し、均一な溶液とした(A液)。次いで、イオン交換水150mlにパラモリブデン酸アンモニウム{(NH4 6 Mo7 24 ・4H2 O}105.84gを添加し撹拌溶解した(B液)後、B液をA液に全量注入し、さらに三酸化アンチモン{Sb2 3 }65.61gを撹拌しながら添加した。この混合液に25%アンモニア水入れpHをほぼ中性に調整した。
このようにして得られたスラリー溶液を加熱撹拌しつつ濃縮乾固し、さらに120℃にて3時間乾燥し、粉砕、篩別し4〜8メッシュの粒子を得、これを窒素気流中600℃で2時間焼成してMo12Nb4.5 Sb9 Oxの組成を有する触媒を得た。
この触媒を用い実施例1と同じ条件で酸化反応を行った。その結果、反応温度423℃においてイソブタン転化率は2.7%、イソブチレン、メタクロレイン及びメタクリル酸への選択率はそれぞれ35.3%、18.9%、0.4%であった。反応温度(反応器壁温度)400℃〜450℃の間を詳細に検討した結果、イソブタン転化率5%時の有効成分への選択率は46.5%であった。
【0022】
実施例3
実施例2の方法において、シュウ酸水素ニオブ{Nb(HC2 4 5 ・nH2 O}の添加量を変えた他は実施例2と同一方法によりMo12Nb4 Sb9 Oxの組成を有する触媒を得た。
この触媒を用い実施例1と同一条件で酸化反応を行った。その結果、反応温度424℃においてイソブタン転化率は4.0%、イソブチレン、メタクロレイン及びメタクリル酸への選択率はそれぞれ25.4%、17.2%、1.9%であった。反応温度(反応器壁温度)400℃〜450℃の間を詳細に検討した結果、イソブタン転化率5%時の有効成分への選択率は42.5%であった。
【0023】
実施例4
実施例2の方法において、シュウ酸水素ニオブ{Nb(HC2 4 )5・nH2 O}の添加量を変えた他は実施例2と同一方法により、Mo12Nb3 Sb9 Oxの組成を有する触媒を得た。
この触媒を用い実施例1と同一条件で酸化反応を行った。その結果、反応温度429℃においてイソブタン転化率は3.9%、イソブチレン、メタクロレイン及びメタクリル酸への選択率はそれぞれ19.7%、16.2%、0.9%であった。反応温度(反応器壁温度)400℃〜450℃の間を詳細に検討した結果、イソブタン転化率5%時の有効成分への選択率は34.7%であった。
【0024】
実施例5
実施例2において得られたスラリー乾燥品を空気中600℃で2時間焼成してた。
この触媒を用い実施例1と同じ条件で酸化反応を行ったところ、反応温度406℃においてイソブタン転化率は4.4%、イソブチレン、メタクロレイン及びメタクリル酸への選択率はそれぞれ14.4%、18.2%、3.4%であった。反応温度(反応器壁温度)350℃〜425℃の間を詳細に検討した結果、イソブタン転化率5%時の有効成分への選択率は34.5%であった。
【0025】
実施例6
実施例2の方法において、三酸化アンチモン{Sb2 3 }の添加量を変えた他は実施例2と同一方法によりMo12Nb4.5 Sb6 Oxの組成を有する触媒を得た。
この触媒を用い実施例1と同一条件で酸化反応を行った。その結果、反応温度429℃においてイソブタン転化率は3.6%、イソブチレン、メタクロレイン及びメタクリル酸への選択率はそれぞれ28.2%、15.1%、0.8%であった。反応温度(反応器壁温度)400℃〜450℃の間を詳細に検討した結果、イソブタン転化率5%時の有効成分への選択率は38.1%であった。
【0026】
比較例1
イオン交換水400mlにシュウ酸水素ニオブ{Nb(HC2 4 5 ・nH2 O}68.33gを加え撹拌溶解後、バナジウム濃度が2mol/lであるシュウ酸バナジル水溶液75mlを添加し均一な溶液とした(A液)。イオン交換水150mlにパラモリブデン酸アンモニウム{(NH4 6 Mo7 24・4H2 O}105.95gを添加し撹拌溶解した(B液)後、A液をB液に全量注入し、スラリー溶液を得た。他方、イオン交換水100mlに70%硝酸{HNO3 }67.59g、酢酸スズ{Sn(CH3 CO2 2 }35.55gを添加し、均一な水溶液を調製した(C液)。C液を撹拌しながら上記スラリー溶液に全量注入した。得られたスラリー溶液に25%アンモニア水を添加し、pHをほぼ中性に調整した。
このようにして得られたスラリー溶液を加熱撹拌しつつ濃縮乾固後、粉砕、篩別し4〜8メッシュの粒子を得、これを窒素気流中600℃で2時間焼成しMo12Nb1.5 3 Sn3 Oxの組成を有する触媒を得た。
この触媒を用い実施例1と同一条件で酸化反応を行った。その結果、反応温度322℃においてイソブタン転化率は7.3%、イソブチレン、メタクロレイン及びメタクリル酸への選択率はそれぞれ1.6%、3.9%、1.6%であった。反応温度(反応器壁温度)290℃〜350℃の間を詳細に検討した結果、イソブタン転化率5%時の有効成分への選択率は8.4%であった。
【0027】
比較例2
イオン交換水1200mlにパラモリブデン酸アンモニウム{((NH4 6 Mo7 24・4H2 O)}211.9gを添加し、撹拌溶解させたこの溶液に、バナジウム濃度が1mol/lであるシュウ酸バナジル水溶液300mlを添加した。この混合液に25%アンモニア水を添加しpHをほぼ中性に調整した。その後、120℃の乾燥機中で水分を蒸発させた。これを窒素気流中600℃で3時間焼成しMo123 Oxの組成を有する触媒を得た。
この触媒を用い、イソブタン/酸素/窒素/水蒸気の割合(モル%)が25/12/33/30からなる原料ガスを供給し、反応圧力152kPa、空間速度1000/hrの条件で酸化反応を検討したところ、反応温度353℃においてイソブタン転化率は5.0%、イソブチレン、メタクロレイン及びメタクリル酸への選択率はそれぞれ6.7%、3.1%、0.7%であった。反応器壁温310〜350℃の間を詳細に検討した結果、イソブタンの転化率5%のときの有効成分への選択率は10.5%であった。
【0028】
比較例3
比較例2において得られたスラリー乾燥品を空気中、350℃で6時間焼成した。
この触媒を用い比較例1と同じ条件で酸化反応を行った。その結果、反応温度291℃においてイソブタン転化率は4.2%、イソブチレン、メタクロレイン及びメタクリル酸への選択率はそれぞれ2.6%、2.4%、0.4%であった。反応器壁温290〜350℃の間を詳細に検討した結果、イソブタンの転化率5%のときの有効成分への選択率は5.3%であった。
【0029】
比較例4
イオン交換水300mlにシュウ酸水素ニオブ{ Nb(HC2 4 5 ・nH2 O}58.87gを溶解し、均一な溶液とした(A液)。
他方、イオン交換水326mlにメタバナジン酸アンモニウム{NH4 VO3 }15.71g、パラモリブデン酸アンモニウム{((NH4 6 Mo7 24・4H2 O)}78.90g、テルル酸{H6 TeO6 }23.61gを加え55℃に保持して撹拌溶解し、均一な溶液とした(B液)。
A液にB液を全量注入し沈殿を生成させスラリー溶液とした。このスラリー溶液に25%アンモニア水入れpHをほぼ中性に調整した。
このようにして得られたスラリー溶液を加熱撹拌しつつ濃縮乾固し、さらに120℃にて18時間乾燥し、粉砕、篩別し4〜8メッシュの粒子を得、これを窒素気流中600℃で2時間焼成しMo12Nb1.4 3.6 Te2.8 Oxの組成を有する触媒を得た。
この触媒を用い、比較例1と同一条件で酸化反応を行った。その結果、反応温度354℃のとき、イソブタン転化率は4.9%、イソブチレン、メタクロレイン及びメタクリル酸の選択率はそれぞれ4.3%、13.9%及び11.8%であった。反応器壁温330〜400℃の間を詳細に検討した結果、イソブタンの転化率5%のときの有効成分への選択率は30.0%であった。
【0030】
比較例5
イオン交換水400mlにヒドロキシルアミン塩酸塩{NH2 OH・HCl}27.8g、80%リン酸{H3 PO4 }58.8gを溶解し、均一な溶液とした後、ホットスターラーにて80℃まで加熱した。この溶液に五酸化バナジウム{V2 5 }36.4gを徐々に添加した。五酸化バナジウム添加終了から約6時間撹拌を続け、120℃の乾燥機中で15時間乾燥させ、水分を蒸発させた。得られた乾固物を空気中500℃で15時間焼成して(VO)2 2 7 の組成を有する触媒を得た。
上記の方法により得た触媒9gを直径15mmのパイレックスガラス製反応管に充填し、これにイソブタン/酸素/窒素/水蒸気の割合(モル%)が47/36/17/0からなる原料ガスを供給し、反応圧力152kPa、空間速度1000/hrの条件で酸化反応を行ったところ、反応温度367℃においてイソブタン転化率は2.1%、イソブチレン、メタクロレイン及びメタクリル酸への選択率はそれぞれ1.7%、2.6%、8.9%であった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for gas-phase catalytic oxidation reaction of isobutane and a method for producing alkenes such as isobutylene, acetic acid, acrylic acid, methacrolein and methacrylic acid and oxygen-containing compounds from isobutane using the catalyst.
[0002]
[Prior art]
A method for producing methacrylic acid from isobutylene or tertiary butanol via methacrolein by two-stage oxidation is well known and has already been industrialized.
On the other hand, in recent years, a method for producing methacrolein and / or methacrylic acid using isobutane as a raw material, which has the same carbon skeleton and is inexpensive, has been proposed, although the reactivity is significantly lower than that of isobutylene or tertiary butanol. Yes.
[0003]
For example, Japanese Patent Application Laid-Open No. 62-132932 discloses a method for obtaining methacrolein and / or methacrylic acid by alternately contacting isobutane and oxygen with a catalyst containing phosphorus or arsenic as a central element and a heteropolyacid containing molybdenum. JP-A-2-42034 discloses a heteropolyacid containing molybdenum and / or a salt thereof containing phosphorus and / or arsenic as a central element and Ag, Zn, Cd, Ti, Zr, Nb, Ta, Cr, W , Mn, Fe, Co, Ni, Rh, Sn, Bi, and a catalyst containing at least one selected from the group consisting of Te and isobutane as a catalytic constituent in contact with a mixed gas containing molecular oxygen in the gas phase To obtain methacrolein and / or methacrylic acid ”.
In JP-A-5-178774 and JP-A-5-331085, in the production of methacrolein and / or methacrylic acid by gas phase catalytic oxidation of isobutane in the presence of a catalyst, divanadyl pyrophosphate is a main component. Also disclosed is a method characterized by using a composite oxide catalyst in which the activity and selectivity are improved by adding another metal element thereto.
