JP4089920B2 - 細菌レセプター構造体 - Google Patents

細菌レセプター構造体 Download PDF

Info

Publication number
JP4089920B2
JP4089920B2 JP51898495A JP51898495A JP4089920B2 JP 4089920 B2 JP4089920 B2 JP 4089920B2 JP 51898495 A JP51898495 A JP 51898495A JP 51898495 A JP51898495 A JP 51898495A JP 4089920 B2 JP4089920 B2 JP 4089920B2
Authority
JP
Japan
Prior art keywords
protein
domain
binding
bacterial
proteins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP51898495A
Other languages
English (en)
Other versions
JPH09508016A (ja
Inventor
ニルソン,ビヨルン
ニユーグレン,ペル−オーケ
ウーレーン,マテイーアス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Affibody AB
Original Assignee
Affibody AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Affibody AB filed Critical Affibody AB
Publication of JPH09508016A publication Critical patent/JPH09508016A/ja
Application granted granted Critical
Publication of JP4089920B2 publication Critical patent/JP4089920B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1037Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/305Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
    • C07K14/31Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/882Staphylococcus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/882Staphylococcus
    • Y10S435/883Staphylococcus aureus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/82Proteins from microorganisms
    • Y10S530/825Bacteria

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、天然の細胞レセプター構造体を起源とし、そして原相互作用機能に関与するアミノ酸残基を改変することによって原相互作用機能が実質的に阻害されかつ望ましい相互作用相手に向けられた改変相互作用機能により置換されている新規の細菌レセプター構造体に関する。
哺乳動物を侵すことが知られているいくつかの細菌は宿主特異的炭水化物およびタンパク質を含む様々な物質に結合できる表面タンパク質を進化させている。グラム陽性細菌病原体からはいくつかのその種のレセプターが単離されまた後述の如く詳細に特性評価されている。最も十分に特性評価されているのは、IgGの不変Fc部への結合能にちなんで命名されたFcレセプターである。様々な哺乳動物給源からのIgGおよびそのサブクラスへの結合実験に基づいて、FcレセプターはI−VIの六タイプに分けられている。タイプIレセプターを規定する黄色ぶどう球菌(S. aureus)のレセプター、プロテインA(SPA)は広範に及ぶ研究の主題となっている。
SPAは人間を含む大部分の哺乳動物種からのIgGを結合する。SPAは、ヒトIgGの四サブクラスのうち、IgG1とIgG4には結合するがIgG3には極めて弱い相互作用を示すかまたは全く相互作用を示さない〔Eliasson, M. et al, 1989 J. Biol. Chem. 9:4323-4327〕。この準免疫反応は20年以上にもわたって、診断、研究および治療への応用上、抗体の精製および検出に用いられてきている。SPA遺伝子の規定された断片のクローン化、配列決定および大腸菌(Escherichia coli)発現から五つのIgG結合ドメイン〔E-D-A-B-C〕を有する高度反復構成、細胞壁スパニング(spanning)領域および膜アンカリング(anchoring)配列〔XM〕が明らかにされている
Figure 0004089920
極めて多数のプラスミドベクターが構築され、各種宿主で融合タンパク質を生産させるための各種遺伝子断片への遺伝子融合が可能となっている
Figure 0004089920
(Fig.2a)。
ヒトFc〔IgG1〕とSPAの単一ドメイン〔B〕との間の複合体の構造は2.8Å解像度でX線結晶学的方法により決定された〔Deisenhofer, J. et al 1981 Biochemistry 20:2361-2370〕。この構造とNMR実験からの付加的情報とに基づいて、Bドメインはループに接続された三つの逆並行α-ヘリックスより成るコンパクトな構造とみることができる。そのFc結合は静電的性質および疎水性を併有するが、それにはヘリックス1および2からの残基の側鎖だけが関与し、第三ヘリックスは結合に関与していない。このドメインBに基づいて、合成IgG-結合性ドメイン〔Z〕〔Nilsson, B. et al 1987 Prot. Eng. 1:107-113〕が構築されているが、これはIgGアフィニティークロマトグラフィーによる精製を可能にする組換えタンパク質を生産するための融合相手として適している。このZドメインの高溶解度および安定構造は、幾多の組換えタンパク質の生産、精製および復元に利用されている〔Josephsson, S. and Bishop, R. Trends Biotechnol. 6:218-224; Samuelsson, E. et al 1991 Bio. Technol. 9:363-366〕。
血清学的グループCおよびGの連鎖球菌株は、タイプIレセプターに対してよりも一段と広い結合レパートリーをヒトIgG3を含む哺乳動物IgGに対して示す。グループG連鎖球菌からのタイプIIIレセプターに対してはプロテインGの名称が提案されている。1986年に、Olssonおよび共同研究者は、血清学的グループG連鎖球菌からの遺伝子〔G148〕のクローン化および配列決定について報じている〔Guss, B. et al, 1987 EMBO J. 5:1567-1575;Olsson, A. et al, 1987 Eur. J. Biochem. 168:319-324〕。SPAと同様に、SPGはより小さなD-領域により隔てられた三つの相同ドメイン〔C1、C2、C3〕のIgG結合性ドメインより成る反復配置分子である(Fig.2A)。SPAに比べ、SPGは様々な生物種からの免疫グロブリンおよびそれらのサブクラスに対して異なる結合スペクトルを示す。現在、プロテインGのIgG結合性ドメインは免疫学的ツールとして、すなわち、モノクローナル抗体のアフィニティー精製に広く用いられている。DNA技術により構築された亜断片(サブフラグメント)の生産により、個々のC領域が十分なIgG結合に十分であることがわかっている。最近になってSPGからのC1-ドメインとヒトFcとの複合体の構造がX線結晶学的方法により決定された(Fig.2B)。それは、SPGはCH2-CH3界面に結合するがSPAとは異なる部位に結合することを示している。その結合は、SPA-Fc相互作用にみられた疎水力の大きな寄与とは対照的に、主に静電的性質を有している。さらに、C1の3-D構造はα-ヘリックスにより接続された二つのβ-シートによって構築されている(ββ-α-ββ)点でX構造と異なっている。その構造に従って結合に関与するC1の残基はα-ヘリックス、ループおよびそれに続くβ-シートに相当する。
SPGのさらに別の活性は血清アルブミン結合能である。その結合力は生物種依存性があり、そして試験された検体の中では、SPGはラット、ヒトおよびマウスからの血清アルブミンに最も強く結合する。SPGの亜断片の生産および結合試験によって、それら二つの結合活性が構造的に別なものであること、および血清アルブミン結合機能が反復性A−B領域に位置することがわかった〔Nygren et al 1990 Eur. J. Biochem. 193:143-148〕。この領域はいくつかのバイオテクノロジー的諸目的に用いられている。その領域への融合体として組換えタンパク質が生産されており、それによって極めて多くの場合にヒト血清アルブミンが固定リガンドとして用いられるアフィニティークロマトグラフィーによる精製が可能となる。それぞれSPAおよびSPG由来の二つの異なるアフィニティー尾部(テイル)を隣接させた「二重アフィニティー融合物(dual affinity fusions)」として、タンパク質分解的に敏感であることがわかっているタンパク質が生産されている。そのため、完全な標的タンパク質の回収を保証する、N-およびC-末端の両方を用いた精製スキームが可能である〔Hammarberg et al 1989 Proc. Natl. Acad. Sciences USA 86:4367-4371〕。血清アルブミンへの強力で特異的な結合も治療用タンパク質の生体内安定化目的に用いられている。
極めて長命の血清アルブミンとの複合体形成を通してレセプターは血清アルブミンそれ自体の半減期に近い半減期で循環にのる(赤毛猿)。HIV/AIDS治療には興味深いものがあるが速やかに清浄化されるT細胞レセプターCD4を用いたマウスでの試験は、それが血清アルブミン結合性領域に融合した場合に、未融合コントロールタンパク質に比べ、実質的に安定化することを示した〔Nygren et al 1991 Vaccines 91 Cold Spring Harbor Press 363-368〕。清浄化が遅くなることは、おそらく、肝臓による除去および腎臓での***をかわす血清アルブミンとの複合体形成によって説明できる。
血清アルブミンへの結合維持に必要な最小長を測定するために、A−B領域のより小さな断片がいくつか生産され分析されている。血清アルブミン結合活性を有するこれまでの最小断片は、領域B2およびSからのそれぞれBおよび9残基を隣接させた領域A3より成る46残基断片〔「B2A3」〕である。
その他の部分断片の相同性および結合試験に基づいて、SPGは血清アルブミンへの結合に関し、三価であると考えられる。一価のIgG結合性ドメインであるZおよびC1と同様、B2A3は比較的小さくまた高い溶解度および安定性を示し、従って改変にふさわしい候補である。
発明の概要
本発明の主な目的は、天然細菌レセプターの原相互作用機能を改変することにより改変相互作用機能を有する新規細菌レセプター構造体を提供することにある。
本発明のもう一つの目的は、様々な条件、例えば高温などに対して安定であってかつより抵抗性のある人工細菌レセプター構造体を提供することにある。
本発明のもう一つの目的は、その相互作用機能が他の望ましい相互作用相手にそれを向けるように改変された人工細菌レセプター構造体を提供することにある。
これらの目的および以下の開示から明らかとなろう他の目的を念頭に置きつつ、本発明は、天然細菌レセプターのドメインの表面露出アミノ酸の変異誘発により得ることができ、そして該天然細菌レセプターの基本構造および安定性を実質的に失うことなく得られる新規タンパク質を提供するものである。前記タンパク質は、好ましくは、前記新規タンパク質のレパートリーを具現化したタンパク質ライブラリーから選択される。かかる新規細菌レセプター構造体において、原細菌レセプターの相互作用機能に関与する少なくとも一つのアミノ酸残基が別々のアミノ酸残基による置換を受けることとなり、その結果改変された相互作用能力が生じると共に原相互作用能力が実質的に失われるのであるが、前記置換は原細菌レセプターの基本構造および安定性を実質的に失うことなく行われる。
前記細菌構造体はグラム陽性細菌を起源とするが好ましい。そのような細菌としては、黄色ぶどう球菌(Staphylococcus aureus)、化膿連鎖球菌(Streptococcus pyogenes)〔グループA〕、連鎖球菌グループC、G、L、ウシグループG連鎖球菌、ストレプトコッカス・ズーエピデミカス(Streptococcus zooepidemicus)〔グループC〕、ストレプトコッカス・ズーエピデミカスS212、化膿連鎖球菌〔グループA〕、連鎖球菌グループA、C、G、ペプトストレプトコッカス・マグナス(Streptococcus magnus)、ストレプトコッカス・アガラクティエ(Streptococcus agalactiae)〔グループB〕」などが挙げられる。
特に興味深いのは、高温環境中で存続するように進化した好熱性細菌である。例えばバチルス・ステアロサーモフィルス(Bacillus stearothermophilus)、サーマス・アクアティカス(Thermus aquaticus)、サーモコッカス・リトラリス(Thermococcus litoralis)およびパイロコッカス(Pyrococcus)などの生物種からのレセプターは当然ながらとりわけ安定である潜在能力を有し、従って本発明によるタンパク質エンジニアリングのための構造枠組を与えるのにふさわしい。
相互作用機能改変のための出発材料としては、ぶどう球菌プロテインAまたは連鎖球菌プロテインG由来の細菌レセプター構造体を用いるのが特に好ましい。
好ましいレセプターとしては、Fc〔IgG〕レセプタータイプI、タイプII、タイプIII、タイプIV、タイプVおよびタイプVI、フィブロネクチンレセプター、Mプロテイン、プラスミンレセプター、コラーゲンレセプター、フィブリノーゲンレセプターまたはプロテインL〔K軽鎖〕、プロテインH〔ヒトIgG〕、プロテインB〔ヒトIgA、A1〕、プロテインArp〔ヒトIgA〕に由来する細菌レセプターなどが挙げられる。
特に好ましい細菌レセプターは、ぶどう球菌プロテインAのFc〔IgG〕レセプタータイプIまたは連鎖球菌プロテインGの血清アルブミンレセプターに由来するものである。
本発明によれば、原細菌レセプター構造体の安定性および諸性質を維持するために、原細菌レセプターの相互作用機能に参加するアミノ酸残基に関与する置換が原細菌レセプターのアミノ酸残基の約50%を超えて及ばないようにするのが好ましい。原細菌レセプターのアミノ酸残基の約25%を超えない範囲で置換を受けるようにするのが特に好ましい。
それらの相互作用機能の改変に選択される原細菌レセプター構造体については、IgG結合性ドメインZ、C1、および血清アルブミン結合性ドメインB2A3に由来するレセプターを用いるのが特に好ましい。
本発明による改変を受ける原レセプター構造体の安定性および諸性質をできるだけ維持するために、その置換が原細菌レセプターの相互作用機能に参加するアミノ酸残基の実質的に全部を限度として及ぶようにするのが好ましい。
各種条件に対する安定性および抵抗性に関する好ましい性質を得るには、本発明による細菌レセプターが約100を超えないアミノ酸残基より成るのが好ましい。学術報告書から、比較的小サイズのタンパク質は高温に対し、また低pHおよびある種の化学物質に対してもかなり抵抗性があることが知られている。温度抵抗性に関する詳細についてはBiochemistry 1992, 31, pp.3597-3603にあるAlexanderらの文献を参照されたい。
天然細菌レセプター構造体の改変に関しては、その置換を遺伝子工学、例えば部位特異的変異誘発により行うのが好ましい。
改変された天然細菌レセプターの相互作用相手については、多くの物質、例えばタンパク質、脂質、炭水化物および無機物質などが考えられる。炭水化物の例としては、血液型決定因子および病原体特異的オリゴ糖が挙げられる。
タンパク質について考え得る相手は、相互作用相手としてのIGF-I、IGF-II、hGH、第VIII因子、インスリンおよびアポリポタンパク質、およびそれらのそれぞれの受容体である。更にまた、様々な折りたたみ形態のタンパク質に対する特異性を有する新規レセプター変種を選択することによって、正しく折りたたまれた分子の単離を容易にするアフィニティー樹脂または分析ツールを生産することができる。更なる例は、ウイルスコートタンパク質、細菌抗原、ビオチンおよび細胞マーカー、例えばCD34およびCD4である。
本発明は様々な天然細菌レセプターに適用可能であるが、以下の本発明のより詳細な説明はIgG結合性ドメインZ、C1およびB2A3の使用に向けられている。天然細菌レセプターの天然構造体に基づいた人工細菌レセプターの使用にある本発明概念にはいくつかの長所が伴う。すなわち本発明により、強く、安定した、高溶解性の、そして分泌能のあるレセプターを用いることが可能になる。このことは、貯蔵、条件変動例えば温度変動などに関しさほど安定でないポリクローナル体およびモノクローナル体の、例えば診断目的のための、使用に基づく従来技術とは対照的である。更にまた、本発明により、天然細菌レセプターを改変して特定目的に望ましい相互作用能力を獲得することができるようになる。
大きなレパートリー中で、かかる機能的変種を選抜するには、強力な選抜システムを採用しなければならない。この分野における最近の発展は様々な方法の選択肢を提供してくれる。この数年の間に出現したタンパク質エンジニアリングのための最も重要なツールの一つは、タンパク質のファージディスプレイである。組換えDNA法によって、それらの表面にタンパク質をファージコートタンパク質に融合した形で相持する個々のファージ粒子を調製することができる。様々なタンパク質または特異タンパク質の変種を有するファージの大プールからパンニング(panning)することによってある結合特徴を示す特定のファージクローンを選抜することができる〔WinterらへのWO 92/20791〕。ファージ粒子はファージタンパク質成分をコードする詰込みDNAを含んでいるので、ディスプレイされたタンパク質の特定変種と対応する遺伝情報との間のカップリングが得られる。この方法を用いて、典型的には109ファージクローンを同時的に生成させそして所望の特徴の選抜のためのパンニングにかけることができる。ファージディスプレイ法は小タンパク質のほか、より複雑なタンパク質、例えば抗体、レセプターおよびホルモンなどの選抜にも用いることができる。ファージディスプレイの前提要件となる分泌が不可能なタンパク質の選抜には、細胞内システムが開発されていて、その場合、タンパク質のライブラリーが特定プラスミド担持オペレーター領域に対する親和性を有するレプレッサータンパク質に融合される結果、特定タンパク質変種とそれをコードするプラスミドとの間のカップリングが得られる。タンパク質ライブラリーの担持体としてのファージの代替物の一つは、細菌細胞の使用であろう。最近、細胞壁アンカリングドメインへの融合に基づくスタフィロコッカス・キシロサス(Staphylococcus xylosus)の表面への組換えタンパク質のディスプレイが実証されたが、このことは、特定変種のアフィニティー選抜のためのタンパク質のレパートリーのディスプレイについても可能性を開くものである〔Hansson, M. et al 1992 J. Bacteriology 174:4239-4245〕。更にまた、コンピューターグラフィックシミュレーションを用いて構造モデル化を行うことにより、あるタンパク質の変えられた変種の結合および機能を、該タンパク質をコードする遺伝子を構築する前に理論的に予測できる。
前述のとおり、本発明は、殺菌レセプター由来のドメインの表面露出アミノ酸の変異誘発に基づく新規タンパク質の構築を記述するものである。これらの人工細菌レセプターはファージディスプレイシステムを用いて様々な応用目的のために選抜することができる。細菌レセプターを構造枠組として用いることから来る利点にはいくつかがある。それらは、全体構造を乱すことなく結合機能を発現するように進化している。それらは、当然ながら、易溶性で、非生理学的条件例えばpHおよび熱に対して強く、折りたたみ効率がよく、また加えて分泌能がある。
本発明は、いくつかの様々な分野で有用である。前述の特許明細書WO 92/20791の導入部は抗体およびそれらの構造に関する優れた調査結果を記載している。特にその第1頁が参考となる。
細菌レセプターSPAおよびSPGは、例えばハイブリドーマ上清および腹水液などからの抗体を検出および精製する目的で抗体技術に広く用いられている。しかしながら、生物種およびサブクラスによっては、すべての抗体がこれらのレセプターによって認識されるわけではない。抗体のより小さい亜断片に対しては(Fig.4)、SPAおよびSPGは限られた結合しか示さず、また一般的精製スキームのための効率的ツールが欠如している。しかしながら、SPAおよびSPGを含む変異レセプターのレパートリーからは、抗体およびそれらの亜断片に対するより広い親和性を示す形態のものを可能性として選抜することができる。
抗体の複雑な構造組織は、様々な応用目的に用いる上で、また組換え誘導体を生産する上で多くの重要性を有する。免疫収着剤に用いる場合、ジスルフィド結合により接合されたサブユニットの配置は、遊離重軽鎖のカラムからの漏れを招くことがある。抗原結合部位に寄与する二つのサブユニットをうまくドッキングさせなければならないために、会合度の低い小さな亜断片を細菌内生産させることは困難になる。抗体の折りたたみは、鎖内および鎖間ジスルフィド結合の形成に依存するが、それら結合は細菌細胞の細胞内環境中では形成し得ない。組換え抗体用の高水準細胞内発現系は封入小体形成を招き、そしてその封入小体は生物学的活性の獲得のためには復元されなければならない。これらの制約のために、広範多岐にわたる応用において抗体に代えて、特異的結合可能なタンパク質ドメインとして用いるための代替物を探索することには価値がある。
抗体の抗原結合部を形成するCDR領域は、約800Å2の抗原利用可能総面積を形成し、抗体からの典型的な10〜20残基が結合に関与する。出発点としてSPAの一つのドメインBとヒトfc〔IgGI〕との間のX線結晶学的方法により決定された複合体の構造を用いて、この結合に関与する前記ドメインの約15アミノ酸を決定または仮定することができる。約600Å2の結合面積は抗体とその抗原との間と同程度の大きさである。これらの位置の任意の試験管内変異誘発により、同時に、改変された機能性質を有するZ変種の大ライブラリーが得られる。極めて安定したいわゆる三ヘリックス束(three-helixbundle)を構成するZドメインの領域がその天然型のままに維持されることから、「人工抗体」と考え得る、また期待される易溶性および多数の新リガンドに結合できる優れた折りたたみ特性を有する、様々な範囲のタンパク質が生成する。不変領域へのこれら人工レセプターの融合体を、エフェクター機能、例えば補体結合またはADCC(抗体依存性細胞性細胞傷害作用)のトリガリングといった機能を新規導入するために構築することができる。
このような「人工抗体」または人工細菌レセプターの出発点としてSPA構造〔D〕を利用することにはいくつかの潜在的長所がある。約10年にわたって、多くのタンパク質がSPAへの融合体として生産されているが、その場合には融合相手の発現、再折りたたみおよび精製上の独特な性質が利用されている。これらの応用例において、Zドメインは極めて安定であって、プロテアーゼに対して安定であり、大量に生産しやすく、そして細胞内的にも大腸菌内で正しい構造に折りたたみ可能(システインなし)であることがわかっている。免疫グロブリン(Ig:S)は、実質的に、抗原結合性ループ(こちらの方は連続ペプチド配列で構成されている)の配向を安定させる、いわゆるβ-シート構造から構築されたテトラマーである。これと比較すべきは、三つの密に充填されたα-ヘリックス構造より成るいわゆる三ヘリックス束から構築されるモノマーZドメインであって、その場合には、Fc結合性アミノ酸は配列中に非連続的に認められるが折りたたまれたタンパク質中では一つの同じ結合表面に位置している。結合表面の形成に寄与する構造要素に関するこの相違は、天然抗体では得ることのできない新しい可能性としてのコンホメーションを可能にするものである。細胞質部位に普通にみられる条件下においても天然構造に折りたたまれるZの能力は、それらの誘導体の臨床使用の可能性を開くものである。例えばウイルス中和能を有する人工抗体をコードする遺伝子をいわゆる遺伝子療法を通して細胞に分布させて感染を初期段階で阻止することができる。
SPGの一つのIg結合性ドメイン〔C1〕とヒトFcとの間の複合体の構造データから結合表面を調べることができる。本質的に静電的性質を有するその結合には、α-ヘリックスからの、および後に続くβ-シート〔#3〕からのアミノ酸からの側鎖が関与する。Zドメインと比較した場合のこれらの相違から、人工抗体の結合パターン上の相違が結合表面のトポロジーに関する様々な条件に依存して観察され得るかどうかを調べるためにC1変種のライブラリーを作ることも有用となる。従ってこれらの、およびその他のレセプターの構造に基づくレパートリーは、新機能を有する人工形態を創製する上で様々な可能性を提供する。
組換えタンパク質を生産する際に生産物の精製が主な問題となることがしばしばである。標的タンパク質をいわゆるアフィニティーテイルへの融合体として発現することによって、そのハイブリッド生産物を細胞溶解液から、または場合によっては培地から、固定リガンド含有カラムを通して効果的かつ選択的に回収することができる。あるタンパク質とリガンドとの相互作用に基づくいくつかのそのような遺伝子融合系が報告されている。工業的応用の場合は、当局による純度要件を満たすべく作業間にカラムを効果的に清浄化することがしばしば望ましい。タンパク質の性質によるが、しばしば有機または物理的マトリックスに対して、例えばイオン交換クロマトグラフィーおよびゲル濾過などに用いられる比較的過酷な条件(NaOH、酸、熱)は通常用い得ない。ここに細菌レセプター由来の安定構造体に基づく新リガンドを用いることの大きな重要性がある。これに関して、SPAからのZドメインは優れた例である。なぜなら該ドメインは、pH1あるいは80℃への加熱などといった困難な条件に、非可逆的に変性することなく、付すことができるからである(後記実施例2参照)。例えばZ変種のライブラリーからは、アフィニティークロマトグラフィー用固相に固定して用いるための興味深いタンパク質生産物を選抜することができる。これらのタンパク質リガンドは効果的精製条件に対して抵抗性があり、またそれ故に大規模に反復使用できる。固定モノクローナル抗体がある生産物の選択的精製に用いられる伝統的免疫アフィニティークロマトグラフィーにおいては、抗体がシステイン橋により連結された四つのポリペプチド鎖から構成されていることから、そのサブユニット(重および軽鎖)がカラムから漏れるという問題がある。本発明の人工細菌レセプターは一つのポリペプチド鎖だけで構成されているのでこの問題は回避される。興味深い一つの特別の分野は、炭水化物への結合のための選抜である。この大きなそして重要なバイオ分子群に対する天然バインダーであるレクチンは精製しにくくまた安定性に限界があることがわかっている。炭水化物に対する抗体の発生は極めて複雑であることがわかっていることから、新しい人工レクチンの選抜は、研究、診断および治療にとって極めて重要になる。
細菌宿主中で組換えタンパク質を生産すると、遺伝子生産物の沈殿、いわゆる封入小体がしばしば形成される。タンパク質の天然構造体を得るにはこれを試験管内復元にかける必要がある。かかる方法においてしばしば直面する一つの制約は、物質の大部分が手順の中で沈殿してしまうため歩留りが低下することである。短い親水性ペプチドまたは易溶性完全ドメインのいずれかの形の鎖長のタンパク質を生産することにより〔Samuelsson, E. et al 1991 Bio/Technol. 9:363-366〕復元中に沈殿が起きることなく、実質的により高濃度のタンパク質が得られる。例えば、前記ドメインの高溶解度は、タンパク質の増大した溶解度を封入体からの再折りたたみあるいはジスルフィド橋のいわゆるリシャッフリングに用いることを可能にする。人工レセプターのライブラリーからは、組換えタンパク質の再折りたたみを容易にしそして可能にさえもする改良された性質を有する新しい形態を選抜することができる(シス-作用性シャペロン)。
最近、いわゆる膨張床(expanded bed)でのイオン交換クロマトグラフィーに基づく組換えタンパク質精製のための新しい単位操作が報告されている〔Hansson, M. et al 1994 Bio/Technol. inpress〕。これに関し、正荷電イオン交換マトリックスでの選択的濃縮には、標的タンパク質と宿主細胞のタンパク質との間の等電点の差が利用される。酸性Zドメイン(pI 4.7)への融合により、イオン交換段階は大部分の汚染物質が融合タンパク質とは反対電荷を有するpHで行うことができる。選択されたアミノ酸が酸性アミノ酸であるアスパルテートおよびグルタメートにより置換されている細菌レセプターのライブラリーを構築することにより、組換えタンパク質生産における融合相手として用いるための、同じく極めて酸性がある溶解度増大ドメインを生産することができる。
前述のとおり、タンパク質リガンドに基づくアフィニティー系はカラムの清浄化に過酷な条件が必要とされることから、工業目的には全面的に適しているわけではない。それ故、簡単で安価な有機リガンドに対して特異的親和性を有する融合相手が必要とされている。かかるリガンドに対する様々な細菌レセプターのファージディスプレイライブラリーのパンニングにより、組換えタンパク質の生産精製のための融合相手として用いるのに適した新しいアフィニティーテイルが提供される。
本発明は新しい機能を有するタンパク質を生産および選抜するための手段を提供する。本発明により、これは細菌レセプターの安定ドメインの規定された残基に広範な変異誘発を行うことによって達成される。本発明の人工細菌レセプターはその新しい機能の故に治療、診断、バイオテクノロジーのための、あるいは研究用の特異的バインダーとして用いることができる。
以下、本発明を添付図面を参照しつつ特定の実施例により詳述する。図面中、
図1.A.シグナルペプチド(S)、五つのIgG結合性領域〔E-D-A-B-C〕、次いで細胞壁アンカリング領域〔X-M〕を示すぶどう球菌プロテインAの概略図。
B.X線結晶学的方法によって決定されたSPAからのドメインBとヒトFc1との複合体のコンピューターグラフィック図。本図にはSPAの第三ヘリックスが見られない点に留意。
図2.A.シグナルペプチド(Ss)、領域E(E)、反復性血清アルブミン結合性A−B領域、スペーサー領域(S)、次いでD領域により隔てられたIgG結合性ドメインC1〜C3、そして最後に細胞壁アンカリング領域W−Mを示す、G148株からの連鎖球菌プロテインGの概略図。
B.X線結晶学的方法により決定された、SPGのドメインC1とヒトFc1との複合体のコンピューターグラフィック図。
図3.58残基SPAアナローグZの三ヘリックス束構造の概略図。ヘリックス-ヘリックス詰込みを安定化させるF30を除いてFcへの結合に関与するとされている側鎖の一部が示されている。
図4.各種亜断片であるFab、Fd、Fcおよび、短い(約15aaの)リンカーにより接続されたVHとVLとで構成されるscFvを示す、IgG抗体構造。
図5.A.Z遺伝子ライブラリーの作成に用いられる遺伝子組立て手法の一般的考え方。酸性Z誘導体のライブラリーを構築するには、縮退オリゴヌクレオチドであるACID-1、ACID-2を用いて残基9、11、14、32および35だけを変える。組立て後のライブラリーの増幅に用いられるPCRプライマーはZLIB-3(PCRプライマー5′)およびZLIB-5(PCRプライマー3′)とした。
B.Z-ドメインの58残基のうち46個をコードする組立て後のライブラリーを増幅して得られるPCR生産物は、Zの残りのC-末端部を取り込んだファージミドDNA中にクローン化することができる。この遺伝子はM13ファミリーの大腸菌バクテリオファージのプロテインIII遺伝子とフレームをあわせて融合される。これによって酸性Z変種のレパートリーをファージ表面にディスプレイすることができる。
図6.Zライブラリーの構築に用いられるオリゴヌクレオチド。実施例2に記載の酸性Z-変種のライブラリーにはオリゴヌクレオチドZLIB-1、2、3、4、5、LONGBRIDGE、ACID-1およびACID-2だけを用いた。
図7.酸性Zタンパク質ライブラリーに由来するクローンのDNA配列。肉太数字はZ-ドメインにおけるアミノ酸位置を示している。明確にするために、制限部位AccIおよびNhe1の位置Lが示されている。
図8.pH2.9における一つのZドメインの温度安定性の分析結果。検体中のα-ヘリックス含量は、温度スキャン中、s222nmにおいて楕円率を測定することにより監視した。
図9.ファージミドベクターpKN1。斑入り(variegated)ヘリックス1および2をコードするライブラリーPCR生産物(酸性および広範(extensive)ライブラリーの両方)を、野生型Zドメインの残基44-58(本質的にヘリックス3)の遺伝子とその後に続く、M13ファージコートタンパク質3遺伝子の端部切除体とフレームをあわせて連結されたぶどう球菌プロテインGに由来する46残基血清アルブミン結合性領域(ABP)の遺伝子にサブクローン化した。このファージミドはプラスミドpBR322に由来する複製開始点およびファージ粒子への詰込みに必要な遺伝子間領域(f1 ori)を含有する。
図10.SDS-PAGE。それぞれのファージミドベクターからコードされたABP融合タンパク質として野生型Zドメインおよび二つの異なる酸性Z-変種を産生する大腸菌細胞のペリプラズムから得られたHSA-アフィニティー精製タンパク質をSDS/PAGEにより分析した。M、分子量マーカー;レーン1、野生型Zドメイン;レーン2、クローン10;レーン3、クローン12。
図11.CD-データ。Z-タンパク質ライブラリーの野生型Zドメインと二つの変種について得られたCDスペクトルの重ね合わせプロット。タンパク質の信号は、分析中に共存するABPテイルのCD信号寄与を差し引いた後に得られた。
図12.イオン交換クロマトグラフィー。二つの酸性Z-変種タンパク質No.10およびNo.12、および野生型Z-ドメイン(ABP融合タンパク質として生産)を各々陰イオン交換クロマトグラフィーカラムを用い、pH5.5で分析にかけた。カラムからのタンパク質溶出はNaCl勾配によって得た。上位:酸性Z変種No.12;中位、酸性Z変種No.10;下位、Z(野生型)。野生型Z-タンパク質はこのpHにおいてカラムで遅延しなかった点に留意。
図13.Z-ドメイン構造。天然Z-ドメイン構造モデルの主鎖トレース図。ヘリックス1および2の構造はSPAのドメインBとFcとの間の共結晶構造からのものである(Deisenhofer,(1981)Biochemistry, 20, 2361-2370)。第三ヘリックスはNMR分光法からの二次的構造帰属に基づいて作成された(Gouda et al.,(1992)Biochemistry, 31, 9665-9672)。組合せライブラリー(combinatorial library)構築の際に変異された残基の側鎖の非水素原子が玉-棒モデルとして表示されている。このディスプレイはプログラムMOLSCRIPTによって作成された(Kraulis(1991)J. Appl. Cryst., 24, 946-950)。
図14.アミノ酸配列。ライブラリーから無作為抽出された31個のZ-変種のDNA配列決定結果。変異誘発を受けた残基は枠で囲んである。水平線は最上位に掲げた野生型Z配列と同じヌクレオチドであることを示している。示されているのはABP-テイルへの融合タンパク質として発現され特性評価されたクローンである。
図15.アミノ酸分布。変異位置における推定アミノ酸の統計的解析結果。全部で、31クローンからの13残基(403コドン)を計算に含めた。20個すべてのアミノ酸のほか、NNG/T縮退プロフィールに含められた単なる停止信号(TAG)についても実測頻度と予測頻度の割合が示されている。
図16.SDS-PAGE分析。それぞれのファージミドベクターからコードされたABP融合タンパク質として野生型Zドメインと四つの異なるZ-変種を産生する大腸菌細胞のペリプラズムから得られたHSA-アフィニティー精製タンパク質をSDS/PAGEにより分析した。レーン1−5:還元条件。レーン6および7:非還元条件。レーン1、野生型Zドメイン;レーン2、クローン16、レーン3、クローン21;レーン4、クローンー22;レーン5、クローン24;M、分子量マーカー;レーン6、クローン16およびレーン7、クローン22。
図17.CD-データ。α-ヘリックスタンパク質表面ライブラリーの野生型Zドメインと四つの変種について得られたCDスペクトルの重ね合わせプロット。それら変種の信号は分析中に共存するABPテイルのCD信号寄与を差し引いた後に得られた。
図18.バイオセンサーアッセイ。ABPテイルに融合された四つの異なる変種(No.16、21、22、24;図14)と野生型ZドメインのBIA-coreTM分析から得られたセンサーグラムの重ね合わせプロット。それら各種タンパク質のIgG結合活性は、約5000RUヒトポリクローナルIgGで被覆されたセンサーチップを用いそして各種タンパク質の1500nM溶液を2μl/分で45μlパルス注入して分析した。変種No.16、21、22および24を注入中の信号のプラトー値の相違は、駆動緩衝液中への希釈度が様々であることによる点に留意。
すべての試薬およびDNA構築物はスエーデン国ストックホルムの王立技術研究所、生化学・生命工学部(The department for Biochemistry and Biochemistry, Royal Institute of Technology, Stockholm, Sweden)で入手可能である。
材料
オリゴヌクレオチド(図6)をスカンジナビアン・ジーン・シンセシス(Scandinavian Gene Synthesis)(スエーデン)から購入し、そして指示されている場合には〔Maniatis et al(1988)Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press〕に従ってリン酸化した。ZLIB-1は5′-末端でビオチン化され、ダイナール(Dynal)A/S(ノルウェイ)から購入した常磁性ビーズM-280ストレプトアビジンへの固定化が可能となる。洗浄/結合緩衝液は1M NaCl、10mM Tris-HCl、pH7.5、1mM EDTA(エチレンジアミン四酢酸)とした。アニーリング/連結緩衝液は30mM Tris-HCl、pH7.5、10mM MgCl2、0.2mM ATP、1mM 1.4ジチオトレイトール(DTT)とした。DNAリガーゼはベーリンガー・マンハイム(Boehringer Mannheim)(ドイツ)から入手した。10×PCR緩衝液は20mM MgCl2、2mM dNTP、100mM Tris-HCl、pH8.3、50mM KCl、1%Tween 20を含有した。Taq DNAポリメラーゼはシータス社(Cetus Inc.)(米国)から入手した。サーマルサイクラーはパーキン-エルマー(Perkin-Elmer)9600とした。温度/安定性スキャニングにはJ-720分光偏光計(JASCO、日本)を用いた。適格性(competence)を有するように調製された〔Maniatis et al(1988)Molecular cloning. A laboratory manual. Cold spring Harbor Laboratory Press〕大腸菌株RR1ΔM15
Figure 0004089920
を形質転換用宿主として用いた。寒天プレートは100μg/mlのアンピシリンを含有した。
実施例 1
酸性Z-ライブラリーの構築
イオン交換クロマトグラフィーによって精製すべき組換えタンパク質のための融合相手を生産するために、合成58残基SPAアナローグZ〔Nilsson et al, Prot, Eng〕を変異誘発アプローチにかけてpIが変化した新変種を構築した。SPAのB-ドメインとヒトFc1との複合体の結晶構造に基づいて〔Deisenhofer, J. et al 1981,Biochemistry 20: 2361-2370〕、結合に参加するB-ドメインからの5残基を変異誘発の標的として選択した。ヘリックス1および2に位置するZ-残基No.9、11、14、27および35に対応するこれら五つのコドンを、縮退オリゴヌクレオチドを用いて同時的に変えると、これらの位置におけるトリプレット配列G(C/A)(C/A)はアミノ酸であるアラニンのコドン(50%)、アスパラギン酸のコドン(25%)およびグルタミン酸のコドン(25%)をそれぞれ生じる。固相遺伝子組立て手法
Figure 0004089920
を用いて、合成IgG結合性Z-ドメインの35(243)の酸性変種をコードする遺伝子のライブラリーを創製した(図5)。20μl(200μg)の常磁性ストレプトアビシン-被覆ビーズを洗浄/結合緩衝液で洗浄し、そして15pmoleのプレハイブリダイズされたZLIB-1(ビオチン化されている)およびZLIB-2と共に、洗浄/結合緩衝液の最終容量を40μlとしてRTで15分間インキュベートした。連結および洗浄の後、各々約15pmoleのオリゴヌクレオチドACID-1(縮退)、LONGBRIDGEおよびACID-2(縮退)およびプレアニールされたリンカー対ZLIB-4/ZLIB-5を、
Figure 0004089920
〔Biotechniques 14: 424-434〕に従って洗浄段階をはさみながら、くり返し添加した。組立て完了後、様々な断片を37℃で15分間連結した。ビーズ上に依然として同定されているZ(酸性)-ライブラリーをコードするDNA量を増幅するために、一部を抜出してPCRにかけた。そのPCR混合物(50μl)は各々1pmoleのPCRプライマーZLIB-3およびZLIB-5、各々5μlの連結混合物、10×PCR緩衝液および10×CHASE、1単位のTaqポリメラーゼおよび全量を50μlにするだけの滅菌水を含有した。温度循環プログラムは次のとおりとした:96℃、1分、60℃、1分および72℃、2分を35サイクル反復した。1%アガロースゲル電気泳動による分析は179bpという予測されたバンドを示し、前述の組立ての考え方が実施可能であることがわかる。Z(酸性)-ライブラリーのPCRからの179bpバンドをゲルから切り出し、そして粗製(GenecleanTM、Bio 101、Inc.米国)後に固相DNA配列決定〔Hultman et al, 1988〕に適したプラスミドベクター(TA-cloningTMキット、Invitrogen, Inc.米国)に挿入した。形質転換を行い、そしてアンピシリン含有寒天プレートに塗布した後得られた配列の分析のために二つのコロニーを選択した。その結果(図6)は、所望の位置に予測された縮退がみられることを示している。
実施例 2
Zコンホメーションの温度安定性の測定
Zコンホメーションの温度安定性は、温度スキャンを通して円二色性(CD)分光法により222nmでの楕円率を追跡することによって測定した。この波長はZのα-ヘリックス度の存在を監視するために用いられる〔Cedergren et al. 1993, Prot. Eng. 6: 441-448〕。分子を不安定化するためにどちらかというと低いpH(約2.9)で実験が行われた。何故なら、温度変性の中間点(Tm)は中性pHにあっては〜95℃であり(データは示していない)、これは正常大気圧下においてトランジションを通過する完全なスキャンにより測定できる範囲の外にあるからである。この実験は、Zドメインの(温度スキャンの変曲点により規定される)TmがpH2.9において71℃もの高さであることを示している(図8)。このことはZ分子のα-ヘリックスの温度安定性が極めて高いことを実証している。
実験はJ-720分光偏光計(JASCO、日本)で行われ、そして温度は、NESLAB水浴からキュベットホルダーを通して水を循環することにより調節した。温度はキュベット中でマイクロセンサーデバイス(JASCO、日本)を通して監視した。緩衝液は50mM酢酸、pH2.9とした。タンパク質はドメインZ〔Cedergren et al, 1993, Prot. Eng. 6:441-448〕を50μg/mlのタンパク質濃度で用い、そしてキュベットセル通路長は1cmとした。実験における温度スキャン速度は50℃/時とした。
実施例 3
酸性Z-ライブラリー由来タンパク質の特性評価
酸性Z-ライブラリーに由来する二つのタンパク質変種を大腸菌で発現させ、精製しそしてSDS-PAGE、円二色性およびイオン交換クロマトグラフィーを用いて特性評価した。固相遺伝子組立てで得られたPCR生産物(実施例1参照)を、200μlの緩衝液(33mM Tris-アセテート、pH7.9、10mM酢酸マグネシウム、66mM酢酸カリウム、0.5mM DTTおよび0.1mg/ml BSA)中で45U Esp3I(Labassc AB、スエーデン)および50U Nhe I(Pharmacia・スエーデン)を用いて制限した。この混合物に鉱油を重層しそして37℃で一夜インキュベートした。制限断片(約5μg)をフェノール/クロロホルム/イソアミルアルコール抽出に続いてクロロホルムを用いた付加的洗浄を行うことにより精製し、次いでエタノール沈殿させてからMlu I-Nhe I切断pKN1ベクター(1μg)(後記参照)に13.5Weiss単位のT4DNAリガーゼを用いて15℃で一夜連結させた。その連結混合物を70℃で20分間熱処理し、フェノール/クロロホルム/イソアミルアルコールで抽出した後クロロホルムで洗浄し、エタノール沈殿させそして20μlの滅菌水に再溶解した。
前記ファージミドベクターpKN1(図9)をいくつかの段階を踏んで次のようにして構築した。Z-ドメインの不変残基44-58をコードする二本鎖リンカーをオリゴヌクレオチドZLIB-6およびZLIB-7から形成しそしてファージミドpKP 986
Figure 0004089920
中のMlu I-Xho I断片としてクローン化し、その結果pKNを得た。プラスミドPkp986は大腸菌OmpAリーダーペプチド、それに続くfd繊維状ファージコートタンパク質3(Lowman et al.(1991)Biochomistry, 30, 10832-10844)の残基249-406をlacプロモーターのコンロール下にコードしている。連鎖球菌プロテインGに由来する一価血清アルブミン結合性領域をコードする遺伝子断片を、プライマーABP-1およびABP-2(それぞれXhoIおよびSalI認識部位を含有)を用いてプラスミドpB2T(Eliasson et al, Molecular Immunol., 28, 1055-1061)からPCRにより増幅し、そしてXho制限プラスミドpKNにクローン化し、pKN1を得た。従ってそのファージミドベクターは、OmpAシグナルペプチド、野生型Zドメインの第三ヘリックス、それに続くfdファージタンパク質IIIの残基249-406に連結された46残基アルブミン結合性タンパク質(ABP)をコードしており、またZドメインの斑入りヘリックス1および2をコードするEsp 3I/NheI-消化PCR生産物の挿入に適合している。
凍結応答性の大腸菌RR1ΔM15(supE44 lacY1 lacZ ara-14 galK2 xyl-5 mil 1 leuB6 proA2Δ(mrcC-mrr)recA+ rps20 thi-1 lambda-F〔lac/q lacZΔM15〕)
Figure 0004089920
細胞をManiatisおよび共同研究者(Maniatis et al,(1982)Molecular cloning: A Laboratory Manual, Cold Spring Harbor, Cold Spring Harbor Laboratory Press)に従って連結混合物で形質転換し、そして100μg/mlアンピシリン(Sigma、米国)および1%グルコースを含む寒天プートに塗布した。無作為に採取したコロニーからの少量の細胞を、20mM TAPS(pH9.3)、2MM MgCl2、50mM KCl、0.1% Wween 20、0.02mMデオキシリボヌクレオシドトリホスフェート(dNTP)および1.0UのTaq DNAポリメラーゼ(Perkin-Elmer)中の5pmoleのプライマーRIT-27およびNOKA-2(ビオチン化されている)を用いて、Gene Amp PCR System 9600(Perkin Elmer、米国)での2-段階PCR増幅(30サイクル:96℃、15秒間;72℃2分間)に別々に付した。PCR生産物の固相DNA配列決定は、ロボットワークステーション(BiomekTM 1000, Beckman Instruments, Fullerton, CA)とのFITC標識配列決定用プライマーNOKA-3(固定化らせん用)およびABP-2(溶出らせん用)およびAutomated Laser Fluoreseent(A.L.F.)DNA SequencerTM(Pharmacia Biotech,スエーデン)を用いてHultmanおよび共同研究者(Hultman et al.,(1989)Nucleic acids Research, 17, 4937-4946)の記載の如く行った。
表1のようにZ-ドメインの9、11、14、27および35位に様々なコードされた酸性アミノ酸置換を有する二つのクローンを更なる分析のために選抜した。野生型Zドメインと二つの異なる酸性Z-変種タンパク質(クローンNo.10および12)をそれぞれのファージミドベクターから血清アルブミン結合性テイル(ABP)への融合体として発現させそしてヒト血清アルブミン-アフィニティークロマトグラフィーにより精製した。
Figure 0004089920
対応するファージミドベクターを取込んだ大腸菌RR1ΔM15細胞を用いてアンピシリン(100μg/ml)を補った100mlのTryptic Soy Broth(Difco)に接種した。それら培養物を37℃でOD600nm=1となるまで増殖させた後、最終濃度1mMのIPTGで誘導しそして30℃で一夜インキュベートした。約5000gで10分間の遠心分離により細胞収集しそしてペリプラズム内タンパク質を浸透圧ショック法により遊離させた。細菌からのペリプラズム成分をNygrenおよび共同研究者(Nygren et al.,(1988)J. Mol. Recognit., 1, 69-74)の記載するところに従ってアフィニティークロマトグラフィーにかけ、そして均質12%スラブゲル(BioRad Inc.,米国)でのSDS/PAGE(その染色はCoomassie Brilliant Blue R-250を用いて行った)により分析した。すべてのタンパク質について、1.5〜2.5mg/l培養液を回収することができたが、このことは変種および野生型ドメインについて産生および分泌効率が同様であることを示している。更に、精製タンパク質のSDS-PAFE分析(図10)結果は分析された維持Z変種が大腸菌内で安定的発現されることを示唆している。
表面変異誘発後に誘導体の二次構造成分が保存されているかどうかを調べるために、差し引き円二色性分析を行った。IgG-または、HSA-アフィニティークロマトグラフィー精製タンパク質Z、Z-ABP、ABPテイルに融合された酸性誘導体No.10および12およびABP-テイルそれ自体を、J-720分光偏光計装置(JASCO、日本)を用いて室温で250〜184nm(遠紫外)円二色性分析にかけた。スキャン速度は10nm/分とした。セル通路長は1mmとした。各種タンパク質の溶液(約0.1mg/ml)を0.05%Tween 20(Kebo AB、スエーデン)を補った20mMリン酸緩衝液pH6.5中で調製した。正確なタンパク質濃度はSystem Goldデータ処理システムを備えた。Beckman 6300アミノ酸分析機でのアミノ酸分析により測定した。誘導体のCD信号は、タンパク質濃度差を調整し次いでアミノ酸含量について規格化した後、ABPテイルについて得られる信号を差し引くことによって得られた。
ABP-テイルに融合した野生型Zドメインおよび酸性変種について250〜184nmより得られる信号の比較をそのABP-テイルそれ自体よりの寄与を差し引いた後に行った。この結果は、それら二つの酸性Z-誘導体について、208nmに特徴的極小値および222nmに変曲点(Johnson、1990)を持つ野生型Zドメインと同様のスペクトルが得られたことを示している(図11)。このことは三ヘリックス束の枠組がこれらの変異体においても保存されていることを示唆している。
前記の二つのZ-変種、No.10および12は天然Z-ドメインと比較するとそれぞれ四つおよび三つの導入酸性アミノ酸を含有している。その導入された酸性が等電点の差に反映されているかどうかを調べるためにそれらを陰イオン交換カラムからの勾配溶出に付した。(すべてABP融合タンパク質として生産された)タンパク質Z(野生型)および酸性変種No.10および12を各々(5μgずつ)300μlの20mM Piperazine緩衝液(pH5.5)に溶解しそして別々にMonoQ、PC1.6/5カラム(Phamacia、スエーデン)に100μl/分でかけた。タンパク質の溶出は20分間で0〜50%NaClという範囲に及ぶPiperazine緩衝液(pH5.5)(Sigma、米国)中のNaCl勾配をかけることによって行った。この分析からの結果(図12)は、それら二つの酸性Z-変種タンパク質が異なるNaCl濃度で溶出され、等電点の明らかな相違を示唆しているを示している。これに対し、実験中に選択されたpHでは、野生型Z-ドメインは前記樹脂と相互作用せず、従ってフロースルー中に見られた。
すなわち、前記二つの酸性Z-変種タンパク質について行われた一連の実験は、それら変種の発現挙動、タンパク分解安定性および二次構造成分が天然Z-ドメインと比較した場合に変化しなかったことを示している。更に、それら二つのZ-変種には表面所在位置を酸性アミノ酸で置換することにより新しい機能が導入された。それら二つの酸性変種は、例えば、低pHでのイオン交換クロマトグラィーによる組換えタンパク質の精製を容易にするために融合相手として用いることができる。すなわち、酸性Z-ライブラリーのメンバーの中から新しい機能を持つ変種を単離できることが示される。
実施例 4
Z-変種の組合せライブラリーの構築および特性評価
固相遺伝子組立て手法を用いてZ-変種のライブラリーを構築した(実施例1参照)。Fcへの結合に参加するものと示唆されている(Deisenhofer,(1981)Biochemistry, 20, 2361-2370)アミノ酸残基の大部分は分子表面にある(Q9、Q10、N11、F13、Y14、L17、N28、Q32およびK35)ことが認められ、従って変異誘導に含まれる。加えて、それらの表面局在に基づき、他の残基(H18、E24、E25およびR27)も含まれるものと決定された。このように全部でZ骨格中の13残基が同等的かつ無作為変異誘発に選択された。Zと記される58-残基一価IgG-結合性ドメインの表面変異体のライブラリーを構築するために一組のオリゴヌクレオチド(図6)を合成した。このライブラリーにおいて、Z-ドメインの第一α-ヘリックスに位置するQ9、Q10、N11、F13、Y14、L17およびH18のコドンと第二α-ヘリックスにあるE24、E25、R27、N28、Q32およびK35のコドン(図13)を、構築用の一本鎖縮退オリゴヌクレオチドを用いた固相法により縮退NNK(K=GまたはT)コドンで置換した。選択されたNNK縮退はTAG(アンバー)停止信号を含む全20個のアミノ酸をカバーする32コドンを含む。
遺伝子組立て中の固体支持体として用いられるストレプトアビジン-被覆常磁性ビーズへの強いアンカリングを可能にする5′ビオチン基を有するオリゴヌクレオチドZLIB-1を合成した。このZLIB-1オリゴヌクレオチドはその相補配列(ZLIB-2)と共に、Z-ドメインの残基1−8、およびそれに先行するZ変種の大腸菌分泌を容易にするために含められたプロティンAの領域Eの最初の6残基
Figure 0004089920
をコードしている。オリゴヌクレオチドDEGEN-1およびDEGEN-2(図6)は、通常Fc-結合に関与するZドメインの二つの変異ヘリックスをコードする。理論的には、前記の13個の選定位置で完全かつ同時にNNK縮退があれば、3.7・1019の異なるDNA配列によりコードされた約8・1016タンパク質変種の組合せライブラリーが得られることになる。しかし、ここではライブラリー構築は約15pmoleのプレハイブリダイズされたオリゴヌクレオチドZLIB-1およびZLIB-2(図6)の固定化から開始されており、そのためにZ-ライブラリーの理論的サイズは、約2・1010Z変種をコードする約0.9・1013の各種DNA配列に制限される。この組立てに続いて、架橋オリゴヌクレオチドBRIDGE(図6)により容易化された等モル量のオリゴヌクレオチドDEGEN-1およびDEGEN-2の連結により得られる前形成構築物の添加および連結を行った。
この組立てを完了させるために、プレハイブリダイズされたオリゴヌクレオチドZLIB-4およびZLIB-5より成る断片を連結目的でビーズに添加した。この断片はZドメインの第2ループと不変第三ヘリックスの最初の6残基をコードする。組立て完了後、それぞれエンドヌクレアーゼEsp 3およびNhe Iの認識配列を含むヌクレオチドZLIB-3およびZLIB-5をビーズ-固定化ssDNAの10分の1を鋳型(理論的に2・109タンパク質変種に相当する)として用いた組立て構築物のPCR増幅のためのプライマーとして用いた。増幅中の望ましくない干渉を避けるために、オリゴヌクレオチドZLIB-2、BRDGEおよびZLIB-5をアルカリでまず溶出させた。得られたPCR生成物をアガロースゲル電気泳動により分析したところ均質でありかつ予測された179bpサイズであることが判明した。
そのPCR生産物を、ファージミド形質転換大腸菌細胞のヘルパーファージ重感染でファージ粒子上に表面ディスプレイされるために、fdファージコートタンパク質3遺伝子の端部切除体とフレームを合わせて野生型Zドメインの残基44-58の遺伝子を含有するpKN1ファージミドベクター中にサブクローン化した(Lowman et al.,(1991)Biochemistry, 30, 10832-10844)(図9)。更に、そのファージミドベクターは連鎖球菌プロテインG(Nygren et al.,(1988)J. Mol. Recognit., 1, 69-74;Nilsson et al.,(1994)Eur. J. Biochem., 224, 103-108)に由来する5kDa(46aa)血清アルブミン結合性領域(ABPと記す)をコードするフレームを合わせて介在させたカセットを含有するが、これは天然Fc-結合性を欠く生成Z変種の効率的アフィニティー精製を可能にする。更にまた、その血清アルブミン結合活性は潜在的に、新しい結合機能を有するZ変種を求めてパンニングする前に組換え分子を有するファージ粒子を予め選抜して非特異的に結合した非組換ファージ粒子に由来するバックグラウンドを減少させるために用いることができる。
形質転換後、25クローンを(オリゴヌクレオチドRIT-27およびNOKA-2を用いて)PCRスクリーニングをしたところ、それらクローンの95%以上(24/25)が予測長を有する挿入物を含有することが示されたが、このことは前記遺伝子組立て手順が高効率で行われたことを示唆している。そのライブラリーの品質と不均質性を更に分析するために、45個の形質転換体を無作為に選択しそして直接固相DNA配列決定(実施例3参照)にかけた。それらクローンの約69%が正しいものであり、予測された位置に野生型および縮退コドンを含有した。残りのクローンには偽りの不一致を有したが、これは部分的にはPCR中に導入されたエラーまたはオリゴヌクレオチド合成によるものとすることができる。それら正確なクローン(31クローン)(図14)を13個の縮退位置におけるコドン表現について更に分析した。NKK縮退プロフィールに含まれる32コドンから得られる全部で403個の推定アミノ酸の分布は、これら未だ選抜されていないクローンについての予測された頻度と密接な相関を示している(図15)。Z-変種の発現および安定性を調べるために、様々な置換度を有する四つのクローン(No.16、21、22、24;図14)および野生型ZドメインをそれぞれのファージミドベクターからコードされたABP融合体として生産した。IPTG-誘導培養物のペリプラズムからの可溶性タンパク質を一般的および効率的回収のためにABP-テイルを用いたHSA-アフィニティークロマトグラフィーにかけた(Nygren et al.,(1988)J. Mol. Recognit., 1, 69-74)。すべてのタンパク質について約1.5〜2.5mg/l培養液を回収できたが、このことは前記変種および野生型ドメインについて同様の生産および分泌効率であることを示している。精製タンパク質のSDS-PAGE分析結果(図16)は分析された四つのZ変種が大腸菌内で安定的に発現されることを示している。異なる強度をもってみられるHSA-結合活性を有するより小さなバンドは、Z変種とABP-テイルとの間のタンパク質分解的切断から得られるABP-テイルそれ自体(5kDa)に相当する確率が極めて高い。興味深いことに、導入システイン残基を有するいずれのZ-変種(No.16および22)もダイマーを形成したが、これはSDS-PAGE中に非還元性条件下で認められた(図16;レーン6および7)。
広範な表面変異誘導後に誘導体の二次構造成分が保存されているかどうかを調べるために差し引き円二色性分析を行った(実施例3参照)。ABP-テイルに融合させた野生型Zドメインおよび四つの変種についての250〜184nmより得られた信号の比較をABP-テイルそれ自体からの寄与を差し引いた後行った。その結果は、四つのうち三つの誘導体について、208nmに特徴的極小値および222nmに変曲点を有する野生型Zドメインに類似したスペクトルが得られたことを示した(Johnson,(1990)Prot. Struct. Funct. Genet., 7, 205-224)(図17)。このことは三ヘリックス束枠組がこれらの変異体中でおそらく保存されていることを示唆している。しかしながら第四の誘導体(No.24)についてはランダムコイルに見られるスペクトルに類似するスペクトルが得られたが、このことは二次構造要素の含量が低いことを示唆している(Johnson,1990)。この誘導体はヘリックス2の32位においてグルタミンからプロリンへの置換を含んでおり、脱安定化が生じてヘリックス束枠組の崩壊を招いたことが示唆される。
前記の四つのZ-変種を更に調べるために、ABP-テイルに融合された野生型Zおよび四つの異なるZ変種クローン(No.16、21、22、24;図14)についてのポリクローナルヒトIgG(hIgG)(Pharmacia AB)との相互作用をバイオセンサー技術(BIAcoreTM, Pharmacia Biosensor AB,スエーデン)を用いて比較した。CM-5センサーチップのカルボキシ化デキストラン層を製造元の推めるところに従ってN-ヒドロキシスクシンイミド(NHS)およびN-エチル-N′-〔3-ジエチルアミノプロピル〕-カルボジイミド(EDC)化学を用いて活性化した。hIgGを固定化するために、50mMアセテート中の500nM hIgG溶液20μlを活性化表面上に5μl/分の流速で注入した結果約5000共鳴単位(RU)が固定化された。NaCl/Hepes(10mM Hepes、pH7.4、150mM NaCl、3.4mM FDTA、0.5%界面活性剤P-20)中1500nMの近似濃度となるように溶解した前記五つの融合タンパク質の45μl検体を別々の実験として2μl/分の流速で注入した。各検体注入後、hIgG表面を20mM HClで再生させた。予測されたとおり、野生型Z-ドメインだけがなにがしかの検出可能なFc-結合活性を示した(図18)。
結論として、それらの結果は、α-ヘリックスに位置する13残基で構成される置換表面を有するSPA変種のライブラリーを構築できることを示している。天然Z-ドメインの全体的枠組が高度に保存されるということは、安定性ある可溶性骨格にグラフトされた新機能を有する誘導体を、生化学、免疫学およびバイオテクノロジーにおいて人工抗体として用いるために単離し得たことを示唆している。

Claims (9)

  1. 次の諸段階、
    a1)ぶどう球菌プロテインA由来Zドメインの配列の、9、11、14、27および35位置のアミノ酸残基を他のアミノ酸残基により置換したアミノ酸配列を有する、異なった人工細菌レセプター構造体のレパトリーを提供する;
    a2)Zドメインの基本構造や安定性は失われておらず、Zドメインの相互作用能力を欠失し、および、Zドメインが結合しない相互作用パートナーに結合する、人工細菌レセプター構造体を選抜するために、前記レパトリーを、望ましい相互作用に基づく選択工程に付する;および
    b)選抜されたレセプター構造体を単離する;
    段階より成る、人工細菌レセプター構造体の製造方法。
  2. 請求項1に記載の人工細菌レセプター構造体の製造方法において、人工細菌レセプター構造体が、さらにZドメインの配列の10、13、17、18、24、25、28および32位置のアミノ酸残基の置換を有している、人工細菌レセプター構造体の製造方法。
  3. 人工細菌レセプター構造体がファージ-コートタンパク質に融合されている、請求項1または2に記載の製造方法。
  4. 前記置換が部位特異的変異誘発により得られたものである、請求項1〜3のいずれか一項に記載の製造方法。
  5. 前記置換が、相互作用相手としてのタンパク質、脂質、炭水化物および無機物質より選択された物質に対する特異的相互作用能を創出するためのものである、請求項1〜4のいずれか一項に記載の製造方法。
  6. 前記相互作用相手が、有機リガンドである、請求項5記載の製造方法。
  7. 前記選抜方法が、前記新規タンパク質のレパトリーを具体化するタンパク質ライブラリーから行われる、請求項1〜6のいずれか一項に記載の製造方法。
  8. 次の諸段階、
    a1)新規レセプター構造体の前記レパートリーからのものであって、ファージ−コートタンパク質に融合されたタンパク質をそれぞれの表面に有するファージ粒子を組換えDNA法により調製する;
    a2)段階a1)で得られたファージ粒子のプールからパンニングを行って所望の結合特性を示す特定ファージクローンを選抜する;そして
    b)前記特定ファージクローンを前記結合特性を関連する相互作用を用いて単離する段階より成る、請求項1記載の製造方法。
  9. 次の諸段階、
    a1)新規レセプター構造体が前記レパートリーからのものであって、細菌細胞において機能する細胞壁アンカリングドメインに融合されたタンパク質をそれぞれの表面に有する前記細菌細胞を組換えDNA法により調製する;
    a2)段階a1)で得られた細菌細胞のプールからパンニングを行って所望の結合特性を示す特定細菌クローンを選抜する;および
    b)前記結合特性と関連する相互作用を用いて前記特定クローンを単離する
    段階より成る、請求項1記載の製造方法。
JP51898495A 1994-01-14 1995-01-16 細菌レセプター構造体 Expired - Lifetime JP4089920B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9400088-2 1994-01-14
SE9400088A SE9400088D0 (sv) 1994-01-14 1994-01-14 Bacterial receptor structures
PCT/SE1995/000034 WO1995019374A1 (en) 1994-01-14 1995-01-16 Bacterial receptor structures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005138021A Division JP2005263810A (ja) 1994-01-14 2005-05-11 細菌レセプター構造体

Publications (2)

Publication Number Publication Date
JPH09508016A JPH09508016A (ja) 1997-08-19
JP4089920B2 true JP4089920B2 (ja) 2008-05-28

Family

ID=20392561

Family Applications (3)

Application Number Title Priority Date Filing Date
JP51898495A Expired - Lifetime JP4089920B2 (ja) 1994-01-14 1995-01-16 細菌レセプター構造体
JP2005138021A Pending JP2005263810A (ja) 1994-01-14 2005-05-11 細菌レセプター構造体
JP2007195296A Expired - Lifetime JP4373461B2 (ja) 1994-01-14 2007-07-27 細菌レセプター構造体

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2005138021A Pending JP2005263810A (ja) 1994-01-14 2005-05-11 細菌レセプター構造体
JP2007195296A Expired - Lifetime JP4373461B2 (ja) 1994-01-14 2007-07-27 細菌レセプター構造体

Country Status (12)

Country Link
US (2) US5831012A (ja)
EP (1) EP0739353B1 (ja)
JP (3) JP4089920B2 (ja)
AT (1) ATE279439T1 (ja)
AU (1) AU696186B2 (ja)
CA (1) CA2181042C (ja)
DE (1) DE69533644T2 (ja)
ES (1) ES2225838T3 (ja)
NZ (1) NZ278991A (ja)
PT (1) PT739353E (ja)
SE (1) SE9400088D0 (ja)
WO (1) WO1995019374A1 (ja)

Families Citing this family (336)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740734B1 (en) * 1994-01-14 2004-05-25 Biovitrum Ab Bacterial receptor structures
SE9400088D0 (sv) * 1994-01-14 1994-01-14 Kabi Pharmacia Ab Bacterial receptor structures
WO1997024130A1 (fr) * 1995-12-27 1997-07-10 Ngk Insulators, Ltd. INHIBITEUR DE METASTASES CANCEREUSES CONTENANT UN POLYSACCHARIDE DE SURFACE DE STREPTOCOCCUS AGALACTIAE DE TYPE Ia OU DE TYPE Ib COMME COMPOSANT PRINCIPAL
GB9722131D0 (en) * 1997-10-20 1997-12-17 Medical Res Council Method
SE9704141D0 (sv) * 1997-11-12 1997-11-12 Sbl Vaccin Ab New protein and nucleotide sequence, encoding said protein
GB9823071D0 (en) * 1998-10-21 1998-12-16 Affibody Technology Ab A method
US6602977B1 (en) * 1999-04-19 2003-08-05 Biovitrum Ab Receptor structures
SE9901379D0 (sv) 1999-04-19 1999-04-19 Pharmacia & Upjohn Ab Receptor structures
EP1181052A4 (en) * 1999-05-15 2004-08-11 Univ California San Diego AREAS WITH INTENDED ACTIVITIES BASED ON PROTEIN A
US7163686B1 (en) 1999-05-15 2007-01-16 The Regents Of The University Of California Protein A based binding domains with desirable activities
GB9917027D0 (en) * 1999-07-20 1999-09-22 Affibody Technology Sweeden Ab In vitro selection and optional identification of polypeptides using solid support carriers
WO2001045746A2 (en) * 1999-12-24 2001-06-28 Genentech, Inc. Methods and compositions for prolonging elimination half-times of bioactive compounds
GB0017720D0 (en) * 2000-07-19 2000-09-06 Got A Gene Ab Modified virus
US20040077017A1 (en) * 2001-01-12 2004-04-22 Amelie Karlstrom Detection methods
EP1352242A2 (en) * 2001-01-12 2003-10-15 Affibody AB Detection methods
US20030157561A1 (en) * 2001-11-19 2003-08-21 Kolkman Joost A. Combinatorial libraries of monomer domains
US20050089932A1 (en) * 2001-04-26 2005-04-28 Avidia Research Institute Novel proteins with targeted binding
US20050048512A1 (en) * 2001-04-26 2005-03-03 Avidia Research Institute Combinatorial libraries of monomer domains
US20040175756A1 (en) * 2001-04-26 2004-09-09 Avidia Research Institute Methods for using combinatorial libraries of monomer domains
US20050053973A1 (en) * 2001-04-26 2005-03-10 Avidia Research Institute Novel proteins with targeted binding
AU2002256371B2 (en) * 2001-04-26 2008-01-10 Amgen Mountain View Inc. Combinatorial libraries of monomer domains
US7981863B2 (en) 2001-09-19 2011-07-19 Neuronova Ab Treatment of Parkinson's disease with PDGF
FI115343B (fi) * 2001-10-22 2005-04-15 Filtronic Lk Oy Sisäinen monikaista-antenni
US20050069549A1 (en) 2002-01-14 2005-03-31 William Herman Targeted ligands
US20040009530A1 (en) * 2002-01-16 2004-01-15 Wilson David S. Engineered binding proteins
SE0200943D0 (sv) * 2002-03-25 2002-03-25 Amersham Biosciences Ab Mutant protein
JP2006512895A (ja) * 2002-06-28 2006-04-20 ドマンティス リミテッド リガンド
US9321832B2 (en) 2002-06-28 2016-04-26 Domantis Limited Ligand
US20060002935A1 (en) 2002-06-28 2006-01-05 Domantis Limited Tumor Necrosis Factor Receptor 1 antagonists and methods of use therefor
US20050074865A1 (en) 2002-08-27 2005-04-07 Compound Therapeutics, Inc. Adzymes and uses thereof
EP1599597B1 (en) * 2003-02-24 2010-08-04 Pritest, Inc. Translucent solid matrix assay device for microarray analysis
US6861251B2 (en) 2003-02-24 2005-03-01 Pritest, Inc. Translucent solid matrix assay device for microarray analysis
WO2004097368A2 (en) * 2003-04-28 2004-11-11 Ciphergen Biosystems, Inc. Improved immunoassays
US20070196366A1 (en) 2003-04-30 2007-08-23 Uwe Zangemeister-Wittke Methods for treating cancer using an immunotoxin
WO2005003156A1 (en) * 2003-07-04 2005-01-13 Affibody Ab Polypeptides having binding affinity for her2
US7956165B2 (en) 2003-07-24 2011-06-07 Affisink Biotechnology Ltd. Compositions and methods for purifying and crystallizing molecules of interest
IL157086A0 (en) * 2003-07-24 2004-02-08 Guy Patchornik Multivalent ligand complexes
US20050181398A1 (en) * 2004-01-16 2005-08-18 Fung Eric T. Specific detection of host response protein clusters
EP1732613A2 (en) 2004-04-06 2006-12-20 Affibody AB Use of serum albumin binding peptides conjugates for the preparation of a medicament
US7857767B2 (en) 2004-04-19 2010-12-28 Invention Science Fund I, Llc Lumen-traveling device
US8019413B2 (en) 2007-03-19 2011-09-13 The Invention Science Fund I, Llc Lumen-traveling biological interface device and method of use
US8361013B2 (en) 2004-04-19 2013-01-29 The Invention Science Fund I, Llc Telescoping perfusion management system
US8092549B2 (en) 2004-09-24 2012-01-10 The Invention Science Fund I, Llc Ciliated stent-like-system
US7998060B2 (en) 2004-04-19 2011-08-16 The Invention Science Fund I, Llc Lumen-traveling delivery device
US7850676B2 (en) 2004-04-19 2010-12-14 The Invention Science Fund I, Llc System with a reservoir for perfusion management
US8353896B2 (en) 2004-04-19 2013-01-15 The Invention Science Fund I, Llc Controllable release nasal system
US9801527B2 (en) 2004-04-19 2017-10-31 Gearbox, Llc Lumen-traveling biological interface device
US9011329B2 (en) 2004-04-19 2015-04-21 Searete Llc Lumenally-active device
US8337482B2 (en) 2004-04-19 2012-12-25 The Invention Science Fund I, Llc System for perfusion management
AU2005250216B2 (en) * 2004-06-01 2009-12-10 Domantis Limited Bispecific fusion antibodies with enhanced serum half-life
US20060045877A1 (en) * 2004-08-30 2006-03-02 Goldmakher Viktor S Immunoconjugates targeting syndecan-1 expressing cells and use thereof
US7563443B2 (en) * 2004-09-17 2009-07-21 Domantis Limited Monovalent anti-CD40L antibody polypeptides and compositions thereof
RU2401842C2 (ru) 2004-10-08 2010-10-20 Домантис Лимитед Антагонисты и способы их применения
JP5185624B2 (ja) 2004-12-02 2013-04-17 ドマンティス リミテッド 血清アルブミンおよびglp−1またはpyyを標的とする二重特異性抗体
WO2006067402A2 (en) * 2004-12-22 2006-06-29 Lipopeptide Ab Agents inibiting the cathelin-like protein cap18/ll-37
US20070003528A1 (en) 2005-06-29 2007-01-04 Paul Consigny Intracoronary device and method of use thereof
CA2628238A1 (en) 2005-11-07 2007-05-18 The Scripps Research Institute Compositions and methods for controlling tissue factor signaling specificity
GB0524788D0 (en) * 2005-12-05 2006-01-11 Affibody Ab Polypeptides
US8682619B2 (en) 2005-12-14 2014-03-25 The Invention Science Fund I, Llc Device including altered microorganisms, and methods and systems of use
US8734823B2 (en) 2005-12-14 2014-05-27 The Invention Science Fund I, Llc Device including altered microorganisms, and methods and systems of use
US20110183348A1 (en) * 2010-01-22 2011-07-28 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Compositions and methods for therapeutic delivery with microorganisms
US20110172826A1 (en) * 2005-12-14 2011-07-14 Amodei Dario G Device including altered microorganisms, and methods and systems of use
US8278094B2 (en) 2005-12-14 2012-10-02 The Invention Science Fund I, Llc Bone semi-permeable device
US20090053790A1 (en) 2006-01-31 2009-02-26 Ishihara Sangyo Kaisha, Ltd. Polypeptide Having Affinity for Envelope Virus Constituent and Use Thereof in Transferring Substance Into Cell
US9198563B2 (en) 2006-04-12 2015-12-01 The Invention Science Fund I, Llc Temporal control of a lumen traveling device in a body tube tree
US9220917B2 (en) 2006-04-12 2015-12-29 The Invention Science Fund I, Llc Systems for autofluorescent imaging and target ablation
CA2653752A1 (en) * 2006-05-26 2007-12-06 Vickery Laurence Arcus Ob fold domains
GB0611116D0 (en) 2006-06-06 2006-07-19 Oxford Genome Sciences Uk Ltd Proteins
EP2074144A4 (en) 2006-09-05 2011-03-16 Medarex Inc ANTIBODIES TO BONE MORPHOGENIC PROTEINS AND RECEPTORS THEREFOR AND METHOD FOR THEIR USE
CN101528259B (zh) 2006-10-02 2014-04-09 梅达雷克斯有限责任公司 结合cxcr4的人类抗体及其用途
US20080096233A1 (en) * 2006-10-20 2008-04-24 Robotti Karla M Isolation Of Immune Complexes
GB0621513D0 (en) * 2006-10-30 2006-12-06 Domantis Ltd Novel polypeptides and uses thereof
MX2009005776A (es) 2006-12-01 2009-06-10 Medarex Inc Anticuerpos humanos que se enlazan al cd 22 y sus usos.
US7981691B2 (en) * 2006-12-08 2011-07-19 General Electric Company Two helix binders
US7989216B2 (en) * 2006-12-08 2011-08-02 General Electric Company Two helix binders
US7977118B2 (en) * 2006-12-08 2011-07-12 General Electric Company Two helix binders
US8198043B2 (en) * 2006-12-08 2012-06-12 General Electric Company Two helix binders
CL2007003622A1 (es) 2006-12-13 2009-08-07 Medarex Inc Anticuerpo monoclonal humano anti-cd19; composicion que lo comprende; y metodo de inhibicion del crecimiento de celulas tumorales.
AU2007333098A1 (en) 2006-12-14 2008-06-19 Medarex, Inc. Human antibodies that bind CD70 and uses thereof
DK2447719T3 (en) 2007-02-26 2016-10-10 Oxford Biotherapeutics Ltd proteins
WO2008104803A2 (en) 2007-02-26 2008-09-04 Oxford Genome Sciences (Uk) Limited Proteins
US8303960B2 (en) * 2007-02-27 2012-11-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Radiolabeled affibody molecules
EP2144600A4 (en) * 2007-04-04 2011-03-16 Massachusetts Inst Technology POLY (AMINIC ACID) TARGET MOLECULES
GB0708376D0 (en) 2007-05-01 2007-06-06 Alligator Bioscience Ab Novel polypeptides and uses thereof
CN101801407B (zh) 2007-06-05 2013-12-18 耶鲁大学 受体酪氨酸激酶抑制剂及其使用方法
SG149759A1 (en) 2007-07-10 2009-02-27 Millipore Corp Media for affinity chromatography
WO2009019117A1 (en) * 2007-08-03 2009-02-12 Affibody Ab Igf-1r binding polypeptides and their use
EP2348052A3 (en) 2007-09-17 2011-10-26 The Regents of The University of California Internalizing human monoclonal antibodies targeting prostate cancer cells in situ
CN108129573B (zh) 2007-09-21 2021-10-08 加利福尼亚大学董事会 被导靶的干扰素显示强的细胞凋亡和抗肿瘤活性
GB2453589A (en) 2007-10-12 2009-04-15 King S College London Protease inhibition
TWI489993B (zh) 2007-10-12 2015-07-01 Novartis Ag 骨硬化素(sclerostin)抗體組合物及使用方法
CA2707182C (en) 2007-11-30 2017-12-12 Siemens Healthcare Diagnostics Inc. Adiponectin receptor fragments and methods of use
US9187535B2 (en) 2007-12-19 2015-11-17 Affibody Ab Polypeptide derived from protein A and able to bind PDGF
EP2077272A1 (en) 2007-12-21 2009-07-08 Affibody AB Polypeptide libraries with a predetermined scaffold
EP2072525A1 (en) 2007-12-21 2009-06-24 Affibody AB New polypeptides having affinity for HER2
CN101945892B (zh) * 2007-12-26 2017-11-24 生物测试股份公司 用于改进对表达cd138的肿瘤细胞的靶向的方法和试剂
KR101626416B1 (ko) * 2007-12-26 2016-06-01 바이오테스트 아게 Cd138 표적 물질 및 이의 용도
CA2710471C (en) * 2007-12-26 2018-06-05 Biotest Ag Immunoconjugates targeting cd138 and uses thereof
EP2238169A1 (en) * 2007-12-26 2010-10-13 Biotest AG Method of decreasing cytotoxic side-effects and improving efficacy of immunoconjugates
US20110097742A1 (en) 2008-04-02 2011-04-28 Jenny Jie Yang Contrast agents, methods for preparing contrast agents, and methods of imaging
AU2009270726B2 (en) 2008-07-18 2015-07-09 Bristol-Myers Squibb Company Compositions monovalent for CD28 binding and methods of use
US20100022487A1 (en) * 2008-07-24 2010-01-28 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method, device, and kit for maintaining physiological levels of steroid hormone in a subject
US20100022497A1 (en) * 2008-07-24 2010-01-28 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method for treating or preventing a cardiovascular disease or condition utilizing estrogen receptor modulators based on APOE allelic profile of a mammalian subject
US20100022494A1 (en) * 2008-07-24 2010-01-28 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method, device, and kit for maintaining physiological levels of steroid hormone in a subject
US20100061976A1 (en) * 2008-07-24 2010-03-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method for treating or preventing osteoporosis by reducing follicle stimulating hormone to cyclic physiological levels in a mammalian subject
ES2752025T3 (es) 2008-07-25 2020-04-02 Wagner Richard W Métodos de cribado de proteínas
EP2837388A1 (en) 2008-08-05 2015-02-18 Novartis AG Compositions and methods for antibodies targeting complement protein C5
US8592555B2 (en) 2008-08-11 2013-11-26 Emd Millipore Corporation Immunoglobulin-binding proteins with improved specificity
US9187330B2 (en) 2008-09-15 2015-11-17 The Invention Science Fund I, Llc Tubular nanostructure targeted to cell membrane
US20100137246A1 (en) * 2008-12-02 2010-06-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Anti-inflammatory compositions and methods
US20100135908A1 (en) * 2008-12-02 2010-06-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Delivery devices for modulating inflammation
US20100136096A1 (en) * 2008-12-02 2010-06-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems for modulating inflammation
US20100136095A1 (en) * 2008-12-02 2010-06-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems for modulating inflammation
US20100135983A1 (en) * 2008-12-02 2010-06-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Anti-inflammatory compositions and methods
US20100136097A1 (en) * 2008-12-02 2010-06-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems for modulating inflammation
US20100136094A1 (en) * 2008-12-02 2010-06-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems for modulating inflammation
US20110295088A1 (en) 2008-12-04 2011-12-01 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, and methods including implantable devices with anti-microbial properties
US20110275535A1 (en) 2008-12-16 2011-11-10 Novartis Ag Yeast Display Systems
US20120165650A1 (en) 2010-12-22 2012-06-28 General Electric Company Her2 binders
SG195555A1 (en) 2008-12-24 2013-12-30 Emd Millipore Corp Caustic stable chromatography ligands
AU2010207552A1 (en) 2009-01-21 2011-09-01 Oxford Biotherapeutics Ltd. PTA089 protein
US8758324B2 (en) 2010-03-05 2014-06-24 The Invention Science Fund I, Llc Device for actively removing a target cell from blood or lymph of a vertebrate subject
US8454547B2 (en) 2009-02-25 2013-06-04 The Invention Science Fund I, Llc Device, system, and method for controllably reducing inflammatory mediators in a subject
US8167871B2 (en) * 2009-02-25 2012-05-01 The Invention Science Fund I, Llc Device for actively removing a target cell from blood or lymph of a vertebrate subject
US8317737B2 (en) * 2009-02-25 2012-11-27 The Invention Science Fund I, Llc Device for actively removing a target component from blood or lymph of a vertebrate subject
EA028336B1 (ru) 2009-03-05 2017-11-30 МЕДАРЕКС Л.Л.Си. Полностью человеческие антитела, специфические в отношении cadm1
GB0904355D0 (en) 2009-03-13 2009-04-29 Imp Innovations Ltd Biological materials and uses thereof
US9834815B2 (en) 2009-03-25 2017-12-05 Life Technologies Corporation Discriminatory positive/extraction control DNA
US8728479B2 (en) 2009-03-31 2014-05-20 The Trustees Of The University Of Pennsylvania Antigen-binding proteins comprising recombinant protein scaffolds
CA2756244A1 (en) 2009-04-02 2010-10-07 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
NZ616382A (en) 2009-04-20 2015-04-24 Oxford Biotherapeutics Ltd Antibodies specific to cadherin-17
EP3444611A1 (en) 2009-04-23 2019-02-20 Siemens Healthcare Diagnostics Inc. Monomeric and dimeric forms of adiponectin receptor fragments and methods of use
EA027071B1 (ru) 2009-04-27 2017-06-30 Новартис Аг АНТИТЕЛО К ActRIIB И СОДЕРЖАЩАЯ ЕГО КОМПОЗИЦИЯ
CN102414223A (zh) 2009-04-27 2012-04-11 诺瓦提斯公司 对IL12受体β亚基特异的治疗性抗体的组合物和方法
US8154285B1 (en) 2009-05-29 2012-04-10 The Invention Science Fund I, Llc Non-external static magnetic field imaging systems, devices, methods, and compositions
US8058872B2 (en) 2009-05-29 2011-11-15 The Invention Science Fund I, Llc Systems, devices, methods, and compositions including functionalized ferromagnetic structures
US8106655B2 (en) * 2009-05-29 2012-01-31 The Invention Science Fund I, Llc Multiplex imaging systems, devices, methods, and compositions including ferromagnetic structures
US8063636B2 (en) * 2009-05-29 2011-11-22 The Invention Science Fund I, Llc Systems, devices, methods, and compositions including targeted ferromagnetic structures
US20100303733A1 (en) * 2009-05-29 2010-12-02 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, methods, and compositions including ferromagnetic structures
IE20090514A1 (en) 2009-07-06 2011-02-16 Opsona Therapeutics Ltd Humanised antibodies and uses therof
EP2464657B1 (en) 2009-08-10 2015-04-01 MorphoSys AG Novel screening strategies for the identification of antibodies or fragments thereof which bind an antigen that has an enzymatic activity
US9024766B2 (en) * 2009-08-28 2015-05-05 The Invention Science Fund, Llc Beverage containers with detection capability
US8898069B2 (en) * 2009-08-28 2014-11-25 The Invention Science Fund I, Llc Devices and methods for detecting an analyte in salivary fluid
WO2011029823A1 (en) 2009-09-09 2011-03-17 Novartis Ag Monoclonal antibody reactive with cd63 when expressed at the surface of degranulated mast cells
CN104945509A (zh) 2009-09-16 2015-09-30 弗·哈夫曼-拉罗切有限公司 包含卷曲螺旋和/或系链的蛋白质复合体及其用途
US20120231004A1 (en) 2009-10-13 2012-09-13 Oxford Biotherapeutic Ltd. Antibodies
JP5954876B2 (ja) 2009-10-13 2016-07-20 ナノストリング テクノロジーズ, インコーポレイテッド ナノレポーターによるタンパク質の検出
US20120282177A1 (en) 2009-11-02 2012-11-08 Christian Rohlff ROR1 as Therapeutic and Diagnostic Target
JP2013509869A (ja) 2009-11-05 2013-03-21 ノバルティス アーゲー 線維症の進行の予測用バイオマーカー
WO2011080050A2 (en) 2009-12-11 2011-07-07 Novartis Ag Binding molecules
CA2784406C (en) * 2009-12-15 2021-03-23 Choe, Muhyeon Method for manufacturing dimers and multimers in complexes of multiple monomers and repeat chains of affinity domains binding specifically to monomers with increasing the formation of inter-monomeric bond bridges among monomers
JP2013519869A (ja) 2010-02-10 2013-05-30 ノバルティス アーゲー 筋肉成長のための方法および化合物
TW201138821A (en) 2010-03-26 2011-11-16 Roche Glycart Ag Bispecific antibodies
TWI586806B (zh) 2010-04-23 2017-06-11 建南德克公司 異多聚體蛋白質之製造
ES2659406T3 (es) 2010-05-06 2018-03-15 Novartis Ag Composiciones y procedimientos de uso para anticuerpos terapéuticos contra la proteína 6 relacionada con las lipoproteínas de baja densidad (LRP6)
SG185415A1 (en) 2010-05-06 2012-12-28 Novartis Ag Compositions and methods of use for therapeutic low density lipoprotein - related protein 6 (lrp6) multivalent antibodies
ES2676403T3 (es) 2010-07-09 2018-07-19 Affibody Ab Polipéptidos
US20120100166A1 (en) 2010-07-15 2012-04-26 Zyngenia, Inc. Ang-2 Binding Complexes and Uses Thereof
JP2013537539A (ja) 2010-08-13 2013-10-03 ジェネンテック, インコーポレイテッド 疾患の治療のためのIL−1β及びIL−18に対する抗体
JP6057896B2 (ja) 2010-08-20 2017-01-11 ノバルティス アーゲー 上皮細胞増殖因子受容体3(her3)に対する抗体
JP5758004B2 (ja) 2010-08-24 2015-08-05 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ジスルフィドによって安定化されたFv断片を含む二重特異性抗体
CA2809363A1 (en) 2010-08-24 2012-03-01 Abbott Laboratories Hiv core protein specific antibodies and uses thereof
SG188666A1 (en) 2010-09-30 2013-05-31 Agency Science Tech & Res Methods and reagents for detection and treatment of esophageal metaplasia
JP2013543384A (ja) 2010-10-05 2013-12-05 ノバルティス アーゲー 抗−il12rベータ1抗体ならびに自己免疫性および炎症性疾患の処置おけるその使用
JP5298242B2 (ja) 2010-12-21 2013-09-25 Jsr株式会社 アフィニティークロマトグラフィー用担体およびイムノグロブリンを単離する方法
JP5997176B2 (ja) * 2010-12-21 2016-09-28 ザ ユニバーシティ オブ ウエスタン オンタリオThe University of Western Ontario プロテインaの新規アルカリ抵抗性変異体及びアフィニティークロマトグラフィーにおけるその使用
EP2655413B1 (en) 2010-12-23 2019-01-16 F.Hoffmann-La Roche Ag Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
ES2687761T3 (es) 2011-01-31 2018-10-29 F. Hoffmann-La Roche Ag Métodos de identificación de múltiples epítopos en células
WO2016100976A2 (en) 2014-12-19 2016-06-23 Apprise Bio, Inc. Methods for identifying multiple epitopes in selected sub-populations of cells
WO2012106587A1 (en) 2011-02-04 2012-08-09 Genentech, Inc. Fc VARIANTS AND METHODS FOR THEIR PRODUCTION
US10689447B2 (en) 2011-02-04 2020-06-23 Genentech, Inc. Fc variants and methods for their production
US20120213781A1 (en) 2011-02-11 2012-08-23 Zyngenia, Inc. Monovalent and Multivalent Multispecific Complexes and Uses Thereof
GB201114858D0 (en) 2011-08-29 2011-10-12 Nvip Pty Ltd Anti-nerve growth factor antibodies and methods of using the same
ES2704007T3 (es) 2011-05-06 2019-03-13 Nexvet Australia Pty Ltd Anticuerpos anti-factor de crecimiento nervioso y procedimientos de preparación y uso de los mismos
ES2905682T3 (es) 2011-05-06 2022-04-11 Zoetis Services Llc Anticuerpos anti-factor de crecimiento nervioso y métodos de preparación y uso de los mismos
US9328164B2 (en) 2011-05-06 2016-05-03 Nvip Pty Ltd Anti-nerve growth factor antibodies and methods of preparing and using the same
CN106432506A (zh) 2011-05-24 2017-02-22 泽恩格尼亚股份有限公司 多价和单价多特异性复合物及其用途
SG10201604559TA (en) 2011-06-08 2016-07-28 Emd Millipore Corp Chromatography matrices including novel staphylococcus aureus protein a based ligands
WO2012172495A1 (en) 2011-06-14 2012-12-20 Novartis Ag Compositions and methods for antibodies targeting tem8
EP2726508B1 (en) 2011-06-28 2017-08-09 Oxford BioTherapeutics Ltd Antibodies to adp-ribosyl cyclase 2
WO2013001369A2 (en) 2011-06-28 2013-01-03 Oxford Biotherapeutics Ltd. Therapeutic and diagnostic target
JP6472999B2 (ja) 2011-07-01 2019-02-20 ノバルティス アーゲー 代謝障害を治療するための方法
JP2014526886A (ja) 2011-07-15 2014-10-09 モルフォシス・アー・ゲー マクロファージ遊走阻止因子(mif)とd−ドーパクロームトートメラーゼ(d−dt)に交差反応性がある抗体
WO2013022091A1 (ja) 2011-08-11 2013-02-14 小野薬品工業株式会社 Pd-1アゴニストからなる自己免疫疾患治療剤
EP3418306B1 (en) 2011-10-11 2023-12-06 F. Hoffmann-La Roche AG Improved assembly of bispecific antibodies
EP3653222A1 (en) 2011-10-14 2020-05-20 Novartis AG Antibodies and methods for wnt pathway-related diseases
KR101662917B1 (ko) 2011-11-25 2016-10-06 서울대학교산학협력단 B형 간염 바이러스 유래 cis-작용 조절 엘리먼트 및 그 용도
WO2013084148A2 (en) 2011-12-05 2013-06-13 Novartis Ag Antibodies for epidermal growth factor receptor 3 (her3) directed to domain ii of her3
CN108341873B (zh) 2011-12-05 2022-03-25 诺华股份有限公司 表皮生长因子受体3(her3)的抗体
CA2858133A1 (en) 2011-12-08 2013-06-13 Biotest Ag Uses of immunoconjugates targeting cd138
KR102159843B1 (ko) 2011-12-21 2020-09-24 노파르티스 아게 인자 p를 표적화하는 항체에 대한 조성물 및 방법
WO2013119966A2 (en) 2012-02-10 2013-08-15 Genentech, Inc. Single-chain antibodies and other heteromultimers
TR201903840T4 (tr) 2012-02-20 2019-04-22 Swedish Orphan Biovitrum Ab Publ İnsan tamamlayıcı C5'e bağlanan polipeptitler.
CA2865243A1 (en) 2012-02-23 2013-08-29 President And Fellows Of Harvard College Modified microbial toxin receptor for delivering agents into cells
JP2015512902A (ja) 2012-03-28 2015-04-30 アフィボディ・アーベー 経口投与
JP6203838B2 (ja) 2012-06-27 2017-09-27 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 少なくとも2つの異なる結合実体を含む、テーラーメイドの高度に選択的かつ多重特異的なターゲティング実体を選択および作製するための方法、ならびにその使用
WO2014001325A1 (en) 2012-06-27 2014-01-03 F. Hoffmann-La Roche Ag Method for making antibody fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
WO2014013016A1 (en) 2012-07-20 2014-01-23 Affibody Ab Method for determining the her2 status of a malignancy
GB201213652D0 (en) 2012-08-01 2012-09-12 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
CN105264088B (zh) 2012-08-08 2018-12-28 豪夫迈·罗氏有限公司 提高鉴定细胞中的多个表位的动态范围
JOP20200308A1 (ar) 2012-09-07 2017-06-16 Novartis Ag جزيئات إرتباط il-18
CN111763247A (zh) 2012-09-25 2020-10-13 阿菲博迪公司 白蛋白结合多肽
WO2014076179A1 (en) 2012-11-14 2014-05-22 Affibody Ab New polypeptide
WO2014084859A1 (en) 2012-11-30 2014-06-05 Novartis Ag Molecules and methods for modulating tmem16a activities
US9365646B2 (en) 2012-12-05 2016-06-14 Novartis Ag Compositions and methods for antibodies targeting EPO
US20150329639A1 (en) 2012-12-12 2015-11-19 University Of Virginia Patent Foundation Compositions and methods for regulating erythropoiesis
EP2940197B1 (en) 2012-12-27 2019-02-27 National Institute of Advanced Industrial Science and Technology Molecule library constructed on the basis of backbone structure of microprotein
WO2014120916A1 (en) 2013-02-01 2014-08-07 Bristol-Myers Squibb Company Pegylated domain antibodies monovalent for cd28 binding and methods of use
EA031537B1 (ru) 2013-02-08 2019-01-31 Новартис Аг Антитела против il-17a и их применение для лечения аутоиммунных и воспалительных нарушений
GB201302447D0 (en) 2013-02-12 2013-03-27 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
DK2962100T3 (da) 2013-02-28 2021-11-01 Caprion Proteomics Inc Tuberkulosebiomarkører og anvendelser deraf
EP2970468B1 (en) 2013-03-13 2021-07-07 Novartis AG Notch2 binding molecules for treating respiratory diseases
EP2970479B1 (en) 2013-03-14 2019-04-24 Novartis AG Antibodies against notch 3
EP3623380A1 (en) 2013-03-15 2020-03-18 Michael C. Milone Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
CN105451767B (zh) 2013-03-15 2019-10-18 泽恩格尼亚股份有限公司 多价和单价多特异性复合物及其用途
GB201311031D0 (en) * 2013-06-20 2013-08-07 Queen Mary & Westfield College Method
AR096601A1 (es) 2013-06-21 2016-01-20 Novartis Ag Anticuerpos del receptor 1 de ldl oxidado similar a lectina y métodos de uso
UY35620A (es) 2013-06-21 2015-01-30 Novartis Ag Anticuerpos del receptor 1 de ldl oxidado similar a lectina y métodos de uso
US10208125B2 (en) 2013-07-15 2019-02-19 University of Pittsburgh—of the Commonwealth System of Higher Education Anti-mucin 1 binding agents and uses thereof
CN106211774B (zh) 2013-08-02 2020-11-06 辉瑞公司 抗cxcr4抗体及抗体-药物缀合物
CA2918300A1 (en) 2013-08-14 2015-02-19 Novartis Ag Methods of treating sporadic inclusion body myositis
US10203327B2 (en) 2013-11-05 2019-02-12 Novartis Ag Organic compounds
US10287354B2 (en) 2013-12-20 2019-05-14 Novartis Ag Regulatable chimeric antigen receptor
EP3083675B1 (en) 2013-12-20 2018-03-07 Affibody AB Engineered albumin binding polypeptide
US20170081411A1 (en) 2014-03-15 2017-03-23 Novartis Ag Regulatable chimeric antigen receptor
TW201622746A (zh) 2014-04-24 2016-07-01 諾華公司 改善或加速髖部骨折術後身體復原之方法
EP3140392B1 (en) 2014-05-06 2023-07-26 F. Hoffmann-La Roche AG Production of heteromultimeric proteins using mammalian cells
EP3161001A2 (en) 2014-06-25 2017-05-03 Novartis AG Antibodies specific for il-17a fused to hyaluronan binding peptide tags
US11542488B2 (en) 2014-07-21 2023-01-03 Novartis Ag Sortase synthesized chimeric antigen receptors
EP3174546B1 (en) 2014-07-31 2019-10-30 Novartis AG Subset-optimized chimeric antigen receptor-containing t-cells
EP3194437B1 (en) 2014-08-07 2021-01-20 Novartis AG Angiopoietin-like 4 (angptl4) antibodies and methods of use
DK3177642T3 (da) 2014-08-07 2022-02-21 Novartis Ag Angiopoietin-lignende 4-antistoffer og fremgangsmåder til anvendelse deraf
AU2015317608B2 (en) 2014-09-17 2021-03-11 Novartis Ag Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
MA41044A (fr) 2014-10-08 2017-08-15 Novartis Ag Compositions et procédés d'utilisation pour une réponse immunitaire accrue et traitement contre le cancer
US11566082B2 (en) 2014-11-17 2023-01-31 Cytiva Bioprocess R&D Ab Mutated immunoglobulin-binding polypeptides
PL3227332T3 (pl) 2014-12-03 2020-06-15 F. Hoffmann-La Roche Ag Wielospecyficzne przeciwciała
UY36449A (es) 2014-12-19 2016-07-29 Novartis Ag Composiciones y métodos para anticuerpos dirigidos a bmp6
ES2897707T3 (es) 2014-12-24 2022-03-02 Neximmune Inc Composiciones de nanopartículas y procedimientos para la inmunoterapia
CN107921090A (zh) * 2015-04-06 2018-04-17 苏伯多曼有限责任公司 含有从头结合结构域的多肽及其用途
SG11201708191XA (en) 2015-04-08 2017-11-29 Novartis Ag Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car) - expressing cell
MX2017015690A (es) 2015-06-05 2018-07-06 Novartis Ag Anticuerpos dirigidos a la proteina morfogenetica osea 9 (bmp9) y metodos a partir de estos.
JOP20200312A1 (ar) 2015-06-26 2017-06-16 Novartis Ag الأجسام المضادة للعامل xi وطرق الاستخدام
WO2017023863A1 (en) 2015-07-31 2017-02-09 Research Institute At Nationwide Children's Hospital Peptides and antibodies for the removal of biofilms
EP3331914A1 (en) 2015-08-03 2018-06-13 Novartis AG Methods of treating fgf21-associated disorders
AU2016320748B2 (en) 2015-09-09 2019-05-02 Novartis Ag Thymic stromal lymphopoietin (TSLP)-binding antibodies and methods of using the antibodies
DK3347377T3 (da) 2015-09-09 2021-05-10 Novartis Ag Tymisk stromal lymfopoietin (TSLP)-bindende antistoffer og fremgangsmåder til anvendelse af antistofferne
EP3365027B1 (en) 2015-10-14 2022-03-30 Research Institute at Nationwide Children's Hospital Hu specific antibodies and their use in inhibiting biofilm
WO2017077382A1 (en) 2015-11-06 2017-05-11 Orionis Biosciences Nv Bi-functional chimeric proteins and uses thereof
BR112018010052A2 (pt) 2015-11-19 2019-02-05 Asclepix Therapeutics Llc peptídeos com propriedades antiangiogênicas, antilinfangiogênicas e antiedêmicas e formulações de nanopartícula
WO2017095823A1 (en) 2015-11-30 2017-06-08 The Regents Of The University Of California Tumor-specific payload delivery and immune activation using a human antibody targeting a highly specific tumor cell surface antigen
CN109069623A (zh) 2015-12-18 2018-12-21 诺华股份有限公司 靶向CD32b的抗体及其使用方法
LT3402880T (lt) 2016-01-15 2024-03-12 Thermo Fisher Scientific Baltics Uab Termofiliniai dnr polimerazės mutantai
WO2017134306A1 (en) 2016-02-05 2017-08-10 Orionis Biosciences Nv Cd8 binding agents
EP3426278B1 (en) 2016-03-07 2024-01-03 Vib Vzw Cd20 binding single domain antibodies
KR20170108203A (ko) 2016-03-16 2017-09-27 주식회사 피플바이오 응집형-형성 폴리펩타이드의 응집형을 검출하는 방법
WO2017189724A1 (en) 2016-04-27 2017-11-02 Novartis Ag Antibodies against growth differentiation factor 15 and uses thereof
KR102379048B1 (ko) 2016-05-02 2022-03-28 엔코디아, 인코포레이티드 암호화 핵산을 사용한 거대분자 분석
US10703774B2 (en) 2016-09-30 2020-07-07 Ge Healthcare Bioprocess R&D Ab Separation method
US10654887B2 (en) 2016-05-11 2020-05-19 Ge Healthcare Bio-Process R&D Ab Separation matrix
US10730908B2 (en) 2016-05-11 2020-08-04 Ge Healthcare Bioprocess R&D Ab Separation method
US10889615B2 (en) 2016-05-11 2021-01-12 Cytiva Bioprocess R&D Ab Mutated immunoglobulin-binding polypeptides
WO2017194597A1 (en) 2016-05-11 2017-11-16 Ge Healthcare Bioprocess R&D Ab Separation matrix
CN109311949B (zh) 2016-05-11 2022-09-16 思拓凡生物工艺研发有限公司 储存分离基质的方法
EP3455241B1 (en) 2016-05-11 2022-02-23 Cytiva BioProcess R&D AB Method of cleaning and/or sanitizing a separation matrix
EP3455245A2 (en) 2016-05-13 2019-03-20 Orionis Biosciences NV Therapeutic targeting of non-cellular structures
WO2017194783A1 (en) 2016-05-13 2017-11-16 Orionis Biosciences Nv Targeted mutant interferon-beta and uses thereof
TW201802121A (zh) 2016-05-25 2018-01-16 諾華公司 抗因子XI/XIa抗體之逆轉結合劑及其用途
CA3027651A1 (en) 2016-06-15 2017-12-21 Novartis Ag Methods for treating disease using inhibitors of bone morphogenetic protein 6 (bmp6)
SG10202103032QA (en) 2016-10-04 2021-05-28 Asclepix Therapeutics Inc Compounds and methods for activating tie2 signaling
CA3040802A1 (en) 2016-10-24 2018-05-03 Orionis Biosciences Nv Targeted mutant interferon-gamma and uses thereof
JP2020503857A (ja) 2016-12-12 2020-02-06 セファイド 自動反応カートリッジにおける統合化イムノpcr及び核酸分析
CN110325550B (zh) 2016-12-23 2024-03-08 诺华股份有限公司 因子xi抗体和使用方法
EP3565589A1 (en) 2017-01-04 2019-11-13 Research Institute at Nationwide Children's Hospital Dnabii vaccines and antibodies with enhanced activity
EP3577133A1 (en) 2017-02-06 2019-12-11 Orionis Biosciences NV Targeted chimeric proteins and uses thereof
WO2018144999A1 (en) 2017-02-06 2018-08-09 Orionis Biosciences, Inc. Targeted engineered interferon and uses thereof
CA3050601A1 (en) 2017-02-07 2018-08-16 Vib Vzm Immune-cell targeted bispecific chimeric proteins and uses thereof
AU2018218557B9 (en) 2017-02-08 2021-06-24 Novartis Ag FGF21 mimetic antibodies and uses thereof
US11274160B2 (en) 2017-03-02 2022-03-15 INSERM (Institut National de la Santé et de la Recherche Médicale Antibodies having specificity to Nectin-4 and uses thereof
WO2018170178A1 (en) 2017-03-15 2018-09-20 Research Institute At Nationwide Children's Hospital Composition and methods for disruption of bacterial biofilms without accompanying inflammation
KR102628323B1 (ko) 2017-03-24 2024-01-22 노바르티스 아게 심장질환 예방 및 치료 방법
KR102014056B1 (ko) 2017-04-18 2019-08-27 앱클론(주) 단백질의 순도 및 항원에 대한 친화성이 향상된 폴리펩티드, 이의 항체 또는 항원 결합 단편과의 복합체, 및 이들의 제조방법
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
US11618891B2 (en) 2017-06-26 2023-04-04 Thermo Fisher Scientific Baltics Uab Thermophilic DNA polymerase mutants
AU2018292579A1 (en) 2017-06-28 2019-12-05 Novartis Ag Methods for preventing and treating urinary incontinence
US11674959B2 (en) 2017-08-03 2023-06-13 The Johns Hopkins University Methods for identifying and preparing pharmaceutical agents for activating Tie1 and/or Tie2 receptors
WO2019081983A1 (en) 2017-10-25 2019-05-02 Novartis Ag CD32B TARGETING ANTIBODIES AND METHODS OF USE
KR102556494B1 (ko) 2017-10-31 2023-07-18 엔코디아, 인코포레이티드 핵산 암호화 및/또는 표지를 이용한 분석용 키트
EA202091198A1 (ru) 2017-11-14 2020-09-09 Эрселлкс, Инк. Полипептиды, содержащие домен d, и их применение
MX2020004935A (es) 2017-11-14 2020-09-25 Arcellx Inc Terapias con celulas inmunitarias multifuncionales.
US11464803B2 (en) 2017-11-14 2022-10-11 Arcellx, Inc. D-domain containing polypeptides and uses thereof
US20200308301A1 (en) 2017-11-22 2020-10-01 Novartis Ag Reversal binding agents for anti-factor xi/xia antibodies and uses thereof
US20200392562A1 (en) 2017-12-22 2020-12-17 Thermo Fisher Scientific Baltics Uab Polymerase chain reaction composition comprising amines
EP3749295A4 (en) 2018-02-05 2022-04-27 Orionis Biosciences, Inc. FIBROBLAST BINDING AGENTS AND USES THEREOF
EP3783026A4 (en) 2018-04-18 2021-08-11 AbClon Inc. SWITCHING MOLECULE AND CHEMERICAL ANTIGENIC RECEIVER
TW202015726A (zh) 2018-05-30 2020-05-01 瑞士商諾華公司 Entpd2抗體、組合療法、及使用該等抗體和組合療法之方法
US11845797B2 (en) 2018-07-03 2023-12-19 Marengo Therapeutics, Inc. Anti-TCR antibody molecules and uses thereof
EP3626265A1 (en) 2018-09-21 2020-03-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-human cd45rc antibodies and uses thereof
WO2020069409A1 (en) 2018-09-28 2020-04-02 Novartis Ag Cd19 chimeric antigen receptor (car) and cd22 car combination therapies
WO2020069405A1 (en) 2018-09-28 2020-04-02 Novartis Ag Cd22 chimeric antigen receptor (car) therapies
CA3114925A1 (en) 2018-10-05 2020-04-09 Research Institute At Nationwide Children's Hospital Compositions and methods for enzymatic disruption of bacterial biofilms
JP2022514837A (ja) 2018-12-18 2022-02-16 ノバルティス アーゲー 抗第XI/XIa因子抗体に対する反転結合剤及びそれらの使用
CR20210471A (es) 2019-02-15 2021-12-08 Integral Molecular Inc Anticuerpos claudina 6 y usos de los mismos
JP2022520632A (ja) 2019-02-15 2022-03-31 インテグラル・モレキュラー・インコーポレイテッド 共通軽鎖を含む抗体及びその使用
CN113544509A (zh) 2019-03-08 2021-10-22 牛津遗传学有限公司 选择抗体的方法
GB201903233D0 (en) 2019-03-08 2019-04-24 Oxford Genetics Ltd Method of selecting for antibodies
EP3941580A1 (en) 2019-03-22 2022-01-26 Reflexion Pharmaceuticals, Inc. D-peptidic compounds for vegf
US20230051872A1 (en) 2019-03-22 2023-02-16 Reflexion Pharmaceuticals, Inc. Multivalent D-Peptidic Compounds for Target Proteins
AU2020267119A1 (en) 2019-04-30 2021-11-18 Encodia, Inc. Methods for preparing analytes and related kits
EP3972997A1 (en) 2019-05-20 2022-03-30 Institut National de la Santé et de la Recherche Médicale (INSERM) Novel anti-cd25 antibodies
WO2021006199A1 (ja) 2019-07-05 2021-01-14 小野薬品工業株式会社 Pd-1/cd3二重特異性タンパク質による血液がん治療
MX2022000137A (es) 2019-07-08 2022-05-19 Res Inst Nationwide Childrens Hospital Composiciones de anticuerpos para la ruptura de biopelículas.
JPWO2021025140A1 (ja) 2019-08-08 2021-02-11
CN114502590A (zh) 2019-09-18 2022-05-13 诺华股份有限公司 Entpd2抗体、组合疗法、以及使用这些抗体和组合疗法的方法
TW202124446A (zh) 2019-09-18 2021-07-01 瑞士商諾華公司 與entpd2抗體之組合療法
CA3155930A1 (en) 2019-09-27 2021-04-01 Starkage Therapeutics SENESCENT CELL-ASSOCIATED ANTIGEN-BINDING DOMAINS, ANTIBODIES AND CHIMERIC ANTIGEN RECEPTORS COMPRISING THEM, AND USES THEREOF
WO2021116119A1 (en) 2019-12-09 2021-06-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to her4 and uses thereof
AU2021237790A1 (en) 2020-03-20 2022-10-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Chimeric antigen receptor specific for human CD45RC and uses thereof
GB202004514D0 (en) 2020-03-27 2020-05-13 Inst De Medicina Molecular Joaeo Lobo Antunes Treatment of Immunosuppressive Cancer
KR102502287B1 (ko) 2020-04-17 2023-02-22 앱클론(주) 항-her2 어피바디 및 이를 스위치 분자로 이용하는 스위처블 키메라 항원 수용체
WO2021228956A1 (en) 2020-05-12 2021-11-18 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to treat cutaneous t-cell lymphomas and tfh derived lymphomas
IL300528A (en) 2020-08-07 2023-04-01 Fortis Therapeutics Inc Immune conjugates targeting cd46 and methods of using them
JP2023551353A (ja) 2020-10-13 2023-12-08 アヴィタイド エルエルシー 3へリックスバンドルタンパク質の親和性リガンドライブラリー及びその使用
KR102350655B1 (ko) 2020-10-13 2022-01-12 인센 주식회사 테스토스테론-특이적 어피바디 및 이의 용도
KR20230118108A (ko) 2020-11-20 2023-08-10 인쎄름 (엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔) 항-cd25 항체
US20240002521A1 (en) 2020-11-20 2024-01-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-cd25 antibodies
AU2021403833A1 (en) 2020-12-16 2023-07-27 Molecular Partners Ag Novel slow-release prodrugs
CN117241866A (zh) 2021-02-19 2023-12-15 艾维泰有限责任公司 Aav2亲和剂
US20240150475A1 (en) 2021-03-09 2024-05-09 Molecular Partners Ag Novel darpin based cd123 engagers
US20240156980A1 (en) 2021-03-09 2024-05-16 Molecular Partners Ag Protease cleavable prodrugs
CA3211248A1 (en) 2021-03-09 2022-09-15 Nina RESCHKE Novel darpin based cd33 engagers
GB2623199A (en) 2021-04-08 2024-04-10 Marengo Therapeutics Inc Multifunctional molecules binding to TCR and uses thereof
WO2023170296A1 (en) 2022-03-11 2023-09-14 Inserm (Institut National De La Sante Et De La Recherche Medicale) Nucleic acid system to specifically reprogram b and t cells and uses thereof
WO2024003380A1 (en) 2022-06-30 2024-01-04 Icm (Institut Du Cerveau Et De La Moelle Épinière) Vascular endothelial growth factor receptor-1 (vegfr-1) inhibitors for promoting myelination and neuroprotection
WO2024008755A1 (en) 2022-07-04 2024-01-11 Vib Vzw Blood-cerebrospinal fluid barrier crossing antibodies
WO2024052503A1 (en) 2022-09-08 2024-03-14 Institut National de la Santé et de la Recherche Médicale Antibodies having specificity to ltbp2 and uses thereof
WO2024077118A2 (en) 2022-10-06 2024-04-11 Bicara Therapeutics Inc. Multispecific proteins and related methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229492A (en) * 1986-02-14 1993-07-20 Pharmacia Lkb Biotechnology Ab Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G
US4954618A (en) * 1986-02-14 1990-09-04 Genex Corporation Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G
US5312901A (en) * 1986-02-14 1994-05-17 Pharmacia Lkb Biotechnology Ab Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G
US4879213A (en) * 1986-12-05 1989-11-07 Scripps Clinic And Research Foundation Synthetic polypeptides and antibodies related to Epstein-Barr virus early antigen-diffuse
US5084559A (en) * 1987-03-27 1992-01-28 Repligen Corporation Protein a domain mutants
US5856457A (en) * 1991-03-29 1999-01-05 Genentech, Inc. Nucleic acids encoding a human IL-8 receptor
SE9400088D0 (sv) * 1994-01-14 1994-01-14 Kabi Pharmacia Ab Bacterial receptor structures
US5877016A (en) * 1994-03-18 1999-03-02 Genentech, Inc. Human trk receptors and neurotrophic factor inhibitors

Also Published As

Publication number Publication date
EP0739353A1 (en) 1996-10-30
AU1548795A (en) 1995-08-01
DE69533644D1 (de) 2004-11-18
WO1995019374A9 (en) 2006-04-13
EP0739353B1 (en) 2004-10-13
AU696186B2 (en) 1998-09-03
CA2181042A1 (en) 1995-07-20
US5831012A (en) 1998-11-03
JPH09508016A (ja) 1997-08-19
DE69533644T2 (de) 2005-02-17
JP2005263810A (ja) 2005-09-29
ATE279439T1 (de) 2004-10-15
WO1995019374A1 (en) 1995-07-20
JP2007308509A (ja) 2007-11-29
NZ278991A (en) 1997-04-24
PT739353E (pt) 2005-01-31
SE9400088D0 (sv) 1994-01-14
CA2181042C (en) 2008-04-15
ES2225838T3 (es) 2005-03-16
US6534628B1 (en) 2003-03-18
JP4373461B2 (ja) 2009-11-25

Similar Documents

Publication Publication Date Title
JP4089920B2 (ja) 細菌レセプター構造体
US6740734B1 (en) Bacterial receptor structures
US20210162319A1 (en) Mutated Immunoglobulin-Binding Polypeptides
Nord et al. A combinatorial library of an α-helical bacterial receptor domain
CN101704879B (zh) 具有改进的特异性的新型免疫球蛋白结合蛋白
Jendeberg et al. Engineering of Fc1 and Fc3 from human immunoglobulin G to analyse subclass specificity for staphylococcal protein A
EP2288617B1 (en) Polypeptide
JP3043407B2 (ja) 完全合成アフィニティ試薬
JP6382826B2 (ja) アルブミン結合ポリペプチド
Grimm et al. Ribosome display selection of a murine IgG 1 Fab binding affibody molecule allowing species selective recovery of monoclonal antibodies
Gräslund et al. A novel affinity gene fusion system allowing protein A-based recovery of non-immunoglobulin gene products
JPH02231499A (ja) 免疫グロブリンg結合活性を有する新規な蛋白質プロテインh、該蛋白質をコードする遺伝子及び該蛋白質の製造法
WO2004106361A2 (en) Peptides for metal ion affinity chromatogrpahy
JPH05320197A (ja) スタヒロコッカス・アウレウス菌株27r由来のペニシリン結合タンパク質2aのdnaおよびアミノ酸配列およびその精製に用いるための誘導体およびメシチリン耐性生物に対して有効な化合物の検定法
CN107614014B (zh) 亲和配体及其相关方法
JP2015533377A (ja) アルブミン結合を含有するタンパク質の分離方法
JP7414225B2 (ja) SARS-CoV-2結合ペプチド
CN109096394B (zh) 一种抗葡萄球菌蛋白a的b亚单位的纳米抗体及核酸分子和应用
Popplewell et al. Synthesis and mutagenesis of an IgG-binding protein based upon protein A of Staphylococcus aureus
WO2000063383A1 (en) IgA BINDING POLYPEPTIDE
CN114591407A (zh) 耐碱蛋白a变体及其应用
Petrenko et al. Phage Landscape Libraries as a Source of Substitute Antibodies for Detection Platforms
Yuan Accelerating directed evolution: self-mutating bacteriophage and controlled protein unfolding by shear-stress

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040727

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050511

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050623

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060919

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term