JP3927455B2 - Method and apparatus for producing vapor grown carbon fiber - Google Patents

Method and apparatus for producing vapor grown carbon fiber Download PDF

Info

Publication number
JP3927455B2
JP3927455B2 JP2002189680A JP2002189680A JP3927455B2 JP 3927455 B2 JP3927455 B2 JP 3927455B2 JP 2002189680 A JP2002189680 A JP 2002189680A JP 2002189680 A JP2002189680 A JP 2002189680A JP 3927455 B2 JP3927455 B2 JP 3927455B2
Authority
JP
Japan
Prior art keywords
carbon fiber
furnace
dispersion cylinder
gas
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002189680A
Other languages
Japanese (ja)
Other versions
JP2004027452A (en
Inventor
一男 村槇
芳久 坂本
豊 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2002189680A priority Critical patent/JP3927455B2/en
Publication of JP2004027452A publication Critical patent/JP2004027452A/en
Application granted granted Critical
Publication of JP3927455B2 publication Critical patent/JP3927455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は有機化合物の気相熱分解法による微細な炭素繊維の製造法および製造装置に関し、特に繊維径が細く、かつ揃った炭素繊維を得ることが可能な製造法及び製造装置に関する。
【0002】
【従来の技術】
有機化合物の熱分解によって得られる気相法炭素繊維は、Fe、Ni等の微粒子を触媒として成長すると云われている。この場合のFe、Ni等の微粒子は有機遷移金属化合物(触媒前駆体)の熱分解によって生成される方法が一般的である。原料となる有機化合物にはベンゼン等の芳香族化合物が多く用いられ、水素等のキャリアガスと共に炭素繊維生成炉(以下反応炉という)に供給されるが、反応炉での成長時間が極めて短いことから、得られる炭素繊維は微細なものである。
従来、有機化合物、有機遷移金属化合物及びキャリアガスを所定温度に加熱された反応炉に直接供給する方法が一般的であったが、その後種々の改良法が提示されている。
例えば有機遷移金属化合物の熱分解帯域と炭素繊維生成帯域を分け、熱分解帯域で分解したガスを炭素繊維生成帯域に導き、同時に該生成帯域に有機化合物のガスとキャリアガスを供給し、有機化合物の熱分解を行い、先の有機遷移金属化合物の熱分解で生じたFe、Ni等の微粒子を触媒として炭素繊維を成長させる方法である(特公平6−21377号公報)。
【0003】
また有機遷移金属化合物の溶解した有機化合物の溶液をキャリアガスの存在下に気化させて、有機遷移金属化合物と有機化合物の比率が、該溶液と等しい混合ガスを作成し、該混合ガスを加熱帯域中で高温で反応させて気相法炭素繊維を製造する方法もある(特公平4−13448号公報)。
更に生成した炭素繊維が反応炉の炉壁に付着するのを防止するため原料ガスを反応炉の中心部に、キャリアガスを炉壁に沿って層流として流す方法も提案されている(特開平8−301699号公報)。
【0004】
【発明が解決しようとする課題】
気相法炭素繊維は微細であることから、樹脂、ゴム等の複合材料のフィラー、半導体材料、触媒材料、電界電子放出材料等の用途に用いられる。この場合繊維の直径ができるだけ細く、かつ揃ったものが望ましい。
遷移金属化合物の分解で生成したFe、Ni等の遷移金属の微粒子は時間が長くなると成長して大きくなるので細い繊維を得るには生成帯域での滞留時間を短くして微粒子の成長を抑える必要がある。
反応炉の加熱手段は一般に外熱式であるため炉内の温度の均一化に問題があり、特に繊維の生産性を高めるために反応炉(反応管)の径を大きくすると原料ガスの昇温に時間がかかり、かつ炉内の温度ムラが生じやすい。
【0005】
炭素繊維の径を均一にし、これを効率よく生産するには、均一な反応条件すなわち、反応炉内で均一な反応温度、反応時間、原料および触媒組成を満足する必要がある。なぜならば、炭素繊維成長反応は、これらの反応条件によりその反応速度が大きく影響されるためである。したがって、均一な繊維径を持った良質な炭素繊維を得るためには、これらの反応条件を炭素繊維成長反応が起こっている反応炉内で、できるだけ一定に保つ必要がある。これらの反応条件の内、特に重要なものは反応温度である。従来から炭素繊維生成に用いられてきた反応炉は、反応炉外部から電気ヒーターを用いて加熱する方式のものが主流であったが、この方式を用いると反応炉壁面の温度が一番高温となり、次いで反応炉中央部に向かって温度が低くなるような温度分布を有することとなり、均一な温度分布が得られなかった。これを改善する方法として、あらかじめキャリアガスを予熱して、このキャリアガスと有機化合物および遷移金属化合物とを混合した後、反応炉へ供給する方法などが行われてきた。ただしこの方法を用いても、キャリアガスと有機化合物および遷移金属化合物との混合ガスを反応炉へ供給する前に放熱により温度が低下し、反応炉入口部では温度が低く、後流に行くにつれて高くなるような温度分布を形成するために、均一な反応温度を得ることが難しかった。また、一般には、有機化合物の熱分解による炭素クラスターの放出温度と、遷移金属化合物の熱分解による遷移金属原子の放出温度は一致しないため、出来るだけ短時間のうちにこれらが同時に進行するように反応温度を確保してやる必要がある。
【0006】
前記の特公平6−21377号公報や特公平4−13448号公報の方法ではこれらの問題点に対して不十分なところがある。またこれらの方法では生成した炭素繊維が炉壁に付着するという問題が発生する。そのため付着した繊維の掻き取り等の面倒な操作が必要となるばかりでなく、付着した繊維が成長して太くなり、それが製品中に混入してくるため、この点からも細い繊維の揃ったものが得られない。
特開平8−301699号公報の方法は繊維が炉壁に付着するのを防止するには効果があると思われるが、反応炉入り口付近での原料ガスの温度を高くすることは難しく、そのため反応炉内での中心部と外側での温度ムラが生じやすい。また原料ガスの昇温に時間がかかる等から反応炉内での金属微粒子やガスの滞留時間が長くなり、繊維の径が大きくなり易い。
本発明は生成した炭素繊維が反応炉の壁面に付着するのを防止すると共に、十分に細く、かつ径の揃った繊維を製造することを目的とする。
【0007】
【課題を解決するための手段】
本発明は上記の目的を達成するためになされたもので以下の各発明からなる。
(1) 炭素繊維生成炉内にキャリアガス分散筒を、該生成炉の炉壁との間に間隙を設けて配置し、炭素繊維の原料ガスを前記分散筒内に供給し、加熱したキャリアガスを前記間隙と分散筒内を通るガスに分けて前記生成炉内に供給して炭素繊維を生成させることを特徴とする気相法炭素繊維の製造法。
(2) キャリアガス分散筒が、その内部に整流板を有するものである上記(1)に記載の気相法炭素繊維の製造法。
(3) キャリアガスの加熱温度が900〜1300℃である上記(1)または(2)のいずれか1項に記載の気相法炭素繊維の製造法。
(4) 原料ガスの供給が、炉の側壁を通して挿入された供給管により行われるものである上記(1)〜(3)のいずれか1項に記載の気相法炭素繊維の製造法。
【0008】
(5) 原料ガスの供給が、冷却機構を備えた供給管により原料ガス中の触媒前駆体の分解温度以下で行われる上記(1)〜(4)のいずれか1項に記載の気相法炭素繊維の製造法。
(6) 原料ガスが、炭素化合物及び遷移金属化合物を含むものである上記(1)〜(5)のいずれか1項に記載の気相法炭素繊維の製造法。
(7) 炭素化合物が、芳香族化合物、アセチレン、エチレン、ブタジエンの少なくとも1種、遷移金属化合物の金属が鉄、ニッケル、コバルトの少なくとも1種である上記(6)に記載の気相法炭素繊維の製造法。
(8) 上記(1)〜(7)のいずれか1項により製造された気相法炭素繊維。
【0009】
(9) 気相法炭素繊維が、直径0.001〜0.5μm、アスペクト比が10〜15000である上記(8)に記載の気相法炭素繊維。
(10) 炭素繊維生成炉とキャリアガス加熱炉が直結し、該生成炉内にキャリアガス分散筒が、炉壁との間に間隙を設けて配置され、該分散筒上に原料ガス供給管が設けられ、前記加熱炉にキャリアガス供給管が接続されてなる気相法炭素繊維製造装置。
(11) キャリアガス分散筒が、その内部に整流板を有するものである上記(10)に記載の気相法炭素繊維製造装置。
(12) キャリアガス分散筒が設置される部位の炉壁にレデューサー部(傾斜部)を有し、該レデューサー部で前記分散筒を支持している上記(10)または(11)に記載の気相法炭素繊維製造装置。
【0010】
(13) 原料ガス供給管が、炉の側壁を通して挿入されている上記(10)〜(12)のいずれか1項に記載の気相法炭素繊維製造装置。
(14) 炭素繊維生成炉の繊維排出口に冷却管が接続され、該冷却管に冷却ガス吹込機構が設けられている上記(10)〜(13)のいずれか1項に記載の気相法炭素繊維製造装置。
(15) キャリアガス加熱炉、炭素繊維生成炉、キャリアガス分散筒、整流板の材料がセラミックスである上記(10)〜(14)のいずれか1項に記載の気相法炭素繊維製造装置。
(16) セラミックスが、炭化珪素、窒化ホウ素、窒化珪素から選ばれた少なくとも1種の化合物である上記(15)に記載の気相法炭素繊維製造装置。
【0011】
【発明の実施の形態】
本発明において原料ガスは有機化合物及び触媒前駆体である。有機化合物はベンゼン等の芳香族化合物、直鎖状の炭素水素、脂環式炭化水素などが用いられるが、芳香族化合物、アセチレン、エチレン、ブタジエンなどの不飽和炭化水素が好ましいが、最も好ましいのはベンゼンである。
触媒前駆体は鉄、ニッケル、コバルト、モリブデン、バナジウムなどの遷移金属を含む化合物が用いられ、フェロセン、ニッケルセン等の有機遷移金属化合物、鉄、ニッケル、コバルト、モリブデン、バナジウムの塩化物、硝酸化物、硫酸化物、フッ化物、臭化物、酸化物の無機遷移金属化合物例えば塩化鉄、塩化ニッケル、塩化コバルトが用いられるが、その他分解あるいは反応により鉄等の遷移金属微粒子が生ずるものであれば使用できる。触媒前駆体及び有機化合物は予熱して蒸発あるいはキャリアガスのバブリング等によりガス化される。したがって原料ガスにはこのようなキャリアガスを含んでもよい。触媒前駆体が有機遷移金属化合物の場合、それから生じた遷移金属微粒子が触媒となり、炭素分は炭素繊維源にもなる。
【0012】
原料ガスはキャリアガスと共に反応炉に供給される。キャリアガスは通常は水素である。
本発明はこれらのガスから炭素繊維を製造する場合、反応炉の炭素繊維生成帯域内、好ましくは該生成帯域内の上部(上流部)にキャリアガス分散筒を設置することが一つの特徴である。キャリアガスはこの分散筒により筒体の外側を通るガスと内側を通るガスに分かれる。
キャリアガス分散筒(以下分散筒という)の一実施形態を図面を参照して説明する。
図1は本発明の炭素繊維の製造法に用いられる装置の一例を示す概略断面図で、図2はその分散筒の近辺の拡大断面図である。図2で4が分散筒である。図に示す装置はキャリアガス加熱炉1と反応炉2が直結したもので、分散筒4は反応炉内の上部、加熱炉1の下に設置されている。分散筒は上下が開放された筒体で、その外側の鍔部43がレデュース面(下側に向けて径がわずかに細くなる傾斜面)に支持されている。図に示す分散筒は内部に整流板41を有するのであるが整流板はなくすこともできる。整流板及び鍔部には多数の通気孔が開けられている。整流板は原料ガスとキャリアガスをよく混合すると共にその混合ガスが分散筒内の中央部と周辺部等で偏流を起こすことなく一様に流通するようにするため好ましくは設けられるものである。分散筒が設置される位置はその上下方向の中央部で900〜1300℃の温度帯のところが好ましい。分散筒は炉の外壁、即ち図の装置では反応炉内の上部外壁から間隙を設けて設置される。
【0013】
本発明の方法は上記の間隙にはほぼキャリアガスのみを通すようにして、反応炉の壁面にできるだけキャリアガスが層流で流れるようにして、壁面に炭素繊維が付着するのを抑制するのが一つの特徴である。したがって上記の間隙をあまり狭くすることは好ましくない。反面広過ぎると中央部が狭くなったり、該帯域の不均一化にもつながる。これらの好ましい構成については後述の装置の発明のところで説明する。
分散筒内には原料ガスが供給される。この原料ガスは分散筒の外側にはできるだけ出ないようにする。そのために原料ガス供給管の先端は上限が分散筒の上端と同程度の位置とすべきであり、好ましくは分散筒内に位置させることである。
ただし分散筒に整流板がある場合、あまり整流板に近づけることは原料ガスとキャリアガスの均一混合等から好ましくない。この関係を図2で説明すると整流板の上の部分の分散筒の高さH1と整流板上の原料ガス供給管3の先端の高さH3は好ましくはH3/H1が0.5〜1.0、更に好ましくは0.7〜0.9の範囲にあることがよい。分散筒に整流板がない場合は原料ガス供給管の先端は分散筒の中央部位まで下げてもよい。いずれの場合も原料ガスは炉の長さ方向に平行に供給される。
【0014】
原料ガスは遷移金属化合物等の触媒前駆体の熱分解温度以下で供給される。触媒前駆体が熱分解すると遷移金属原子が放出され、これが衝突、凝集して遷移金属微粒子触媒が形成されるが、この衝突、凝集が多過ぎると微粒子が巨大化し、触媒機能が失われる。また、触媒として有効に利用できる遷移金属微粒子数も減少する。したがって、触媒前駆体は炉内に入る前は熱分解を起こさない方がよい。望ましい遷移金属微粒子径は1〜10nmである。原料ガス供給管はキャリアガス加熱炉の上端から炉内に挿入することも不可能ではないが、この場合は原料ガス供給管が長くなり、原料ガスの温度が高くなるとともに原料ガスの滞留時間が増大して遷移金属化合物の分解を招く。従って、図2に示すように炉側壁面から炉内に挿入することが望ましい。
【0015】
キャリアガスは加熱され、分散筒の上部に供給される。そして一部は分散筒の外側の間隙を、残りは分散筒内に入り原料ガスと混合される。キャリアガスの加熱温度は900〜1300℃が好ましい。図1,2に示す装置はキャリアガス加熱炉は反応炉に直結している。キャリアガスを反応炉からはなして加熱し、これを分散筒上に導入することも不可能ではないが、導入径路における熱放散等を考慮すると図示するように両者を直結することが望ましい。
【0016】
分散筒内において原料ガスはキャリアガスにより急激に昇温し、触媒前駆体を熱分解し、遷移金属原子が放出され、原子同士の衝突等により微粒子となるが、その時間は短いので、粒子が過度に大きくなることはない。分散筒内では 一部炭素繊維の生成も開始されると思われるが、分散筒内での滞留時間は短く、繊維は殆ど成長せず、次の反応帯域に送られる。
反応炉は通常900〜1300℃程度の温度にされている。キャリアガスの加熱も同程度ないしはそれ以上の温度にすることも可能であり、原料ガスと混合しても、反応炉の温度と大差ないものとすることができる。そして分散筒内では原料ガスが均一に混合され、かつ温度ムラがない。このガスが反応炉に移行するので反応炉での触媒微粒子の分布、反応温度のバラツキが少なく径の揃った炭素繊維が得られる。
分散筒の外側はキャリアガスが層流として流通し、この層流作用が反応炉の側壁にも及び、側壁近傍での炭素繊維の生成を抑制し、また生成した炭素繊維の側壁での付着を防止する。
【0017】
本発明において、炭素繊維の径を細くし、かつ径のバラツキを少なくするために反応炉の後にガス冷却筒を接続することが好ましい。生成した炭素繊維は反応炉内で時間の経過と共に成長するので、径のバラツキを少なくするには、すべての反応ガスを急激に冷却して炭素繊維の成長を同時に停止してやる必要がある。そこで本発明では反応炉の後に好ましくはガス冷却筒を接続し、水素ガス、不活性ガス等を吹き込み、冷却することにより反応炉の炭素繊維が成長する温度帯域の滞留時間を短くしたものである。これにより、不均一に炭素繊維が成長するのを防止して径のバラツキを少なくすることができる。
【0018】
反応炉で生成した炭素繊維は捕集器に集められ回収される。生成したままの炭素繊維には繊維ではない炭化物等が混入されているので、空気酸化等の方法によりこれを分離し、必要により熱処理して製品とする。
得られた炭素繊維は大部分、例えば90質量%以上は繊維径が0.001〜0.5μm、アスペクト比(長さ/径)が10〜15000の範囲にある。この繊維において、繊維径等の調節は炭素繊維生成炉内のガスの滞留時間、温度、原料ガス組成、遷移金属化合物濃度等を変えることによって行うことができる。そして本発明においては前記炉内の繊維生成条件のバラツキが少ないので、繊維径が揃ったものを得ることができる。
【0019】
次に本発明の炭素繊維製造装置について図面を参照しながら説明する。
図1は本発明の炭素繊維製造装置の概略断面図、図2は分散筒近辺の拡大断面図である。
本発明の炭素繊維製造装置はキャリアガス加熱炉1と反応炉2は直結している。通常は縦型であるが、その場合キャリアガス加熱炉の下に反応炉が配置される。これら二つの炉は一体に成形されたものでもよく、別々に成形し、接続することもできる。これらの炉はヒーター11、21により所定の温度に加熱される。キャリアガス加熱炉および反応炉は高温に加熱されるので炭化珪素、窒化珪素、窒化ホウ素の焼結体が望ましい。キャリアガス加熱炉と反応炉が直結していることにより、加熱されたキャリアガスが直ちに反応炉に移行するので放熱による熱損失が少なく効率的である。
【0020】
反応炉内の上部には分散筒4が設置される。分散筒4の上部に原料ガス供給管3が設置され、その先端は分散筒の上端近傍ないし分散筒内に位置させるのがよい。そして供給管の先端は下向き、即ち反応炉と平行方向にし、原料ガスを下向きに流出させる。原料ガス供給管はキャリアガス加熱炉の上部から炉内を通して設置することも不可能ではないが、キャリアガスは高温に加熱されているので、原料ガスの温度を遷移金属化合物の分解温度以下に抑えるためには、原料ガス供給管の炉内部分は短くする方がよく、それには図1に示すようにキャリアガス加熱炉の下部の側壁部を通して設けるのが好ましい。
【0021】
本発明において用いられる分散筒4は図2に示すように上下が開放された筒体である。分散筒は反応炉内の好ましくは上部に設置されるが、分散筒内には原料ガスが放出され、かつ温度も炭素繊維生成温度に達しているので、分散筒が設置されている部位は反応炉の一部でもある。
分散筒4は反応炉の内壁と分散筒外壁との間に間隙を有するように設置される。この間隙に加熱されたキャリアガスを流通させる。これによって間隙を通るガスは層流となり、その層流が分散筒の下部の反応炉の壁面に沿ってできるだけ長く形成されていることが好ましい。また分散筒内では原料ガスとキャリアガスが均一に混合され、温度ムラ、濃度ムラが生じないことが好ましい。これらのためには分散筒はある程度以上の長さが必要である。反面長過ぎると分散筒内に炭素繊維が付着するようになる。また分散筒と炉壁との間隙もある程度以上必要であるが、これをあまり広くすると分散筒の径が狭くなり、触媒微粒子等の濃度が反応炉の中央部等で高くなったり、反応炉内の濃度ムラの原因にもなる。
【0022】
これらのことから望ましい実施形態を図2、図3により説明する。分散筒は整流板の上下でその径を変えることができる。例えば図3は整流板の上部の分散筒の径を下部の径よりも大きくした場合である。図2、図3において、D1は反応炉の内径、D2は分散筒の整流板上部の内径、D3は分散筒の整流板下部の内径、H1は整流板の上部の分散筒の長さ、H2は整流板下部の分散筒の長さである。 この場合の望ましい関係はD2/D1が0.2〜1.1、D3/D1が0.2〜0.9、H2/D1が0.2〜2.0、H1/D2が0.2〜3.0の範囲である。
なお、図示の分散筒は整流板41を有するものであるが、整流板はなくすことも可能である。整流板がない場合の分散筒の長さHは反応炉の内径に対し、H/D1 が0.2〜3.0の範囲にあるのが望ましい。
分散筒4は炉壁のレデュース部22(下方が細い傾斜部)で、分散筒の鍔43を支持するようにすることが好ましい。鍔の代わりに複数個の突起等で支持することも可能であるが、反応炉と同様炭化珪素焼結体等で構成されるので、成形、焼結が容易であることが好ましく、この点上記の突起より鍔の方が製作が容易である。鍔には多数の通気孔が設けられている。分散筒は温度変化により膨張、収縮するが、支持点がレデュース部であれば膨張、収縮に合わせて上下動が可能となり、熱応力の発生を抑えることができるので好都合である。
【0023】
分散筒は好ましくは整流板41を有し、その整流板には多数の通気孔42が設けられる。この通気孔にガスを流すことにより、ガスが中央部から周辺部まで一様に流すことができる。分散筒内では炭素繊維の生成が一部開始されることもあるので、この通気孔があまり小さいと長時間の運転では炭素繊維が付着し閉塞を起こす恐れがある。したがって通気孔の直径は5mm以上が好ましい。
分散筒上には原料ガス供給管3が設けられる。原料ガス供給管3はキャリアガス加熱炉の上部から垂下させることも可能であるが、前記した理由により炉の側壁から挿入することが好ましい。原料ガス供給管3は二重管とし、中心部の原料ガス供給内挿管31の周囲に冷却用の不活性ガス等を流し、原料中の触媒前駆体の温度を分解温度以下にする。冷却用のガスを流す方法としては例えば二重管の間に細管を挿入し、その先端を開放し、細管に冷却用のガスを流す方法等がある。原料ガス供給管の先端の位置については前述したとおり分散筒内にあってもよい。
【0024】
キャリアガス加熱炉にはキャリアガス送入管12が接続され、反応炉出口には好ましくは冷却管5が接続される。冷却管5には冷却用のガス送入口51が複数個斜め下向きに設けられる。ガス送入口51は垂直方向に対し斜め下向きで、かつ周囲方向に傾けることもでき、これによりガスを下向きで渦巻き状に流すこともできる。冷却管に連なる輸送配管6を細くすることにより輸送ガスの流速を増し、炭素繊維が配管中に滞るのを防止することができる。輸送配管はステンレス等で構成でき、加工が容易であり、図1に示すように屈曲させることができ、これにより生成した炭素繊維を任意の位置に輸送できたり、装置全体の高さを短くすることができる。
輸送配管6の先にはバッフル72を有する捕集器7が接続され、ここで炭素繊維とキャリアガスが分離される 。炭素繊維は回収され、キャリアガスはバグフィルター8を通して排出され処理あるいは回収される。
【0025】
【実施例】
図1、図3に示す装置を用いて炭素繊維を製造した。反応炉およびキャリアガス加熱炉は炭化珪素焼結体で一体に構成されたものを使用した。炉はレデュース部の上が長さ1500mm、内径が125mm、レデュース部の下が長さ930mm、内径が100mm、レデュース部は内径125−100mm、長さ100mmである。
分散筒はレデュース部で支持するようにした。分散筒は炭化珪素焼結体で、図3に示す各寸法はH1が115mm、H2が105mm、D2は60mm、D3は50mmである。分散筒には径5mmの通気孔を有する整流板が内装されている。
原料ガスは整流板からの高さH3を105mmとして分散筒内に供給した。原料ガス供給管は二重構造として、二重管の外側を窒素ガスにより冷却し、中心部の原料ガスを触媒前駆体であるフェロセンの分解温度以下に抑えた。
【0026】
反応炉の下部にはステンレス製の冷却管を接続し、この冷却管に窒素ガス挿入口を斜め下向に4カ所設けた。冷却管に続く輸送管は内径9.8mmとした。
運転条件は以下の通り
原料ガス フェロセン4質量%含有ベンゼン。送入量は7g/min.
キャリアガス 水素ガス。送入量は60nl/min.
冷却ガス 窒素ガス。送入量は50nl/min.
キャリアガス温度 1200℃(最高温度帯)
反応炉内温度 1200℃(最高温度帯)
上記の条件で5時間運転した。その結果反応炉壁に炭素繊維が付着することが殆どなく円滑に運転できた。得られた炭素繊維は顕微鏡観察により平均径は0.02μm、平均長さは10μmであり、繊維は径がよく揃っていた。炭素繊維の収率は原料ガス(ベンゼン及びフェロセン)中の炭素分に対する繊維量で表すと25質量%であった。
【0027】
【発明の効果】
本発明は反応炉の上部にキャリアガス分散筒を設けたものであり、分散筒の外側にキャリアガスを流すことにより、反応炉の壁面に炭素繊維が付着するのを防止することができる。また分散筒内では原料ガスと高温に加熱されたキャリアガスが直ちに混合し、かつ分散筒内における温度分布が均一で、しかもその温度は反応炉内の温度と大差なくすることができる。この高温の混合ガスが反応炉内に入るので反応炉内での温度のアンバランスが少ない。また触媒前駆体及び有機化合物の熱分解から炭素繊維の成長が終了するまでの時間を短くまた、一定にすることが可能である。これらのことにより炭素繊維径が細く、かつ揃った炭素繊維を得ることができる効果を有する。
【図面の簡単な説明】
【図1】図1は本発明の気相法炭素繊維の製造装置の一例を示す概略断面図である。
【図2】図2は図1における分散筒近辺の部分拡大断面図である。
【図3】図3は分散筒近辺の別の態様の部分拡大断面図である。
【符号の説明】
1 キャリアガス加熱炉
11 ヒーター
12 キャリアガス送入管
13 キャリアガス
2 反応炉
21 ヒーター
22 レデュース部
3 原料ガス供給管
31 原料ガス供給内挿管
32,33 冷却用不活性ガス
34 原料ガス
4 キャリアガス分散筒
41 整流板
42 通気孔
43 鍔部
5 冷却管
51 冷却用ガス送入口
52 冷却用ガス
6 輸送管
7 捕集器
71、73 炭素繊維
72 バッフル
8 バグフィルター
81 排出ガス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for producing fine carbon fibers by vapor phase pyrolysis of an organic compound, and more particularly to a production method and an apparatus capable of obtaining carbon fibers having a small fiber diameter and uniform.
[0002]
[Prior art]
Vapor grown carbon fibers obtained by thermal decomposition of organic compounds are said to grow using fine particles such as Fe and Ni as catalysts. In this case, a method in which fine particles such as Fe and Ni are generated by thermal decomposition of an organic transition metal compound (catalyst precursor) is generally used. Aromatic compounds such as benzene are often used as organic compounds as raw materials and are supplied to a carbon fiber production furnace (hereinafter referred to as a reaction furnace) together with a carrier gas such as hydrogen, but the growth time in the reaction furnace is extremely short. Therefore, the carbon fiber obtained is fine.
Conventionally, a method of directly supplying an organic compound, an organic transition metal compound, and a carrier gas to a reactor heated to a predetermined temperature has been generally used, but various improved methods have been proposed thereafter.
For example, the pyrolysis zone of the organic transition metal compound and the carbon fiber production zone are separated, the gas decomposed in the pyrolysis zone is guided to the carbon fiber production zone, and simultaneously the organic compound gas and the carrier gas are supplied to the production zone. In this method, carbon fibers are grown using fine particles of Fe, Ni, etc. generated by the thermal decomposition of the organic transition metal compound as a catalyst (Japanese Patent Publication No. 6-21377).
[0003]
Also, a solution of the organic compound in which the organic transition metal compound is dissolved is vaporized in the presence of a carrier gas to create a mixed gas in which the ratio of the organic transition metal compound and the organic compound is equal to the solution, and the mixed gas is heated in the heating zone. There is also a method for producing vapor-grown carbon fiber by reacting at high temperature (Japanese Patent Publication No. 4-13448).
Furthermore, in order to prevent the generated carbon fibers from adhering to the furnace wall of the reactor, there has been proposed a method in which a raw material gas is flown in the center of the reactor and a carrier gas is flowed as a laminar flow along the furnace wall (Japanese Patent Laid-Open No. Hei. 8-30699).
[0004]
[Problems to be solved by the invention]
Since vapor grown carbon fibers are fine, they are used for applications such as fillers of composite materials such as resins and rubbers, semiconductor materials, catalyst materials, field electron emission materials, and the like. In this case, it is desirable that the diameters of the fibers be as thin and uniform as possible.
Since transition metal fine particles such as Fe and Ni produced by the decomposition of transition metal compounds grow and grow with time, it is necessary to reduce the residence time in the production zone to suppress fine particle growth in order to obtain fine fibers There is.
Since the heating means of the reaction furnace is generally an external heating type, there is a problem in uniformizing the temperature in the furnace. In particular, if the diameter of the reaction furnace (reaction tube) is increased to increase the fiber productivity, the temperature of the raw material gas is increased. It takes a long time and temperature unevenness in the furnace tends to occur.
[0005]
In order to make the carbon fiber diameter uniform and efficiently produce it, it is necessary to satisfy uniform reaction conditions, that is, uniform reaction temperature, reaction time, raw material and catalyst composition in the reaction furnace. This is because the reaction rate of the carbon fiber growth reaction is greatly influenced by these reaction conditions. Therefore, in order to obtain a high-quality carbon fiber having a uniform fiber diameter, it is necessary to keep these reaction conditions as constant as possible in the reaction furnace in which the carbon fiber growth reaction occurs. Of these reaction conditions, the reaction temperature is particularly important. Conventionally, most of the reactors used for carbon fiber production are heated by an electric heater from the outside of the reactor. However, when this method is used, the temperature of the reactor wall becomes the highest. Then, the temperature distribution was such that the temperature decreased toward the center of the reactor, and a uniform temperature distribution could not be obtained. As a method for improving this, a method of preheating a carrier gas in advance, mixing the carrier gas with an organic compound and a transition metal compound, and then supplying the mixture to a reaction furnace has been performed. However, even if this method is used, the temperature decreases due to heat dissipation before the mixed gas of the carrier gas, the organic compound, and the transition metal compound is supplied to the reactor, and the temperature is low at the inlet of the reactor. In order to form such a high temperature distribution, it was difficult to obtain a uniform reaction temperature. In general, the release temperature of carbon clusters due to the thermal decomposition of organic compounds and the release temperature of transition metal atoms due to the thermal decomposition of transition metal compounds do not match, so that they proceed simultaneously in as short a time as possible. It is necessary to secure the reaction temperature.
[0006]
The methods described in Japanese Patent Publication No. 6-21377 and Japanese Patent Publication No. 4-13448 are insufficient for these problems. Moreover, in these methods, the problem that the produced | generated carbon fiber adheres to a furnace wall generate | occur | produces. Therefore, not only the troublesome operation such as scraping off the attached fibers is required, but also the attached fibers grow and become thicker, and it gets mixed into the product. I can't get anything.
Although the method of JP-A-8-301699 seems to be effective in preventing the fibers from adhering to the furnace wall, it is difficult to raise the temperature of the raw material gas near the reactor inlet, and therefore the reaction Temperature unevenness easily occurs at the center and outside of the furnace. Further, since it takes time to raise the temperature of the raw material gas, the residence time of the metal fine particles and the gas in the reaction furnace becomes long, and the fiber diameter tends to increase.
An object of the present invention is to prevent the produced carbon fiber from adhering to the wall surface of the reaction furnace, and to produce a sufficiently thin fiber having a uniform diameter.
[0007]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and comprises the following inventions.
(1) A carrier gas dispersion cylinder is disposed in a carbon fiber production furnace with a gap between the production furnace and the furnace wall, and a carbon fiber source gas is supplied into the dispersion cylinder and heated. Is produced by dividing the gas into gas passing through the gap and the dispersion cylinder and supplying the gas into the production furnace to produce carbon fiber.
(2) The method for producing vapor grown carbon fiber according to (1), wherein the carrier gas dispersion cylinder has a rectifying plate therein.
(3) The method for producing vapor-grown carbon fiber according to any one of (1) or (2) above, wherein the heating temperature of the carrier gas is 900 to 1300 ° C.
(4) The method for producing vapor grown carbon fiber according to any one of the above (1) to (3), wherein the supply of the source gas is performed by a supply pipe inserted through the side wall of the furnace.
[0008]
(5) The gas phase method according to any one of (1) to (4), wherein the supply of the source gas is performed at a temperature equal to or lower than the decomposition temperature of the catalyst precursor in the source gas by a supply pipe having a cooling mechanism. Carbon fiber manufacturing method.
(6) The method for producing vapor grown carbon fiber according to any one of (1) to (5) above, wherein the source gas contains a carbon compound and a transition metal compound.
(7) The vapor grown carbon fiber according to (6), wherein the carbon compound is at least one of an aromatic compound, acetylene, ethylene, and butadiene, and the metal of the transition metal compound is at least one of iron, nickel, and cobalt. Manufacturing method.
(8) A vapor grown carbon fiber produced according to any one of (1) to (7) above.
[0009]
(9) The vapor grown carbon fiber according to (8), wherein the vapor grown carbon fiber has a diameter of 0.001 to 0.5 μm and an aspect ratio of 10 to 15000.
(10) A carbon fiber production furnace and a carrier gas heating furnace are directly connected, a carrier gas dispersion cylinder is disposed in the production furnace with a gap between the furnace wall, and a raw material gas supply pipe is disposed on the dispersion cylinder. An apparatus for producing vapor grown carbon fiber comprising a carrier gas supply pipe connected to the heating furnace.
(11) The vapor grown carbon fiber production apparatus according to (10), wherein the carrier gas dispersion cylinder has a rectifying plate therein.
(12) The gas according to (10) or (11), wherein the furnace wall of the portion where the carrier gas dispersion cylinder is installed has a reducer part (inclined part), and the dispersion cylinder is supported by the reducer part. Phase method carbon fiber production equipment.
[0010]
(13) The vapor grown carbon fiber production apparatus according to any one of (10) to (12), wherein the source gas supply pipe is inserted through the side wall of the furnace.
(14) The vapor phase method according to any one of (10) to (13), wherein a cooling pipe is connected to the fiber outlet of the carbon fiber production furnace, and a cooling gas blowing mechanism is provided in the cooling pipe. Carbon fiber manufacturing equipment.
(15) The vapor grown carbon fiber production apparatus according to any one of (10) to (14), wherein the material of the carrier gas heating furnace, the carbon fiber generation furnace, the carrier gas dispersion cylinder, and the current plate is ceramic.
(16) The vapor grown carbon fiber production apparatus according to (15), wherein the ceramic is at least one compound selected from silicon carbide, boron nitride, and silicon nitride.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the raw material gas is an organic compound and a catalyst precursor. As the organic compound, aromatic compounds such as benzene, linear carbon hydrogen, alicyclic hydrocarbons, and the like are used, but unsaturated hydrocarbons such as aromatic compounds, acetylene, ethylene, and butadiene are preferable, but most preferable. Is benzene.
The catalyst precursor is a compound containing a transition metal such as iron, nickel, cobalt, molybdenum or vanadium, an organic transition metal compound such as ferrocene or nickelsen, iron, nickel, cobalt, molybdenum, vanadium chloride or nitrate. Inorganic transition metal compounds such as sulfates, fluorides, bromides, and oxides such as iron chloride, nickel chloride, and cobalt chloride are used, and any other transition metal fine particles such as iron can be used by decomposition or reaction. The catalyst precursor and the organic compound are preheated and gasified by evaporation or carrier gas bubbling. Accordingly, the source gas may contain such a carrier gas. When the catalyst precursor is an organic transition metal compound, the transition metal fine particles generated therefrom serve as a catalyst, and the carbon content also serves as a carbon fiber source.
[0012]
The source gas is supplied to the reactor together with the carrier gas. The carrier gas is usually hydrogen.
One feature of the present invention is that, when carbon fibers are produced from these gases, a carrier gas dispersion cylinder is installed in the carbon fiber production zone of the reactor, preferably in the upper part (upstream part) of the production zone. . The carrier gas is divided into gas passing through the outside of the cylinder and gas passing through the inside by the dispersion cylinder.
An embodiment of a carrier gas dispersion cylinder (hereinafter referred to as a dispersion cylinder) will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus used in the method for producing carbon fiber of the present invention, and FIG. 2 is an enlarged cross-sectional view in the vicinity of the dispersion cylinder. In FIG. 2, 4 is a dispersion cylinder. The apparatus shown in the figure has a carrier gas heating furnace 1 and a reaction furnace 2 directly connected, and a dispersion cylinder 4 is installed in the upper part of the reaction furnace and under the heating furnace 1. The dispersion cylinder is a cylinder whose upper and lower sides are open, and the outer flange 43 is supported by a reduction surface (an inclined surface whose diameter slightly narrows downward). The dispersion cylinder shown in the figure has a current plate 41 inside, but the current plate can be eliminated. A large number of air holes are formed in the current plate and the collar. The rectifying plate is preferably provided so that the raw material gas and the carrier gas are well mixed and the mixed gas flows uniformly without causing a drift in the central portion and the peripheral portion in the dispersion cylinder. The position where the dispersion cylinder is installed is preferably in the temperature range of 900 to 1300 ° C. at the center in the vertical direction. The dispersion cylinder is installed with a gap from the outer wall of the furnace, that is, the upper outer wall in the reaction furnace in the illustrated apparatus.
[0013]
According to the method of the present invention, only the carrier gas is allowed to pass through the gap, and the carrier gas flows in a laminar flow as much as possible on the wall surface of the reaction furnace, thereby suppressing the adhesion of carbon fibers to the wall surface. It is one feature. Therefore, it is not preferable to make the gap too narrow. On the other hand, if it is too wide, the central portion becomes narrow, and the band becomes non-uniform. These preferred configurations will be described later in the description of the device invention.
A raw material gas is supplied into the dispersion cylinder. This raw material gas should be kept out of the dispersion cylinder as much as possible. Therefore, the upper end of the source gas supply pipe should be positioned at the same upper limit as the upper end of the dispersion cylinder, and is preferably located in the dispersion cylinder.
However, when there is a current plate in the dispersion cylinder, it is not preferable to bring it closer to the current plate because of uniform mixing of the source gas and the carrier gas. This relationship will be described with reference to FIG. 2. The height H of the dispersion cylinder in the upper part of the current plate 1 And the height H of the tip of the source gas supply pipe 3 on the current plate Three Is preferably H Three / H 1 Is in the range of 0.5 to 1.0, more preferably 0.7 to 0.9. If the dispersion cylinder does not have a rectifying plate, the tip of the source gas supply pipe may be lowered to the central portion of the dispersion cylinder. In either case, the source gas is supplied in parallel with the length direction of the furnace.
[0014]
The source gas is supplied below the thermal decomposition temperature of the catalyst precursor such as a transition metal compound. When the catalyst precursor is thermally decomposed, transition metal atoms are released and collide and aggregate to form a transition metal fine particle catalyst. If the collision and aggregation are excessive, the fine particles become enormous and the catalytic function is lost. In addition, the number of transition metal fine particles that can be effectively used as a catalyst also decreases. Therefore, it is better that the catalyst precursor does not undergo thermal decomposition before entering the furnace. A desirable transition metal fine particle diameter is 1 to 10 nm. Although it is not impossible to insert the source gas supply pipe into the furnace from the upper end of the carrier gas heating furnace, in this case, the source gas supply pipe becomes longer, the temperature of the source gas becomes higher, and the residence time of the source gas is increased. Increases and causes decomposition of the transition metal compound. Therefore, it is desirable to insert into the furnace from the furnace side wall as shown in FIG.
[0015]
The carrier gas is heated and supplied to the upper part of the dispersion cylinder. A part enters the gap outside the dispersion cylinder, and the rest enters the dispersion cylinder and is mixed with the raw material gas. The heating temperature of the carrier gas is preferably 900 to 1300 ° C. In the apparatus shown in FIGS. 1 and 2, the carrier gas heating furnace is directly connected to the reaction furnace. Although it is not impossible to heat the carrier gas from the reaction furnace and introduce it onto the dispersion cylinder, it is desirable to directly connect the two as shown in view of heat dissipation in the introduction path.
[0016]
In the dispersion cylinder, the raw material gas is rapidly heated by the carrier gas, the catalyst precursor is thermally decomposed, transition metal atoms are released, and become fine particles due to collisions between atoms, etc. Don't get too big. Although it seems that the production of some carbon fibers starts in the dispersion cylinder, the residence time in the dispersion cylinder is short, and the fibers hardly grow and are sent to the next reaction zone.
The reactor is usually at a temperature of about 900 to 1300 ° C. The carrier gas can be heated to the same or higher temperature, and even when mixed with the raw material gas, the temperature of the reaction furnace can be kept largely unchanged. In the dispersion cylinder, the source gases are uniformly mixed and there is no temperature unevenness. Since this gas moves to the reaction furnace, carbon fibers having a uniform diameter can be obtained with little distribution of catalyst fine particles in the reaction furnace and variations in reaction temperature.
The carrier gas flows as a laminar flow outside the dispersion cylinder, and this laminar flow action also reaches the side wall of the reactor, suppressing the formation of carbon fibers near the side wall, and preventing the generated carbon fibers from adhering to the side walls. To prevent.
[0017]
In the present invention, it is preferable to connect a gas cooling cylinder after the reaction furnace in order to reduce the diameter of the carbon fiber and reduce the variation in diameter. Since the produced carbon fiber grows with time in the reaction furnace, in order to reduce the variation in diameter, it is necessary to rapidly cool all the reaction gases and simultaneously stop the growth of the carbon fiber. Therefore, in the present invention, a gas cooling cylinder is preferably connected after the reaction furnace, and hydrogen gas, inert gas, etc. are blown and cooled to shorten the residence time in the temperature zone where the carbon fiber of the reaction furnace grows. . Thereby, it is possible to prevent the carbon fibers from growing non-uniformly and reduce the variation in diameter.
[0018]
The carbon fibers produced in the reaction furnace are collected in a collector and collected. Since the carbon fiber as produced is mixed with carbides and the like which are not fibers, it is separated by a method such as air oxidation and heat treated as necessary to obtain a product.
Most of the obtained carbon fibers, for example, 90% by mass or more, have a fiber diameter of 0.001 to 0.5 μm and an aspect ratio (length / diameter) of 10 to 15000. In this fiber, the fiber diameter and the like can be adjusted by changing the residence time, temperature, raw material gas composition, transition metal compound concentration, etc. of the gas in the carbon fiber production furnace. And in this invention, since there is little dispersion | variation in the fiber production | generation conditions in the said furnace, what has a uniform fiber diameter can be obtained.
[0019]
Next, the carbon fiber manufacturing apparatus of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of the carbon fiber production apparatus of the present invention, and FIG. 2 is an enlarged cross-sectional view in the vicinity of a dispersion cylinder.
In the carbon fiber production apparatus of the present invention, the carrier gas heating furnace 1 and the reaction furnace 2 are directly connected. Usually, it is a vertical type, but in this case, a reaction furnace is disposed under the carrier gas heating furnace. These two furnaces may be integrally molded, or may be separately molded and connected. These furnaces are heated by heaters 11 and 21 to a predetermined temperature. Since the carrier gas heating furnace and the reaction furnace are heated to a high temperature, a sintered body of silicon carbide, silicon nitride, or boron nitride is desirable. Since the carrier gas heating furnace and the reaction furnace are directly connected, the heated carrier gas is immediately transferred to the reaction furnace, so that heat loss due to heat radiation is small and efficient.
[0020]
A dispersion cylinder 4 is installed in the upper part of the reaction furnace. The raw material gas supply pipe 3 is installed on the upper part of the dispersion cylinder 4, and the tip thereof is preferably located near the upper end of the dispersion cylinder or in the dispersion cylinder. The tip of the supply pipe is directed downward, that is, in a direction parallel to the reaction furnace, and the source gas flows out downward. Although it is not impossible to install the source gas supply pipe through the furnace from the top of the carrier gas heating furnace, the carrier gas is heated to a high temperature, so the temperature of the source gas is kept below the decomposition temperature of the transition metal compound. For this purpose, it is better to shorten the inner portion of the source gas supply pipe, and it is preferable to provide it through the lower side wall portion of the carrier gas heating furnace as shown in FIG.
[0021]
The dispersion cylinder 4 used in the present invention is a cylinder whose top and bottom are open as shown in FIG. The dispersion cylinder is preferably installed in the reaction furnace, but the material gas is released into the dispersion cylinder and the temperature reaches the carbon fiber generation temperature. It is also part of the furnace.
The dispersion cylinder 4 is installed so as to have a gap between the inner wall of the reaction furnace and the outer wall of the dispersion cylinder. The heated carrier gas is circulated through this gap. As a result, the gas passing through the gap becomes a laminar flow, and the laminar flow is preferably formed as long as possible along the wall of the reaction furnace below the dispersion cylinder. Further, it is preferable that the source gas and the carrier gas are uniformly mixed in the dispersion cylinder so that temperature unevenness and concentration unevenness do not occur. For these reasons, the dispersion cylinder needs to have a certain length or more. On the other hand, if the length is too long, carbon fibers will adhere to the dispersion cylinder. In addition, the gap between the dispersion cylinder and the furnace wall is required to some extent, but if this is made too wide, the diameter of the dispersion cylinder will be narrowed, and the concentration of catalyst fine particles will increase at the center of the reaction furnace, etc. This also causes uneven density.
[0022]
From these, preferred embodiments will be described with reference to FIGS. The diameter of the dispersion cylinder can be changed above and below the current plate. For example, FIG. 3 shows a case where the diameter of the dispersion cylinder at the top of the current plate is made larger than the diameter at the bottom. 2 and 3, D 1 Is the inner diameter of the reactor, D 2 Is the inner diameter of the upper part of the current plate of the dispersion cylinder, Three Is the inner diameter of the lower part of the flow straightening plate, H 1 Is the length of the dispersion cylinder at the top of the current plate, H 2 Is the length of the dispersion cylinder below the current plate. The desired relationship in this case is D 2 / D 1 0.2 to 1.1, D Three / D 1 Is 0.2-0.9, H 2 / D 1 0.2 ~ 2.0, H 1 / D 2 Is in the range of 0.2 to 3.0.
Although the illustrated dispersion cylinder has the rectifying plate 41, the rectifying plate can be eliminated. The length H of the dispersion cylinder without the current plate is H / D with respect to the inner diameter of the reactor. 1 Is preferably in the range of 0.2 to 3.0.
It is preferable that the dispersion cylinder 4 is a reducer part 22 (a slanted part on the lower side) of the furnace wall and supports the flange 43 of the dispersion cylinder. Although it is possible to support with a plurality of protrusions instead of the rod, it is preferably made of a silicon carbide sintered body or the like as in the reaction furnace, so that molding and sintering are preferably easy. The heel is easier to manufacture than the protrusion. A large number of ventilation holes are provided in the bag. The dispersion cylinder expands and contracts due to temperature changes. However, if the support point is a reduced part, it can move up and down in accordance with the expansion and contraction, which is advantageous because it can suppress the generation of thermal stress.
[0023]
The dispersion cylinder preferably has a current plate 41, which is provided with a number of vent holes 42. By flowing the gas through the vent hole, the gas can be flowed uniformly from the central part to the peripheral part. Since the production of carbon fibers may be partially started in the dispersion cylinder, if this vent hole is too small, carbon fibers may adhere and cause clogging during a long period of operation. Therefore, the diameter of the air hole is preferably 5 mm or more.
A source gas supply pipe 3 is provided on the dispersion cylinder. The source gas supply pipe 3 can be suspended from the upper part of the carrier gas heating furnace, but it is preferably inserted from the side wall of the furnace for the reason described above. The raw material gas supply pipe 3 is a double pipe, and an inert gas for cooling or the like is flowed around the raw material gas supply inner tube 31 at the center so that the temperature of the catalyst precursor in the raw material is made equal to or lower than the decomposition temperature. As a method of flowing a cooling gas, for example, there is a method of inserting a thin tube between double tubes, opening the tip, and flowing a cooling gas through the thin tube. The position of the tip of the source gas supply pipe may be in the dispersion cylinder as described above.
[0024]
A carrier gas inlet pipe 12 is connected to the carrier gas heating furnace, and a cooling pipe 5 is preferably connected to the outlet of the reactor. A plurality of gas inlets 51 for cooling are provided in the cooling pipe 5 obliquely downward. The gas inlet 51 can be inclined obliquely downward with respect to the vertical direction and can be inclined in the peripheral direction, whereby the gas can flow downwardly in a spiral shape. By narrowing the transport pipe 6 connected to the cooling pipe, the flow rate of the transport gas can be increased, and the carbon fiber can be prevented from remaining in the pipe. The transport piping can be made of stainless steel, etc., easy to process, and can be bent as shown in FIG. 1, so that the generated carbon fiber can be transported to an arbitrary position, and the height of the entire apparatus is shortened. be able to.
A collector 7 having a baffle 72 is connected to the end of the transport pipe 6, where the carbon fiber and the carrier gas are separated. The carbon fiber is recovered, and the carrier gas is discharged through the bag filter 8 and processed or recovered.
[0025]
【Example】
Carbon fibers were produced using the apparatus shown in FIGS. The reaction furnace and the carrier gas heating furnace used were integrally composed of a silicon carbide sintered body. The furnace has a length of 1500 mm above the reduce portion, an inner diameter of 125 mm, a length below the reduce portion of 930 mm, an inner diameter of 100 mm, and a reduce portion having an inner diameter of 125-100 mm and a length of 100 mm.
The dispersion cylinder was supported by the reduce part. The dispersion cylinder is a silicon carbide sintered body, and the dimensions shown in FIG. 1 115mm, H 2 Is 105mm, D 2 Is 60mm, D Three Is 50 mm. A rectifying plate having a vent hole with a diameter of 5 mm is internally provided in the dispersion cylinder.
Source gas is H from the current plate Three Was supplied to the dispersion cylinder as 105 mm. The raw material gas supply pipe has a double structure, the outside of the double pipe is cooled with nitrogen gas, and the raw material gas at the center is kept below the decomposition temperature of ferrocene as the catalyst precursor.
[0026]
A stainless steel cooling pipe was connected to the lower part of the reaction furnace, and four nitrogen gas inlets were provided in this cooling pipe in a diagonally downward direction. The transport pipe following the cooling pipe had an inner diameter of 9.8 mm.
Operating conditions are as follows
Source gas Benzene containing 4% by mass of ferrocene. The amount delivered is 7 g / min.
Carrier gas Hydrogen gas. The amount delivered is 60 nl / min.
Cooling gas Nitrogen gas. The amount delivered is 50 nl / min.
Carrier gas temperature 1200 ° C (maximum temperature range)
Reactor temperature 1200 ° C (maximum temperature range)
It was operated for 5 hours under the above conditions. As a result, it was possible to operate smoothly with almost no carbon fiber adhering to the reactor wall. The obtained carbon fiber had an average diameter of 0.02 μm and an average length of 10 μm by microscopic observation, and the fibers were well aligned. The yield of carbon fiber was 25% by mass when expressed in terms of the amount of fiber relative to the carbon content in the raw material gas (benzene and ferrocene).
[0027]
【The invention's effect】
In the present invention, a carrier gas dispersion cylinder is provided in the upper part of the reaction furnace. By flowing the carrier gas outside the dispersion cylinder, it is possible to prevent carbon fibers from adhering to the wall surface of the reaction furnace. Further, in the dispersion cylinder, the raw material gas and the carrier gas heated to a high temperature are immediately mixed, and the temperature distribution in the dispersion cylinder is uniform, and the temperature can be made not much different from the temperature in the reaction furnace. Since this high-temperature mixed gas enters the reactor, there is little temperature imbalance in the reactor. In addition, the time from the thermal decomposition of the catalyst precursor and the organic compound to the end of the growth of the carbon fiber can be shortened and made constant. By these things, it has the effect that a carbon fiber diameter is thin and can obtain the uniform carbon fiber.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for producing vapor grown carbon fiber of the present invention.
2 is a partially enlarged sectional view of the vicinity of a dispersion cylinder in FIG. 1. FIG.
FIG. 3 is a partially enlarged cross-sectional view of another embodiment in the vicinity of the dispersion cylinder.
[Explanation of symbols]
1 Carrier gas heating furnace
11 Heater
12 Carrier gas inlet pipe
13 Carrier gas
2 Reactor
21 Heater
22 Reduce Club
3 Raw material gas supply pipe
31 Raw material gas supply intubation
32, 33 Inert gas for cooling
34 Raw material gas
4 Carrier gas dispersion cylinder
41 Current plate
42 Vent
43
5 Cooling pipe
51 Gas inlet for cooling
52 Cooling gas
6 Transport pipe
7 Collector
71, 73 Carbon fiber
72 baffle
8 Bug filter
81 exhaust gas

Claims (11)

炭素繊維生成炉内に整流板を内部に有するキャリアガス分散筒を、該生成炉の炉壁との間に間隙を設けて配置し、炭素繊維の原料ガスを前記分散筒内に供給し、900〜1300℃に加熱したキャリアガスを前記間隙と分散筒内を通るガスに分けて前記生成炉内に供給して炭素繊維を生成させることを特徴とする気相法炭素繊維の製造法。  A carrier gas dispersion cylinder having a baffle plate in a carbon fiber production furnace is disposed with a gap between the furnace wall of the production furnace, and a carbon fiber source gas is supplied into the dispersion cylinder, 900 A method for producing vapor-grown carbon fiber, characterized in that a carrier gas heated to ˜1300 ° C. is divided into gas passing through the gap and the dispersion cylinder and supplied into the production furnace to produce carbon fiber. 原料ガスの供給が、炉の側壁を通して挿入された供給管により行われるものである請求項1に記載の気相法炭素繊維の製造法。  The method for producing vapor-grown carbon fiber according to claim 1, wherein the supply of the raw material gas is performed by a supply pipe inserted through the side wall of the furnace. 原料ガスの供給が、冷却機構を備えた供給管により原料ガス中の触媒前駆体の分解温度以下で行われる請求項1または2に記載の気相法炭素繊維の製造法。  The method for producing vapor grown carbon fiber according to claim 1 or 2, wherein the supply of the raw material gas is performed at a temperature equal to or lower than the decomposition temperature of the catalyst precursor in the raw material gas by a supply pipe having a cooling mechanism. 原料ガスが、炭素化合物及び遷移金属化合物を含むものである請求項1〜3のいずれか1項に記載の気相法炭素繊維の製造法。  The method for producing vapor grown carbon fiber according to any one of claims 1 to 3, wherein the source gas contains a carbon compound and a transition metal compound. 炭素化合物が、芳香族化合物、アセチレン、エチレン、ブタジエンの少なくとも1種、遷移金属化合物の金属が鉄、ニッケル、コバルトの少なくとも1種である請求項4に記載の気相法炭素繊維の製造法。  The method for producing vapor grown carbon fiber according to claim 4, wherein the carbon compound is at least one of an aromatic compound, acetylene, ethylene, and butadiene, and the metal of the transition metal compound is at least one of iron, nickel, and cobalt. 炭素繊維生成炉とキャリアガス加熱炉が直結し、該生成炉内に整流板を内部に有するキャリアガス分散筒が、炉壁との間に間隙を設けて配置され、該分散筒上に原料ガス供給管が設けられ、前記加熱炉にキャリアガス供給管が接続されてなる気相法炭素繊維製造装置。  A carbon fiber production furnace and a carrier gas heating furnace are directly connected to each other, and a carrier gas dispersion cylinder having a rectifying plate in the production furnace is disposed with a gap between the furnace wall and a raw material gas is disposed on the dispersion cylinder. A vapor-grown carbon fiber production apparatus provided with a supply pipe and having a carrier gas supply pipe connected to the heating furnace. キャリアガス分散筒が設置される部位の炉壁にレデューサー部(傾斜部)を有し、該レデューサー部で前記分散筒を支持している請求項6に記載の気相法炭素繊維製造装置。  The vapor grown carbon fiber manufacturing apparatus according to claim 6, wherein a furnace wall at a portion where the carrier gas dispersion cylinder is installed has a reducer part (inclined part), and the dispersion cylinder is supported by the reducer part. 原料ガス供給管が、炉の側壁を通して挿入されている請求項6または7に記載の気相法炭素繊維製造装置。  The vapor grown carbon fiber manufacturing apparatus according to claim 6 or 7, wherein the raw material gas supply pipe is inserted through a side wall of the furnace. 炭素繊維生成炉の繊維排出口に冷却管が接続され、該冷却管に冷却ガス吹込機構が設けられている請求項6〜8のいずれか1項に記載の気相法炭素繊維製造装置。  The vapor grown carbon fiber production apparatus according to any one of claims 6 to 8, wherein a cooling pipe is connected to a fiber discharge port of the carbon fiber production furnace, and a cooling gas blowing mechanism is provided in the cooling pipe. キャリアガス加熱炉、炭素繊維生成炉、キャリアガス分散筒、整流板の材料がセラミックスである請求項6〜9のいずれか1項に記載の気相法炭素繊維製造装置。  The vapor-grown carbon fiber production apparatus according to any one of claims 6 to 9, wherein materials of the carrier gas heating furnace, the carbon fiber generation furnace, the carrier gas dispersion cylinder, and the rectifying plate are ceramics. セラミックスが、炭化珪素、窒化ホウ素、窒化珪素から選ばれた少なくとも1種の化合物である請求項10に記載の気相法炭素繊維製造装置。  The vapor grown carbon fiber production apparatus according to claim 10, wherein the ceramic is at least one compound selected from silicon carbide, boron nitride, and silicon nitride.
JP2002189680A 2002-06-28 2002-06-28 Method and apparatus for producing vapor grown carbon fiber Expired - Lifetime JP3927455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189680A JP3927455B2 (en) 2002-06-28 2002-06-28 Method and apparatus for producing vapor grown carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189680A JP3927455B2 (en) 2002-06-28 2002-06-28 Method and apparatus for producing vapor grown carbon fiber

Publications (2)

Publication Number Publication Date
JP2004027452A JP2004027452A (en) 2004-01-29
JP3927455B2 true JP3927455B2 (en) 2007-06-06

Family

ID=31184024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189680A Expired - Lifetime JP3927455B2 (en) 2002-06-28 2002-06-28 Method and apparatus for producing vapor grown carbon fiber

Country Status (1)

Country Link
JP (1) JP3927455B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0316367D0 (en) * 2003-07-11 2003-08-13 Univ Cambridge Tech Production of agglomerates from gas phase
JP4782504B2 (en) * 2005-08-03 2011-09-28 保土谷化学工業株式会社 Fine carbon fiber production apparatus and production method thereof
JP5523290B2 (en) * 2010-11-30 2014-06-18 洋 清水 Carbon nanohorn manufacturing method and manufacturing apparatus
CN106995944A (en) * 2017-05-18 2017-08-01 江苏田园新材料股份有限公司 A kind of equipment of new production PBT fibres

Also Published As

Publication number Publication date
JP2004027452A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
US6878360B1 (en) Carbon fibrous matter, production device of carbon fibrous matter, production method of carbon fibrous matter and deposit prevention device for carbon fibrous matter
US20070221635A1 (en) Plasma synthesis of nanopowders
CN1373736A (en) Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure CO
JP4177533B2 (en) Fine vapor growth carbon fiber production apparatus, fine vapor growth carbon fiber production method, fine vapor growth carbon fiber adhesion prevention apparatus, and fine vapor growth carbon fiber
JP2021175707A (en) System and method for manufacturing composite
KR102166813B1 (en) Heat exchanger type reaction tube
CN114929621A (en) Method for producing carbon nanotube aggregate
JP3927455B2 (en) Method and apparatus for producing vapor grown carbon fiber
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
KR100892753B1 (en) Apparatus and method for preparing catalyst for systhesis of carbon-nano-tube
JP3810394B2 (en) Reaction tube equipment with internal heating element
JP4115637B2 (en) Carbon fiber material manufacturing apparatus, carbon fiber material manufacturing method, and carbon fiber material adhesion preventing apparatus
JP4782504B2 (en) Fine carbon fiber production apparatus and production method thereof
JP3751906B2 (en) Method and apparatus for producing vapor grown carbon fiber
JP4394981B2 (en) Raw material gas supply nozzle, carbon nanofiber manufacturing apparatus, and carbon nanofiber manufacturing method
CN111348642B (en) Device and method for preparing single-walled carbon nanotube by floating catalysis method
KR102492666B1 (en) Carbon nanotube manufacturing system
JPS58110493A (en) Production of graphite whisker
JP4392283B2 (en) Carbon nanofiber manufacturing method and carbon nanofiber post-processing method
JPH0978360A (en) Production of gas phase-grown carbon fiber
JP2007146316A (en) Method for producing gas phase method carbon fiber
JPH09324325A (en) Apparatus for producing vapor-phase grown carbon fiber
JPS60252720A (en) Production of carbon fiber by vapor phase method
JP3538474B2 (en) Vapor-grown carbon fiber continuous production apparatus and vapor-grown carbon fiber continuous production method
JPS61119713A (en) Production of carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6