[0004]
However, since isobutane is less reactive than isobutylene and tertiary butanol, the conversion of isobutane is low under the oxidation conditions of isobutylene and tertiary butanol. Therefore, a method of increasing the oxidation reaction temperature and increasing the conversion rate is conceivable, but the phosphorus-molybdenum-based Keggin heteropolyacid catalyst has a problem in heat resistance, and a method of increasing the reaction temperature is difficult to adopt. On the other hand, when a composite oxide catalyst mainly composed of divanadyl pyrophosphate is used, a satisfactory selectivity improvement effect cannot always be obtained. Also, when preparing divanadyl pyrophosphate-based catalysts, it is common to use vanadium pentoxide as a vanadium raw material, but vanadium pentoxide is highly toxic, so the use of this is not desirable for hygiene. Have
[0005]
[Problems to be solved by the invention]
Under such circumstances, the present inventors have carried out industrially useful isobutylene, acetic acid, acrylic acid, methacrochromic acid by subjecting isobutane to gas phase catalytic oxidation using molecular oxygen in the presence of a complex oxide catalyst. As a result of intensive studies aimed at producing alkene and / or oxygen-containing compounds such as rain and methacrylic acid, a complex oxide containing niobium-molybdenum-antimony as an essential component as a catalyst used in a gas phase catalytic oxidation reaction In the case of using a system catalyst, it has been found that the catalyst is excellent in heat resistance and excellent in conversion and selectivity, and the present invention has been completed.
[0006]
[Means for Solving the Problems]
That is, the present invention has a general formula NbaMobSbcXdYeOf (where Nb is niobium, Mo is molybdenum, Sb is antimony, O is oxygen, and X is selected from the group consisting of phosphorus, arsenic, boron, silicon, and germanium after firing. At least one element, Y is potassium, cesium, rubidium, calcium, magnesium, thallium, chromium, manganese, iron, cobalt, nickel, copper, silver, lead, bismuth, aluminum, gallium, indium, tin, zinc, lanthanum Represents at least one element selected from the group consisting of cerium, yttrium, tungsten, tantalum, ruthenium, rhodium, palladium, platinum, iridium, osmium, rhenium, hafnium, and the subscripts a, b, c, d and e Represents the atomic ratio of each element, and b = 12. Where a is a value of 7 or less not including 0, c is a value of 20 or less not including 0, d and e are values of 6 or less including 0, and f is determined by the valence and atomic ratio of each element. The present invention provides a catalyst for gas-phase catalytic oxidation reaction of isobutane comprising a composite oxide represented by
[0007]
Furthermore, the present invention relates to a method for producing an alkene and / or an oxygen-containing compound by vapor-phase catalytic oxidation of isobutane with molecular oxygen in the presence of a catalyst, wherein NbaMobSbcXdYeOf (where Nb is niobium) is used as a catalyst. , Mo represents molybdenum, Sb represents antimony, O represents oxygen, X represents at least one element selected from the group consisting of phosphorus, arsenic, boron, silicon, and germanium, Y represents potassium, cesium, rubidium, calcium, Magnesium, thallium, chromium, manganese, iron, cobalt, nickel, copper, silver, lead, bismuth, aluminum, gallium, indium, tin, zinc, lanthanum, cerium, yttrium, tungsten, tantalum, ruthenium, rhodium, palladium, platinum, Iridium, osmium, rhenium, It represents at least one element selected from the group consisting of hafnium, subscripts a, b, c, d and e represent the atomic ratio of each element, and when b = 12, a does not include 0 The following values, c is a value of 20 or less not including 0, d and e are values of 6 or less including 0, and f is a value determined by the valence and atomic ratio of each element. An object of the present invention is to provide a method for producing an alkene and / or oxygen-containing compound, which is an oxide catalyst.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
A feature of the present invention is that, in the production of alkenes and / or oxygen-containing compounds such as isobutylene, methacrolein, and methacrylic acid by vapor-phase catalytic oxidation of isobutane with molecular oxygen, a general formula NbaMobSbcXdYeOf (wherein Nb-Mo-Sb represented by the same formula as above), that is, when b = 12, a is 0 <a ≦ 7, preferably 0 <a ≦ 5, and c is 0 <c ≦ The object is to provide a composite oxide having an atomic ratio of 20, preferably 0 <c ≦ 12. In the present invention, even if any component of these catalyst compositions is absent, a satisfactory catalytic effect, mainly a selectivity improvement effect, cannot be obtained.
[0009]
There is no particular limitation on the method for preparing the catalyst used in the present invention. The catalyst can be prepared by various known methods. For example, a composite oxide catalyst composed of molybdenum, niobium, and antimony can be obtained by adding niobium pentoxide and antimony trioxide to an aqueous ammonium paramolybdate solution, evaporating to dryness, and then firing the resulting catalyst. it can.
As the molybdenum raw material, molybdenum trioxide, molybdic acid, ammonium paramolybdate, sodium molybdate, or the like can be used. In addition, the catalyst constituent materials of the present invention including niobium, antimony and the elements represented by X and Y in the above general formula are compounds that can be decomposed into oxides during the catalyst preparation process, such as oxides, hydroxides, It is added and used as nitrate, ammonium salt, carbonate, chloride, organic acid salt, alkoxide, metal acid ammonium salt and the like. More specifically, niobium hydrogen oxalate, niobium pentoxide, niobium pentachloride, niobium ethoxide, etc. as niobium raw materials, antimony trioxide, antimony tetraoxide, antimony pentoxide, antimony acetate, sulfuric acid as antimony raw materials Antimony, antimony ethoxide, etc. X components include phosphoric acid, pyrophosphoric acid, polyphosphoric acid, arsenic acid, boric acid, ammonium borate, silicon dioxide, germanium dioxide, etc. Y components include potassium nitrate, potassium chloride, potassium sulfate , Cesium nitrate, cesium chloride, cesium sulfate, cesium hydroxide, rubidium nitrate, rubidium sulfate, calcium nitrate, calcium chloride, calcium sulfate, calcium oxide, magnesium nitrate, magnesium chloride, magnesium sulfate, magnesium oxide, magnesium hydroxide, thallium nitrate , Chromium nitrate, chromium acetate, chromium sulfate, chromium chloride, manganese lactate, manganese nitrate, manganese oxalate, manganese sulfate, iron nitrate, iron sulfate, ammonium iron oxalate, iron oxalate, cobalt acetate, cobalt chloride, cobalt nitrate , Cobalt sulfate, cobalt hydroxide, copper nitrate, copper chloride, copper sulfate, silver benzoate, silver nitrate, silver carbonate, silver chloride, silver oxide, bismuth acetate, bismuth nitrate, bismuth oxide, aluminum oxide, aluminum sulfate, aluminum nitrate, Gallium chloride, Gallium hydroxide, Gallium nitrate, Gallium oxide, Indium chloride, Indium nitrate, Tin acetate, Tin benzoate, Tin chloride, Tin formate, Tin hydroxide, Tin sulfate, Tin oxalate, Zinc nitrate, Zinc chloride, Shu Zinc acid, zinc oxide, lanthanum carbonate, lanthanum chloride, lanthanum oxalate, lanthanum nitrate, sulfuric acid Tantalum oxide, cerium oxide, cerium acetate, cerium nitrate, yttrium nitrate, yttrium formate, yttrium carbonate, yttrium sulfate, tungsten oxide, tungstic acid, ammonium paratungstate, tantalum ethoxide, tantalum hydroxide, tantalum pentoxide, ruthenium chloride, oxidation Ruthenium, ruthenium sulfate, rhodium chloride, rhodium oxide, rhodium sulfate, palladium chloride, palladium hydroxide, palladium nitrate, platinum chloride, iridium chloride, iridium oxide, osmium chloride, osmium oxide, rhenium chloride, rhenium oxide, hafnium chloride, hafnium oxide Etc. Although the elements represented by X and Y in the above general formula are not essential components, the addition of arsenic, boron, germanium, lead, zinc, gallium, etc. improves selectivity, but thallium, chromium, iron, cobalt, nickel, copper Silver, bismuth, tin, lanthanum, yttrium, palladium, platinum, osmium, rhenium, hafnium, and the like can contribute to the improvement of activity.
[0010]
The catalyst can be used in a form supported on a support and / or diluted and mixed. Examples of the carrier and / or diluent include silica, alumina, silica-alumina, magnesia, titania, zeolite, zirconia, silicon-carbite, and the like, and there are limitations on the loading amount and the dilution mixture ratio of the diluent and the catalyst. Absent. The shape of the catalyst is not limited to tablets, rings, spheres, extruded products and the like. The molding method can be performed by a known method such as compression molding, extrusion molding, or spray drying granulation.
[0011]
The isobutane concentration in the raw material gas used for the reaction is about 1 to 85 mol%, preferably 3 to 70 mol%.
[0012]
The molar ratio of molecular oxygen to isobutane is 0.05 to 4.0, preferably 0.1 to 3.5. Air, pure oxygen, oxygen-enriched air, or the like is used as the molecular oxygen supply source.
[0013]
Although water vapor may be included in the reaction raw material gas, water vapor is not always necessary.
[0014]
The source gas may contain noble gas, nitrogen, carbon monoxide, carbon dioxide and the like. Even if isobutylene is contained in the raw material, isobutylene is converted to methacrolein or methacrylic acid as is isobutane.
[0015]
Unreacted isobutane can be used as fuel, but can also be recovered and recycled. Isobutylene and methacrolein can also be recovered and recycled to convert to methacrylic acid. In addition, when pure oxygen or oxygen-enriched air is used, it is preferable to recover and reuse unreacted oxygen.
[0016]
The reaction temperature can be selected in the range of 250 to 550 ° C, preferably 300 to 500 ° C. The reaction pressure can be widely selected from reduced pressure to increased pressure, but is usually in the range of 100 to 400 kPa, preferably 100 to 200 kPa.
[0017]
The method of the present invention can be carried out in any reaction mode such as a fixed bed, a moving bed, and a fluidized bed. When used in a fixed bed system, the space velocity is not particularly limited, but if the space velocity is too small, the productivity is lowered, which is industrially disadvantageous. On the other hand, if the space velocity is too large, the reaction activity decreases, so the reaction temperature must be increased. Therefore, it is usually in the range of 400 to 5000 h −1 , preferably 600 to 2000 −1 .
[0018]
The produced alkene and various oxygen-containing compounds can be separated and purified into respective products by operations such as extraction and distillation.
[0019]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these. The conversion rate (%) and the selectivity (%) are expressed by the following equations, respectively.
Isobutane conversion rate (%) = (number of moles of reacted isobutane) ÷ (number of moles of isobutane supplied) × 100
Isobutylene selectivity (%) = (number of moles of isobutylene formed) ÷ (number of moles of reacted isobutane) × 100
Methacrolein selectivity (%) = (number of moles of methacrolein produced) ÷ (number of moles of reacted isobutane) × 100
Methacrylic acid selectivity (%) = (number of moles of methacrylic acid produced) ÷ (number of moles of reacted isobutane) × 100
Active ingredient selectivity (%) = (number of moles of produced isobutylene + number of moles of produced methacrolein + number of moles of produced methacrylic acid) ÷ (number of moles of reacted isobutane) × 100
The reaction product was analyzed using gas chromatography.
[0020]
Example 1
Niobium hydrogen oxalate {Nb (HC 2 O 4 ) 5 · nH 2 O} (102.37 g) was dissolved in 600 ml of ion-exchanged water to obtain a uniform solution (solution A). Next, after adding 53.10 g of ammonium molybdate {(NH 4 ) 6 Mo 7 O 24 · 4H 2 O} to 75 ml of ion-exchanged water and stirring and dissolving (liquid B), the entire amount of liquid B was injected into liquid A, Further, 32.85 g of antimony trioxide {Sb 2 O 3 } was added with stirring. This mixed solution was transferred to a 1 liter autoclave and aged at 120 ° C. for 17 hours, and then the pH of the obtained slurry solution was adjusted to almost neutral using 25% aqueous ammonia.
The slurry solution thus obtained was concentrated to dryness with heating and stirring, further dried at 120 ° C. for 6 hours, pulverized and sieved to obtain particles of 4 to 8 mesh, and this was 600 ° C. in a nitrogen stream. And a catalyst having a composition of Mo 12 Nb 4.5 Sb 9 Ox was obtained.
6 g of the catalyst thus obtained was filled into a Pyrex glass reaction tube having a diameter of 15 mm, and a raw material gas having an isobutane / oxygen / nitrogen / water vapor ratio (mol%) of 40/20/40/0 was supplied thereto. Then, the oxidation reaction was examined under the conditions of a reaction pressure of 152 kPa and a space velocity of 1000 / hr. At a reaction temperature of 421 ° C., the conversion of isobutane was 2.7%, and the selectivity to isobutylene, methacrolein and methacrylic acid was 43. 7%, 13.8% and 1.9%. As a result of examining the reaction temperature (reactor wall temperature) between 400 ° C. and 450 ° C. in detail, the selectivity to the active ingredient when the isobutane conversion was 5% was 50.6%.
[0021]
Example 2
Niobium hydrogen oxalate {Nb (HC 2 O 4 ) 5 · nH 2 O} 204.7 g was dissolved in 1200 ml of ion-exchanged water to obtain a uniform solution (solution A). Next, 105.84 g of ammonium paramolybdate {(NH 4 ) 6 Mo 7 O 24 · 4H 2 O} was added to 150 ml of ion-exchanged water and dissolved by stirring (solution B), and then the entire amount of solution B was injected into solution A. Further, 65.61 g of antimony trioxide {Sb 2 O 3 } was added with stirring. 25% ammonia water was added to this mixed solution, and the pH was adjusted to be almost neutral.
The slurry solution thus obtained was concentrated to dryness while stirring with heating, further dried at 120 ° C. for 3 hours, pulverized and sieved to obtain particles of 4 to 8 mesh, which were obtained at 600 ° C. in a nitrogen stream. And a catalyst having a composition of Mo 12 Nb 4.5 Sb 9 Ox was obtained.
Using this catalyst, an oxidation reaction was carried out under the same conditions as in Example 1. As a result, at a reaction temperature of 423 ° C., the conversion of isobutane was 2.7%, and the selectivity to isobutylene, methacrolein and methacrylic acid was 35.3%, 18.9% and 0.4%, respectively. As a result of examining the reaction temperature (reactor wall temperature) between 400 ° C. and 450 ° C. in detail, the selectivity to the active ingredient when the isobutane conversion was 5% was 46.5%.
[0022]
Example 3
In the method of Example 2, the composition of Mo 12 Nb 4 Sb 9 Ox was changed by the same method as in Example 2 except that the addition amount of niobium hydrogen oxalate {Nb (HC 2 O 4 ) 5 · nH 2 O} was changed. A catalyst having was obtained.
Using this catalyst, an oxidation reaction was carried out under the same conditions as in Example 1. As a result, at a reaction temperature of 424 ° C., the conversion of isobutane was 4.0%, and the selectivity to isobutylene, methacrolein and methacrylic acid was 25.4%, 17.2% and 1.9%, respectively. As a result of examining the reaction temperature (reactor wall temperature) between 400 ° C. and 450 ° C. in detail, the selectivity to the active ingredient when the isobutane conversion was 5% was 42.5%.
[0023]
Example 4
The composition of Mo 12 Nb 3 Sb 9 Ox was the same as in Example 2 except that the amount of niobium hydrogen oxalate {Nb (HC 2 O 4 ) 5 · nH 2 O} was changed in the same manner as in Example 2. A catalyst having was obtained.
Using this catalyst, an oxidation reaction was carried out under the same conditions as in Example 1. As a result, at a reaction temperature of 429 ° C., the conversion of isobutane was 3.9%, and the selectivity to isobutylene, methacrolein and methacrylic acid was 19.7%, 16.2% and 0.9%, respectively. As a result of examining the reaction temperature (reactor wall temperature) between 400 ° C. and 450 ° C. in detail, the selectivity to the active ingredient when the isobutane conversion was 5% was 34.7%.
[0024]
Example 5
The dried slurry obtained in Example 2 was calcined in air at 600 ° C. for 2 hours.
When this catalyst was used for the oxidation reaction under the same conditions as in Example 1, at a reaction temperature of 406 ° C., the conversion of isobutane was 4.4%, and the selectivity to isobutylene, methacrolein and methacrylic acid was 14.4%, 18.2% and 3.4%. As a result of detailed examination of the reaction temperature (reactor wall temperature) between 350 ° C. and 425 ° C., the selectivity to the active ingredient when the isobutane conversion was 5% was 34.5%.
[0025]
Example 6
A catalyst having a composition of Mo 12 Nb 4.5 Sb 6 Ox was obtained in the same manner as in Example 2 except that the amount of antimony trioxide {Sb 2 O 3 } was changed in the method of Example 2.
Using this catalyst, an oxidation reaction was carried out under the same conditions as in Example 1. As a result, at a reaction temperature of 429 ° C., the conversion of isobutane was 3.6%, and the selectivity to isobutylene, methacrolein and methacrylic acid was 28.2%, 15.1% and 0.8%, respectively. As a result of examining the reaction temperature (reactor wall temperature) between 400 ° C. and 450 ° C. in detail, the selectivity to the active ingredient when the isobutane conversion was 5% was 38.1%.
[0026]
Comparative Example 1
After adding 68.33 g of niobium hydrogen oxalate {Nb (HC 2 O 4 ) 5 · nH 2 O} to 400 ml of ion-exchanged water and stirring and dissolving, 75 ml of vanadyl oxalate aqueous solution having a vanadium concentration of 2 mol / l was added to make it uniform. It was set as the solution (A liquid). After adding 105.95 g of ammonium paramolybdate {(NH 4 ) 6 Mo 7 O 24 · 4H 2 O} to 150 ml of ion-exchanged water and stirring and dissolving it (Liquid B), the entire amount of liquid A was injected into liquid B and slurried. A solution was obtained. On the other hand, 70% nitric acid {HNO 3 } 67.59 g and tin acetate {Sn (CH 3 CO 2 ) 2 } 35.55 g were added to 100 ml of ion-exchanged water to prepare a uniform aqueous solution (solution C). The whole amount of the liquid C was poured into the slurry solution while stirring. 25% aqueous ammonia was added to the resulting slurry solution to adjust the pH to almost neutral.
The slurry solution thus obtained was concentrated to dryness with heating and stirring, then pulverized and sieved to obtain particles of 4 to 8 mesh, which were calcined at 600 ° C. for 2 hours in a nitrogen stream, and Mo 12 Nb 1.5 V A catalyst having a composition of 3 Sn 3 Ox was obtained.
Using this catalyst, an oxidation reaction was carried out under the same conditions as in Example 1. As a result, at a reaction temperature of 322 ° C., the conversion of isobutane was 7.3%, and the selectivity to isobutylene, methacrolein and methacrylic acid was 1.6%, 3.9% and 1.6%, respectively. As a result of examining the reaction temperature (reactor wall temperature) between 290 ° C. and 350 ° C. in detail, the selectivity to the active ingredient when the isobutane conversion was 5% was 8.4%.
[0027]
Comparative Example 2
To 1200 ml of ion-exchanged water, 211.9 g of ammonium paramolybdate {((NH 4 ) 6 Mo 7 O 24 · 4H 2 O)} was added and dissolved in the solution with a vanadium concentration of 1 mol / l. 300 ml of an aqueous vanadyl acid solution was added. 25% aqueous ammonia was added to the mixture to adjust the pH to almost neutral. Then, the water | moisture content was evaporated in 120 degreeC drying machine. This was calcined in a nitrogen stream at 600 ° C. for 3 hours to obtain a catalyst having a composition of Mo 12 V 3 Ox.
Using this catalyst, a raw material gas having a ratio of isobutane / oxygen / nitrogen / water vapor (mol%) of 25/12/33/30 was supplied, and the oxidation reaction was examined under the conditions of a reaction pressure of 152 kPa and a space velocity of 1000 / hr. As a result, at a reaction temperature of 353 ° C., the conversion of isobutane was 5.0%, and the selectivity to isobutylene, methacrolein and methacrylic acid was 6.7%, 3.1% and 0.7%, respectively. As a result of detailed examination of the reactor wall temperature of 310 to 350 ° C., the selectivity to the active ingredient when the conversion of isobutane was 5% was 10.5%.
[0028]
Comparative Example 3
The dried slurry obtained in Comparative Example 2 was fired at 350 ° C. for 6 hours in air.
Using this catalyst, an oxidation reaction was performed under the same conditions as in Comparative Example 1. As a result, at a reaction temperature of 291 ° C., the conversion of isobutane was 4.2%, and the selectivity to isobutylene, methacrolein and methacrylic acid was 2.6%, 2.4% and 0.4%, respectively. As a result of examining the reactor wall temperature between 290 and 350 ° C. in detail, the selectivity to the active ingredient when the conversion of isobutane was 5% was 5.3%.
[0029]
Comparative Example 4
58.87 g of niobium hydrogen oxalate {Nb (HC 2 O 4 ) 5 · nH 2 O} was dissolved in 300 ml of ion-exchanged water to obtain a uniform solution (solution A).
On the other hand, ammonium metavanadate {NH 4 VO 3 } 15.71 g, ammonium paramolybdate {((NH 4 ) 6 Mo 7 O 24 · 4H 2 O)} 78.90 g, telluric acid {H 6 TeO 6 } 23.61 g was added and kept at 55 ° C. with stirring and dissolved to obtain a uniform solution (liquid B).
The entire amount of the liquid B was injected into the liquid A to form a precipitate to form a slurry solution. 25% ammonia water was added to the slurry solution and the pH was adjusted to be almost neutral.
The slurry solution thus obtained was concentrated to dryness with heating and stirring, and further dried at 120 ° C. for 18 hours, crushed and sieved to obtain particles of 4 to 8 mesh, which were obtained at 600 ° C. in a nitrogen stream. And a catalyst having a composition of Mo 12 Nb 1.4 V 3.6 Te 2.8 Ox was obtained.
Using this catalyst, an oxidation reaction was performed under the same conditions as in Comparative Example 1. As a result, when the reaction temperature was 354 ° C., the conversion of isobutane was 4.9%, and the selectivities of isobutylene, methacrolein and methacrylic acid were 4.3%, 13.9% and 11.8%, respectively. As a result of examining the reactor wall temperature in the range of 330 to 400 ° C. in detail, the selectivity to the active ingredient when the conversion of isobutane was 5% was 30.0%.
[0030]
Comparative Example 5
Dissolve 27.8 g of hydroxylamine hydrochloride {NH 2 OH · HCl} and 58.8 g of 80% phosphoric acid {H 3 PO 4 } in 400 ml of ion-exchanged water to obtain a uniform solution, and then use a hot stirrer at 80 ° C. Until heated. To this solution, 36.4 g of vanadium pentoxide {V 2 O 5 } was gradually added. Stirring was continued for about 6 hours from the end of the addition of vanadium pentoxide, followed by drying in a dryer at 120 ° C. for 15 hours to evaporate water. The obtained dried product was calcined in air at 500 ° C. for 15 hours to obtain a catalyst having a composition of (VO) 2 P 2 O 7 .
9 g of the catalyst obtained by the above method is filled in a Pyrex glass reaction tube having a diameter of 15 mm, and a raw material gas having an isobutane / oxygen / nitrogen / water vapor ratio (mol%) of 47/36/17/0 is supplied thereto. Then, the oxidation reaction was carried out under conditions of a reaction pressure of 152 kPa and a space velocity of 1000 / hr. As a result, at a reaction temperature of 367 ° C., the conversion of isobutane was 2.1% and the selectivity to isobutylene, methacrolein and methacrylic acid was 1. 7%, 2.6%, and 8.9%.

Claims (2)

焼成後、一般式 NbaMobSbcXdYeOf(式中のNbはニオブ、Moはモリブデン、Sbはアンチモン、Oは酸素を表し、Xはリン、ヒ素、ホウ素、珪素、ゲルマニウム、からなる群より選ばれた少なくとも1種の元素、Yはカリウム、セシウム、ルビジウム、カルシウム、マグネシウム、タリウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、銀、鉛、ビスマス、アルミニウム、ガリウム、インジウム、スズ、亜鉛、ランタン、セリウム、イットリウム、タングステン、タンタル、ルテニウム、ロジウム、パラジウム、白金、イリジウム、オスミウム、レニウム、ハフニウムからなる群より選ばれた少なくとも1種の元素を表し、また添字a、b、c、d及びeは各元素の原子比を表し、b=12としたとき、aは0を含まない7以下の値、cは0を含まない20以下の値、dおよびeは0を含む6以下の値を表し、fは各元素の原子価および原子比によって決まる値を表す)で示される複合酸化物よりなるイソブタンの気相接触酸化反応用触媒。After firing, the general formula NbaMobSbcXdYeOf (where Nb is niobium, Mo is molybdenum, Sb is antimony, O is oxygen, X is at least one selected from the group consisting of phosphorus, arsenic, boron, silicon, germanium) Element Y is potassium, cesium, rubidium, calcium, magnesium, thallium, chromium, manganese, iron, cobalt, nickel, copper, silver, lead, bismuth, aluminum, gallium, indium, tin, zinc, lanthanum, cerium, yttrium Represents at least one element selected from the group consisting of tungsten, tantalum, ruthenium, rhodium, palladium, platinum, iridium, osmium, rhenium, and hafnium, and the subscripts a, b, c, d, and e are for each element. Represents an atomic ratio, and when b = 12, a includes 0. 7 or less, c is 20 or less including 0, d and e are 6 or less including 0, and f is a value determined by the valence and atomic ratio of each element) A catalyst for gas phase catalytic oxidation reaction of isobutane comprising a complex oxide. イソブタンを触媒存在下に分子状酸素を用いて気相接触酸化させることによりアルケンおよび/または含酸素化合物を製造する方法に於いて、触媒として一般式 NbaMobSbcXdYeOf(式中Nbはニオブ、Moはモリブデン、Sbはアンチモン、Oは酸素を表し、Xはリン、ヒ素、ホウ素、珪素、ゲルマニウム、からなる群より選ばれた少なくとも1種の元素、Yはカリウム、セシウム、ルビジウム、カルシウム、マグネシウム、タリウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、銀、鉛、ビスマス、アルミニウム、ガリウム、インジウム、スズ、亜鉛、ランタン、セリウム、イットリウム、タングステン、タンタル、ルテニウム、ロジウム、パラジウム、白金、イリジウム、オスミウム、レニウム、ハフニウムからなる群より選ばれた少なくとも1種の元素を表し、また添字a、b、c、d及びeは各元素の原子比を表し、b=12としたとき、aは0を含まない7以下の値、cは0を含まない20以下の値、dおよびeは0を含む6以下の値を表し、fは各元素の原子価および原子比によって決まる値を表す。)で示される複合酸化物系触媒であることを特徴とするアルケンおよび/または含酸素化合物の製造方法。In a method for producing an alkene and / or oxygen-containing compound by vapor-phase catalytic oxidation of isobutane with molecular oxygen in the presence of a catalyst, a general formula NbaMobSbcXdYeOf (where Nb is niobium, Mo is molybdenum, Sb represents antimony, O represents oxygen, X represents at least one element selected from the group consisting of phosphorus, arsenic, boron, silicon, and germanium, Y represents potassium, cesium, rubidium, calcium, magnesium, thallium, chromium , Manganese, iron, cobalt, nickel, copper, silver, lead, bismuth, aluminum, gallium, indium, tin, zinc, lanthanum, cerium, yttrium, tungsten, tantalum, ruthenium, rhodium, palladium, platinum, iridium, osmium, rhenium From hafnium And the subscripts a, b, c, d and e represent the atomic ratio of each element, and when b = 12, a does not include 0 and is 7 or less. Value, c is a value of 20 or less not including 0, d and e are values of 6 or less including 0, and f is a value determined by the valence and atomic ratio of each element. A method for producing an alkene and / or oxygen-containing compound, which is a system catalyst.
