JP4123811B2 - ディーゼル機関のパティキュレート排出量推定装置 - Google Patents

ディーゼル機関のパティキュレート排出量推定装置 Download PDF

Info

Publication number
JP4123811B2
JP4123811B2 JP2002111925A JP2002111925A JP4123811B2 JP 4123811 B2 JP4123811 B2 JP 4123811B2 JP 2002111925 A JP2002111925 A JP 2002111925A JP 2002111925 A JP2002111925 A JP 2002111925A JP 4123811 B2 JP4123811 B2 JP 4123811B2
Authority
JP
Japan
Prior art keywords
particulate
oxygen concentration
exhaust
diesel engine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002111925A
Other languages
English (en)
Other versions
JP2003307110A (ja
Inventor
欣悟 陶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002111925A priority Critical patent/JP4123811B2/ja
Publication of JP2003307110A publication Critical patent/JP2003307110A/ja
Application granted granted Critical
Publication of JP4123811B2 publication Critical patent/JP4123811B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • F02D41/1467Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼル機関から排出されるパティキュレートの量(パティキュレート排出量)を推定するディーゼル機関のパティキュレート排出量推定装置に関する。
【0002】
【従来の技術】
従来より、ディーゼル機関の排気通路にパティキュレートフィルタを配設した排気浄化装置が知られている。パティキュレートフィルタは、排気ガス中の煤(黒鉛、Soot)、未燃燃料や未燃潤滑油を主成分とする有機材可溶分の微粒子状物質(SOF)、及び燃料中の硫黄分が反応して生成される有機材不溶分の微粒子状物質(サルフェート)等からなる微粒子状物質(これらの微粒子状物質は「パティキュレート・マター」と称呼されるが、以下、単に「パティキュレート」と称呼する。)を捕集するフィルタである。
【0003】
ところで、パティキュレートフィルタは、捕集したパティキュレートにより目詰まりを起こすことがあり、目詰まりによって機関の排気抵抗を増大させる。このため、パティキュレートフィルタのパティキュレート捕集量を推定し、同パティキュレート捕集量が所定量以上とならないように同パティキュレートをフィルタ内で燃焼させる等のフィルタ再生制御を行うことが必要である。
【0004】
このようなパティキュレート捕集量を算出(推定)する方法は、例えば、特開2000−170521に開示されている。開示された方法においては、先ず、ディーゼル機関から排出されるパティキュレート排出量が推定される。
【0005】
具体的に説明すると、種々の燃料噴射量及び機関の回転速度に対するパティキュレート排出量を予め測定し、その結果をテーブル1として記憶しておく。また、排気還流量(EGR量)によりパティキュレート排出量が変化することから、排気還流量を決定するパラメータである機関回転速度、燃料噴射量、及び機関の冷却水温毎にEGR補正係数を求めておき、これをテーブル2として記憶しておく。
【0006】
そして、実際の運転にあっては、燃料噴射量、機関回転速度、及び前記テーブル1からパティキュレート基本排出量を求めるとともに、燃料噴射量、機関回転数、冷却水温、及び前記テーブル2からEGR補正係数を求め、同EGR補正係数でパティキュレート基本排出量を補正することによりパティキュレート排出量を推定する。
【0007】
また、上記公報に開示された方法では、機関回転速度等に基づいてパティキュレートフィルタの捕集効率を求め、前記推定したパティキュレート排出量と同捕集効率とからパティキュレート捕集量を推定する。
【0008】
【発明が解決しようとする課題】
しかしながら、燃料噴射量及び機関回転数が同一であっても、例えば、燃焼温度や燃焼圧力が異なればパティキュレート排出量は異なるので、燃料噴射量と機関回転数のみを引数としてパティキュレート排出基本量を求めたのでは、EGR補正係数が正しい場合であっても、パティキュレート排出量を精度良く推定することができないという問題がある。
【0009】
また、上記開示された従来の方法においては、排気還流量が燃料噴射量、機関回転速度、及び機関の冷却水温に応じて一義的に決るとの前提下でパティキュレート排出量を推定していて、機関が過渡運転状態となったときの排気還流量の変動(例えば、過給機の過給遅れに起因する排気還流量の上昇遅れ)を考慮していないので、EGR補正係数を正しく求めることが困難であり、その結果、パティキュレート排出量を精度良く推定できないという問題がある。
【0010】
従って、本発明の目的の一つは、ディーゼル機関から排出されるパティキュレート排出量を、簡単に且つ精度良く推定し得るパティキュレート排出量推定装置を提供することにある。
【0011】
【本発明の概要】
上記目的を達成するための本発明に係るパティキュレート排出量推定装置は、ディーゼル機関の燃料噴射量及び機関回転速度を一定に維持した定常運転状態にて排気酸素濃度を変更するとともに、同変更された異なる排気酸素濃度のそれぞれに対してパティキュレート排出量を測定し、同変更した各排気酸素濃度及び同各排気酸素濃度に対して測定された同各パティキュレート排出量からなるデータに基いて、同一定に維持した燃料噴射量及び同一定に維持した機関回転速度で定まる運転状態に対するパティキュレートの生成定数及びパティキュレート酸化定数を決定する作業を、それぞれが所定の燃料噴射量及び所定の機関回転速度で定まる複数の運転状態について実行することにより形成された、燃料噴射量及び機関回転速度の組み合わせとパティキュレート生成定数との関係を規定した生成定数テーブルと、燃料噴射量及び機関回転速度の組み合わせとパティキュレート酸化定数との関係を規定した酸化定数テーブルとを記憶した記憶手段と、実際の燃料噴射量を表す値を取得する燃料噴射量取得手段と、実際の機関回転速度を検出する機関回転速度検出手段と、実際の排気酸素濃度を表す値を取得する排気酸素濃度取得手段と、前記取得された燃料噴射量を表す値と、前記検出された機関回転速度と、前記生成定数テーブル及び前記酸化定数テーブルと、に基いてパティキュレート排出量を推定するために使用する生成定数と酸化定数とを決定するとともに、同決定された生成定数と、同決定された酸化定数と、前記取得された排気酸素濃度を表す値とに基いてパティキュレート排出量を推定するパティキュレート排出量推定手段と、を備える。
【0012】
更に、前記パティキュレート排出量推定手段は、単位時間あたりのパティキュレート排出量をPM、前記決定されたパティキュレート生成定数をAsft、前記決定されたパティキュレート酸化定数をAsot、前記取得された燃料噴射量を表す値に基く単位時間あたりの燃料噴射量をQ、前記取得された排気酸素濃度を表す値をX02、及び定数をCとするとき、PM=Asft・Q/(Asot・XO2)+C/exp(Asot・XO2)なる式に基いて前記パティキュレート排出量を推定するように構成されている。
【0013】
本発明者は、種々の検討の結果、ディーゼル機関が定常運転状態にあるか過渡運転状態にあるかに関わらず、単位時間あたりのパティキュレート排出量PMが、PM=Asft・Q/(Asot・XO2)+C/exp(Asot・XO2)なる式に実質的に従って変化するとの知見を得た。ここで、Asft及びAsotはそれぞれ1ストロークあたりの燃料噴射量とエンジン回転数とにより一義的に定まるパティキュレート生成定数及びパティキュレート酸化定数であり、Qは1ストロークあたりの燃料噴射量と機関回転速度とにより定まる量である単位時間あたりの燃料噴射量、X02は排気酸素濃度、及びCは定数である。
【0014】
このように、パティキュレート排出量PMは、パティキュレート生成定数Asft、及びパティキュレート酸化定数Asotを特定できれば、排気酸素濃度XO2の関数として簡易的に求めることができるのである。
【0015】
そこで、先ず、本発明のパティキュレート排出量推定装置は、燃料噴射量及び機関回転速度の組み合わせとパティキュレート生成定数との関係を規定した生成定数テーブルと、燃料噴射量及び機関回転速度の組み合わせとパティキュレート酸化定数との関係を規定した酸化定数テーブルとを作成し、記憶手段に記憶させておく。
【0016】
これらのテーブルは、ディーゼル機関の燃料噴射量及び機関回転速度を一定に維持した定常運転状態(この場合、機関回転速度が一定であるから、燃料噴射量はストロークあたりの燃料噴射量Qfinであっても、単位時間あたりの燃料噴射量Qであってもよい。)において排気酸素濃度を変更するとともに、同変更された異なる排気酸素濃度のそれぞれに対してパティキュレート排出量を測定し、同変更した各排気酸素濃度及び同各排気酸素濃度に対して測定された同各パティキュレート排出量からなるデータ点を上述した式が通るようにパティキュレート生成定数Asft及びパティキュレート酸化定数Asotを決定(同定又はフィッティング)し、かかる作業を、種々の燃料噴射量及び機関回転速度に対して繰り返し行うことにより、作成される。
【0017】
そして、実際の燃料噴射量を表す値を取得するとともに実際の機関回転速度を検出し、取得した燃料噴射量を表す値と検出した機関回転速度と前記記憶している生成定数テーブル及び前記記憶している酸化定数テーブルとに基いて、実際のパティキュレート排出量を推定するために使用するパティキュレート生成定数とパティキュレート酸化定数とを決定し、これら決定した定数と単位時間当たりの燃料噴射量と前記取得された排気酸素濃度とを上記数式に代入してパティキュレート排出量を推定する。即ち、少なくとも、上記決定したパティキュレート生成定数と、上記決定したパティキュレート酸化定数と、上記取得された排気酸素濃度とに基いてパティキュレート排出量を推定する。
【0018】
このように、上記本発明の特徴を備えたパティキュレート排出量推定装置はパティキュレート排出量を推定する際の変数として排気酸素濃度を用いていて、同排気酸素濃度は燃焼温度や燃焼圧力等に比べて比較的測定精度を確保し易い変数であり、しかも、上記パティキュレート生成定数Asftと上記パティキュレート酸化定数Asotは、燃料噴射量と機関回転速度とを一定に維持した場合において実際に測定したパティキュレート排出量により決定されるので、燃料噴射量と機関回転速度とで定まる各運転状態毎での燃焼温度、燃焼圧力、燃焼割合、燃焼形式、噴射弁の形状、及び機関の排気量等のパティキュレート排出量に影響を及ぼす総べてのパラメータが反映された値となっている。この結果、本発明のパティキュレート排出量推定装置は、パティキュレート排出量を精度良く推定することができる。
【0019】
また、本発明のパティキュレート排出量推定装置は、排気還流量(EGR量)の変動分によっても変動する実際の排気酸素濃度を表す値に基いてパティキュレート排出量を推定するので、機関の運転状態が過渡運転状態となって排気還流量が予定通りに得られないような場合であっても、パティキュレート排出量を精度良く求めることができる。
【0020】
このようなパティキュレート排出量推定装置においては、前記パティキュレート排出量推定手段が、前記取得された排気酸素濃度を表す値が所定濃度以上の値となるときにのみ前記パティキュレート排出量の推定を行うように構成されることが好適である。
【0021】
上記の式は、ディーゼル機関に吸入されるガスの空燃比が例えば約20よりも大きな空燃比である場合にのみ有効であって、同空燃比A/Fを20以下として燃焼温度を低温とすることでパティキュレート排出量を抑制する燃焼(所謂、低温燃焼)には対応していない。従って、上記構成のように、取得された排気酸素濃度を表す値が所定濃度以上の値となるときにのみ前記パティキュレート排出量の推定を行うように構成することで、パティキュレート排出量の推定精度の低下を回避することができる。
【0022】
ところで、一般に、機関の排気酸素濃度(パティキュレート排出量推定に用いるべき排気酸素濃度)に対して、排気酸素濃度検出手段により検出される排気酸素濃度は時間的に遅れて変化する。また、前記ディーゼル機関が排気還流管を介して排気還流を行うとともに同排気還流の量を制御する排気還流手段(EGR装置)を備えている場合、運転状態の変化に基いて排気酸素濃度が変化した排気は、排気還流遅れ時間だけ遅れて同機関に吸入されることになる。従って、運転状態の変化に伴う排気酸素濃度変化が検出されてから排気還流遅れ時間だけ経過した時点においては、機関の排気酸素濃度(パティキュレート排出量推定に用いるべき排気酸素濃度)は更に変化を開始しているはずである。
【0023】
従って、このようなパティキュレート排出量推定装置であって、前記ディーゼル機関が排気還流管を介して排気還流を行うとともに同排気還流の量を制御する排気還流手段を備えている場合、前記排気酸素濃度取得手段は、同ディーゼル機関の排気通路内の酸素濃度を検出する排気酸素濃度検出手段を含むとともに、同ディーゼル機関が備える排気還流手段によって同機関の排気が還流されて同機関に吸入されるまでに要する排気還流遅れ時間に応じ、同検出された排気通路内の酸素濃度を補正して前記排気酸素濃度を表す値を取得するように構成されることが好適である。
【0024】
これによれば、運転状態の変化に伴う排気酸素濃度の変化が排気還流により更なる排気酸素濃度の変化を発生させる場合、同更なる変化を排気酸素濃度検出手段が検出する前の適切な時点で、パティキュレート排出量推定に用いる排気酸素濃度に反映することができ、その結果、同パティキュレート排出量推定用排気酸素濃度が適切な値となるので、パティキュレート排出量の推定精度を向上することができる。
【0025】
この場合、前記排気酸素濃度取得手段は、前記還流される排気と前記ディーゼル機関に新たに吸入される新気とが混合される直前の前記排気還流管内の酸素濃度を検出する排気還流遅れ検出用酸素濃度検出手段を含むとともに、前記検出される排気通路内の酸素濃度と同検出される排気還流管内の酸素濃度とに基いて前記排気還流遅れ時間を推定するように構成されることが好適である。
【0026】
これによれば、排気通路内の検出される酸素濃度と、還流される排気とディーゼル機関に新たに吸入される新気とが混合される直前の排気還流管内の検出される酸素濃度と、に基いて排気還流遅れ時間が推定されるので、同排気還流遅れ時間を実測値に基いて精度良く決定することができ、その結果、パティキュレート排出量推定用排気酸素濃度を適切な値とすることができるので、パティキュレート排出量の推定精度を向上することができる。
【0027】
また、前記パティキュレート排出量推定手段は、前記ディーゼル機関の燃焼温度に関連する値を取得するとともに、同取得された燃焼温度に関連する値に基いて前記パティキュレート排出量を推定するように構成されることが好適である。
【0028】
燃焼温度はパティキュレート排出量に比較的強い影響を及ぼすから、同燃焼温度をパティキュレート排出量の推定に用いることにより、一層精度良くパティキュレート排出量を推定することができる。
【0029】
また、前記パティキュレート排出量推定手段は、前記ディーゼル機関の吸気通路内の酸素濃度を検出する酸素濃度検出手段を含み、同検出される吸気通路内の酸素濃度を前記燃焼温度に関連する値として扱うように構成されることが好適である。吸気通路内の酸素濃度は燃焼温度と密接な関係にあるから、同吸気通路内の酸素濃度を燃焼温度に関連する値として扱うことにより、パティキュレート排出量を精度良く推定することが可能となる。
【0030】
また、前記パティキュレート排出量推定手段は、前記ディーゼル機関の燃焼室壁面の温度を検出する燃焼室壁面温度検出手段を含み、同検出される燃焼室壁面温度を前記燃焼温度に関連する値として扱うように構成されることが好適である。燃焼室壁面温度は、例えば、燃焼室壁面温度に熱伝達効率を乗じることにより燃焼平均温度が求まるように、燃焼温度と密接な関係にあるから、同燃焼室壁面温度を燃焼温度に関連する値として扱うことにより、パティキュレート排出量を精度良く推定することが可能となる。
【0031】
また、前記パティキュレート排出量推定手段は、前記ディーゼル機関の吸気温度を検出する吸気温度検出手段を含み、同検出される吸気温度を前記燃焼温度に関連する値として扱うように構成されることが好適である。吸気温度は燃焼温度と密接な関係にあるから、同吸気温度を燃焼温度に関連する値として扱うことにより、パティキュレート排出量を精度良く推定することが可能となる。
【0032】
また、前記パティキュレート排出量推定手段は、前記ディーゼル機関の燃焼室内の圧力を検出する燃焼室内圧力検出手段を含み、同検出される燃焼室内圧力を前記燃焼温度に関連する値として扱うように構成されることが好適である。例えば、圧縮上死点での燃焼室内圧力は燃焼温度と密接な関係にあるから、同燃焼室内圧力を燃焼温度に関連する値として扱うことにより、パティキュレート排出量を精度良く推定することが可能となる。
【0033】
更に、このようなパティキュレート排出量推定装置であって、前記パティキュレート排出量推定手段は、前記ディーゼル機関の燃焼中における燃焼室内圧力に関連する値を取得するとともに、同取得された燃焼室内圧力に関連する値に基いて前記パティキュレート排出量を推定するように構成されることが好適である。
【0034】
燃焼中における燃焼室内圧力、特に燃焼圧と呼ばれる燃焼室内圧力の極大値は、パティキュレート排出量に比較的強い影響を及ぼすから、同燃焼中における燃焼圧力に関する値を取得してパティキュレート排出量の推定に用いることにより、一層精度良くパティキュレート排出量を推定することができる。
【0035】
更に、このようなパティキュレート排出量推定装置であって、前記ディーゼル機関の燃焼室内の煤発生量を測定する煤発生量測定手段と、前記測定された燃焼室内の煤発生量に基いて基準パティキュレート排出量を算定する基準パティキュレート排出量算出手段とを備えるとともに、前記パティキュレート排出量推定手段は、前記基準パティキュレート排出量が算出された運転状態において推定された前記パティキュレート排出量と同算出された基準パティキュレート排出量との差に応じて、他の運転状態において推定されるパティキュレート排出量を修正するように構成されることが好適である。
【0036】
これによれば、煤の発生量が実際に測定される。パティキュレートは、煤のみでなく上述したSOF及びサルフェートを含んでいるが、SOFの量とサルフェートの量は、煤の量に対して少ないこと、及び煤の量と相関関係があることから、例えば、エンジンが定常運転状態にあるときなどの特定の運転状態においては、測定された煤の発生量に基いてパティキュレート排出量の基準量、即ち、基準パティキュレート排出量が比較的精度良く算出され得る。
【0037】
そして、前記パティキュレート排出量推定手段により、同じ運転状態における前記推定されたパティキュレート排出量と前記算出された基準パティキュレート排出量との差に応じて、他の運転状態で推定されるパティキュレート排出量が修正される。換言すると、パティキュレート排出量推定に用いる上記式で表されたモデルの誤差が実測値に基いた値で修正される。従って、パティキュレート排出量を精度良く推定することが可能となる。
【0038】
【発明の実施の形態】
以下、本発明によるディーゼル機関のパティキュレート排出量推定装置の各実施形態について図面を参照しつつ説明する。
【0039】
(1.第1実施形態)
図1は、本発明の第1実施形態に係るパティキュレート排出量推定装置を含む内燃機関の排気浄化装置を4気筒内燃機関(ディーゼル機関)10に適用したシステムの概略構成を示している。このシステムは、燃料供給系統を含むエンジン本体20、エンジン本体20の各気筒の燃焼室に大気(新気)を導入するための吸気系統30、エンジン本体20からの排気ガスを放出するための排気系統40、排気還流を行うためのEGR装置50、及び電気制御装置60を含んでいる。
【0040】
エンジン本体20の各気筒の上部には燃料噴射弁21が配設されている。各燃料噴射弁21は、図示しない燃料タンクと接続された燃料噴射用ポンプ22に燃料配管23を介して接続されている。これにより、燃料噴射弁21には、燃料噴射用ポンプ22から噴射圧力まで昇圧された燃料が供給されるようになっている。また、燃料噴射弁21は、電気制御装置60と電気的に接続されていて、同電気制御装置60からの駆動信号(指令信号)に応じて所定時間だけ開弁し、これにより各気筒の燃焼室内に前記昇圧された燃料を噴射するようになっている。
【0041】
吸気系統30は、エンジン本体20の各気筒の燃焼室にそれぞれ接続された吸気マニホールド31、吸気マニホールド31の上流側集合部に接続され同吸気マニホールド31とともに吸気通路を構成する吸気管32、吸気管32内に回動可能に保持されたスロットル弁33、電気制御装置60からの駆動信号に応答してスロットル弁33を回転駆動するスロットル弁アクチュエータ33a、スロットル弁33の上流で吸気管32に介装されたインタクーラー34と過給機35のコンプレッサ35a、吸気管32の先端部に配設されたエアクリーナ36とを含んでいる。
【0042】
排気系統40は、エンジン本体20の各気筒にそれぞれ接続された排気マニホールド41、排気マニホールド41の下流側集合部に接続された排気管42、排気管42に配設された過給機35のタービン35b、排気管42に介装されるとともにNOx触媒及び捕集したパティキュレートを酸化する触媒を担持したディーゼルパティキュレートフィルタ(以下、「DPNR」と称呼する。)43、DPNR43の上流の排気管42に配設され添加燃料(軽油)をDPNR43に供給する添加燃料供給ノズル44、添加燃料供給ノズル44と燃料噴射用ポンプ22とを接続する添加燃料供給管45、添加燃料供給管45に介装され電気制御装置60からの駆動信号に応答して同添加燃料供給管45の燃料通路を開閉する電磁開閉弁44a、DPNR43の下流の排気管内に回動可能に保持された排気絞り弁46、及び電気制御装置60からの駆動信号に応答して排気絞り弁46を回転駆動する排気絞り弁アクチュエータ46aを含んでいる。排気マニホールド41及び排気管42は排気通路を構成している。
【0043】
DPNR43は、コージライト(セラミックの一種)のような多数の細孔を有する材料(即ち、多孔質材料)から形成されたフィルタ43aを備え、通過する排気ガス中のパティキュレートを細孔表面にて捕集する、ハニカム構造のウオールフロー型フィルタである。
【0044】
また、DPNR43のフィルタの表面には、触媒の担体としてのアルミナ(Al23)がコートされていて、同アルミナに捕集したパティキュレートを酸化させる(及び/又は、酸化作用を有する)例えばPt等の貴金属からなる触媒が担持されている。
【0045】
ところで、このDPNR43内で酸化されることにより同DPNR43の外部に放出されるパティキュレートの量よりも同DPNR43に捕集されるパティキュレートの量が多くなると、同DPNR43内にパティキュレートが堆積する。その結果、DPNR43のパティキュレート捕集能力が低下するとともに、機関10の排気抵抗が増大する。
【0046】
このため、本排気浄化装置は、前述した添加燃料供給ノズル44からDPNR43に添加燃料を供給し、同添加燃料がDPNR43の内部で燃焼することに伴って発生する熱により触媒床温を上昇せしめ、パティキュレートの酸化速度を上昇させることで堆積したDPNR43をより多く酸化して除去する。即ち、本排気浄化装置は、添加燃料の供給によりフィルタの再生を定期的に行うことで、DPNR43のパティキュレート捕集能力を維持するとともに、排圧の上昇を防止するようになっている。なお、パティキュレートが酸化されるためには酸素が必要であるから、添加燃料供給ノズル44からの添加燃料の供給量は、DPNR43の全体の空燃比がリッチとならない程度(即ち、DPNR43内にパティキュレートを酸化させるための酸素が十分に存在するリーン空燃比が得られる程度)の量に設定される。
【0047】
更に、DPNR43は、前記担体としてのアルミナに、カリウムK,ナトリウムNa,リチウムLi,セシウムCsのようなアルカリ金属、バリウムBa,カルシウムCaのようなアルカリ土類金属、及びランタンLa、イットリウムYのような希土類金属から選ばれた少なくとも一つを、前記担持した白金とともに担持している。
【0048】
これにより、DPNR43は、同DPNR43に流入するガスの空燃比が理論空燃比よりもリーンのときにNOxを吸収し、同流入するガスの空燃比が理論空燃比、又は理論空燃比よりもリッチのときに吸収したNOxをNO2又はNOとして放出するようになっている。また、この放出されたNO2又はNOはDPNR43に流入するリッチ空燃比のガス中の未燃HCや未燃COと反応してN2に還元せしめられて外部に放出される。このように、DPNR43は、NOxを吸収した後に同吸収したNOxを放出して還元する吸蔵還元型NOx触媒としても機能するようになっている。
【0049】
EGR装置50は、排気ガスを還流させる通路(再循環通路)を構成する排気還流管51と、排気還流管51に介装されたEGR弁52と、EGRクーラー53とを備えている。排気還流管51はタービン35bの上流側排気通路(排気マニホールド41)とスロットル弁33の下流側吸気通路(吸気マニホールド31)を連通している。EGR弁52は電気制御装置60からの駆動信号に応答し、再循環される排気ガス量(排気還流量、EGR量)が、機関回転速度NEと一吸気行程あたりの筒内燃料噴射量Qfin(又は、アクセル操作量Accpに基づく要求トルクTQ)とに応じて決定される目標EGR量と等しくなるように、排気還流管51により構成されるEGR通路の開口断面積を変更するようになっている。なお、EGR弁により、EGR率を制御するように構成してもよい。
【0050】
電気制御装置60は、互いにバスで接続されたCPU61、CPU61が実行するプログラム、テーブル(ルックアップテーブル、マップ)、定数等を予め記憶したROM62、CPU61が必要に応じてデータを一時的に格納するRAM63、電源が投入された状態でデータを格納するとともに同格納したデータを電源が遮断されている間も保持するバックアップRAM64、及びADコンバータを含むインターフェース65等からなるマイクロコンピュータである。
【0051】
インターフェース65は、新気量計測手段であって吸気管32に配置された熱線式エアフローメータ71、スロットル弁33の下流の吸気管32に設けられた吸気温センサ72、スロットル弁33の下流であって排気還流管51が接続された部位よりも下流の吸気通路(吸気マニホールド31)に配置された吸気酸素濃度センサ73、第3気筒の燃焼室上部に配置された燃焼圧センサ74、エンジン本体20のシリンダボアライナー部に配設された壁面温度センサ75、第1気筒の燃焼室に対して配置された光学式煤センサ76、及びタービン35bの下流側でDPNR43の上流側の排気管42内に配置された排気酸素濃度センサ77、機関回転速度センサ78、排気還流遅れ検出用酸素濃度センサ79、及びアクセル開度センサ81と接続されていて、これらのセンサからの信号をCPU61に供給するようになっている。
【0052】
また、インターフェース65は、燃料噴射弁21、スロットル弁アクチュエータ33a、添加燃料供給管45の燃料通路を開閉する電磁開閉弁44a、排気絞り弁アクチュエータ46a、及びEGR弁52と接続されていて、CPU61の指示に応じてこれらに駆動信号を送出するようになっている。
【0053】
熱線式エアフローメータ71は、吸気通路内を通過する吸入空気の質量流量(単位時間当りの吸入空気量、単位時間あたりの新気量)を計測し、同質量流量を表す信号Gaを発生するようになっている。吸気温センサ72は、エンジン10の気筒(即ち、燃焼室)に吸入される新気の温度(即ち、吸気温度)を検出し、同吸気温度を表す信号Tbを発生するようになっている。吸気酸素濃度センサ73は、エンジン10の気筒(即ち、燃焼室)に吸入されるガス中の酸素濃度(即ち、吸気酸素濃度)を検出し、同吸気酸素濃度を表す信号XO2INを発生するようになっている。
【0054】
燃焼圧センサ74は、第3気筒の燃焼室内の圧力を検出し、同燃焼室内圧力Paを表す信号を発生するようになっている。壁面温度センサ75は、燃焼室壁面温度を検出し、同燃焼室壁面温度を表す信号Thekiを表す信号を発生するようになっている。
【0055】
光学式煤センサ76は、第1気筒のシリンダ壁面であって、同第1気筒のピストンが上死点にあるときに、同第1気筒のピストンの最上位置に配された第1ピストンリングの下方であって、同第1気筒のピストンが下死点に向けて僅かに移動したときに同第1ピストンリングの上方に位置する部分に透光性の窓を備えるとともに、同窓の反射率を測定することにより同第1気筒の燃焼室内に発生した煤量Ssootを測定するようになっている。
【0056】
排気酸素濃度センサ77は、エンジン10の気筒(即ち、燃焼室)から排出された排気ガス中の酸素濃度(即ち、排気酸素濃度)を検出し、同排気酸素濃度を表す信号XO2Rを発生するようになっている。機関回転速度センサ78は、エンジン10の回転速度を検出し、機関回転速度NEを表す信号を発生するとともに、各気筒の絶対クランク角度を検出し得るようになっている。排気還流遅れ検出用酸素濃度センサ79は、エンジン10に新たに吸入される新気と還流された排気とが混合される直前の排気還流管51内の酸素濃度を検出する排気還流遅れ検出用酸素濃度検出手段を構成するもので、排気還流管51のEGR弁52の近傍に設けられていて、EGR弁52に導入される直前の排気管流管51内の酸素濃度(還流排気中酸素濃度)を検出し、同還流排気中酸素濃度XO2INRを表す信号を発生するようになっている。アクセル開度センサ81は、アクセルペダルAPの操作量を検出し、アクセル操作量を表す信号Accpを発生するようになっている。
【0057】
<第1実施形態のパティキュレート排出量推定方法>
次に、上記のように構成された排気浄化装置に含まれるパティキュレート排出量推定装置によるパティキュレート排出量の推定方法について説明する。このパティキュレート排出量推定装置は、下記数1(数1で記述されたパティキュレート排出量推定モデル)に基いて単位時間あたりにエンジン本体20から排出されるパティキュレート排出量PMを推定する。なお、数1において、Asftはパティキュレート生成定数(以下、単に「生成定数」とも呼ぶ。)、Asotはパティキュレート酸化定数(以下、単に「酸化定数」とも呼ぶ。)、Qは単位時間あたりの燃料噴射量、X02は排気酸素濃度(酸素O2のモル分率)、及びCは予め定められた定数である。
【0058】
【数1】
PM=Asft・Q/(Asot・XO2)+C/exp(Asot・XO2)
【0059】
ここで、上記数1の根拠について簡単に説明する。下記数2,数3は、煤の生成及び酸化についてのモデルとしてSAEペーパー930612(タイトル「Approach to Low Nox and Smoke Emission Engines by Using Phenomenological Simulation」)にて紹介された実験式である広安モデル(Sootモデル)を記述した式である。数2,数3において、Msfは煤の生成量、Asfは定数、Mfvは1ストロークあたりの燃料噴射量Mfの燃料のうち気化率(燃焼割合)RHRで気化して燃焼した燃料量、Pは燃焼圧力、Rは気体定数、Tは燃焼温度、Mscは煤の酸化量、Asoは定数、及びMsは煤の排出量である。
【0060】
【数2】
dMsf/dt=Asf・Mfv・P0.5・exp(−12500/(R・T))
【0061】
【数3】
dMsc/dt=Aso・Ms・XO2・P1.8・exp(−14000/(R・T))
【0062】
煤の生成量の変化量dMs/dtは、煤の生成量(dMsf/dt)から煤の酸化量(dMsc/dt)を減算した値であるから、下記数4が成立する。
【0063】
【数4】
dMs/dt=dMsf/dt−dMsc/dt
【0064】
ここで、燃焼温度T、燃焼圧力P、及び燃焼割合RHRを、機関回転速度NEと単位時間あたりの燃料噴射量Qが変化した場合であっても、それぞれ一定であると仮定し、Mfv=Arhr・Mf、P0.5=Apf、exp(−12500/(R・T))=Atf、P1.8=Apo、及びexp(−14000/(R・T))=Atoとおくと、上記数2〜上記数4より下記数5が得られる。なお、値Arhr、Apf、Atf、Apo、Atoは、定数である。
【0065】
【数5】
dMs/dt=Asf・Arhr・Mf・Apf・Atf−Aso・Ms・XO2・Apo・Ato
【0066】
そこで、パティキュレートの生成定数Asft、及びパティキュレートの酸化定数Asotをそれぞれ下記数6,数7のように定義すると、上記数5は下記数8のように書き換えられる。
【0067】
【数6】
Asft=Asf・Arhr・Apf・Atf
【0068】
【数7】
Asot=Aso・Apo・Ato
【0069】
【数8】
dMs/dt=Asft・Mf−Asot・Ms・XO2
【0070】
数8で表されたMsについての微分方程式を解くと、下記数9が得られる。
【0071】
【数9】
Ms=Asft・Mf/(Asot・XO2)+C1/exp(Asot・XO2・t)
【0072】
いま、エンジン10の運転状態が、燃料噴射量Qfin、及び機関回転速度NEが変化しない定常運転状態であると仮定すると、上記数9の右辺第2項は時間に依存しないと考えることができる。また、上記数2,数3により表される広安モデルは煤についてのモデルであるところ、パティキュレートにはSOFやサルフェートが含まれているから、この煤以外のパティキュレートの排出量を生成定数Asft及び酸化定数Asotの値に反映させる。そして、これらの考えと、上記数9の単位を変換することにより、上記数1と同一である下記数10が得られる。この数10が、本パティキュレート排出量推定装置が用いるモデルを記述した式である。
【0073】
【数10】
PM=Asft・Q/(Asot・XO2)+C/exp(Asot・XO2)
【0074】
次に、上記数10(数1)を使用してパティキュレート排出量PMを求める方法について説明する。上記数10において、Qは単位時間あたりの燃料噴射量(単位は、g/h)であり、1ストロークあたりの燃料噴射量Qfin(単位は、mm3/ストローク)と機関回転速度NEとに基いて求めることができる。例えば、4気筒ディーゼル機関であれば、クランク軸の一回転(エンジン一回転)あたり2回の爆発行程が存在するから、Q=K・Qfin・2・NE(Kは定数)である。
【0075】
そこで、燃料噴射量Qfinと機関回転速度NEとを一定の状態(Qfin=Qfin0,NE=NE0)に維持し、例えば、EGR弁52の開度を変更することにより排気酸素濃度XO2を変更し、そのときの排気酸素濃度XO2とパティキュレート排出量PMとを実測する。そして図2に示したように、異なる排気酸素濃度XO2に対するパティキュレート排出量PMの実測データ点を少なくとも3点P1〜P3ほど得て、上記数10で表される曲線が同3点P1〜P3を通るように、生成定数Asftと酸化定数Asotとを、例えば、最小二乗法により決定する。
【0076】
以降、同様に、燃料噴射量Qfinと機関回転速度NEとを異なる値に維持しながら排気酸素濃度XO2を変更してパティキュレート排出量PMを測定し、そのデータに基いて同燃料噴射量Qfinと同機関回転速度NEとにおける生成定数Asftと酸化定数Asotとを決定し、図3のフローチャートにおけるステップ305、及びステップ310中にそれぞれ示したように、燃料噴射量Qfin(実質的に燃料噴射量Qfinに応じた値であればよい)及び機関回転速度NEに対するパティキュレート生成定数Asftの関係を規定した生成定数テーブルと、燃料噴射量Qfin(実質的に燃料噴射量Qfinに応じた値であればよい)及び機関回転速度NEとパティキュレート酸化定数Asotの関係を規定した酸化定数テーブルを作成し、ROM62内に格納しておく。
【0077】
そして、実際のエンジン運転においては、その時点における燃料噴射量Qfin及び機関回転速度NEと上記ROM62内に格納した二つのテーブルとから生成定数Asftと酸化定数Asotとを決定し、決定した生成定数Asftと酸化定数Asotとを上記数10(数1)に適用するとともに、実際の単位時間当たりの燃料噴射量Qを数1に代入し、排気酸素濃度センサ77が検出する実際の排気酸素濃度XO2Rを排気酸素濃度XO2として同数10に代入しパティキュレート排出量PMを推定する。以上が、本実施形態のパティキュレート排出量推定方法である。
【0078】
なお、上記数10によれば、パティキュレート排出量PMは排気酸素濃度XO2に対して単調減少する。しかしながら、この傾向はエンジン10に吸入されるガスの空燃比が例えば約20よりも大きな空燃比である場合にのみ有効であって、同空燃比A/Fを20以下として燃焼温度を低温とすることでパティキュレート排出量を抑制する燃焼(所謂、低温燃焼)には対応していない。従って、上記パティキュレート排出量推定方法は、エンジン10に吸入されるガスの空燃比が低温燃焼をもたらす所定の空燃比の最大値(約20)よりも大きい場合にのみ適用することとする。
【0079】
<第1実施形態の作動>
次に、本パティキュレート排出量推定装置を含む排気浄化装置の作動について説明すると、電気制御装置60のCPU61はアクセル開度センサ81により検出されるアクセル操作量Accpと機関回転速度センサ78により検出される機関回転速度NEとROM62内に格納されているテーブルとに基いて燃料噴射量Qfinを決定し、同決定された燃料噴射量Qfinの燃料が爆発行程を迎えた気筒に対して噴射されるように、同気筒に対する燃料噴射弁21に駆動信号を発生する。
【0080】
同様に、CPU61は前記検出されるアクセル操作量Accpと前記検出される機関回転速度NEとROM62内に格納されているテーブルとに基いて目標EGR量(又は、目標EGR率)を決定し、排気還流管51を介して還流される排気量が同決定された目標EGR量となるように、EGR弁52に駆動信号を発生する。
【0081】
また、CPU61は、図3にフローチャートにより示したパティキュレート排出量PM推定ルーチンを所定時間TSAMPLEの経過毎に実行するようになっている。従って、所定のタイミングになると、CPU61はステップ300から処理を開始してステップ305に進み、その時点の機関回転速度NE及び燃料噴射量Qfinと上述した生成定数テーブルとに基づいて生成定数Asftを決定し、次のステップ310にて、同機関回転速度NE及び同燃料噴射量Qfinと上述した酸化定数テーブルとに基づいて酸化定数Asotを決定する。
【0082】
次に、CPU61は、ステップ315に進んで排気酸素濃度センサ77が検出している排気酸素濃度XO2Rを排気酸素濃度XO2として取得し、ステップ320に進んで、ステップ305にて決定した生成定数Asft、ステップ310にて決定した酸化定数Asot、ステップ315にて取得した排気酸素濃度XO2、及び上記数1(数10)に基いてパティキュレート排出量PMを推定する。なお、ステップ320に記載したように、上記数1における単位時間あたりの燃料噴射量Qは下記数11により求められる。
【0083】
【数11】
Q=K・Qfin・2・NE
【0084】
次いで、CPU61はステップ325に進み、ステップ320にて推定したパティキュレート排出量PMに、本ルーチンの実行時間間隔TSAMPLE(秒)を3600(秒)で除した値を乗じて、その結果を現時点のパティキュレート排出量合計値SUMPMに加え、新たなパティキュレート排出量合計値SUMPMを得る。その後、CPU61は、ステップ395にて本ルーチンを一旦終了する。以降、CPU61は本ルーチンを所定時間TSAMPLEの経過毎に繰り返し実行する。この結果、パティキュレート排出量PMとパティキュレート排出量合計値SUMPMが更新されて行く。
【0085】
また、CPU61は、別途図示しないDPNR43を再生させるフィルタ再生制御ルーチンを実行し、上記パティキュレート排出量合計値SUMPMが所定値以上となると、添加燃料供給ノズル44からDPNR43に添加燃料を供給し、同添加燃料がDPNR43の内部で燃焼することに伴って発生する熱により触媒床温を上昇せしめ、パティキュレートの酸化速度を上昇させることで堆積したDPNR43をより多く酸化する。
【0086】
以上、説明したように、第1実施形態に係るパティキュレート推定装置によれば、排気酸素濃度XO2と燃料噴射量Qのみを変数とした関数(上記数1のモデル)に基いてパティキュレート排出量PMが推定される。即ち、数1にて示されるモデルは変数が少なく簡素なモデルであって、その計算も単純であるから、通常の制御用コンピュータによってもパティキュレート排出量PMをリアルタイムに推定することができる。しかも、そのモデルの変数である排気酸素濃度は、燃焼温度や燃焼圧力等に比べて比較的測定精度を確保し易い変数であるから、パティキュレート排出量PMの推定を精度良く行うことができる。
【0087】
また、上記数1のモデルにおけるパティキュレート生成定数Asftとパティキュレート酸化定数Asotは、燃料噴射量Qfinと機関回転速度NEとを一定に維持した場合において、実際に測定したパティキュレート排出量PMにより決定される。従って、生成定数Asftと酸化定数Asotは、燃料噴射量Qfinと機関回転速度NEとで定まる各運転状態毎での燃焼温度、燃焼圧力、燃焼割合、燃焼形式、燃料噴射弁21の形状、及びエンジン10の排気量等のパティキュレート排出量に影響を及ぼす総べてのパラメータが反映された値となる。この結果、適合に要する工数を少なくしつつ、精度良くパティキュレート排出量を推定することができる。
【0088】
また、排気酸素濃度XO2の関数としてパティキュレート排出量PMを推定するから、例えば、過給機付きエンジンにおいて顕著に表れる過渡運転(加速運転)状態での新気の燃焼室流入遅れ、或いは過渡運転状態への移行に伴うEGR量変化遅れによるパティキュレート排出量への影響に対しても、これを排気酸素濃度で捉えることができるので、過渡運転状態におけるパティキュレート排出量を精度良く推定することが可能となる。
【0089】
更に、ディーゼル機関10の適合過程において、燃料噴射量、機関回転速度、及び冷却水温等に対する目標EGR量の設定を変更した場合であっても、EGR量の変化は排気酸素濃度に現われるから、上記パティキュレート生成定数Asft、及びパティキュレート酸化定数Asotを再び適合し直す必要がない。従って、第1実施形態によれば、このような場合にも適合工数を低減することができる。
【0090】
(2.第2実施形態)
次に、本発明の第2実施形態に係るパティキュレート排出量推定装置を含む内燃機関の排気浄化装置について説明する。この排気浄化装置は、EGR装置50による排気還流の遅れを考慮して現時点の排気酸素濃度(数1に使用する排気酸素濃度)XO2の値の精度を向上することで、パティキュレート排出量PMの推定精度を向上する点のみにおいて、第1実施形態の排気浄化装置と異なっている。従って、以下、かかる相違点を中心に説明する。
【0091】
<第2実施形態のパティキュレート排出量推定方法>
排気酸素濃度XO2は、エンジン10の運転状態に応じて変化する。従って、エンジンの運転状態がある運転状態から別の運転状態へと急変すると、排気酸素濃度XO2も急変する。一方、排気酸素濃度センサ77が検出する排気酸素濃度XO2Rは、燃焼室から排出された直後の排気酸素濃度XO2に対して時間的に遅れた挙動を示す。
【0092】
他方、排気還流管51を介して還流される排気が再び燃焼室に流入するまでには所定の時間を要する。換言すると、エンジン10の運転状態の急変に伴う排気酸素濃度XO2の急変が、排気還流によって新たな排気酸素濃度XO2の変化をもたらすまでには所定の時間(以下、この時間を「排気還流遅れ時間」と称呼する。)を要する。
【0093】
そこで、本実施形態は、かかる排気還流遅れ時間Tdを計測・学習しておき、エンジンの運転状態が変化して排気酸素濃度XO2が急変した場合(例えば、これは、排気酸素濃度センサ77が検出する排気酸素濃度XO2Rが急変することで検出できる。)には、同運転状態の変化から排気還流遅れ時間Tdの経過後に、同運転状態の変化に伴って酸素濃度が変化した排気が燃焼室に吸気され、その時点で排気酸素濃度が更に急変するとの考えに基いて同排気酸素濃度センサ77が検出する排気酸素濃度XO2Rを補正することにより、上記数1にて使用する排気酸素濃度XO2の精度を高める。
【0094】
ここで、排気還流遅れ時間Tdの計測方法について図4(A)を参照しながら述べる。図4(A)において、実線は排気酸素濃度センサ77が検出する排気酸素濃度XO2Rを示し、破線は排気還流遅れ検出用酸素濃度センサ79が検出する還流排気中酸素濃度XO2INRを示している。
【0095】
エンジン10の運転状態が時刻t1にて急変すると、燃焼室から排出された直後の排気酸素濃度XO2は直ちに変化を開始し、排気酸素濃度センサ77の検出する排気酸素濃度XO2は時刻t1よりも遅れた時刻t2にて変化を開始する。また、排気還流遅れ検出用酸素濃度センサ79が検出する還流排気中酸素濃度XO2INRは時刻t2よりも遅い時刻t3から変化を開始する。従って、時刻t2と時刻t3を知ることにより、排気還流遅れ時間Td(=t3−t2)を求めることができる。
【0096】
本実施形態は、このようにして排気還流遅れ時間Tdを求め、更に、図4(B)に示したように、エンジン10の運転状態の急変に伴い排気酸素濃度センサ77によって検出される排気酸素濃度XO2Rが時刻t4にて変化を開始した場合、同時刻t4から排気還流遅れ時間Tdの経過後である時刻t5には時刻t4において検出された排気酸素濃度XO2の変化が現われているはずであると考え、同時刻t5以降において、実線にて示した排気酸素濃度センサ77の検出する排気酸素濃度XO2を一点鎖線で示したように補正する。
【0097】
この補正は、初期値を排気酸素濃度補正初期値k1とし、その後、時間経過とともに「0」に向けて減衰する補正量を求め、同補正量を排気酸素濃度センサ77の検出する排気酸素濃度XO2Rに加えることにより行う。なお、排気酸素濃度補正初期値k1は、定常運転状態から過渡運転状態に変化した時点の燃料噴射量Qfinと機関回転速度NEとに基いて定められ、正の所定値又は負の所定値をとる。
【0098】
<第2実施形態の作動>
次に、第2実施形態に係るパティキュレート排出量推定装置を含む排気浄化装置の作動について説明する。本装置のCPU61は図4〜図6に示した各ルーチンを追加的に実行する点を除き、同第1実施形態のCPU61と同一の処理を行うようになっている。従って、以下においては、かかる相違点を中心として説明する。
【0099】
先ず、排気還流遅れ時間Tdを求めるための作動から説明すると、CPU61は図5に示した排気還流遅れ時間学習ルーチンを所定時間の経過毎に実行するようになっている。従って、所定のタイミングになると、CPU61はステップ500から処理を開始してステップ505に進み、学習完了フラグGの値が「0」であるか否かを判定する。この学習完了フラグGの値は、図示しないイグニッションスイッチが「オフ」状態から「オン」状態へと変更されたときに図示しないイニシャルルーチンにて「0」に設定されるようになっている。
【0100】
従って、いま、イグニッションスイッチが「オフ」状態から「オン」状態へと変更された直後であるとして説明を続けると、学習完了フラグGの値は「0」となっている。このため、CPU61はステップ505に「Yes」と判定してステップ510に進み、排気還流遅れ時間計測中フラグFの値が「1」であるか否かを判定する。このフラグFの値は、上述したイニシャルルーチンにて「0」に設定されるようになっている。
【0101】
このため、CPU61はステップ510にて「Yes」と判定してステップ515に進み、排気酸素濃度センサ77が検出する排気酸素濃度XO2Rと、所定時間前の同排気酸素濃度XO2ROLDとの差の絶対値(即ち、排気酸素濃度XO2Rの所定時間内の変化量)が所定の閾値TH1より大きいか否かを判定する。この場合、エンジン10の運転状態が定常状態にあれば、排気酸素濃度XO2Rの所定時間内の変化量は小さいから、CPU61はステップ515にて「No」と判定してステップ595に進み、本ルーチンを一旦終了する。
【0102】
以降、CPU61は本ルーチンを所定時間の経過毎に繰り返す。従って、エンジン10の運転状態が変化して排気酸素濃度XO2Rの所定時間内の変化量が閾値TH1より大きくなると、CPU61はステップ515に進んだとき「Yes」と判定してステップ520に進み、排気還流遅れ時間計測中フラグFの値を「1」に設定するとともに、カウンタC1の値を「0」に設定し、本ルーチンを一旦終了する。
【0103】
そして、所定の時間が経過してCPU61が本ルーチンを再び実行すると、同CPU61はステップ505にて「Yes」と判定するとともに、排気還流遅れ時間計測中フラグFの値が「1」に変更されているから、ステップ510にて「No」と判定してステップ530に進み、同ステップ530にて排気還流遅れ検出用酸素濃度センサ79が検出する還流排気中酸素濃度XO2INRと、所定時間前の同還流排気中酸素濃度XO2INROLDとの差の絶対値(即ち、還流排気中酸素濃度XO2INRの所定時間内の変化量)が所定の閾値TH2より大きいか否かを判定する。
【0104】
現時点においては、排気酸素濃度XO2の所定時間内の変化量が閾値TH1より大きくなった直後であるから、その排気酸素濃度XO2Rが変化した排気が排気還流遅れ検出用酸素濃度センサ79の配設位置にまで到達していない。従って、還流排気中酸素濃度XO2INRの所定時間内の変化量は閾値TH2よりも小さいので、CPU61はステップ530にて「No」と判定してステップ535に進み、カウンタC1の値を「1」だけ増大した後、ステップ595にて本ルーチンを一旦終了する。
【0105】
以降、CPU61は、還流排気中酸素濃度XO2INRの所定時間内の変化量が閾値TH2より大きくなるまで、ステップ500〜ステップ510、ステップ530、及びステップ535を繰り返し実行するので、カウンタC1の値は所定時間の経過毎に「1」だけ増大して行く。そして、所定の時間が経過して還流排気中酸素濃度XO2INRの所定時間内の変化量が閾値TH2より大きくなると、CPU61はステップ530に進んだとき、同ステップ530にて「Yes」と判定してステップ540に進み、排気還流遅れ時間Tdとして上記カウンタC1の値を格納し、続くステップ545にて学習完了フラグGの値を「1」に設定した後、ステップ595にて本ルーチンを一旦終了する。
【0106】
このように、CPU61は、排気酸素濃度XO2Rの所定時間内の変化量が閾値TH1より大きくなってから、還流排気中酸素濃度XO2INRの所定時間内の変化量が閾値TH2より大きくなるまでの時間をカウンタC1により計測し、同計測した時間を排気還流遅れ時間Tdとして学習する。
【0107】
また、CPU61は、図6に示した排気酸素濃度補正初期値k1決定ルーチンを所定時間TSAMPLEの経過毎に繰り返し実行するようになっている。従って、所定のタイミングになると、CPU61はステップ600から処理を開始してステップ605に進み、燃料噴射量Qfinと所定時間前の燃料噴射量Qfinoldとの差の絶対値が所定の閾値TH3より大きくなったか否かを判定する。このステップは、エンジン10の運転状態が過渡状態となったか否かを判定するために設けられたステップである。
【0108】
いま、エンジン10の運転状態が過渡運転状態でなく定常運転状態であるとして説明を続けると、この場合燃料噴射量Qfinと所定時間前の燃料噴射量Qfinoldとの差の絶対値は所定の閾値TH3より小さいので、CPU61はステップ605にて「No」と判定してステップ695に進み、本ルーチンを一旦終了する。このように、エンジン10が定常運転状態にあるとき、排気酸素濃度補正初期値k1は更新されない。
【0109】
その後、エンジン10の運転状態が過渡運転状態となると、燃料噴射量Qfinと所定時間前の燃料噴射量Qfinoldとの差の絶対値は所定の閾値TH3より大きくなる。従って、CPU61はステップ605に進んだとき、同ステップ605にて「Yes」と判定してステップ610に進み、過渡運転状態フラグH1の値を「1」に設定する。この過渡運転状態フラグH1は、その値が「1」のときエンジン10の運転状態が過渡運転状態となったことを示し、図示しない前述したイニシャルルーチンにより「0」に設定されるようになっている。
【0110】
次いで、CPU61はステップ615に進み、その時点の燃料噴射量Qfinと機関回転速度NEと予めROM62に記憶されているテーブルとに基いて、同燃料噴射量Qfinと同機関回転速度NEとが維持された場合の排気酸素濃度を予測排気酸素濃度SXO2Rとして予測し、続くステップ620にて排気酸素濃度センサ77が検出する排気酸素濃度XO2Rが前記予測排気酸素濃度SXO2Rより大きいか否かを判定する。
【0111】
そして、CPU61は、予測排気酸素濃度SXO2Rが現時点の排気酸素濃度センサ77の検出する排気酸素濃度XO2Rよりも大きいとき、ステップ620にて「Yes」と判定してステップ625に進み、排気酸素濃度補正初期値k1を所定値A1の絶対値に設定し、ステップ695にて本ルーチンを一旦終了する。これに対し、予測排気酸素濃度SXO2Rが現時点の排気酸素濃度センサ77の検出する排気酸素濃度XO2Rよりも小さいとき、ステップ620にて「No」と判定してステップ630に進み、排気酸素濃度補正初期値k1を所定値A1の絶対値の符号を負とした値に設定し、ステップ695にて本ルーチンを一旦終了する。
【0112】
このように、CPU61は、エンジン10の運転状態が変化した後の排気酸素濃度が如何なる濃度になるかを予測排気酸素濃度SXO2Rとして予測し、現時点の排気酸素濃度XO2R(即ち、エンジン10の運転状態が変化する前の運転状態により得られた排気酸素濃度XO2R)との大小比較を行う(ステップ620)ことにより排気酸素濃度補正初期値k1を正の値とすべきか負の値にすべきかを決定し、同大小比較に応じた符号を有する同排気酸素濃度補正初期値k1を決定する。即ち、エンジン10の運転状態の変化により排気酸素濃度XO2Rが増大すると予測される場合は排気酸素濃度補正初期値k1を正の値(|A|)とし、排気酸素濃度XO2Rが減少するであろうと予測される場合は、排気酸素濃度補正初期値k1を負の値(−|A|)とする。
【0113】
一方、CPU61は、図3に示したルーチンを所定時間の経過毎に実行しているから、所定のタイミングとなるとステップ300〜310を実行して生成定数Asftと酸化定数Asotを決定し、ステップ315に進んで排気酸素濃度XO2を取得するため、酸素濃度XO2に排気酸素濃度センサ77が検出する排気酸素濃度XO2Rを設定してから、図7に示した酸素濃度XO2算出ルーチンの処理をステップ700より開始する。
【0114】
次いで、CPU61はステップ705に進み、補正必要フラグH2の値が「1」であるか否かを判定する。この補正必要フラグH2は、その値が「1」のとき排気酸素濃度センサ77が検出する排気酸素濃度XO2Rが補正される必要があることを示すとともに、その値が「0」のとき排気酸素濃度センサ77が検出する排気酸素濃度XO2Rが補正される必要がないことを示す。なお、補正必要フラグH2の値は、図示しない前述したイニシャルルーチンにより「0」に設定されるようになっている。
【0115】
いま、エンジン10の運転状態が定常運転状態であるとして説明を続けると、このような場合、排気酸素濃度センサ77が検出する排気酸素濃度XO2Rは略一定の値を維持するから、パティキュレート排出量推定のための排気酸素濃度XO2として使用することができる。従って、補正必要フラグH2の値は「0」に維持されているので(後述するステップ755を参照)、CPU61はステップ705にて「No」と判定してステップ710に進み、過渡運転状態フラグH1の値が「1」であるか否かを判定する。
【0116】
図6に示したルーチンのステップ605及びステップ610にて説明したように、過渡運転状態フラグH1の値は、エンジン10が定常運転状態にある場合は「0」に維持されている。従って、CPU61はステップ710にて「No」と判定してステップ795に進み、本ルーチンを一旦終了する。この結果、排気酸素濃度センサ77が検出する排気酸素濃度XO2Rがパティキュレート排出量推定用の酸素濃度XO2となる。
【0117】
次に、エンジン10の運転状態が定常運転状態から過渡運転状態へと変化した場合について説明する。この場合、燃料噴射量Qfinが急変するから、CPU61は図6のステップ605を実行するとき、同ステップ605にて「Yes」と判定し、ステップ610に進んで過渡運転状態フラグH1の値を「1」に設定する。ただし、この段階では、補正必要フラグH2の値は「0」に維持されている。
【0118】
この結果、CPU61が図3のルーチンのステップ315の実行に際し図7のルーチンのステップ705に至ると、同ステップ705にて「No」と判定してステップ710に進み、同ステップ710にて「Yes」と判定してステップ715に進んで排気酸素濃度センサ77が検出する排気酸素濃度XO2Rと所定時間前の排気酸素濃度XO2ROLDとの差の絶対値が所定の閾値TH4より大きくなったか否かを判定する。換言すると、ステップ715において、CPU61は、エンジン10の運転状態の変化に伴う酸素濃度の急変が排気酸素濃度センサ77により検出されたか否かを判定する。
【0119】
現時点は、エンジン10の運転状態が過渡運転状態に変化した直後であるから、同エンジン10の燃焼室から排出された直後の排気中の排気酸素濃度は変化しても、同変化は排気酸素濃度センサ77により検出されない。従って、CPU61はステップ715にて「No」と判定して本ルーチンを一旦終了する。
【0120】
その後、所定の時間が経過すると、運転状態の変化に伴う排気酸素濃度の変化が排気酸素濃度センサ77により検出される。このとき、CPU61がステップ715に至ると、同CPU61は同ステップ715にて「Yes」と判定してステップ720に進み、カウンタC2の値を「0」に設定するとともに、続くステップ725にて補正必要フラグH2の値を「1」に設定し、その後ステップ795にて本ルーチンを一旦終了する。
【0121】
その後、CPU61が図3に示したパティキュレート排出量推定ルーチンを実行すると、ステップ315の処理に伴うステップ705の処理において「Yes」と判定してステップ730に進み、同ステップ730にてカウンタC2の値を「1」だけ増大し、続くステップ735にてカウンタC2の値が前述した排気還流遅れ時間Td以上となったか否かを判定する。この時点では、CPU61はステップ735にて「No」と判定してステップ795に進み本ルーチンを一旦終了する。この結果、ステップ315にて取得される排気酸素濃度XO2は依然として排気酸素濃度センサ77が検出する排気酸素濃度XO2Rに維持される。
【0122】
その後、CPU61はステップ730を繰り返し実行するようになるから、カウンタC2の値は次第に増大し、排気還流遅れ時間Tdが経過するとカウンタC2の値が排気還流遅れ時間Tdと一致する。従って、CPU61はステップ735にて「Yes」と判定してステップ740に進み、下記数12に従って排気酸素濃度センサ77が検出する排気酸素濃度XO2Rを補正する。ここで、k1は上述した図6に示したルーチンにより決定される排気酸素濃度補正初期値k1である。
【0123】
【数12】
XO2=XO2R+k1/exp(C2−T)
【0124】
次いで、CPU61はステップ745にて、上記数12の第2項である排気酸素濃度補正値k1/exp(C2−T)の絶対値が所定の閾値TH5より小さくなったか否かを判定する。閾値TH5は、補正初期値k1よりも小さい値に選択されている。現時点においてはC2=Tであるから、排気酸素濃度補正値k1/exp(C2−T)は初期値k1と等しく、閾値TH5より大きいので、CPU61はステップ745にて「No」と判定してステップ795に進み、本ルーチンを一旦終了する。この結果、CPU61が図3に示したルーチンのステップ320にて使用する酸素濃度XO2は、排気酸素濃度センサ77が検出する排気酸素濃度XO2Rに初期値k1を加えた値となる。
【0125】
以降、このような処理が継続されてカウンタC2の値がステップ730にて増大し続けるので、排気酸素濃度補正値k1/exp(C2−T)の絶対値は次第に減少するとともに、ステップ740にて求められる酸素濃度XO2がパティキュレート排出量PMの推定に用いられる。そして、排気酸素濃度補正値k1/exp(C2−T)の絶対値が所定の閾値TH5より小さくなると、CPU61はステップ745にて「Yes」と判定してステップ750に進み、過渡運転状態フラグH1の値を「0」に設定するとともに、続くステップ755にて補正必要フラグH2の値を「0」に設定して、ステップ795にて本ルーチンを一旦終了する。
【0126】
この結果、CPU61が再び図7に示したルーチンを実行すると、同CPU61はステップ705にて「No」、ステップ710にて「No」と判定するようになるので、排気酸素濃度センサ77が検出する排気酸素濃度XO2Rが補正されることなくパティキュレート排出量PMを推定するための排気酸素濃度XO2として使用されるようになる。
【0127】
以上、説明したように、第2実施形態のパティキュレート排出量推定装置は、パティキュレート排出量PMの推定に用いる排気酸素濃度XO2を、燃焼室から排出された直後の排気酸素濃度により近い値となるように、排気還流遅れ時間を考慮して求める。従って、パティキュレート排出量PMの推定精度がより一層向上する。
【0128】
(3.第3実施形態)
次に、本発明の第3実施形態に係るパティキュレート排出量推定装置を含む内燃機関の排気浄化装置について説明する。この排気浄化装置は、吸気酸素濃度を考慮してパティキュレート排出量PMの推定を行うことで、同パティキュレート排出量PMの推定精度を向上する点、具体的には、CPU61が図3に示したルーチンに代えて図8に示したパティキュレート排出量推定ルーチンを所定時間TSAMPLEの経過毎に実行する点においてのみ、第1実施形態の排気浄化装置と異なっている。従って、以下、かかる相違点を中心に説明する。なお、図8において、図3と同一のステップには同一の符号を付し、その詳細説明を省略する。
【0129】
CPU61は、所定のタイミングになると、ステップ800から処理を開始し、ステップ305からステップ315を実行することで、生成定数Asft、及び酸化定数Asotを決定するとともに、排気酸素濃度XO2を取得する。なお、排気酸素濃度XO2は、上記第2実施形態のように、排気還流遅れ時間Tdを考慮して取得されるように構成してもよい。
【0130】
次いで、CPU61はステップ805に進み、吸気酸素濃度センサ73が検出する吸気酸素濃度XO2INを読み込み、続くステップ810にて同吸気酸素濃度XO2INに応じてROM62内に格納されている吸気酸素濃度補正係数テーブルに基いて吸気酸素濃度補正係数fXO2を算出する。吸気酸素濃度補正係数テーブル内の吸気酸素濃度補正係数fXO2は実験的に適合されている値である。そして、CPU61は、下記数13に基づいてパティキュレート排出量PMを推定する。
【0131】
【数13】
PM=Asft・(K・Qfin・2・NE)・fXO2/(Asot・XO2)+C/exp(Asot・XO2)
【0132】
次いで、CPU61はステップ325にてパティキュレート排出量合計値SUMPMを求め、ステップ895にて本ルーチンを一旦終了する。以降、CPU61は本ルーチンを所定時間TSAMPLEの経過毎に繰り返し実行する。この結果、パティキュレート排出量PMとパティキュレート排出量合計値SUMPMが更新されて行く。
【0133】
このように、第3実施形態によれば、吸気酸素濃度XO2INにも基いてパティキュレート排出量PMが推定される。吸気酸素濃度XO2INは燃焼温度に大きな影響を及ぼすから、パティキュレート排出量PMも吸気酸素濃度XO2INによる影響を受ける。従って、この第3実施形態のように、吸気酸素濃度補正係数fXO2を導入してパティキュレート排出量PMを推定するようにすれば、同パティキュレート排出量PMの推定精度を向上することができる。なお、吸気酸素濃度XO2INに応じて第2吸気酸素濃度補正係数f2XO2を求め、数13の右辺第2項にも乗じるようにしてもよい。
【0134】
(4.第4実施形態)
次に、本発明の第4実施形態に係るパティキュレート排出量推定装置を含む内燃機関の排気浄化装置について説明する。この排気浄化装置は、燃焼室壁面温度に基いて推定された燃焼温度を考慮してパティキュレート排出量PMの推定を行うことで、同パティキュレート排出量PMの推定精度を向上する点、具体的には、CPU61が図3に示したルーチンに代えて図9に示したパティキュレート排出量推定ルーチンを所定時間TSAMPLEの経過毎に実行する点においてのみ、第1実施形態の排気浄化装置と異なっている。従って、以下、かかる相違点を中心に説明する。なお、図9において、図3と同一のステップには同一の符号を付し、その詳細説明を省略する。
【0135】
CPU61は、所定のタイミングになると、ステップ900から処理を開始し、ステップ305からステップ315を実行することで、生成定数Asft、及び酸化定数Asotを決定するとともに、排気酸素濃度XO2を取得する。なお、排気酸素濃度XO2は、上記第2実施形態のように、排気還流遅れ時間Tdを考慮して取得されるように構成してもよい。
【0136】
次いで、CPU61はステップ905に進み、壁面温度センサ75が検出する燃焼室壁面温度Thekiを読み込み、続くステップ910にて燃焼室壁面温度Thekiに熱伝達効率ηを乗じて燃焼平均温度Tnenを求める。そして、CPU61はステップ915にて燃焼平均温度Tnenに基く補正係数g(Tnen)を求めるとともに、これをステップ305にて求めた生成定数Asftに乗じることにより補正後の生成定数Asftを求め、同様に、燃焼平均温度Tnenに基く補正係数h(Tnen)を求めるとともに、これをステップ310にて求めた酸化定数Asotに乗じることにより補正後の酸化定数Asotを求め、続くステップ320にてこれら補正後の定数を用いてパティキュレート排出量PMを推定し、ステップ325にてパティキュレート排出量合計値SUMPMを求めた後、ステップ995にて本ルーチンを一旦終了する。なお、補正係数g(Tnen)、及びh(Tnen)を求めるための関数g,hは予め実験により定められていて、テーブルとしてROM62内に格納されている。
【0137】
以降、CPU61は図9に示したルーチンを所定時間TSAMPLEの経過毎に繰り返し実行する。この結果、パティキュレート排出量PMとパティキュレート排出量合計値SUMPMが更新されて行く。
【0138】
以上、説明したように、第4実施形態によれば、燃焼平均温度Tnenに基いて生成定数Asft、及び酸化定数Asotが修正され、この修正された生成定数Asft、及び酸化定数Asotに基いてパティキュレート排出量PMが推定される。燃焼平均温度Tnenは、パティキュレート排出量PMに影響を与える。従って、この第4実施形態のように、燃焼平均温度Tnenに応じてパティキュレート排出量PMを推定するように構成すれば、同パティキュレート排出量PMの推定精度を向上することができる。
【0139】
なお、第4実施形態においては、燃焼平均温度Tnenに基いて生成定数Asft、及び酸化定数Asotを修正することによりパティキュレート排出量PMの推定精度を向上していたが、ステップ915を省略するとともに、ステップ320にて求めたパティキュレート排出量PMを燃焼平均温度Tnenに応じて修正するように構成してもよい。
【0140】
(5.第5実施形態)
次に、本発明の第5実施形態に係るパティキュレート排出量推定装置を含む内燃機関の排気浄化装置について説明する。この排気浄化装置は、吸気温度を考慮してパティキュレート排出量PMの推定を行うことで、同パティキュレート排出量PMの推定精度を向上する点、具体的には、CPU61が図3に示したルーチンに代えて図10に示したパティキュレート排出量推定ルーチンを所定時間TSAMPLEの経過毎に実行する点においてのみ、第1実施形態の排気浄化装置と異なっている。従って、以下、かかる相違点を中心に説明する。なお、図10において、図3と同一のステップには同一の符号を付し、その詳細説明を省略する。
【0141】
CPU61は、所定のタイミングになると、ステップ1000から処理を開始し、ステップ305からステップ315を実行することで、生成定数Asft、及び酸化定数Asotを決定するとともに、排気酸素濃度XO2を取得する。なお、排気酸素濃度XO2は、上記第2実施形態のように、排気還流遅れ時間Tdを考慮して取得されるように構成してもよい。
【0142】
次いで、CPU61はステップ1005に進み、吸気温センサ72が検出する吸気温度Tbを読み込み、続くステップ1010にて読み込んだ吸気温度Tbに応じて吸気温度補正係数fTbを関数i(Tb)に基いて求める。そして、CPU61はステップ1015にて、下記数13に従ってパティキュレート排出量PMを推定する。なお、関数i(Tb)は予め実験により定められていて、テーブルとしてROM62内に格納されている。
【0143】
【数14】
PM=fTb・(Asft・(K・Qfin・2・NE)/(Asot・XO2)+C/exp(Asot・XO2))
【0144】
その後、CPU61は、ステップ325にてパティキュレート排出量合計値SUMPMを求めた後、ステップ1095にて本ルーチンを一旦終了する。以降、CPU61は本ルーチンを所定時間TSAMPLEの経過毎に繰り返し実行する。この結果、パティキュレート排出量PMとパティキュレート排出量合計値SUMPMが更新されて行く。
【0145】
以上、説明したように、第5実施形態によれば、吸気温度Tbにも基いてパティキュレート排出量PMが推定される。吸気温度Tbは燃焼温度に大きな影響を及ぼすから、パティキュレート排出量PMも吸気温度Tbによる影響を受ける。従って、この第5実施形態のように、吸気温度補正係数fTbを導入してパティキュレート排出量PMを推定するようにすれば、同パティキュレート排出量PMの推定精度を向上することができる。
【0146】
(6.第6実施形態)
次に、本発明の第6実施形態に係るパティキュレート排出量推定装置を含む内燃機関の排気浄化装置について説明する。この排気浄化装置は、圧縮端温度(圧縮上死点近傍における燃焼室内ガス温度)と燃焼圧力(最高燃焼圧力)とを考慮してパティキュレート排出量PMの推定を行うことで、同パティキュレート排出量PMの推定精度を向上する点、具体的には、CPU61が図11に示した圧縮端温度推定及び燃焼圧力検出ルーチンを実行する点、及び、図3に示したルーチンに代えて図12に示したパティキュレート排出量推定ルーチンを所定時間TSAMPLEの経過毎に実行する点においてのみ、第1実施形態の排気浄化装置と異なっている。従って、以下、かかる相違点を中心に説明する。なお、図12において、図3と同一のステップには同一の符号を付し、その詳細説明を省略する。
【0147】
先ず、圧縮端温度Ttdc、及び燃焼圧力Pnを検出するための作動について説明すると、CPU61は、図11に示したルーチンを所定クランク角度(例えば、クランク角度1°)の経過毎に実行するようになっている。従って、エンジン10のクランク角度が所定のクランク角度になると、CPU61はステップ1100から処理を開始し、ステップ1105に進んで現時点のクランク角が第3気筒の圧縮上死点か否かを判定する。
【0148】
そして、現時点のクランク角が第3気筒の圧縮上死点であれば、CPU61はステップ1110に進んでその時点にて燃焼圧センサ74が検出している燃焼室内圧力Paと関数qとに基いて推定圧縮端温度Ttdcを求め(圧縮端温度を推定し)、ステップ1115に進む。一方、現時点のクランク角が第3気筒の圧縮上死点でなければ、CPU61は直接ステップ1115に進む。
【0149】
次に、CPU61は、ステップ1115にて第3気筒が圧縮上死点となった後に、燃焼圧センサ74が検出している燃焼室内圧力Paが極大値をとったか否かを判定する。そして、燃焼室内圧力Paが極大値をとっていれば、その極大値である燃焼室内圧力Paを燃焼圧力Pn(燃焼中の燃焼室内圧力に関連した値)として設定し、ステップ1195に進んで本ルーチンを一旦終了する。一方、燃焼室内圧力Paが極大値をとっていなければ、そのままステップ1195に進んで本ルーチンを一旦終了する。以上により、圧縮端温度Ttdcと燃焼圧力Pnが求められる。
【0150】
また、CPU61は、所定のタイミングになると、図12のステップ1200から処理を開始し、ステップ305からステップ315を実行することで、生成定数Asft、及び酸化定数Asotを決定するとともに、排気酸素濃度XO2を取得する。なお、排気酸素濃度XO2は、上記第2実施形態のように、排気還流遅れ時間Tdを考慮して取得されるように構成してもよい。
【0151】
次いで、CPU61は、ステップ1205及びステップ1210にて、前述した図11に示したルーチンにより求められている圧縮端温度Ttdc、及び燃焼圧力Pnをそれぞれ読み込み、続くステップ1215にて圧縮端温度Ttdc及び燃焼圧力Pnにより定まる補正係数m(Ttdc,Pn)をROM62内に予め格納されているテーブルmと同圧縮端温度Ttdcと同燃焼圧力Pnとから求め、この補正係数m(Ttdc,Pn)をステップ305にて求めた生成定数Asftに乗じることにより補正後の生成定数Asftを求めるとともに、同様に、圧縮端温度Ttdc及び燃焼圧力Pnにより定まる補正係数n(Ttdc,Pn)をROM62内に予め格納されているテーブルnと同圧縮端温度Ttdcと同燃焼圧力Pnとから求め、この補正係数n(Ttdc,Pn)をステップ310にて求めた酸化定数Asotに乗じることにより補正後の酸化定数Asotを求める。
【0152】
次いで、CPU61はステップ320にてパティキュレート排出量PMを推定し、ステップ325にてパティキュレート排出量合計値SUMPMを求めた後、ステップ1295にて本ルーチンを一旦終了する。
【0153】
以降、CPU61は図11に示したルーチンを所定クランク角度の経過毎に繰り返し実行するとともに、図12に示したルーチンを所定時間TSAMPLEの経過毎に繰り返し実行する。この結果、パティキュレート排出量PMとパティキュレート排出量合計値SUMPMが更新されて行く。
【0154】
以上、説明したように、第6実施形態によれば、燃焼圧センサ74が検出する燃焼室内圧力Paに基いて圧縮端温度Ttdcと燃焼圧力Pnとが求められ、この圧縮端温度Ttdcと燃焼圧力Pnとに基いて生成定数Asft、及び酸化定数Asotが修正され、この修正された生成定数Asft、及び酸化定数Asotに基いてパティキュレート排出量PMが推定される。圧縮端温度Ttdcは燃焼温度に強く影響するから、パティキュレート排出量PMも同圧縮端温度Ttdcによる影響を受ける。また、燃焼圧力Pnはパティキュレート排出量PMに強く影響する。従って、この第6実施形態のように、圧縮端温度Ttdcと燃焼圧力Pnとに応じてパティキュレート排出量PMを推定するように構成すれば、同パティキュレート排出量PMの推定精度を向上することができる。
【0155】
なお、第6実施形態においては、圧縮端温度Ttdcと燃焼圧力Pnとに基いて生成定数Asft、及び酸化定数Asotを修正することによりパティキュレート排出量PMの推定精度を向上していたが、ステップ1215を省略し、ステップ320にて求めたパティキュレート排出量PMを圧縮端温度Ttdcと燃焼圧力Pnとに応じて修正するように構成してもよい。
【0156】
また、第6実施形態においては、所定の微小クランク角の経過毎に燃焼室内の圧力Pをサンプリングしていたが、これを所定時間毎にサンプリングするように構成してもよい。この場合、圧縮端温度Ttdcと燃焼圧力Pnとを精度良く求められなければ、ステップ1215にて燃焼行程中における燃焼室内圧力Paの時間平均値Paveに応じて生成定数Asft、及び酸化定数Asotを修正するように構成したり、又は、ステップ1215を省略してステップ320にて求めたパティキュレート排出量PMを同平均圧力Paveに応じて修正するように構成してもよい。
【0157】
(7.第7実施形態)
次に、本発明の第7実施形態に係るパティキュレート排出量推定装置を含む内燃機関の排気浄化装置について説明する。この排気浄化装置は、例えば、エンジン10の運転状態が定常運転状態にあって、光学式煤センサ76が比較的精度良く煤量を測定しうる場合に、同光学式煤センサ76の出力である煤量Ssootに基いて実際のパティキュレート排出量である基準パティキュレート排出量SPMを求め、この基準パティキュレート排出量SPMと上記数1(数10)によって推定したパティキュレート基本排出量PM0との差を学習値DLPMとして学習し、他の運転状態において同学習値DLPMで上記数1(数10)によって推定したパティキュレート基本排出量PM0を修正してパティキュレート排出量PMを求める点においてのみ、第1実施形態の排気浄化装置と異なっている。従って、以下、かかる相違点を中心に説明する。
【0158】
この排気浄化装置のCPU61は、図13に示した学習値更新ルーチンを所定時間の経過毎に繰り返し実行するようになっている。従って、所定のタイミングになると、CPU61はステップ1300から処理を開始してステップ1305に進み、燃料噴射量Qfinと所定時間前の燃料噴射量Qfinoldとの差の絶対値が所定の閾値TH6より小さい状態が所定の時間以上継続したか否かを判定する。即ち、ステップ1305では、エンジン10の運転状態が定常運転状態にあって光学式煤センサ76が比較的精度良く煤量Ssootを測定しうる状態となっているか否かが判定される。
【0159】
いま、燃料噴射量Qfinと所定時間前の燃料噴射量Qfinとの差の絶対値が所定の閾値TH6より小さい状態が所定の時間以上継続していないと仮定して説明を続けると、CPU61はステップ1305にて「No」と判定してステップ1395に進み、本ルーチンを一旦終了する。従って、この場合、学習値DLPMは更新されない。
【0160】
これに対し、燃料噴射量Qfinと所定時間前の燃料噴射量Qfinoldとの差の絶対値が所定の閾値TH6より小さい状態が所定の時間以上継続していると、CPU61はステップ1305に進んだとき、同ステップ1305にて「Yes」と判定してステップ1310に進み、光学式煤センサ76が測定している煤量Ssootを読み込む。次いで、CPU61はステップ1315に進み、基準パティキュレート排出量SPMを、前記読み込んだ煤量Ssootと関数rとに基いて求める。なお、関数rは予め実験により求められていて、ROM62内にテーブルとして格納されている。
【0161】
次に、CPU61は、ステップ1320に進み、前記基準パティキュレート排出量SPMと、後述する図14に示したステップ1405にて上記数1(数10)に従って推定されているパティキュレート基本排出量PM0との差を学習値DLPMとして学習し、ステップ1395に進んで本ルーチンを一旦終了する。
【0162】
一方、CPU61は、所定時間TSAMPLEの経過毎に図14に示したPM推定ルーチンを繰り返し実行するようになっている。なお、図14において、図3と同一のステップには同一の符号を付し、その詳細説明を省略する。
【0163】
従って、CPU61は所定のタイミングになると、図14のステップ1400から処理を開始し、ステップ305からステップ315を実行することで、生成定数Asft、及び酸化定数Asotを決定するとともに、排気酸素濃度XO2を取得する。なお、排気酸素濃度XO2は、上記第2実施形態のように、排気還流遅れ時間Tdを考慮して取得されるように構成してもよい。
【0164】
次いで、CPU61は、ステップ1405にてパティキュレート基本排出量PM0を上記数1(数10)に従って推定し、続くステップ1410にてパティキュレート基本排出量PM0に前記学習値DLPMを加えることで同パティキュレート基本排出量PM0を補正する。そして、ステップ325にてパティキュレート排出量合計値SUMPMを求めた後、ステップ1495にて本ルーチンを一旦終了する。
【0165】
以降、CPU61は図13及び図14に示したルーチンを繰り返し実行するので、学習値DLPMが更新されるとともに、同学習値DLPMによりパティキュレート基本排出量PM0が修正されることにより、パティキュレート排出量PMが精度良く求められて行く。
【0166】
以上、説明したように、第7実施形態によれば、光学式煤センサ76の出力である煤量Ssoot、即ち、実測煤量に基いて実際のパティキュレート排出量である基準パティキュレート排出量SPMを推定し、この基準パティキュレート排出量SPMと上記数1(数10)のモデルにより推定されたパティキュレート基本排出量PM0との差を学習値DLPMとして学習し、この学習値DLPMによってパティキュレート基本排出量PM0が修正される。
【0167】
従って、数1(数10)のパティキュレート排出量推定モデルが有する誤差が実測値に基いた値で修正されるので、パティキュレート排出量を精度良く推定することが可能となる。
【0168】
以上、説明したように、本発明の各実施形態によれば、パティキュレート排出量PMがリアルタイムに、且つ、定常運転状態及び過渡運転状態において、精度良く推定され得る。なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上述したフィルタ再生制御においては、添加燃料の供給のみでなく、燃料噴射弁21からのメイン噴射の後に再度噴射を行うポスト噴射の噴射量を変更したり、排気絞り弁46の開度を変更して過給機35の過給圧を変更してもよい。
【図面の簡単な説明】
【図1】 本発明の第1実施形態に係るパティキュレート排出量推定装置を備えた排気浄化装置を4気筒内燃機関(ディーゼル機関)に適用したシステムの概略構成図である。
【図2】 パティキュレート排出量推定モデルのパティキュレート生成定数及びパティキュレート酸化定数を決定する方法を説明するためのグラフである。
【図3】 図1に示したCPUが実行するパティキュレート排出量を推定するために実行するルーチンを示したフローチャートである。
【図4】 図4(A)は本発明の第2実施形態に係るパティキュレート排出量推定装置による排気還流遅れ時間の計測方法について説明するために、排気酸素濃度センサが検出する排気酸素濃度を実線で、排気還流遅れ検出用酸素濃度センサが検出する還流排気中酸素濃度を破線で示したタイムチャートであり、図4(B)は排気酸素濃度センサが検出する排気酸素濃度を実線で、学習した排気還流遅れ時間を用いて補正した排気酸素濃度を一点鎖線で示したタイムチャートである。
【図5】 第2実施形態のパティキュレート排出量推定装置のCPUが実行する排気還流遅れ時間学習ルーチンを示したフローチャートである。
【図6】 第2実施形態のパティキュレート排出量推定装置のCPUが実行する排気酸素濃度補正初期値決定ルーチンを示したフローチャートである。
【図7】 第2実施形態のパティキュレート排出量推定装置のCPUが実行する排気酸素濃度算出ルーチンを示したフローチャートである。
【図8】 第3実施形態のパティキュレート排出量推定装置のCPUが実行するパティキュレート排出量推定ルーチンを示したフローチャートである。
【図9】 第4実施形態のパティキュレート排出量推定装置のCPUが実行するパティキュレート排出量推定ルーチンを示したフローチャートである。
【図10】 第5実施形態のパティキュレート排出量推定装置のCPUが実行するパティキュレート排出量推定ルーチンを示したフローチャートである。
【図11】 第6実施形態のパティキュレート排出量推定装置のCPUが実行する圧縮端温度推定及び燃焼圧力検出ルーチンを示したフローチャートである。
【図12】 第6実施形態のパティキュレート排出量推定装置のCPUが実行するパティキュレート排出量推定ルーチンを示したフローチャートである。
【図13】 第7実施形態のパティキュレート排出量推定装置のCPUが実行する学習値更新ルーチンを示したフローチャートである。
【図14】 第7実施形態のパティキュレート排出量推定装置のCPUが実行するパティキュレート排出量推定ルーチンを示したフローチャートである。
【符号の説明】
21…燃料噴射弁、31…吸気マニホールド、32…吸気管、33…スロットル弁、35…過給機、41…排気マニホールド、42…排気管、43…DPNR、44…添加燃料供給ノズル、50…EGR装置、51…排気管流管、72…吸気温センサ、73…吸気酸素濃度センサ、74…燃焼圧センサ、75…壁面温度センサ、76…光学式煤センサ、77…排気酸素濃度センサ、78…機関回転速度センサ、79…排気還流遅れ検出用酸素濃度センサ、Asft…パティキュレート生成定数、Asot…パティキュレート酸化定数。

Claims (11)

  1. ディーゼル機関の燃料噴射量及び機関回転速度を一定に維持した定常運転状態にて排気酸素濃度を変更するとともに、同変更された異なる排気酸素濃度のそれぞれに対してパティキュレート排出量を測定し、同変更した各排気酸素濃度及び同各排気酸素濃度に対して測定された同各パティキュレート排出量からなるデータに基いて、同一定に維持した燃料噴射量及び同一定に維持した機関回転速度で定まる運転状態に対するパティキュレート生成定数及びパティキュレート酸化定数を決定する作業を、それぞれが所定の燃料噴射量及び所定の機関回転速度で定まる複数の運転状態について実行することにより形成された、燃料噴射量及び機関回転速度の組み合わせとパティキュレート生成定数との関係を規定した生成定数テーブルと、燃料噴射量及び機関回転速度の組み合わせとパティキュレート酸化定数との関係を規定した酸化定数テーブルとを記憶した記憶手段と、
    実際の燃料噴射量を表す値を取得する燃料噴射量取得手段と、
    実際の機関回転速度を検出する機関回転速度検出手段と、
    実際の排気酸素濃度を表す値を取得する排気酸素濃度取得手段と、
    前記取得された燃料噴射量を表す値と、前記検出された機関回転速度と、前記生成定数テーブル及び前記酸化定数テーブルと、に基いてパティキュレート排出量を推定するために使用するパティキュレート生成定数とパティキュレート酸化定数とを決定するとともに、同決定されたパティキュレート生成定数と、同決定されたパティキュレート酸化定数と、前記取得された排気酸素濃度を表す値とに基いてパティキュレート排出量を推定するパティキュレート排出量推定手段と、
    を備えてなるディーゼル機関のパティキュレート排出量推定装置において、
    前記パティキュレート排出量推定手段は、単位時間あたりのパティキュレート排出量をPM、前記決定されたパティキュレート生成定数をAsft、前記決定されたパティキュレート酸化定数をAsot、前記取得された燃料噴射量を表す値に基く単位時間あたりの燃料噴射量をQ、前記取得された排気酸素濃度を表す値をX02、及び定数をCとするとき、PM=Asft・Q/(Asot・XO2)+C/exp(Asot・XO2)なる式に基いて前記パティキュレート排出量を推定するように構成されたディーゼル機関のパティキュレート排出量推定装置。
  2. 請求項1に記載のディーゼル機関のパティキュレート排出量推定装置において、
    前記パティキュレート排出量推定手段は、前記取得された排気酸素濃度を表す値が所定濃度以上の値となるときにのみ前記パティキュレート排出量の推定を行うように構成してなるディーゼル機関のパティキュレート排出量推定装置。
  3. 請求項1又は請求項2に記載のディーゼル機関のパティキュレート排出量推定装置であって、
    前記排気酸素濃度取得手段は、
    前記ディーゼル機関の排気通路内の酸素濃度を検出する排気酸素濃度検出手段を含むとともに、同ディーゼル機関が備える排気還流管を介して排気還流を行う排気還流手段によって同機関の排気が還流されて同機関に吸入されるまでに要する排気還流遅れ時間に応じ、同検出された排気通路内の酸素濃度を補正して前記排気酸素濃度を表す値を取得するように構成されてなるディーゼル機関のパティキュレート排出量推定装置。
  4. 請求項3に記載のディーゼル機関のパティキュレート排出量推定装置であって、
    前記排気酸素濃度取得手段は、
    前記還流される排気と前記ディーゼル機関に新たに吸入される新気とが混合される直前の前記排気還流管内の酸素濃度を検出する排気還流遅れ検出用酸素濃度検出手段を含むとともに、前記検出される排気通路内の酸素濃度と同検出される排気還流管内の酸素濃度とに基いて前記排気還流遅れ時間を推定するように構成されてなるディーゼル機関のパティキュレート排出量推定装置。
  5. 請求項1又は請求項2に記載のディーゼル機関のパティキュレート排出量推定装置であって、
    前記パティキュレート排出量推定手段は、前記ディーゼル機関の燃焼温度に関連する値を取得するとともに、同取得された燃焼温度に関連する値に基いて前記パティキュレート排出量を推定するように構成されてなるディーゼル機関のパティキュレート排出量推定装置。
  6. 請求項5に記載のディーゼル機関のパティキュレート排出量推定装置において、
    前記パティキュレート排出量推定手段は、前記ディーゼル機関の吸気通路内の酸素濃度を検出する酸素濃度検出手段を含み、同検出される吸気通路内の酸素濃度を前記燃焼温度に関連する値として扱うように構成されてなるディーゼル機関のパティキュレート排出量推定装置。
  7. 請求項5に記載のディーゼル機関のパティキュレート排出量推定装置において、
    前記パティキュレート排出量推定手段は、前記ディーゼル機関の燃焼室壁面の温度を検出する燃焼室壁面温度検出手段を含み、同検出される燃焼室壁面温度を前記燃焼温度に関連する値として扱うように構成されてなるディーゼル機関のパティキュレート排出量推定装置。
  8. 請求項5に記載のディーゼル機関のパティキュレート排出量推定装置において、
    前記パティキュレート排出量推定手段は、前記ディーゼル機関の吸気温度を検出する吸気温度検出手段を含み、同検出される吸気温度を前記燃焼温度に関連する値として扱うように構成されてなるディーゼル機関のパティキュレート排出量推定装置。
  9. 請求項5に記載のディーゼル機関のパティキュレート排出量推定装置において、
    前記パティキュレート排出量推定手段は、前記ディーゼル機関の燃焼室内の圧力を検出する燃焼室内圧力検出手段を含み、同検出される燃焼室内圧力を前記燃焼温度に関連する値として扱うように構成されてなるディーゼル機関のパティキュレート排出量推定装置。
  10. 請求項1又は請求項2に記載のディーゼル機関のパティキュレート排出量推定装置であって、
    前記パティキュレート排出量推定手段は、前記ディーゼル機関の燃焼中における燃焼室内圧力に関連する値を取得するとともに、同取得された燃焼室内圧力に関連する値に基いて前記パティキュレート排出量を推定するように構成されてなるディーゼル機関のパティキュレート排出量推定装置。
  11. 請求項1又は請求項2に記載のディーゼル機関のパティキュレート排出量推定装置であって、
    前記ディーゼル機関の燃焼室内の煤発生量を測定する煤発生量測定手段と、
    前記測定された燃焼室内の煤発生量に基いて基準パティキュレート排出量を算定する基準パティキュレート排出量算出手段とを備えるとともに、
    前記パティキュレート排出量推定手段は、前記基準パティキュレート排出量が算出された運転状態において推定された前記パティキュレート排出量と同算出された基準パティキュレート排出量との差に応じて、他の運転状態において推定されるパティキュレート排出量を修正するように構成されてなるディーゼル機関のパティキュレート排出量推定装置。
JP2002111925A 2002-04-15 2002-04-15 ディーゼル機関のパティキュレート排出量推定装置 Expired - Fee Related JP4123811B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111925A JP4123811B2 (ja) 2002-04-15 2002-04-15 ディーゼル機関のパティキュレート排出量推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111925A JP4123811B2 (ja) 2002-04-15 2002-04-15 ディーゼル機関のパティキュレート排出量推定装置

Publications (2)

Publication Number Publication Date
JP2003307110A JP2003307110A (ja) 2003-10-31
JP4123811B2 true JP4123811B2 (ja) 2008-07-23

Family

ID=29394588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111925A Expired - Fee Related JP4123811B2 (ja) 2002-04-15 2002-04-15 ディーゼル機関のパティキュレート排出量推定装置

Country Status (1)

Country Link
JP (1) JP4123811B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603951B2 (ja) 2005-08-08 2010-12-22 トヨタ自動車株式会社 内燃機関のすす発生量推定装置
DE102006000845A1 (de) * 2006-01-05 2007-07-12 Volkswagen Ag Verfahren zur Bestimmung der Russbeladung eines Partikelfilters
JP4910844B2 (ja) * 2007-04-05 2012-04-04 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5057453B2 (ja) * 2007-09-21 2012-10-24 独立行政法人産業技術総合研究所 エンジンからの過渡粒子質量排出濃度の計測方法
US8457905B2 (en) 2008-05-16 2013-06-04 Toyota Jidosha Kabushiki Kaisha Soot discharge estimating device for internal combustion engines
WO2010140263A1 (ja) 2009-06-03 2010-12-09 トヨタ自動車株式会社 内燃機関のすす排出量推定装置
US8332124B2 (en) 2009-11-24 2012-12-11 Corning Incorporated Mass based methods and systems for estimating soot load
WO2012098670A1 (ja) * 2011-01-20 2012-07-26 トヨタ自動車株式会社 圧縮着火式内燃機関の制御装置および圧縮着火式内燃機関におけるスモーク生成状態の判断方法
CN115405404A (zh) * 2022-09-29 2022-11-29 潍柴动力股份有限公司 Soot原排模型的构建方法、装置及发动机后处理***

Also Published As

Publication number Publication date
JP2003307110A (ja) 2003-10-31

Similar Documents

Publication Publication Date Title
JP4606965B2 (ja) 内燃機関の排気浄化装置
KR100611550B1 (ko) 내연기관용 egr 제어 장치 및 방법
JP4042399B2 (ja) 排気浄化装置
US8037675B2 (en) Exhaust gas purification system for internal combustion engine and method for exhaust gas purification
US7779680B2 (en) Estimation of engine-out NOx for real time input to exhaust aftertreatment controller
JP3925485B2 (ja) 内燃機関のNOx排出量推定方法
US20080295491A1 (en) Exhaust gas purification device for internal combustion engine
JP4440823B2 (ja) 内燃機関の排気浄化装置
CN110735697A (zh) 一种控制dpf再生的方法、***和发动机
JP4044908B2 (ja) 内燃機関の排気浄化装置
JP5846286B2 (ja) 内燃機関の排気浄化装置
JP4123811B2 (ja) ディーゼル機関のパティキュレート排出量推定装置
JP5776619B2 (ja) 排気浄化装置
US7827783B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP4759496B2 (ja) 内燃機関の排ガス浄化装置
JP4061995B2 (ja) 内燃機関の排気浄化装置
JP4012043B2 (ja) パティキュレートフィルタの再生方法
EP1536120B1 (en) Exhaust gas control apparatus for internal combustion engine and control method thereof
JP2008128217A (ja) 内燃機関の排ガス浄化装置
JP4692376B2 (ja) 内燃機関の排気浄化装置
JP5699957B2 (ja) 内燃機関の排気浄化装置
JP5370252B2 (ja) 内燃機関の排気浄化装置
JP2013160106A (ja) 内燃機関の排気浄化装置
JP2011220260A (ja) エンジン制御装置
JP2010090875A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees