JPH0710782A - Production of isobutylene and methacrolein - Google Patents

Production of isobutylene and methacrolein

Info

Publication number
JPH0710782A
JPH0710782A JP5150371A JP15037193A JPH0710782A JP H0710782 A JPH0710782 A JP H0710782A JP 5150371 A JP5150371 A JP 5150371A JP 15037193 A JP15037193 A JP 15037193A JP H0710782 A JPH0710782 A JP H0710782A
Authority
JP
Japan
Prior art keywords
catalyst
methacrolein
isobutylene
bismuth
oxidative dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5150371A
Other languages
Japanese (ja)
Inventor
Naoteru Miura
直輝 三浦
Toshiaki Ui
利明 宇井
Koichi Nagai
功一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5150371A priority Critical patent/JPH0710782A/en
Publication of JPH0710782A publication Critical patent/JPH0710782A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the subject compounds from isobutane in high selectivity by combinedly using an oxidative dehydrogenation catalyst and a specific complex oxide catalyst in subjecting isobutane to vapor phase catalytic reaction with molecular oxygen. CONSTITUTION:Isobutane is subjected to vapor phase catalytic reaction with a molecular oxygen in the presence of (A) an oxidative dehydrogenation catalyst and (B) a complex oxide catalyst consisting essentially of molybdenum and bismuth, preferably at 250-600 deg.C and 1-3 bar to provide the objective isobutylene and methacrolein. The catalyst A includes preferably a catalyst consisting of an oxide of phosphorus and oxides of elements selected from Li, Ti, etc., and this catalyst is preferably obtained by mixing solutions of phosphoric acid and the metal compounds, evaporating and/or filtering the mixture and then baking the mixture. The catalyst B includes e.g. a catalyst containing iron, Co, silicon, etc., in addition to Mo and Bi as components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はイソブタンを酸化脱水素
および酸化してイソブチレンおよびメタクロレインを製
造する方法に関する。詳しくは、特定の触媒の存在下に
イソブタンを分子状酸素で気相接触反応してイソブチレ
ンおよびメタクロレインを製造する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing isobutylene and methacrolein by oxidative dehydrogenation and oxidation of isobutane. More specifically, it relates to a method for producing isobutylene and methacrolein by subjecting isobutane to a gas phase catalytic reaction with molecular oxygen in the presence of a specific catalyst.

【0002】[0002]

【従来の技術】イソブタンを分子状酸素で気相接触反応
してイソブチレンおよび/またはメタクロレインを製造
する試みは従来からいくつか提案されている。
2. Description of the Related Art Several attempts have been proposed in the past for producing isobutylene and / or methacrolein by subjecting isobutane to a gas phase catalytic reaction with molecular oxygen.

【0003】英国特許第1340891号には、卑金属
酸化物触媒の存在下、イソブタンの酸化脱水素および/
または酸化によりイソブチレンおよび/またはメタクロ
レインを製造する例が報告されている。しかしながら、
イソブタンの収率は極めて小さい。
British Patent No. 1340891 discloses the oxidative dehydrogenation of isobutane and / or the presence of a base metal oxide catalyst.
Alternatively, examples of producing isobutylene and / or methacrolein by oxidation have been reported. However,
The yield of isobutane is very small.

【0004】特開平2−42032号には、リンを中心
元素としモリブデンを含むヘテロポリ酸を触媒とし、イ
ソブタンをメタクリル酸に直接酸化する方法が開示され
ている。しかしながら、触媒の寿命に問題があり長期に
わたる工業的使用に耐えられない。
Japanese Unexamined Patent Publication No. 2-42032 discloses a method of directly oxidizing isobutane to methacrylic acid using a heteropolyacid containing phosphorus as a central element and molybdenum, as a catalyst. However, there is a problem in the life of the catalyst and it cannot withstand long-term industrial use.

【0005】本発明者らは先にリンの酸化物と金属の酸
化物を触媒とするイソブタンの気相接触酸化脱水素反応
によるイソブチレンの製造方法について出願した(特願
平4−53553号および特願平4−41857号)。
この方法では70%を越える選択率でイソブチレンが得
られるが、メタクロレインはほとんど得られない。
The present inventors have previously applied for a method for producing isobutylene by vapor phase catalytic oxidative dehydrogenation of isobutane using phosphorus oxide and metal oxide as catalysts (Japanese Patent Application No. 4-53553 and Japanese Patent Application No. 5-53553). No. 4-41857).
By this method, isobutylene can be obtained with a selectivity exceeding 70%, but methacrolein is hardly obtained.

【0006】[0006]

【発明が解決しようとしている課題】従って、本発明の
課題は、触媒の存在下にイソブタンの接触反応によって
高選択率でイソブチレンおよびメタクロレインを得る方
法を提供することにある。本発明者らはかかる課題を解
決するため鋭意研究を重ねた結果、触媒として酸化脱水
素触媒とモリブデンおよびビスマスを主成分とする複合
酸化物触媒を用いることによって、高選択率でイソブチ
レンおよびメタクロレインが得られることを見出し、本
発明に到った。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for obtaining isobutylene and methacrolein with high selectivity by catalytic reaction of isobutane in the presence of a catalyst. The present inventors have conducted extensive studies to solve such problems, and as a result, by using an oxidative dehydrogenation catalyst and a composite oxide catalyst containing molybdenum and bismuth as main components as catalysts, isobutylene and methacrolein are obtained with high selectivity. The inventors have found that the following can be obtained and have reached the present invention.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、触媒
の存在下にイソブタンを分子状酸素で気相接触反応させ
てイソブチレンおよびメタクロレインを製造する方法に
おいて、触媒として酸化脱水素触媒とモリブデンおよび
ビスマスを主成分とする複合酸化物触媒を用いることを
特徴とするイソブチレンおよびメタクロレインの製造方
法である。
That is, the present invention provides a method for producing isobutylene and methacrolein by reacting isobutane with molecular oxygen in the gas phase in the presence of a catalyst to produce isobutylene and methacrolein. A method for producing isobutylene and methacrolein, characterized in that a complex oxide catalyst containing bismuth as a main component is used.

【0008】本発明で用いられる酸化脱水素触媒は、リ
ンの酸化物とリチウム、スカンジウム、チタン、ガリウ
ム、ストロンチウム、イットリウム、ジルコニウム、ア
ンチモン、セシウム、ランタン、セリウム、サマリウ
ム、ユ−ロピウム、イッテルビウム、ハフニウム、鉛、
ビスマス、ニッケル、亜鉛、鉄、クロム、バナジウム、
マンガン、コバルト、銀、銅、マグネシウムおよびスズ
からなる群より選ばれた少なくとも1種の元素の酸化物
とからなる触媒である。
The oxidative dehydrogenation catalyst used in the present invention is a phosphorus oxide and lithium, scandium, titanium, gallium, strontium, yttrium, zirconium, antimony, cesium, lanthanum, cerium, samarium, europium, ytterbium, hafnium. ,lead,
Bismuth, nickel, zinc, iron, chromium, vanadium,
It is a catalyst comprising an oxide of at least one element selected from the group consisting of manganese, cobalt, silver, copper, magnesium and tin.

【0009】酸化脱水素触媒の調製法は特に制限される
ものではなく、通常、燐酸または燐酸塩と金属塩化物、
硝酸塩、酸化物等の金属化合物の溶液を混合し、蒸発お
よび/または濾過し、焼成して得られる(特願平4−5
3553号および特願平4−41857号)。
The method for preparing the oxidative dehydrogenation catalyst is not particularly limited, and usually phosphoric acid or a phosphate and a metal chloride,
It is obtained by mixing a solution of a metal compound such as a nitrate or an oxide, evaporating and / or filtering and firing (Japanese Patent Application No. 4-5).
3553 and Japanese Patent Application No. 4-41857).

【0010】この酸化脱水素触媒の形状は特に制限され
るものではなく、打錠成形や押し出し成形によって成形
されたリング状、ペレット状または球状のいずれでも良
く、また触媒成分をシリカ、アルミナ、炭化珪素、窒化
珪素などの担体に担持したものでも良い。
The shape of the oxidative dehydrogenation catalyst is not particularly limited, and may be ring-shaped, pellet-shaped or spherical formed by tableting or extrusion, and the catalyst component may be silica, alumina or carbonized. It may be supported on a carrier such as silicon or silicon nitride.

【0011】本発明で用いられるモリブデンおよびビス
マスを主成分とする複合酸化物触媒は、一般式、Moa
Wb Bic Fed Ae Bf Cg Dh Ox (式中、Moは
モリブデン、Wはタングステン、Biはビスマス、Fe
は鉄、Aはニッケルおよびコバルトからなる群より選ば
れた少なくとも1種の元素、Bはアルカリ金属、アルカ
リ土類金属およびタリウムからなる群より選ばれた少な
くとも1種の元素、Cはリン、テルル、アンチモン、ス
ズ、セリウム、鉛、ニオブ、マンガンおよび亜鉛からな
る群より選ばれた少なくとも1種の元素、Dはシリコ
ン、アルミニウム、チタニウムおよびジルコニウムから
なる群より選ばれた少なくとも1種の元素およびOは酸
素を表す。また、a,b,c,d,e,f,g,h,x はそれぞれMo,
W,Bi,Fe,A,B,C,DおよびOの原子数を表
し、a=12と固定したとき、b=0 〜10、c=0.1 〜10、d=0.
1 〜20、e=2 〜20、f=0 〜10、g=0 〜4 、h=0 〜30およ
びxは各々の元素の酸化状態により定まる数値をと
る。)で表される触媒である。
The composite oxide catalyst containing molybdenum and bismuth as the main components used in the present invention has the general formula Moa.
Wb Bic Fed Ae Bf Cg Dh Ox (wherein Mo is molybdenum, W is tungsten, Bi is bismuth, Fe
Is iron, A is at least one element selected from the group consisting of nickel and cobalt, B is at least one element selected from the group consisting of alkali metals, alkaline earth metals and thallium, and C is phosphorus and tellurium. , Antimony, tin, cerium, lead, niobium, manganese, and zinc, and at least one element selected from the group consisting of silicon, aluminum, titanium, and zirconium, and O. Represents oxygen. Also, a, b, c, d, e, f, g, h, x are Mo,
It represents the number of atoms of W, Bi, Fe, A, B, C, D and O, and when fixed as a = 12, b = 0 to 10, c = 0.1 to 10, d = 0.
1 to 20, e = 2 to 20, f = 0 to 10, g = 0 to 4, h = 0 to 30 and x are values determined by the oxidation state of each element. ) Is a catalyst represented by.

【0012】この複合酸化物触媒は、通常、所定の元素
含有化合物の溶液を混合し、溶液を蒸発し、焼成して調
製される(特開平2−22242号)。酸化脱水素触媒
と同様、この触媒の形状も特に制限されるものではな
く、打錠成形や押し出し成形によって成形されたリング
状、ペレット状または球状のいずれでも良く、また触媒
成分をシリカ、アルミナ、炭化珪素、窒化珪素などの担
体に担持したものでも良い。
This complex oxide catalyst is usually prepared by mixing a solution of a predetermined element-containing compound, evaporating the solution and calcining (JP-A-2-22242). Like the oxidative dehydrogenation catalyst, the shape of this catalyst is not particularly limited, and may be ring-shaped, pellet-shaped or spherical formed by tableting or extrusion, and the catalyst component is silica, alumina, It may be supported on a carrier such as silicon carbide or silicon nitride.

【0013】本発明の方法において、酸化脱水素触媒と
モリブデンおよびビスマスを主成分とする複合酸化物触
媒は混合して、又は酸化脱水素触媒を原料ガス導入側
に、モリブデンおよびビスマスを主成分とする複合酸化
物触媒を生成ガス排出側にそれぞれ充填して用いられ
る。後者の場合、各々の触媒を同一の反応器に充填して
用いても、又は別の反応器に充填して用いても良い。
In the method of the present invention, the oxidative dehydrogenation catalyst and the complex oxide catalyst containing molybdenum and bismuth as the main components are mixed, or the oxidative dehydrogenation catalyst is provided on the feed gas introduction side, and molybdenum and bismuth are the main components. The resulting composite oxide catalyst is used by filling the produced gas discharge side. In the latter case, each catalyst may be packed in the same reactor or may be packed in another reactor.

【0014】混合して用いる場合に、酸化脱水素触媒と
モリブデンおよびビスマスを主成分とする複合酸化物触
媒の混合比(重量比)に制限はないが、酸化脱水素触媒
の混合比が小さすぎると反応速度が遅く、単位触媒当た
りの生産性が悪くなる。逆に酸化脱水素触媒の混合比が
大きすぎるとメタクロレインは得られなくなる。そこで
酸化脱水素触媒対モリブデンおよびビスマスを主成分と
する複合酸化物触媒の混合比(重量比)は、通常、約
1:0.1〜10である。この混合触媒はシリカ、アル
ミナ、炭化珪素、窒化珪素などの担体で希釈して用いて
も良い。
When mixed and used, the mixing ratio (weight ratio) of the oxidative dehydrogenation catalyst and the composite oxide catalyst containing molybdenum and bismuth as a main component is not limited, but the mixing ratio of the oxidative dehydrogenation catalyst is too small. When the reaction rate is slow, the productivity per unit catalyst becomes poor. On the contrary, if the mixing ratio of the oxidative dehydrogenation catalyst is too large, methacrolein cannot be obtained. Therefore, the mixing ratio (weight ratio) of the oxidative dehydrogenation catalyst to the composite oxide catalyst containing molybdenum and bismuth as the main components is usually about 1: 0.1-10. This mixed catalyst may be diluted with a carrier such as silica, alumina, silicon carbide or silicon nitride before use.

【0015】本発明の方法で用いられる反応原料ガスは
主にイソブタンと酸素であるが、不活性ガスなどで希釈
することができる。このようなガスとしては窒素、ヘリ
ウム、アルゴン、炭酸ガス、水蒸気、さらにメタン、エ
タン、プロパン、ブタンなどの軽アルカンも使用でき
る。
The reaction raw material gas used in the method of the present invention is mainly isobutane and oxygen, but it can be diluted with an inert gas or the like. As such a gas, nitrogen, helium, argon, carbon dioxide, steam, and light alkanes such as methane, ethane, propane and butane can be used.

【0016】本発明の方法で用いられる酸素の供給源に
は特に制限はないが、通常、純酸素、酸素富化空気、空
気、などが用いられる。反応原料ガス中のイソブタン対
酸素のモル比に制限はないが、酸素モル比が小さすぎる
と反応が酸素供給律速となり反応速度が遅く、単位触媒
当たりの生産性が悪くなる。逆に酸素モル比が大きくな
るとイソブチレンおよびメタクロレイン以外の酸化副生
物が多くなり、選択率が低下してくる。さらに、燃焼範
囲に入り安全上問題になる場合もある。そこで反応原料
ガス中のイソブタン対酸素のモル比は、通常、約1:
0.05〜1である。
The source of oxygen used in the method of the present invention is not particularly limited, but normally pure oxygen, oxygen-enriched air, air, etc. are used. There is no limitation on the molar ratio of isobutane to oxygen in the reaction raw material gas, but if the oxygen molar ratio is too small, the reaction becomes oxygen-controlled and the reaction rate becomes slow, resulting in poor productivity per unit catalyst. On the other hand, when the oxygen molar ratio becomes large, the oxidation by-products other than isobutylene and methacrolein increase, and the selectivity decreases. Furthermore, it may enter the combustion range and pose a safety problem. Therefore, the molar ratio of isobutane to oxygen in the reaction raw material gas is usually about 1:
It is 0.05-1.

【0017】酸化脱水素触媒とモリブデンおよびビスマ
スを主成分とする複合酸化物触媒を混合せずにそれぞれ
を充填して用いた場合に、酸化脱水素触媒層からの反応
ガスに更に分子状酸素を混合してモリブデンおよびビス
マスを主成分とする複合酸化物触媒層に導入して反応さ
せても良い。この分子状酸素を導入することによりメタ
クロレインへの選択率が向上する。この場合の分子状酸
素の量は、酸化脱水素反応の条件および成績により決定
されるが、燃焼範囲に入り安全上問題になる場合もある
ため、反応原料ガス中のイソブタンに対するモル比が、
通常、約1:0〜1である。
When the oxidative dehydrogenation catalyst and the complex oxide catalyst containing molybdenum and bismuth as main components are used without being mixed with each other, molecular oxygen is further added to the reaction gas from the oxidative dehydrogenation catalyst layer. You may mix and introduce in a composite oxide catalyst layer which has molybdenum and bismuth as a main component, and may make it react. By introducing this molecular oxygen, the selectivity to methacrolein is improved. The amount of molecular oxygen in this case is determined by the conditions and results of the oxidative dehydrogenation reaction, but since it may enter the combustion range and pose a safety problem, the molar ratio to isobutane in the reaction raw material gas is
Usually, it is about 1: 0 to 1.

【0018】本発明の方法で用いられる反応原料ガス中
のイソブタン濃度も制限はないが、イソブタン濃度が低
すぎると反応速度が遅く、単位触媒当たりの生産性が悪
くなる。反応原料ガス中のイソブタン濃度は、通常、約
10〜95容量%である。
There is no limitation on the isobutane concentration in the reaction raw material gas used in the method of the present invention, but if the isobutane concentration is too low, the reaction rate will be slow and the productivity per unit catalyst will be poor. The isobutane concentration in the reaction raw material gas is usually about 10 to 95% by volume.

【0019】反応温度はイソブタン濃度、反応原料ガス
中のモル比、接触時間により異なるが、通常、約200
℃〜700℃、好ましくは約250℃〜600℃の範囲
である。反応圧力は、通常、約1〜50bar、好まし
くは約1〜3barの範囲である。
The reaction temperature varies depending on the isobutane concentration, the molar ratio in the reaction raw material gas, and the contact time, but usually about 200
C. to 700.degree. C., preferably about 250.degree. C. to 600.degree. The reaction pressure is usually in the range of about 1 to 50 bar, preferably about 1 to 3 bar.

【0020】本発明の方法は、固定床、移動床、流動床
等いずれの反応形式でも実施できる。流動床で反応させ
る場合は、酸素を含まない原料ガスを用いて、触媒中の
酸素でイソブタンの酸化脱水素および酸化反応を行い、
さらに触媒は別の反応器で酸素含有ガスで再酸化する方
法をとることもできる。
The method of the present invention can be carried out in any reaction type such as fixed bed, moving bed, fluidized bed and the like. When the reaction is carried out in a fluidized bed, a raw material gas containing no oxygen is used to perform oxidative dehydrogenation and oxidation reaction of isobutane with oxygen in the catalyst,
Further, the catalyst may be reoxidized with an oxygen-containing gas in another reactor.

【0021】[0021]

【実施例】次に実施例により本発明をさらに詳細に説明
するが、本発明はこれらに限定されるものではない。転
化率(%)および選択率(%)はそれぞれ次式で表す。 転化率(%)=[〔(供給イソフ゛タン のモル数)−(未反応イ
ソフ゛タン のモル数)〕÷〔供給イソフ゛タン のモル数〕]×100 選択率(%)=[〔生成物のモル数〕÷〔(供給イソフ゛タン
のモル数)−(未反応イソフ゛タン のモル数)〕]×100
The present invention will be described in more detail by way of examples, which should not be construed as limiting the invention thereto. The conversion rate (%) and the selectivity rate (%) are respectively expressed by the following equations. Conversion (%) = [[(moles of isobutane fed)-(moles of unreacted isobutane)] / [moles of fed isobutane]] x 100 Selectivity (%) = [[moles of product] ÷ [(Supply isobutane
Number of moles)-(number of moles of unreacted isobutane)]] × 100

【0022】実施例1 (酸化脱水素触媒の調製) 下記のとおり特願平4−4
1857号明細書の実施例1と同様にしてニッケル、リ
ンおよび酸素からなる酸化脱水素触媒を調製した。硝酸
ニッケル6水和物87.3gをイオン交換水1リットル
に溶解した溶液に、二リン酸ナトリウム10水和物6
6.9gをイオン交換水2リットルに溶解した溶液を滴
下し、沈殿を生成させた。この沈殿を水洗した後吸引濾
過した。生成したフィルターケーキを130℃で一晩乾
燥した後、16〜32メッシュに整粒し、窒素気流中、
500℃で5時間焼成した。
Example 1 (Preparation of oxidative dehydrogenation catalyst) Japanese Patent Application No. 4-4
An oxidative dehydrogenation catalyst consisting of nickel, phosphorus and oxygen was prepared in the same manner as in Example 1 of 1857 specification. A solution prepared by dissolving 87.3 g of nickel nitrate hexahydrate in 1 liter of ion-exchanged water was added with sodium diphosphate decahydrate 6
A solution of 6.9 g dissolved in 2 liters of ion-exchanged water was added dropwise to generate a precipitate. The precipitate was washed with water and suction filtered. The resulting filter cake was dried at 130 ° C. overnight, sized to 16 to 32 mesh, and then in a nitrogen stream,
It was baked at 500 ° C. for 5 hours.

【0023】(モリブデンおよびビスマスを主成分とす
る複合酸化物触媒の調製) 特開平2−22242号明
細書の実施例1に記載された触媒調製法に準じて、16
−32メッシュのモリブデン、ビスマス、鉄、コバル
ト、セシウム、シリコンおよび酸素からなる複合酸化物
触媒(酸素を除く原子比:Mo12Bi1 Fe1 Co4
0.5 Si1.35)を調製した。
(Mainly containing molybdenum and bismuth
Preparation of complex oxide catalyst according to JP-A-2-22242
According to the catalyst preparation method described in the detailed example 1
-32 mesh molybdenum, bismuth, iron, cobal
Complex oxide consisting of gallium, cesium, silicon and oxygen
Catalyst (atomic ratio excluding oxygen: Mo12Bi1Fe1CoFourC
s 0.5Si1.35) Was prepared.

【0024】(反応) これらの触媒3.0gずつを混
合し、炭化珪素20.0gで希釈したものを内径15m
mのガラス製反応管に充填し、反応温度を440℃に保
ちイソブタン/酸素/窒素のモル比が75/10/15
の混合ガスを60ml/minで供給した。反応生成ガ
スを分析したところ、イソブタンの転化率が3.8%、
イソブチレンへの選択率が13.9%、プロピレンへの
選択率が3.3%、メタクロレインへの選択率が18.
9%であった。
(Reaction) 3.0 g of each of these catalysts was mixed and diluted with 20.0 g of silicon carbide to obtain an inner diameter of 15 m.
m into a glass reaction tube, keeping the reaction temperature at 440 ° C. and isobutane / oxygen / nitrogen molar ratio of 75/10/15
The mixed gas of was supplied at 60 ml / min. When the reaction product gas was analyzed, the conversion of isobutane was 3.8%,
The selectivity to isobutylene is 13.9%, the selectivity to propylene is 3.3%, and the selectivity to methacrolein is 18.
It was 9%.

【0025】実施例2 供給混合ガスの組成を、イソブタン/酸素/窒素のモル
比が75/5/20となるように変更した以外は実施例
1と同様に操作したところ、イソブタンの転化率が2.
0%、イソブチレンへの選択率が11.2%、プロピレ
ンへの選択率が5.6%、メタクロレインへの選択率が
32.0%であった。
Example 2 The same operation as in Example 1 was carried out except that the composition of the feed mixed gas was changed so that the isobutane / oxygen / nitrogen molar ratio was 75/5/20. 2.
The selectivity to isobutylene was 0%, the selectivity to propylene was 11.2%, the selectivity to propylene was 5.6%, and the selectivity to methacrolein was 32.0%.

【0026】実施例3 実施例1に示した触媒を混合せずに、内径15mmのガ
ラス製反応管の原料ガス導入側にニッケル、リンおよび
酸素からなる酸化脱水素触媒3.0gを希釈せずに、生
成ガス排出側にモリブデンおよびビスマスを主成分とす
る複合酸化物触媒3.0gを炭化珪素17.0gで希釈
して、それぞれの層が形成されるように充填し、反応温
度を440℃に保ち、イソブタン/酸素/窒素のモル比
が75/10/15の混合ガスを60ml/minで供
給した。反応生成ガスを分析したところ、イソブタンの
転化率が4.3%、イソブチレンへの選択率が10.7
%、プロピレンへの選択率が4.5%、メタクロレイン
への選択率が37.7%であった。
Example 3 Without mixing the catalyst shown in Example 1, 3.0 g of an oxidative dehydrogenation catalyst consisting of nickel, phosphorus and oxygen was not diluted on the raw material gas introduction side of a glass reaction tube having an inner diameter of 15 mm. Then, 3.0 g of a complex oxide catalyst containing molybdenum and bismuth as main components was diluted with 17.0 g of silicon carbide on the exhaust side of the generated gas and filled so that each layer was formed, and the reaction temperature was 440 ° C. The mixed gas having an isobutane / oxygen / nitrogen molar ratio of 75/10/15 was supplied at 60 ml / min. When the reaction product gas was analyzed, the conversion of isobutane was 4.3% and the selectivity to isobutylene was 10.7.
%, The selectivity to propylene was 4.5%, and the selectivity to methacrolein was 37.7%.

【0027】実施例4〜6 反応温度を440℃から表1に示す温度に変更した以外
は実施例3と同様に行った。結果を表1に示す。
Examples 4 to 6 The same procedure as in Example 3 was carried out except that the reaction temperature was changed from 440 ° C. to the temperature shown in Table 1. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例7 供給ガスのイソブタン/酸素/窒素のモル比を75/5
/20に変更した以外は実施例3と同様に行った。その
結果、イソブタンの転化率が2.8%、イソブチレンへ
の選択率が28.1%、プロピレンへの選択率が4.1
%、メタクロレインへの選択率が36.0%であった。
Example 7 The isobutane / oxygen / nitrogen molar ratio of the feed gas was 75/5.
The same procedure as in Example 3 was repeated except that the value was changed to / 20. As a result, the conversion of isobutane was 2.8%, the selectivity to isobutylene was 28.1%, and the selectivity to propylene was 4.1.
%, The selectivity to methacrolein was 36.0%.

【0030】実施例8〜10 反応温度を440℃から表2に示す温度に変更した以外
は実施例7と同様に行った。結果を表2に示す。
Examples 8 to 10 The same procedure as in Example 7 was carried out except that the reaction temperature was changed from 440 ° C. to the temperature shown in Table 2. The results are shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】実施例11 実施例1に示した触媒を混合せずに、原料ガス導入側の
反応管(内径15mmのガラス製)にニッケル、リンお
よび酸素からなる酸化脱水素触媒6.0gを希釈せず
に、生成ガス排出側の反応管(内径15mmのガラス
製)にモリブデンおよびビスマスを主成分とする複合酸
化物触媒3.0gを炭化珪素13.0gで希釈したもの
を、それぞれ充填した。ニッケル、リンおよび酸素から
なる酸化脱水素触媒層からの反応ガスに分子状酸素を混
合(7ml/min)しながら、ニッケル、リンおよび
酸素からなる酸化脱水素触媒層反応温度(上層温度)を
400℃、モリブデンおよびビスマスを主成分とする複
合酸化物触媒層反応温度(下層温度)を390℃に保ち
イソブタン/酸素/窒素のモル比が75/10/15の
混合ガスを120ml/minで供給した。反応生成ガ
スを分析したところ、イソブタンの転化率が2.4%、
イソブチレンへの選択率が12.2%、プロピレンへの
選択率が1.4%、メタクロレインへの選択率が45.
2%であった。
Example 11 6.0 g of an oxidative dehydrogenation catalyst composed of nickel, phosphorus and oxygen was diluted in a reaction tube (made of glass having an inner diameter of 15 mm) on the side of introducing raw material gas without mixing the catalyst shown in Example 1. Without doing so, the reaction tube (made of glass having an inner diameter of 15 mm) on the generated gas discharge side was filled with 3.0 g of a complex oxide catalyst containing molybdenum and bismuth as main components diluted with 13.0 g of silicon carbide. While mixing molecular oxygen (7 ml / min) with the reaction gas from the oxidative dehydrogenation catalyst layer composed of nickel, phosphorus and oxygen (7 ml / min), the reaction temperature (upper layer temperature) of the oxidative dehydrogenation catalyst layer composed of nickel, phosphorus and oxygen was set to 400. ° C, a mixed oxide catalyst layer containing molybdenum and bismuth as main components, the reaction temperature (lower layer temperature) was maintained at 390 ° C, and a mixed gas having an isobutane / oxygen / nitrogen molar ratio of 75/10/15 was supplied at 120 ml / min. . When the reaction product gas was analyzed, the conversion rate of isobutane was 2.4%,
The selectivity to isobutylene is 12.2%, the selectivity to propylene is 1.4%, and the selectivity to methacrolein is 45.
It was 2%.

【0033】実施例12〜13 ニッケル、リンおよび酸素からなる酸化脱水素触媒層反
応温度(上層温度)を450℃、モリブデンおよびビス
マスを主成分とする複合酸化物触媒層反応温度(下層温
度)を表3に示す温度へ変更した以外は実施例11と同
様に行った。結果を表3に示す。
Examples 12 to 13 The oxidative dehydrogenation catalyst layer reaction temperature (upper layer temperature) consisting of nickel, phosphorus and oxygen was 450 ° C., and the complex oxide catalyst layer reaction temperature (lower layer temperature) containing molybdenum and bismuth as the main components was changed. The same procedure as in Example 11 was repeated except that the temperatures shown in Table 3 were changed. The results are shown in Table 3.

【0034】[0034]

【表3】 [Table 3]

【0035】実施例14 実施例1に示した触媒を混合せずに、原料ガス導入側の
反応管(内径15mmのガラス製)にニッケル、リンお
よび酸素からなる酸化脱水素触媒6.0gを希釈せず
に、生成ガス排出側の反応管(内径15mmのガラス
製)にモリブデンおよびビスマスを主成分とする複合酸
化物触媒6.0gを炭化珪素26.0gで希釈したもの
を、それぞれ充填した。ニッケル、リンおよび酸素から
なる酸化脱水素触媒層からの反応ガスに分子状酸素を混
合(7ml/min)しながら、ニッケル、リンおよび
酸素からなる酸化脱水素触媒層反応温度(上層温度)を
450℃、モリブデンおよびビスマスを主成分とする複
合酸化物触媒層反応温度(下層温度)を380℃に保ち
イソブタン/酸素/窒素のモル比が75/10/15の
混合ガスを120ml/minで供給した。反応生成ガ
スを分析したところ、イソブタンの転化率が6.4%、
イソブチレンへの選択率が2.3%、プロピレンへの選
択率が3.8%、メタクロレインへの選択率が49.7
%であった。
Example 14 Without mixing the catalyst shown in Example 1, 6.0 g of an oxidative dehydrogenation catalyst containing nickel, phosphorus and oxygen was diluted in a reaction tube (made of glass having an inner diameter of 15 mm) on the side of introducing a raw material gas. Instead, a reaction tube (made of glass having an inner diameter of 15 mm) on the produced gas discharge side was filled with 6.0 g of a complex oxide catalyst containing molybdenum and bismuth as main components diluted with 26.0 g of silicon carbide. While mixing molecular oxygen (7 ml / min) with the reaction gas from the oxidative dehydrogenation catalyst layer composed of nickel, phosphorus and oxygen (7 ml / min), the reaction temperature (upper layer temperature) of the oxidative dehydrogenation catalyst layer composed of nickel, phosphorus and oxygen was set to 450. ° C, the reaction temperature (lower layer temperature) of the complex oxide catalyst layer containing molybdenum and bismuth as main components was kept at 380 ° C, and a mixed gas having an isobutane / oxygen / nitrogen molar ratio of 75/10/15 was supplied at 120 ml / min. . When the reaction product gas was analyzed, the conversion rate of isobutane was 6.4%,
The selectivity to isobutylene is 2.3%, the selectivity to propylene is 3.8%, and the selectivity to methacrolein is 49.7.
%Met.

【0036】実施例15 供給ガスのイソブタン/酸素/窒素のモル比を75/5
/20に変更した以外は実施例14と同様に行った。そ
の結果、イソブタンの転化率が3.6%、イソブチレン
への選択率が1.1%、プロピレンへの選択率が3.4
%、メタクロレインへの選択率が51.5%であった。
Example 15 The isobutane / oxygen / nitrogen molar ratio of the feed gas was 75/5.
The same procedure as in Example 14 was performed except that the ratio was changed to / 20. As a result, the conversion of isobutane was 3.6%, the selectivity to isobutylene was 1.1%, and the selectivity to propylene was 3.4.
%, The selectivity to methacrolein was 51.5%.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 47/22 H 9049−4H // C07B 61/00 300 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C07C 47/22 H 9049-4H // C07B 61/00 300

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 触媒の存在下にイソブタンを分子状酸素
で気相接触反応させてイソブチレンおよびメタクロレイ
ンを製造する方法において、触媒として酸化脱水素触媒
とモリブデンおよびビスマスを主成分とする複合酸化物
触媒を用いることを特徴とするイソブチレンおよびメタ
クロレインの製造方法。
1. A method for producing isobutylene and methacrolein by reacting isobutane with molecular oxygen in a gas phase in the presence of a catalyst to produce isobutylene and methacrolein, and a complex oxide containing molybdenum and bismuth as main components. A method for producing isobutylene and methacrolein, which comprises using a catalyst.
【請求項2】 酸化脱水素触媒とモリブデンおよびビス
マスを主成分とする複合酸化物触媒を混合して用いる請
求項1記載のイソブチレンおよびメタクロレインの製造
方法。
2. The method for producing isobutylene and methacrolein according to claim 1, wherein the oxidative dehydrogenation catalyst and the complex oxide catalyst containing molybdenum and bismuth as main components are mixed and used.
【請求項3】 酸化脱水素触媒を原料ガス導入側に、モ
リブデンおよびビスマスを主成分とする複合酸化物触媒
を生成ガス排出側にそれぞれ充填して用いる請求項1記
載のイソブチレンおよびメタクロレインの製造方法。
3. The production of isobutylene and methacrolein according to claim 1, wherein the oxidative dehydrogenation catalyst is filled in the raw material gas introduction side, and the complex oxide catalyst containing molybdenum and bismuth as main components is filled in the produced gas discharge side. Method.
【請求項4】 酸化脱水素触媒層からの反応ガスに更に
分子状酸素を混合してモリブデンおよびビスマスを主成
分とする複合酸化物触媒層に導入して反応させる請求項
3記載のイソブチレンおよびメタクロレインの製造方
法。
4. The isobutylene and methacrolein according to claim 3, wherein the reaction gas from the oxidative dehydrogenation catalyst layer is further mixed with molecular oxygen and introduced into the complex oxide catalyst layer containing molybdenum and bismuth as main components to cause reaction. Rain production method.
【請求項5】 酸化脱水素触媒がリンの酸化物とリチウ
ム、スカンジウム、チタン、ガリウム、ストロンチウ
ム、イットリウム、ジルコニウム、アンチモン、セシウ
ム、ランタン、セリウム、サマリウム、ユ−ロピウム、
イッテルビウム、ハフニウム、鉛、ビスマス、ニッケ
ル、亜鉛、鉄、クロム、バナジウム、マンガン、コバル
ト、銀、銅、マグネシウムおよびスズからなる群より選
ばれた少なくとも1種の元素の酸化物とからなる触媒で
ある請求項1、請求項2、請求項3又は請求項4記載の
イソブチレンおよびメタクロレインの製造方法。
5. The oxidative dehydrogenation catalyst is an oxide of phosphorus and lithium, scandium, titanium, gallium, strontium, yttrium, zirconium, antimony, cesium, lanthanum, cerium, samarium, europium,
A catalyst composed of an oxide of at least one element selected from the group consisting of ytterbium, hafnium, lead, bismuth, nickel, zinc, iron, chromium, vanadium, manganese, cobalt, silver, copper, magnesium and tin. The method for producing isobutylene and methacrolein according to claim 1, claim 2, claim 3 or claim 4.
【請求項6】 複合酸化物触媒が一般式、Moa Wb B
ic Fed Ae BfCg Dh Ox (式中、Moはモリブ
デン、Wはタングステン、Biはビスマス、Feは鉄、
Aはニッケルおよびコバルトからなる群より選ばれた少
なくとも1種の元素、Bはアルカリ金属、アルカリ土類
金属およびタリウムからなる群より選ばれた少なくとも
1種の元素、Cはリン、テルル、アンチモン、スズ、セ
リウム、鉛、ニオブ、マンガンおよび亜鉛からなる群よ
り選ばれた少なくとも1種の元素、Dはシリコン、アル
ミニウム、チタニウムおよびジルコニウムからなる群よ
り選ばれた少なくとも1種の元素およびOは酸素を表
す。また、a,b,c,d,e,f,g,h,x はそれぞれMo,W,B
i,Fe,A,B,C,DおよびOの原子数を表し、a=
12と固定したとき、b=0 〜10、c=0.1 〜10、d=0.1 〜2
0、e=2 〜20、f=0 〜10、g=0 〜4 、h=0 〜30およびx
は各々の元素の酸化状態により定まる数値をとる。)で
示される触媒である請求項1、請求項2、請求項3又は
請求項4記載のイソブチレンおよびメタクロレインの製
造方法。
6. A complex oxide catalyst having the general formula Moa Wb B
ic Fed Ae BfCg Dh Ox (wherein Mo is molybdenum, W is tungsten, Bi is bismuth, Fe is iron,
A is at least one element selected from the group consisting of nickel and cobalt, B is at least one element selected from the group consisting of alkali metals, alkaline earth metals and thallium, C is phosphorus, tellurium, antimony, At least one element selected from the group consisting of tin, cerium, lead, niobium, manganese, and zinc, D is at least one element selected from the group consisting of silicon, aluminum, titanium, and zirconium, and O is oxygen. Represent Also, a, b, c, d, e, f, g, h, x are Mo, W, B respectively.
represents the number of atoms of i, Fe, A, B, C, D and O, and a =
When fixed to 12, b = 0 to 10, c = 0.1 to 10, d = 0.1 to 2
0, e = 2 to 20, f = 0 to 10, g = 0 to 4, h = 0 to 30 and x
Is a value determined by the oxidation state of each element. The method for producing isobutylene and methacrolein according to claim 1, claim 2, claim 3 or claim 4 which is a catalyst represented by the formula (4).
【請求項7】 酸化脱水素触媒とモリブデンおよびビス
マスを主成分とする複合酸化物触媒の混合比(重量比)
が1:0.1〜10である請求項2記載のイソブチレン
およびメタクロレインの製造方法。
7. A mixing ratio (weight ratio) of the oxidative dehydrogenation catalyst and the composite oxide catalyst containing molybdenum and bismuth as main components.
Is 1: 0.1-10, The manufacturing method of isobutylene and methacrolein of Claim 2.
JP5150371A 1993-06-22 1993-06-22 Production of isobutylene and methacrolein Pending JPH0710782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5150371A JPH0710782A (en) 1993-06-22 1993-06-22 Production of isobutylene and methacrolein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5150371A JPH0710782A (en) 1993-06-22 1993-06-22 Production of isobutylene and methacrolein

Publications (1)

Publication Number Publication Date
JPH0710782A true JPH0710782A (en) 1995-01-13

Family

ID=15495533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5150371A Pending JPH0710782A (en) 1993-06-22 1993-06-22 Production of isobutylene and methacrolein

Country Status (1)

Country Link
JP (1) JPH0710782A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756499A1 (en) * 1996-12-03 1998-06-05 Atochem Elf Sa CATALYTIC SYSTEM ESPECIALLY FOR MENED AND SELECTIVE OXIDATION OF ALKANES IN ALCENES AND UNSATURATED ALDEHYDES
JPH11114418A (en) * 1997-09-30 1999-04-27 Sumitomo Chem Co Ltd Catalyst for gas-phase catalytic oxidation reaction of isobutane and manufacturing of alkene and/or oxygen-containing compound using this catalyst
US5899952A (en) * 1995-12-27 1999-05-04 Toyota Jidosha Kabushiki Kaisha Device for estimating slip angle of vehicle body through interrelation thereof with yaw rate
JP2004161753A (en) * 2002-10-18 2004-06-10 Rohm & Haas Co Preparation of unsaturated carboxylic acid and unsaturated carboxylic ester from alkane and/or alkene
US11794501B2 (en) 2021-01-19 2023-10-24 Seiko Epson Corporation Printing device with lighted icon indicators provided in an opening/closing cover
US11937383B2 (en) 2019-06-27 2024-03-19 Jvckenwood Corporation Display device, electronic device, and assembling method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899952A (en) * 1995-12-27 1999-05-04 Toyota Jidosha Kabushiki Kaisha Device for estimating slip angle of vehicle body through interrelation thereof with yaw rate
FR2756499A1 (en) * 1996-12-03 1998-06-05 Atochem Elf Sa CATALYTIC SYSTEM ESPECIALLY FOR MENED AND SELECTIVE OXIDATION OF ALKANES IN ALCENES AND UNSATURATED ALDEHYDES
WO1998024545A1 (en) * 1996-12-03 1998-06-11 Elf Atochem S.A. Catalytic system in particular for controlled and selective oxidation of alkanes into alkenes and unsaturate aldehydes
JPH11114418A (en) * 1997-09-30 1999-04-27 Sumitomo Chem Co Ltd Catalyst for gas-phase catalytic oxidation reaction of isobutane and manufacturing of alkene and/or oxygen-containing compound using this catalyst
JP2004161753A (en) * 2002-10-18 2004-06-10 Rohm & Haas Co Preparation of unsaturated carboxylic acid and unsaturated carboxylic ester from alkane and/or alkene
US11937383B2 (en) 2019-06-27 2024-03-19 Jvckenwood Corporation Display device, electronic device, and assembling method
US11794501B2 (en) 2021-01-19 2023-10-24 Seiko Epson Corporation Printing device with lighted icon indicators provided in an opening/closing cover

Similar Documents

Publication Publication Date Title
JP4346822B2 (en) Molybdenum-vanadium catalyst for the low temperature selective oxidation of propylene, its production and use
JP2001520976A (en) Method for selective production of acetic acid by catalytic oxidation of ethane
JP2934222B2 (en) Method for producing acrolein from propylene by redox reaction and use of solid mixed oxide composition as redox system in the reaction
TW201217050A (en) Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof
JP3139285B2 (en) Method for producing acrolein and acrylic acid
JP3497558B2 (en) Ammoxidation catalyst composition and method for producing acrylonitrile or methacrylonitrile using the same
JP2004105951A (en) Catalyst for synthesizing acrylonitrile and production method for the same and production method for acrylonitrile
US7341974B2 (en) Method for preparing a catalyst for partial oxidation of propylene
JPH1057813A (en) Manufacture of mixed metal oxide catalyst and acrylic acid production using thereof
JP4081824B2 (en) Acrylic acid production method
JPH0710782A (en) Production of isobutylene and methacrolein
EP0713724A1 (en) Ammoxidation catalyst composition and process for producing acrylonitrile or methacrylonitrile by using the same
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
JP3838705B2 (en) Ammoxidation catalyst composition
JPH10237011A (en) Production of acrylic acid from acrolein by redox reaction and use of solid oxide mixture composition as oxidation-reduction system for the reaction
EP0557790A2 (en) Process for producing isobutylene by oxidative dehydrogenation of isobutane and catalyst therefor
JP2004188231A (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
EP1245277A1 (en) Catalyst for the oxidation of alkylbenzenes to aromatic aldehydes
JP3094180B2 (en) Process for producing isobutylene by oxidative dehydrogenation of isobutane
CN112156795A (en) Catalyst and preparation method and application thereof
JP2614089B2 (en) Acrolein production method
JPH10114688A (en) Production of isobutylene and methacrolein
JP3127381B2 (en) Production of isobutylene by oxidative dehydrogenation of isobutane
JP3759847B2 (en) Method for activating vanadium-phosphorus catalyst

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041109