JP26690397A 1997-09-30 1997-09-30 Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same Expired - Fee Related JP4182237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26690397A JP4182237B2 (en) 1997-09-30 1997-09-30 Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26690397A JP4182237B2 (en) 1997-09-30 1997-09-30 Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same

Publications (2)

Publication Number Publication Date
JPH11114418A JPH11114418A (en) 1999-04-27
JP4182237B2 true JP4182237B2 (en) 2008-11-19

Family

ID=17437269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26690397A Expired - Fee Related JP4182237B2 (en) 1997-09-30 1997-09-30 Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same

Country Status (1)

Country Link
JP (1) JP4182237B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3883755B2 (en) * 1999-09-17 2007-02-21 日本化薬株式会社 Catalyst production method
US6762148B2 (en) 1999-09-17 2004-07-13 Nippon Kayaku Kabushiki Kaisha Catalyst process of making
JP4535611B2 (en) * 2000-12-27 2010-09-01 旭化成ケミカルズ株式会社 Catalyst and method for producing unsaturated nitrile using the same
US6919472B2 (en) 2001-12-21 2005-07-19 Saudi Basic Industries Corporation Catalyst compositions for the selective conversion of alkanes to unsaturated carboxylic acids, methods of making and methods of using thereof
EP1411043A1 (en) * 2002-10-18 2004-04-21 Rohm And Haas Company Preparation of unsaturated carboxylic acids and unsaturated carboxylic acid esters from alkanes and/or alkenes
US7229946B2 (en) 2003-03-24 2007-06-12 Saudi Basic Industries Corporation Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
JP4501494B2 (en) * 2004-03-30 2010-07-14 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4501495B2 (en) * 2004-03-30 2010-07-14 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5008271B2 (en) * 2005-04-26 2012-08-22 旭化成ケミカルズ株式会社 Continuous production method of unsaturated carboxylic acid ester using alkane as raw material
CN104640627B (en) * 2012-09-18 2017-08-29 国立大学法人北海道大学 Isobutene catalyst for producing and the manufacture method using its isobutene

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759434A (en) * 1969-11-25 1971-04-30 Power Gas Ltd CATALYTIC OXIDATION
JPH0733344B2 (en) * 1986-12-06 1995-04-12 旭化成工業株式会社 Method for producing methacrylic acid and / or methacrolein
JPH085820B2 (en) * 1988-04-05 1996-01-24 旭化成工業株式会社 Method for producing methacrylic acid and / or methacrolein
JPH05177141A (en) * 1991-12-27 1993-07-20 Tosoh Corp Preparation of methacrylic acid
JPH0710782A (en) * 1993-06-22 1995-01-13 Sumitomo Chem Co Ltd Production of isobutylene and methacrolein
US5530171A (en) * 1993-08-27 1996-06-25 Mobil Oil Corporation Process for the catalytic dehydrogenation of alkanes to alkenes with simultaneous combustion of hydrogen
DE4329907A1 (en) * 1993-09-04 1995-03-09 Basf Ag Multimetal oxide compositions containing at least the elements antimony and phosphorus and additionally at least one of the two elements Mo, W
DE59505944D1 (en) * 1994-02-22 1999-06-24 Basf Ag Multimetal oxide materials.
JP3855298B2 (en) * 1996-04-10 2006-12-06 住友化学株式会社 Process for producing alkene and / or oxygen-containing compound
JP3772389B2 (en) * 1996-05-10 2006-05-10 三菱化学株式会社 Method for producing oxidation catalyst and method for producing methacrylic acid
JPH1036311A (en) * 1996-07-25 1998-02-10 Mitsubishi Chem Corp Production of alpha, beta-unsaturated carboxylic acid
DE19638249A1 (en) * 1996-09-19 1998-03-26 Basf Ag Process for producing a catalytically active multimetal oxide mass
JPH10128112A (en) * 1996-10-31 1998-05-19 Sumitomo Chem Co Ltd Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JPH10310539A (en) * 1997-05-09 1998-11-24 Mitsubishi Chem Corp Vapor-phase, catalytic oxidation of hydrocarbon
JPH1142434A (en) * 1997-05-28 1999-02-16 Mitsubishi Chem Corp Production of vapor phase catalytic oxidation reaction catalyst of hydrocarbon and vapor phase catalytic oxidation reaction method of hydrocarbon using the same
JPH1133403A (en) * 1997-07-22 1999-02-09 Mitsubishi Rayon Co Ltd Production of catalyst for synthesis of methacrylic acid and production of methacrylic acid
JP3938225B2 (en) * 1997-08-05 2007-06-27 旭化成ケミカルズ株式会社 Catalyst preparation method
KR20010023081A (en) * 1997-08-20 2001-03-26 스타르크, 카르크 Method for Producing Multi-Metal Oxide Masses Containing Mo, V and Cu

Also Published As

Publication number Publication date
JPH11114418A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
JP4809531B2 (en) Catalytic oxidation of alkanes to the corresponding acids
JP4346822B2 (en) Molybdenum-vanadium catalyst for the low temperature selective oxidation of propylene, its production and use
US7718568B2 (en) Hydrothermally synthesized Mo-V-M-Nb-X oxide catalysts for the selective oxidation of hydrocarbons
JP3500663B2 (en) Method for producing acrylic acid
EP1192984B1 (en) Halogen promoted multi-metal oxide catalyst
KR100284061B1 (en) Method of producing acrylic acid
US7009075B2 (en) Process for the selective conversion of alkanes to unsaturated carboxylic acids
US20070232828A1 (en) Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
US20040116284A1 (en) Preparation of mixed metal oxide catalysts for catalytic oxidation of olefins to unsaturated aldehydes
JP3237314B2 (en) Method for producing α, β-unsaturated carboxylic acid
JP4182237B2 (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
JP4081824B2 (en) Acrylic acid production method
US20140235893A1 (en) Catalyst for Selectively Producing Acetic Acid Through the Partial Oxidation of Ethane
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
JPH0791212B2 (en) Method for producing methacrylic acid
JPS6048496B2 (en) Method for producing methacrylic acid
JP4809532B2 (en) Catalyst for catalytic oxidation of propane to acrylic acid, its production and use
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3859397B2 (en) Catalyst for production of methacrolein and methacrylic acid
JP4566056B2 (en) Method for producing composite metal oxide catalyst
JP2002030028A (en) Method for producing unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees