JP3855298B2 - Process for producing alkene and / or oxygen-containing compound - Google Patents

Process for producing alkene and / or oxygen-containing compound Download PDF

Info

Publication number
JP3855298B2
JP3855298B2 JP08802996A JP8802996A JP3855298B2 JP 3855298 B2 JP3855298 B2 JP 3855298B2 JP 08802996 A JP08802996 A JP 08802996A JP 8802996 A JP8802996 A JP 8802996A JP 3855298 B2 JP3855298 B2 JP 3855298B2
Authority
JP
Japan
Prior art keywords
catalyst
isobutane
oxygen
selectivity
isobutylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08802996A
Other languages
Japanese (ja)
Other versions
JPH09278680A (en
Inventor
顕仙 奥迫
利明 宇井
功一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP08802996A priority Critical patent/JP3855298B2/en
Publication of JPH09278680A publication Critical patent/JPH09278680A/en
Application granted granted Critical
Publication of JP3855298B2 publication Critical patent/JP3855298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene

Description

【0001】
【発明の属する技術分野】
本発明は、イソブタンを触媒存在下に分子状酸素を用いて、気相接触酸化させることにより、工業的に有用であるイソブチレン、酢酸、アクリル酸、メタクロレインおよびメタクリル酸等のアルケンおよび含酸素化合物を製造する方法に関する。
【0002】
【従来の技術】
イソブチレンまたはターシャリーブタノールからメタクロレインを経由し、二段階酸化によりメタクリル酸を製造する方法は良く知られており、既に工業化が実施されている。 他方、近年イソブチレンよりも安価なイソブタンを原料として気相接触酸化によるメタクロレインやメタクリル酸の製造方法が提案されている。
【0003】
例えば、特開昭62−132832号公報には「リンまたはヒ素を中心元素としモリブデンを含むヘテロポリ酸を含有する触媒にイソブタンと酸素を交互に接触させメタクリル酸および/またはメタクロレインを得る方法、特開平2−42034号公報には「リンおよび/またはヒ素を中心元素としモリブデンを含むヘテロポリ酸および/またはその塩でAg、Zn、Cd Ti Zr Nb TaCr W Mn Fe Co Ni Rh Sn BiおよびTeからなる村から選ばれた少なくとも一種を触媒構成元素として含有する触媒に、イソブタンを分子状酸素を含む混合ガスを気相で接触させ、メタクリル酸および/またはメタクロレインを得る方法等が知られている。
また特開平5−178774号公報および特開平5−331085号公報にはイソブタンを触媒の存在下に接触気相酸化してメタクリル酸および/またはメタクロレインを製造するに於いて、ピロリン酸バナジルを主成分とし、これに金や銀等の他の金属元素を添加し活性、選択性を改良した複合酸化物系触媒を用いることを特徴とする方法が開示されている。
【0004】
しかしながら、イソブタンはイソブチレン等に比べ反応性が低いため、イソブチレンの酸化反応条件では転化率が低い。それ故、酸化反応温度を上げ転化率を高める方法が考えられるが、この場合には目的物質であるメタクリル酸やメタクロレインの過剰酸化が生じ、選択率が低下するとの欠点を有する。加えてこれらリン−モリブデン系ケギン型ヘテロポリ酸系触媒は熱安定性が乏しく、触媒として使用する場合、その安定性に問題があった。
また、ピロリン酸バナジルを主成分とする複合酸化物系触媒を用いる場合も必ずしも満足する選択性改良効果が得られないとの問題があった。
【0005】
【発明が解決しようとる課題】
かかる状況下に於いて、本発明者等はイソブタンからイソブチレン、酢酸、アクリル酸、メタクロレインおよびメタクリル酸等のアルケンおよび含酸素化合物を高転化率、高選択性を持って製造する方法を見出すことを目的として、鋭意検討した結果、気相接触酸化反応に用いる触媒としてモリブデン−バナジン−アンチモンを必須成分とする複合酸化物系触媒を用いる場合には、触媒として耐熱性に優れ、かつ転化率、選択性も共に優れることを見出し、本発明方法を完成するに至った。
【0006】
【課題を解決するための手段】
すなわち本発明は、イソブタンを触媒存在下に分子状酸素を用いて気相接触酸化させることにより、アルケンおよび/または含酸素化合物を製造する方法において、触媒として一般式
Moab Sb cdef
(式中、Moはモリブデン、Vはバナジウム、Sbはアンチモン、Oは酸素、Yはヒ素、ホウ素およびゲルマニウムからなる群より選ばれた少なくとも1種の元素、Zはカリウム、セシウム、ルビジウム、カルシウム、マグネシウム、タリウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、銀、ビスマス、アルミニウム、ガリウム、インジウム、スズ、亜鉛、ランタン、セリウム、イットリウム、タングステン、ニオブおよびタンタルからなる群より選ばれた少なくとも1種の元素を表し、また添字a、b、c、dおよびeは各元素の原子比を表し、a=12としたとき、bは0を含まない6以下の値、cは0を含まない20以下の値、dおよびeは0を含む6以下の値、fは各元素の原子価および原子比によって決まる値を表す)
で示される複合酸化物系触媒を用いることを特徴とするアルケンおよび/または含酸素化合物の製造方法を提供するにある。
【0007】
【発明の実施の形態】
以下、本発明方法をさらに詳細に説明する。
本発明方法の特徴は、イソブタンを分子状酸素を用いて気相接触酸化させ、イソブチレン、メタクロレイン、メタクリル酸等のアルケンおよび/または含酸素化合物を製造するに際し、触媒として一般式 Moab Sb cdef(式中の記号は前記と同じ)で示されるMo−V−Sbを必須成分とする、即ちa=12のとき、bは0<b≦6、好ましくは0<b≦4、cは0<c≦20、好ましくは0<c≦12の原子比よりなる複合酸化物系触媒を用いることにある。これら触媒組成に於いて、いずれの成分が欠如しても満足し得る触媒効果、主として選択率の改善効果が見られない。
【0008】
また本発明に用いる触媒は更に他の元素を含むことにより、より優れ触媒性能を発揮することがある。即ち、一般式に於いてYはヒ素、ホウ素、ゲルマニウムからなる群より選ばれた少なくとも1種の元素、Zはカリウム、セシウム、ルビジウム、カルシウム、マグネシウム、タリウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、銀、ビスマス、アルミニウム、ガリウム、インジウム、スズ、亜鉛、ランタン、セリウム、イットリウム、タングステン、ニオブ、タンタルからなる群より選ばれた少なくとも1種の元素であり、またその原子比d及びeはa=12のとき、0〜6の範囲内である触媒が優れる。
これら触媒成分が上記範囲より多い場合には触媒性能が低下する。
【0009】
本発明に用いる触媒調製方法に関しては特に制限はなく、公知の種々の方法により調製できる。例えば、モリブデン、バナジウム、アンチモンからなる複合酸化物系触媒は、パラモリブデン酸アンモニウムとメタバナジン酸アンモニウムとからなる水溶液に三酸化アンチモンを添加し、乾燥した後、焼成することにより所定の触媒を得ることができる
モリブデン原料としては、三酸化モリブデン、モリブデン酸、パラモリブデン酸アンモニウム、モリブデン酸ナトリウム等を用いてることができ、バナジウム原料としてはメタバナジン酸アンモニウム、バナジン酸ナトリウム、五酸化バナジウム等、5価バナジウム以外に、シュウ酸バナジル等の4価のバナジウムを用いることもできる。
また上記一般式中Y、Zで表した元素をも含め、本発明の触媒構成物質は、触媒調整過程で酸化物に分解され得る化合物、例えば酸化物、水酸化物、硝酸塩、アンモニウム塩、炭酸塩、塩化物、有機酸塩、金属酸アンモニウム塩等として添加、使用される。
触媒は担および/または希釈混合した形で用いることができる。担体および/または希釈剤としては、例えばシリカ、アルミナ、シリカ−アルミナ、マグネシア、チタニア、ゼオライト、ジルコニア、シリコン−カーバイト等が挙げられ、担持量や希釈剤と触媒との希釈混合比に制限はない。また、触媒の形状はタブレット、リング、球、押し出し品等限定はない。成型法は圧縮成形、押し出し成形、噴霧乾燥造粒等公知の方法で行うことができる。
焼成は特に制限されないが、約400℃〜約650℃、酸素雰囲気、或いは窒素ガス等を用いた不活性雰囲気で実施すればよい。
このようにして得られた触媒は、イソブタンの気相接触酸化反応に供される。
【0010】
反応に供する原料ガスとしては、イソブタンおよび分子状酸素が用いられる。該原料ガス中のイソブタン濃度は、約1モル%〜約85モル%、好ましくは約3モル%〜約70モル%である。
【0011】
分子状酸素のイソブタンに対するモル比は約0.05〜約4.0、好ましくは約0.1〜約3.5が適当である。分子状酸素の供給源としては、空気、純酸素、酸素富化空気などが用いられる。
【0012】
反応原料ガス中に水蒸気を含有させてもよいが、水蒸気は必ずしも必要としない。
【0013】
原料ガス中には、貴ガス、窒素、一酸化炭素、二酸化炭素等が含まれていてもよい。また、イソブチレンが原料に含まれていても、イソブチレンはイソブタン同様メタクロレインやメタクリル酸に転換される。
【0014】
未反応のイソブタンは、燃料として使用することもできるが、回収し再循環することもできる。イソブチレンやメタクロレインも回収、再循環することによりメタクリル酸に転換できる。また、純酸素或いは酸素富化空気を用いた場合には、未反応の酸素も回収し再利用することが好ましい。
【0015】
反応温度は約300〜約550℃の範囲で選択できるが、好ましくは約330〜約500℃である。反応圧力は減圧から加圧まで幅広く選べるが通常約100〜約400kPa、好ましくは約100〜約200kPaの範囲である。
【0016】
本発明方法は、固定床、移動床、流動床等いずれの反応形式でも実施できる。固定床方式で使用する場合、空間速度に特に制限はないが、空間速度が小さすぎると生産性が低下するため工業的に不利である。また逆に空間速度が大きすぎると、反応活性が低下するため反応温度を高くしなければならない。そこで通常は約400〜約5000/hr、好ましくは約600〜約2000/hrの範囲である。
このようにして生成したアルケン及び各種含酸素化合物は抽出、蒸留等の操作により、各々の生成物に分離精製することができる。
【0017】
【発明の効果】
以上詳述した本発明方法によれば、使用する触媒の活性が高く、イソブチレン、メタクロレイン、メタクリル酸等のアルケンおよび含酸素化合物への選択製が高いので、廉価なイソブタンから効率よくアルケンおよび含酸素化合物を製造することができる。
【0018】
【実施例】
次に実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。尚、転化率(%)および選択率(%)はそれぞれ以下の如く定義した。
イソブタン転化率(%)=(反応したイソブタンのモル数)÷(供給したイソブタンのモル数)×100
イソブチレン選択率(%)=(生成したイソブチレンのモル数)÷(反応したイソブタンのモル数)×100
メタクロレイン選択率(%)=(生成したメタクロレインのモル数)÷(反応したイソブタンのモル数)×100
メタクリル酸選択率(%)=(生成したメタクリル酸のモル数)÷(反応したイソブタンのモル数)×100
有効成分の選択率(%)=(生成したイソブチレンのモル数+生成したメタクロレインのモル数+生成したメタクリル酸のモル数)÷(反応したイソブタンのモル数)×100)
また、反応生成物はガスクロマトグラフィーを用いて分析した。
【0019】
実施例1
イオン交換水800mlにシュウ酸水素ニオブ{Nb(HC2 4 5 ・nH2 O}141.96gを加え撹拌溶解後、バナジウム濃度が2mol/lであるシュウ酸バナジル水溶液150mlを添加し、均一な水溶液とした(A液)。次いでイオン交換水300mlにパラモリブデン酸アンモニウム{((NH4 6 Mo7 24・4H2 O)}212.10gを添加し撹拌溶解した(B液)後、B液をA液に全量注入し、更に三酸化アンチモン(Sb2 3 )131.24gを添加し、この混合液に25%アンモニア水を入れpHをほぼ中性に調整した。
このようにして得られたスラリー溶液を加熱撹拌しつつ濃縮乾固し、更に120℃にて14.5時間乾燥し、粉砕・篩別して4〜8メッシュの粒子を得、これを窒素気流中600℃で2時間焼成してMo123 Sb9 Nb1.5 X の組成を有する触媒を得た。
このようにして得た触媒6gを直径15mmのパイレックスガラス製反応管に充填し、これにイソブタン/酸素/窒素/水蒸気の割合(モル%)が25/12/33/30からなる原料ガスを供給し反応圧力152kPa、空間速度1000/hrの条件で加熱して酸化反応を行ったところ、反応温度425℃においてのイソブタン転化率は6.3%、イソブチレン、メタクロレイン及びメタクリル酸の選択率はそれぞれ11.9%、23.8%及び7.8%であった。
反応温度(反応器壁温度)400〜450℃の間を詳細に検討した結果、イソブタン転化率5%時の有効成分への選択率は47.5%であった。
【0020】
実施例2
原料ガスとしてイソブタン/酸素/窒素の割合(モル%)が37/17/46のものに代えた他は実施例1と同様の方法で接触酸化反応を行った。その結果、反応温度425℃においてのイソブタン転化率は6.2%、イソブチレン、メタクロレイン及びメタクリル酸の選択率はそれぞれ15.6%、21.2%及び4.5%であった。
反応温度400〜450℃に於けるイソブタン転化率5%時の有効成分への選択率は45.0%であった。
【0021】
実施例3
シュウ酸水素ニオブの代わりに五酸化ニオブ{Nb2 5 }を用いた以外は実施例1と同様にして同一組成の触媒を調製した。
この触媒を用い、実施例1と同一条件で反応を行った。その結果、反応温度425℃においてのイソブタン転化率は6.5%、イソブチレン、メタクロレイン及びメタクリル酸の選択率はそれぞれ11.0%、16.7%及び3.1%であった。
また、反応温度400〜450℃に於けるイソブタン転化率5%時の有効成分への選択率は32.3%であった。
【0022】
実施例4
実施例1の方法に於いて、三酸化アンチモン(Sb2 3 )の添加量を代えた他は実施例1と同一方法によりMo123 Nb1.5 Sb6 Oxの組成を有する触媒を得た。
この触媒を用い、実施例1と同一条件で反応を行った。その結果、反応温度425℃においてのイソブタン転化率は4.9%、イソブチレン、メタクロレイン及びメタクリル酸の選択率はそれぞれ21.5%、10.7%及び1.9%であった。
また、反応温度400〜450℃に於けるイソブタン転化率5%時の有効成分への選択率は34.0%であった。
【0023】
実施例5
イオン交換水150mlにパラモリブデン酸アンモニウム{((NH4 6 Mo7 24・4H2 O)}53.05gを添加、撹拌溶解後、バナジウム濃度が1mol/lであるシュウ酸バナジル水溶液75mlを添加し、次いで三酸化アンチモン(Sb2 3 )32.80gを添加した。この混合液に25%アンモニア水を添加しpHをほぼ中性に調整した。
このようにして得られたスラリー溶液を加熱撹拌しつつ濃縮乾固し、更に120℃にて3時間乾燥し、粉砕・篩別して4〜8メッシュの粒子を得、これを窒素気流中600℃で2時間焼成してMo123 Sb9 Oxの組成を有する触媒を得た。
この触媒を用い、実施例1と同じ条件で酸化反応を行ったところ、反応温度425℃においてのイソブタン転化率は2.2%、イソブチレン、メタクロレイン及びメタクリル酸の選択率はそれぞれ23.6%、26.2%及び3.7%であった。
反応温度400〜450℃に於けるイソブタン転化率5%時の有効成分への選択率は44.4%であった。
【0024】
実施例6
実施例1のA液中に二酸化ゲルマニウム(GeO2 )を添加した以外は実施例1と同一方法によりMo123 Sb9 Nb1.5 Ge3 Oxの組成を有する触媒を得た。
この触媒を用い、実施例2と同じ条件で酸化反応を行ったところ、反応温度425℃に於いてのイソブタン転化率は2.9%、イソブチレン、メタクロレイン及びメタクリル酸の選択率はそれぞれ34.1%、18.4%及び0.6%であった。
反応温度400〜450℃に於けるイソブタン転化率5%時の有効成分への選択率は47.9%であった。
【0025】
実施例7
実施例1のA液中に酢酸スズ〔Sn(CH3 COO)2 〕を添加した以外は実施例1と同一方法によりMo123 Sb9 Nb1.5 Sn3 Oxの組成を有する触媒を得た。
この触媒を用い、実施例2と同じ条件で酸化反応を行ったところ、反応温度425℃に於いてのイソブタン転化率は7.4%、イソブチレン、メタクロレイン及びメタクリル酸の選択率はそれぞれ8.7%、21.8%及び3.8%であった。
反応温度400〜450℃に於けるイソブタン転化率5%時の有効成分への選択率は42.2%であった。
【0026】
実施例8
実施例1のA液中に硝酸鉄〔Fe(NO3 )・9H2 Oを添加した以外は実施例1と同一方法によりMo123 Sb9 Nb1.5 Fe3 Oxの組成を有する触媒を得た。
この触媒を用い、実施例2と同じ条件で酸化反応を行ったところ、反応温度425℃に於いてのイソブタン転化率は7.5%、イソブチレン、メタクロレイン及びメタクリル酸の選択率はそれぞれ13.7%、17.2%及び2.3%であった。
反応温度380〜450℃に於けるイソブタン転化率5%時の有効成分への選択率は37.5%であった。
【0027】
実施例9(参考例)
実施例1に於いてシュウ酸バナジルの代わりにメタバナジン酸アンモニウム{NH4 VO3 }を用い、Sb23 の代わりにH6 TeO6 を用いた以外は実施例1と同一方法によりMo123.6 Te2.8 Nb1.4 Oxの組成を有する触媒を得た。
この触媒を用い、反応温度を350℃にした以外は実施例1と同じ条件で酸化反応を行ったところ、反応温度を350℃に於いてのイソブタン転化率は4.9%、イソブチレン、メタクロレイン及びメタクリル酸の選択率はそれぞれ4.3%、13.9%及び11.8%であった。
反応温度330〜400℃に於けるイソブタン転化率5%時の有効成分への選択率は30.0%であった。
【0028】
比較例1
実験組成Mo123 Ox(xは各元素の原子価および原子比によって決まる値を表す)を有する複合酸化物系触媒は、以下の方法により調製した。
イオン交換水1200mlにパラモリブデン酸アンモニウム{((NH4 6 Mo7 24・4H2 O)}211.9gを添加し、撹拌溶解させた後、バナジウム濃度が1mol/lであるシュウ酸バナジル水溶液300mlを添加、混合し、この混合液のPHが中性になるよう25%アンモニア水を添加した。その後、120℃の乾燥機中で水分を蒸発させ、これを窒素気流中、600℃で3時間焼成した。
この触媒を用い、反応温度を350℃とした以外は、実施例1と同じ条件で酸化反応を行ったところ、反応温度を350℃に於いてのイソブタン転化率は5.0%、イソブチレン、メタクロレイン及びメタクリル酸の選択率はそれぞれ6.7%、3.1%及び0.7%であった。
反応温度310〜350℃に於けるイソブタン転化率5%時の有効成分への選択率は10.6%であった。
【0029】
比較例2
イオン交換水400mlにシュウ酸水素ニオブ{Nb(HC2 4 5 ・nH2 O}35.59gを加え撹拌溶解後、バナジウム濃度が1mol/lであるシュウ酸バナジル水溶液75mlを添加し、均一な水溶液とした(A液)。次いでイオン交換水150mlにパラモリブデン酸アンモニウム{((NH4 6 Mo7 24・4H2 O)}53.00gを添加し撹拌溶解した(B液)後、B液をA液に全量注入混合し、この混合液に25%アンモニア水を入れpHをほぼ中性に調整した。
このようにして得られたスラリー溶液を加熱撹拌しつつ濃縮乾固し、更に120℃にて14.5時間乾燥し、粉砕・篩別して4〜8メッシュの粒子を得、これを窒素気流中600℃で2時間焼成してMo123 Nb1.5 X の組成を有する触媒を得た。
この触媒を用い、反応温度を290℃とした以外は、実施例1と同じ条件で酸化反応を行ったところ、反応温度を290℃に於いてのイソブタン転化率は7.2%、イソブチレン、メタクロレイン及びメタクリル酸の選択率はそれぞれ5.1%、1.9%及び1.1%であった。
反応温度250〜300℃に於けるイソブタン転化率5%時の有効成分への選択率は9.3%であった。
【0030】
比較例3
イオン交換水400mlにヒドロキシルアミン塩酸塩(NH2 OH/HCI)27.8g、80%リン酸(H3 PO4 )58.8gを溶解し、均一な溶液とした後、ホットスターラーにて80℃まで加熱した。この溶液に五酸化バナジウム(V2 5 )36.4gを徐々に添加した。五酸化バナジウム添加終了から約6時間攪拌をつずけ、120℃の乾燥器中で15時間乾燥させ、水分を蒸発させた。得られた乾固物を空気500℃で15時間焼成して(VO)2 2 7 の組成を有する触媒を得た。
上記方法により得た触媒9gを直径15mmのパイレックスガラス製反応管に充填し、これにイソブタン/酸素/窒素/水蒸気の割合(モル%)が47/36/17/0からなる原料ガスを供給し反応圧力152kPa、空間速度1000/hrの条件で加熱して酸化反応を行ったところ、反応温度360℃においてのイソブタン転化率は2.1%、イソブチレン、メタクロレイン及びメタクリル酸の選択率はそれぞれ1.7%、2.5%、8.8%であった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to industrially useful alkenes such as isobutylene, acetic acid, acrylic acid, methacrolein, and methacrylic acid, and oxygen-containing compounds, by subjecting isobutane to molecular gas oxidation in the presence of a catalyst in a gas phase catalytic oxidation. It relates to a method of manufacturing.
[0002]
[Prior art]
A method for producing methacrylic acid from isobutylene or tertiary butanol via methacrolein by two-step oxidation is well known and has already been industrialized. On the other hand, in recent years, a method for producing methacrolein or methacrylic acid by gas phase catalytic oxidation using isobutane cheaper than isobutylene as a raw material has been proposed.
[0003]
For example, Japanese Patent Application Laid-Open No. 62-132932 discloses a method for obtaining methacrylic acid and / or methacrolein by alternately contacting isobutane and oxygen with a catalyst containing a heteropoly acid containing phosphorus or arsenic as a central element and molybdenum. Kaihei 2-42034 discloses "a heteropolyacid containing phosphorus and / or arsenic as a central element and / or a salt thereof and consisting of Ag, Zn, CdTiZrNbTaCrWMnFeCoNiRhSnBi and Te. Known is a method of obtaining methacrylic acid and / or methacrolein by bringing a mixed gas containing molecular oxygen into contact with isobutane in a gas phase with a catalyst containing at least one selected from villages as a catalyst constituent element.
JP-A-5-178774 and JP-A-5-331085 disclose that vanadyl pyrophosphate is mainly used in the production of methacrylic acid and / or methacrolein by catalytic gas phase oxidation of isobutane in the presence of a catalyst. There is disclosed a method characterized in that a composite oxide catalyst having improved activity and selectivity by using other metal elements such as gold and silver as components is used.
[0004]
However, since isobutane is less reactive than isobutylene or the like, the conversion rate is low under the isobutylene oxidation reaction conditions. Therefore, a method of increasing the oxidation reaction temperature and increasing the conversion rate is conceivable. However, in this case, there is a disadvantage that the methacrylic acid or methacrolein as the target substance is excessively oxidized and the selectivity is lowered. In addition, these phosphorus-molybdenum-based Keggin type heteropolyacid catalysts have poor thermal stability, and when used as a catalyst, there is a problem in their stability.
In addition, there is a problem that a satisfactory selectivity improving effect cannot always be obtained when a composite oxide catalyst mainly composed of vanadyl pyrophosphate is used.
[0005]
The present invention is that you try to solve]
Under such circumstances, the present inventors find a method for producing alkenes and oxygen-containing compounds such as isobutylene, acetic acid, acrylic acid, methacrolein and methacrylic acid from isobutane with high conversion and high selectivity. results purpose was examined intensively, molybdenum as a catalyst for use in gas-phase catalytic oxidation reaction - vanadium - when antimony to use a composite oxide catalyst as essential components is excellent in heat resistance as the catalyst, and the conversion The inventors have found that both the selectivity is excellent and have completed the method of the present invention.
[0006]
[Means for Solving the Problems]
That is, the present invention provides a catalyst having the general formula Mo a V b Sb c Y d as a catalyst in a method for producing an alkene and / or an oxygen-containing compound by vapor-phase catalytic oxidation of isobutane with molecular oxygen in the presence of a catalyst. Z e O f
(Wherein, Mo is molybdenum, V is vanadium, Sb is antimony, O is oxygen, Y is at least one element selected from the group consisting of arsenic, boron and germanium, Z is potassium, cesium, rubidium, calcium At least selected from the group consisting of magnesium, thallium, chromium, manganese, iron, cobalt, nickel, copper, silver, bismuth, aluminum, gallium, indium, tin, zinc, lanthanum, cerium, yttrium, tungsten, niobium and tantalum represents one element, also subscripts a, b, c, d and e represent an atomic ratio of each element, when the a = 12, b is 6 or less value without the 0, c is 0 20 or less, not including, d and e are 6 or less including 0, and f is a value determined by the valence and atomic ratio of each element)
The present invention provides a method for producing an alkene and / or an oxygen-containing compound, characterized by using a composite oxide catalyst represented by the following formula.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method of the present invention will be described in more detail.
Features of the method of the invention, isobutane is gas-phase catalytic oxidation with molecular oxygen, isobutylene, methacrolein, upon the production of alkenes and / or oxygen-containing compounds such as methacrylic acid of the general formula as catalyst Mo a V b sb c Y d Z e O f ( symbols in the formula are as defined above) and Mo-V-S b the essential component represented by, i.e., when a = 12, b is 0 <b ≦ 6, preferably 0 <b ≦ 4, c is a composite oxide catalyst having an atomic ratio of 0 <c ≦ 20, preferably 0 <c ≦ 12. In these catalyst compositions, even if any component is absent, a satisfactory catalytic effect, mainly an improvement effect of selectivity, is not seen.
[0008]
Further, the catalyst used in the present invention may further exhibit catalyst performance by containing other elements. That is, in the general formula, Y is at least one element selected from the group consisting of arsenic, boron, and germanium, Z is potassium, cesium, rubidium, calcium, magnesium, thallium, chromium, manganese, iron, cobalt, nickel And at least one element selected from the group consisting of copper, silver, bismuth, aluminum, gallium, indium, tin, zinc, lanthanum, cerium, yttrium, tungsten, niobium, and tantalum, and their atomic ratios d and e When a = 12, a catalyst in the range of 0-6 is excellent.
When these catalyst components are more than the above range, the catalyst performance is lowered.
[0009]
There is no restriction | limiting in particular regarding the catalyst preparation method used for this invention, It can prepare by a well-known various method. For example, a composite oxide catalyst composed of molybdenum, vanadium, and antimony can be obtained by adding antimony trioxide to an aqueous solution composed of ammonium paramolybdate and ammonium metavanadate, drying, and firing to obtain a predetermined catalyst. Can do .
As the molybdenum raw material, molybdenum trioxide, molybdic acid, ammonium paramolybdate, sodium molybdate, etc. can be used. As the vanadium raw material, in addition to pentavalent vanadium such as ammonium metavanadate, sodium vanadate, vanadium pentoxide Tetravalent vanadium such as vanadyl oxalate can also be used.
In addition, including the elements represented by Y and Z in the above general formula, the catalyst constituent material of the present invention is a compound that can be decomposed into an oxide during the catalyst adjustment process, such as an oxide, hydroxide, nitrate, ammonium salt, carbonic acid. It is added and used as a salt, chloride, organic acid salt, metal acid ammonium salt or the like.
The catalyst can be used in the form of a mixture responsible lifting and / or dilution. Examples of the carrier and / or diluent include silica, alumina, silica-alumina, magnesia, titania, zeolite, zirconia, silicon-carbite, and the like, and there are limitations on the loading amount and the dilution mixture ratio of the diluent and the catalyst. Absent. The shape of the catalyst is not limited to tablets, rings, spheres, extruded products and the like. The molding method can be performed by a known method such as compression molding, extrusion molding, or spray drying granulation.
The firing is not particularly limited, but may be performed at about 400 ° C. to about 650 ° C. in an oxygen atmosphere or an inert atmosphere using nitrogen gas or the like.
The catalyst thus obtained is subjected to a gas phase catalytic oxidation reaction of isobutane.
[0010]
Isobutane and molecular oxygen are used as the raw material gas for the reaction. The isobutane concentration in the raw material gas is about 1 mol% to about 85 mol%, preferably about 3 mol% to about 70 mol%.
[0011]
The molar ratio of molecular oxygen to isobutane is about 0.05 to about 4.0, preferably about 0.1 to about 3.5. Air, pure oxygen, oxygen-enriched air, or the like is used as the molecular oxygen supply source.
[0012]
Although water vapor may be included in the reaction raw material gas, water vapor is not always necessary.
[0013]
The source gas may contain noble gas, nitrogen, carbon monoxide, carbon dioxide and the like. Even if isobutylene is contained in the raw material, isobutylene is converted to methacrolein or methacrylic acid as is isobutane.
[0014]
Unreacted isobutane can be used as fuel, but can also be recovered and recycled. Isobutylene and methacrolein can also be recovered and recycled to methacrylic acid. In addition, when pure oxygen or oxygen-enriched air is used, it is preferable to recover and reuse unreacted oxygen.
[0015]
The reaction temperature can be selected in the range of about 300 to about 550 ° C, preferably about 330 to about 500 ° C. The reaction pressure can be selected widely from reduced pressure to increased pressure, but is usually in the range of about 100 to about 400 kPa, preferably about 100 to about 200 kPa.
[0016]
The method of the present invention can be carried out in any reaction mode such as a fixed bed, a moving bed, and a fluidized bed. When used in a fixed bed system, the space velocity is not particularly limited, but if the space velocity is too small, the productivity is lowered, which is industrially disadvantageous. On the other hand, if the space velocity is too large, the reaction activity decreases, so the reaction temperature must be increased. Therefore, it is usually in the range of about 400 to about 5000 / hr, preferably about 600 to about 2000 / hr.
The alkene thus produced and various oxygen-containing compounds can be separated and purified into respective products by operations such as extraction and distillation.
[0017]
【The invention's effect】
According to the method of the present invention described in detail above, the activity of the catalyst to be used is high, and the selection to alkene and oxygen-containing compounds such as isobutylene, methacrolein and methacrylic acid is high. Oxygen compounds can be produced.
[0018]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these. The conversion rate (%) and selectivity (%) were defined as follows.
Isobutane conversion rate (%) = (number of moles of reacted isobutane) ÷ (number of moles of isobutane supplied) × 100
Isobutylene selectivity (%) = (number of moles of isobutylene formed) ÷ (number of moles of reacted isobutane) × 100
Methacrolein selectivity (%) = (number of moles of methacrolein produced) ÷ (number of moles of reacted isobutane) × 100
Methacrylic acid selectivity (%) = (number of moles of methacrylic acid produced) ÷ (number of moles of reacted isobutane) × 100
Active ingredient selectivity (%) = (number of moles of isobutylene produced + number of moles of methacrolein produced + number of moles of methacrylic acid produced) ÷ (number of moles of reacted isobutane) × 100)
The reaction product was analyzed using gas chromatography.
[0019]
Example 1
After adding 141.96 g of niobium hydrogen oxalate {Nb (HC 2 O 4 ) 5 · nH 2 O} to 800 ml of ion-exchanged water and stirring and dissolving, 150 ml of vanadyl oxalate aqueous solution having a vanadium concentration of 2 mol / l was added, and homogeneous Solution (solution A). Next, 212.10 g of ammonium paramolybdate {((NH 4 ) 6 Mo 7 O 24 · 4H 2 O)} was added to 300 ml of ion-exchanged water and dissolved by stirring (solution B), and then the entire amount of solution B was injected into solution A. Further, 131.24 g of antimony trioxide (Sb 2 O 3 ) was added, and 25% aqueous ammonia was added to this mixed solution to adjust the pH to almost neutral.
The slurry solution thus obtained was concentrated to dryness with heating and stirring, further dried at 120 ° C. for 14.5 hours, pulverized and sieved to obtain particles of 4 to 8 mesh, which was 600 in a nitrogen stream. A catalyst having a composition of Mo 12 V 3 Sb 9 Nb 1.5 O x was obtained by calcination at 2 ° C. for 2 hours.
6 g of the catalyst thus obtained was filled into a 15 mm diameter Pyrex glass reaction tube, and a raw material gas having a ratio of isobutane / oxygen / nitrogen / water vapor (mol%) of 25/12/33/30 was supplied thereto. The reaction was conducted under the conditions of a reaction pressure of 152 kPa and a space velocity of 1000 / hr to carry out an oxidation reaction. The conversion of isobutane at a reaction temperature of 425 ° C. was 6.3%, and the selectivity for isobutylene, methacrolein and methacrylic acid was respectively 11.9%, 23.8% and 7.8%.
As a result of examining the reaction temperature (reactor wall temperature) between 400 and 450 ° C. in detail, the selectivity to the active ingredient when the isobutane conversion was 5% was 47.5%.
[0020]
Example 2
The catalytic oxidation reaction was carried out in the same manner as in Example 1 except that the source gas was changed to a ratio of isobutane / oxygen / nitrogen (mol%) of 37/17/46. As a result, the conversion of isobutane at a reaction temperature of 425 ° C. was 6.2%, and the selectivities of isobutylene, methacrolein and methacrylic acid were 15.6%, 21.2% and 4.5%, respectively.
The selectivity to the active ingredient when the isobutane conversion rate was 5% at a reaction temperature of 400 to 450 ° C. was 45.0%.
[0021]
Example 3
A catalyst having the same composition was prepared in the same manner as in Example 1 except that niobium pentoxide {Nb 2 O 5 } was used instead of niobium hydrogen oxalate.
Using this catalyst, the reaction was carried out under the same conditions as in Example 1. As a result, the conversion of isobutane at a reaction temperature of 425 ° C. was 6.5%, and the selectivities of isobutylene, methacrolein and methacrylic acid were 11.0%, 16.7% and 3.1%, respectively.
The selectivity to the active ingredient at an isobutane conversion rate of 5% at a reaction temperature of 400 to 450 ° C. was 32.3%.
[0022]
Example 4
A catalyst having a composition of Mo 12 V 3 Nb 1.5 Sb 6 Ox was obtained by the same method as in Example 1 except that the amount of antimony trioxide (Sb 2 O 3 ) was changed in the method of Example 1. .
Using this catalyst, the reaction was carried out under the same conditions as in Example 1. As a result, the conversion of isobutane at a reaction temperature of 425 ° C. was 4.9%, and the selectivities of isobutylene, methacrolein and methacrylic acid were 21.5%, 10.7% and 1.9%, respectively.
The selectivity to the active ingredient at an isobutane conversion rate of 5% at a reaction temperature of 400 to 450 ° C. was 34.0%.
[0023]
Example 5
Add 53.05 g of ammonium paramolybdate {((NH 4 ) 6 Mo 7 O 24 · 4H 2 O)} to 150 ml of ion-exchanged water, dissolve with stirring, and then add 75 ml of vanadyl oxalate aqueous solution having a vanadium concentration of 1 mol / l. Then, antimony trioxide (Sb 2 O 3 ) 32.80 g was added. 25% aqueous ammonia was added to the mixture to adjust the pH to almost neutral.
The slurry solution thus obtained was concentrated to dryness while stirring with heating, further dried at 120 ° C. for 3 hours, pulverized and sieved to obtain particles of 4 to 8 mesh, which were obtained at 600 ° C. in a nitrogen stream. A catalyst having a composition of Mo 12 V 3 Sb 9 Ox was obtained by calcination for 2 hours.
Using this catalyst, an oxidation reaction was carried out under the same conditions as in Example 1. As a result, the conversion of isobutane at a reaction temperature of 425 ° C. was 2.2%, and the selectivity of isobutylene, methacrolein and methacrylic acid was 23.6%. 26.2% and 3.7%.
The selectivity to the active ingredient when the isobutane conversion rate was 5% at a reaction temperature of 400 to 450 ° C. was 44.4%.
[0024]
Example 6
A catalyst having a composition of Mo 12 V 3 Sb 9 Nb 1.5 Ge 3 Ox was obtained by the same method as in Example 1 except that germanium dioxide (GeO 2 ) was added to the liquid A of Example 1.
Using this catalyst, an oxidation reaction was carried out under the same conditions as in Example 2. As a result, the conversion of isobutane at a reaction temperature of 425 ° C. was 2.9%, and the selectivity of isobutylene, methacrolein and methacrylic acid was 34. 1%, 18.4% and 0.6%.
The selectivity to the active ingredient when the isobutane conversion rate was 5% at a reaction temperature of 400 to 450 ° C. was 47.9%.
[0025]
Example 7
A catalyst having a composition of Mo 12 V 3 Sb 9 Nb 1.5 Sn 3 Ox was obtained in the same manner as in Example 1 except that tin acetate [Sn (CH 3 COO) 2 ] was added to the liquid A of Example 1. .
Using this catalyst, an oxidation reaction was carried out under the same conditions as in Example 2. As a result, the conversion of isobutane at a reaction temperature of 425 ° C. was 7.4%, and the selectivity of isobutylene, methacrolein and methacrylic acid was 8. 7%, 21.8% and 3.8%.
The selectivity to the active ingredient at an isobutane conversion rate of 5% at a reaction temperature of 400 to 450 ° C. was 42.2%.
[0026]
Example 8
A catalyst having a composition of Mo 12 V 3 Sb 9 Nb 1.5 Fe 3 Ox was obtained by the same method as in Example 1 except that iron nitrate [Fe (NO 3 ) · 9H 2 O was added to the liquid A of Example 1. It was.
Using this catalyst, an oxidation reaction was carried out under the same conditions as in Example 2. As a result, the conversion of isobutane at a reaction temperature of 425 ° C. was 7.5%, and the selectivity of isobutylene, methacrolein and methacrylic acid was 13. 7%, 17.2% and 2.3%.
The selectivity to the active ingredient when the isobutane conversion rate was 5% at a reaction temperature of 380 to 450 ° C. was 37.5%.
[0027]
Example 9 (Reference Example)
In the same manner as in Example 1 except that ammonium metavanadate {NH 4 VO 3 } was used instead of vanadyl oxalate and H 6 TeO 6 was used instead of Sb 2 O 3 in Example 1, Mo 12 V was obtained. A catalyst having a composition of 3.6 Te 2.8 Nb 1.4 Ox was obtained.
Using this catalyst, the oxidation reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 350 ° C. The conversion rate of isobutane at a reaction temperature of 350 ° C was 4.9%, and isobutylene and methacrolein. The selectivity of methacrylic acid was 4.3%, 13.9% and 11.8%, respectively.
The selectivity to the active ingredient when the isobutane conversion rate was 5% at a reaction temperature of 330 to 400 ° C. was 30.0%.
[0028]
Comparative Example 1
A composite oxide catalyst having an experimental composition Mo 12 V 3 Ox (x represents a value determined by the valence and atomic ratio of each element) was prepared by the following method.
After adding 211.9 g of ammonium paramolybdate {((NH 4 ) 6 Mo 7 O 24 · 4H 2 O)} to 1200 ml of ion-exchanged water and dissolving with stirring, vanadyl oxalate having a vanadium concentration of 1 mol / l 300 ml of an aqueous solution was added and mixed, and 25% aqueous ammonia was added so that the pH of this mixed solution became neutral. Thereafter, water was evaporated in a dryer at 120 ° C., and this was fired in a nitrogen stream at 600 ° C. for 3 hours.
The oxidation reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was set to 350 ° C. using this catalyst. The conversion of isobutane at a reaction temperature of 350 ° C. was 5.0%, and isobutylene, The selectivity of rain and methacrylic acid was 6.7%, 3.1% and 0.7%, respectively.
The selectivity to the active ingredient at an isobutane conversion rate of 5% at a reaction temperature of 310 to 350 ° C. was 10.6%.
[0029]
Comparative Example 2
After adding 35.59 g of niobium hydrogen oxalate {Nb (HC 2 O 4 ) 5 · nH 2 O} to 400 ml of ion-exchanged water and stirring and dissolving, 75 ml of vanadyl oxalate aqueous solution having a vanadium concentration of 1 mol / l was added, and homogeneous Solution (solution A). Next, 53.00 g of ammonium paramolybdate {((NH 4 ) 6 Mo 7 O 24 · 4H 2 O)} was added to 150 ml of ion-exchanged water and dissolved by stirring (solution B), and then the entire amount of solution B was injected into solution A. The mixture was mixed, and 25% aqueous ammonia was added to the mixture to adjust the pH to almost neutral.
The slurry solution thus obtained was concentrated to dryness with heating and stirring, further dried at 120 ° C. for 14.5 hours, pulverized and sieved to obtain particles of 4 to 8 mesh, which was 600 in a nitrogen stream. A catalyst having a composition of Mo 12 V 3 Nb 1.5 O x was obtained by calcination at a temperature of 2 ° C. for 2 hours.
Using this catalyst, the oxidation reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 290 ° C., and the conversion of isobutane at a reaction temperature of 290 ° C. was 7.2%, isobutylene, The selectivity for rhein and methacrylic acid was 5.1%, 1.9% and 1.1%, respectively.
The selectivity to the active ingredient at an isobutane conversion rate of 5% at a reaction temperature of 250 to 300 ° C. was 9.3%.
[0030]
Comparative Example 3
In 400 ml of ion-exchanged water, 27.8 g of hydroxylamine hydrochloride (NH 2 OH / HCI) and 58.8 g of 80% phosphoric acid (H 3 PO 4 ) were dissolved to obtain a uniform solution, and then heated at 80 ° C. with a hot stirrer. Until heated. To this solution, 36.4 g of vanadium pentoxide (V 2 O 5 ) was gradually added. Stirring was continued for about 6 hours from the end of the addition of vanadium pentoxide, and the mixture was dried in a dryer at 120 ° C. for 15 hours to evaporate water. The obtained dried product was calcined at 500 ° C. for 15 hours to obtain a catalyst having a composition of (VO) 2 P 2 O 7 .
9 g of the catalyst obtained by the above method was filled in a 15 mm diameter Pyrex glass reaction tube, and a raw material gas having a ratio of isobutane / oxygen / nitrogen / water vapor (mol%) of 47/36/17/0 was supplied thereto. When the oxidation reaction was performed under the conditions of a reaction pressure of 152 kPa and a space velocity of 1000 / hr, the conversion of isobutane at a reaction temperature of 360 ° C. was 2.1%, and the selectivity for isobutylene, methacrolein and methacrylic acid was 1 respectively. 0.7%, 2.5%, and 8.8%.

Claims (1)

イソブタンを触媒存在下に分子状酸素を用いて気相接触酸化させることにより、アルケンおよび/または含酸素化合物を製造する方法において、触媒として一般式 Moab Sb cdef
(式中、Moはモリブデン、Vはバナジウム、Sbはアンチモン、Oは酸素、Yはヒ素、ホウ素およびゲルマニウムからなる群より選ばれた少なくとも1種の元素、Zはカリウム、セシウム、ルビジウム、カルシウム、マグネシウム、タリウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、銀、ビスマス、アルミニウム、ガリウム、インジウム、スズ、亜鉛、ランタン、セリウム、イットリウム、タングステン、ニオブおよびタンタルからなる群より選ばれた少なくとも1種の元素を表し、また添字a、b、c、dおよびeは各元素の原子比を表し、a=12としたとき、bは0を含まない6以下の値、cは0を含まない20以下の値、dおよびeは0を含む6以下の値、fは各元素の原子価および原子比によって決まる値を表す)
で示される複合酸化物系触媒を用いることを特徴とするアルケンおよび/または含酸素化合物の製造方法。
By isobutane to gas phase catalytic oxidation with molecular oxygen in the presence of a catalyst, a process for the preparation of alkenes and / or oxygen-containing compounds of the general formula as catalyst Mo a V b Sb c Y d Z e O f
(Wherein, Mo is molybdenum, V is vanadium, Sb is antimony, O is oxygen, Y is at least one element selected from the group consisting of arsenic, boron and germanium, Z is potassium, cesium, rubidium, calcium At least selected from the group consisting of magnesium, thallium, chromium, manganese, iron, cobalt, nickel, copper, silver, bismuth, aluminum, gallium, indium, tin, zinc, lanthanum, cerium, yttrium, tungsten, niobium and tantalum represents one element, also subscripts a, b, c, d and e represent an atomic ratio of each element, when the a = 12, b is 6 or less value without the 0, c is 0 20 or less, not including, d and e are 6 or less including 0, f represents a value determined by the valence and atomic ratio of each element)
A method for producing an alkene and / or oxygen-containing compound, characterized in that the composite oxide catalyst represented by the formula (1) is used.
JP08802996A 1996-04-10 1996-04-10 Process for producing alkene and / or oxygen-containing compound Expired - Fee Related JP3855298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08802996A JP3855298B2 (en) 1996-04-10 1996-04-10 Process for producing alkene and / or oxygen-containing compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08802996A JP3855298B2 (en) 1996-04-10 1996-04-10 Process for producing alkene and / or oxygen-containing compound

Publications (2)

Publication Number Publication Date
JPH09278680A JPH09278680A (en) 1997-10-28
JP3855298B2 true JP3855298B2 (en) 2006-12-06

Family

ID=13931406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08802996A Expired - Fee Related JP3855298B2 (en) 1996-04-10 1996-04-10 Process for producing alkene and / or oxygen-containing compound

Country Status (1)

Country Link
JP (1) JP3855298B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4182237B2 (en) * 1997-09-30 2008-11-19 住友化学株式会社 Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
JP4269437B2 (en) 1999-10-12 2009-05-27 住友化学株式会社 Method for producing methacrylic acid
JP4530595B2 (en) 2000-12-13 2010-08-25 旭化成ケミカルズ株式会社 Oxide catalyst for oxidation or ammoxidation
MXPA02011489A (en) * 2001-12-04 2003-06-30 Rohm & Haas Improved processes for the preparation of olefins, unsaturated carboxylic acids and unsaturated nitriles from alkanes.
EP1411043A1 (en) * 2002-10-18 2004-04-21 Rohm And Haas Company Preparation of unsaturated carboxylic acids and unsaturated carboxylic acid esters from alkanes and/or alkenes
WO2008089398A1 (en) 2007-01-19 2008-07-24 Evernu Technology Llc Selective oxidation of alkanes and/or alkenes to valuable oxygenates

Also Published As

Publication number Publication date
JPH09278680A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
JP3500663B2 (en) Method for producing acrylic acid
US5162578A (en) Acetic acid from ethane, ethylene and oxygen
EP1192984B1 (en) Halogen promoted multi-metal oxide catalyst
US7009075B2 (en) Process for the selective conversion of alkanes to unsaturated carboxylic acids
EP2830758B1 (en) Process for making ethylene and acetic acid
JP2003528706A (en) Molybdenum-vanadium based catalyst for low temperature selective oxidation of propylene, method of making and using the same
JPS5946934B2 (en) Method for manufacturing methacrylic acid
JP3237314B2 (en) Method for producing α, β-unsaturated carboxylic acid
JP3678335B2 (en) Lower alkane oxidative dehydrogenation catalyst and process for producing olefin
JP4182237B2 (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
JP4081824B2 (en) Acrylic acid production method
JPH1057813A (en) Manufacture of mixed metal oxide catalyst and acrylic acid production using thereof
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
JPH0791212B2 (en) Method for producing methacrylic acid
JPS6048496B2 (en) Method for producing methacrylic acid
JPH0832644B2 (en) Method for producing methacrylic acid and / or methacrolein
JP3772392B2 (en) Composite oxide catalyst and method for producing methacrylic acid
GB2029721A (en) Catalytic oxidation of methacrolein
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3316880B2 (en) Method for producing catalyst for producing methacrylic acid
JPH09299802A (en) Manufacture of oxidation catalyst and preparation of methacrylic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees