JP3887951B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP3887951B2
JP3887951B2 JP16339598A JP16339598A JP3887951B2 JP 3887951 B2 JP3887951 B2 JP 3887951B2 JP 16339598 A JP16339598 A JP 16339598A JP 16339598 A JP16339598 A JP 16339598A JP 3887951 B2 JP3887951 B2 JP 3887951B2
Authority
JP
Japan
Prior art keywords
image
data
color
unit
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16339598A
Other languages
English (en)
Other versions
JPH11352744A (ja
Inventor
祥二 今泉
好彦 廣田
博 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP16339598A priority Critical patent/JP3887951B2/ja
Priority to US09/328,590 priority patent/US6215512B1/en
Publication of JPH11352744A publication Critical patent/JPH11352744A/ja
Application granted granted Critical
Publication of JP3887951B2 publication Critical patent/JP3887951B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/50Picture reproducers
    • H04N1/506Reproducing the colour component signals picture-sequentially, e.g. with reproducing heads spaced apart from one another in the subscanning direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/525Arrangement for multi-colour printing, not covered by group B41J2/21, e.g. applicable to two or more kinds of printing or marking process

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Color Image Communication Systems (AREA)
  • Color, Gradation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、1スキャンで4色のカラー画像を同時に形成するカラー画像形成装置に関する。
【0002】
【従来の技術】
カラー画像形成装置には、1スキャンで4色を同時に形成するタンデム構成のものがある。カラー画像形成装置内には、4つの印字ユニット(4印字色のための感光体を含む)が一列に配置され、読み取られた4色の画像は、それぞれ,メモリにより、感光体の間隔に対応して遅延されて各色の露光位置に供給される。1ポリゴンミラーを用いて4ビームで走査するシステムでは、ラスタースキャンの方向が最初の2色と後の2色で逆になるので、そのための補正がなされる。その他、タンデム構成の画像形成装置においては、各種の原因により色ずれが起こる。
【0003】
【発明が解決しようとする課題】
メモリによる画像遅延や各色の露光位置のずれにより各色の印字位置がずれ、画像に色ずれが生じ、画像歪みが発生することがある。このような画像歪みをなくすと高品質の画像が得られる。そこで、印字位置のずれを補正するため、画像歪み量を検出し、その検出結果に基づいて、主走査方向アドレスに対する副走査方向の各色に対するラインアドレスを切り替えることが提案されている。
しかし、画像歪み量の検出結果に基づいて、主走査方向アドレスに対する副走査方向のラインアドレスを切り替えると、歪み補正を行うための歪み量検出が複雑である。また、画像歪み量を正確に検出するためには、画像歪み量検出用のセンサを正確に取り付けなくてはならないので、取り付けのための調整時間がかかる。
【0004】
本発明の目的は、カラー画像形成のための画像歪み補正システムを備える画像形成装置を提供することである。
【0005】
【課題を解決するための手段】
本発明に係る画像形成装置は、一列に配置した複数色の印字ユニットを備え、画像データに基づいてカラー画像を形成するカラー画像形成手段と、特定パターンの複数の色の画像データを発生する特定パターン発生手段と、特定パターン発生手段により発生される画像データを基に画像形成手段の各印字ユニットにより形成された複数の特定パターンの画像を検出する画像歪み量検出センサと、画像歪み量検出センサにより検出された特定パターンの画像の検出データから、画像歪み量検出センサの取付位置の誤差と、特定パターンの画像の歪み量とを検出する検出手段と、検出手段により検出された取付位置の誤差と画像の歪み量とに基づいてカラー画像形成手段の各印字ユニットの画像印字位置を補正する印字位置補正データを発生する印字位置補正データ発生手段と、印字位置補正データ発生手段から発生される印字位置補正データに基づいて、印字位置を補正した画像データを出力する画像印字位置補正手段とからなる。1種類の画像歪み量検出センサを用いて、取付位置の誤差と画像の歪み量とを同時に検出して、印字ユニットの位置の違いによる画像の歪みを補正できる。
好ましくは、前記の検出手段は、基準色(たとえば黒)の特定パターンにより画像歪み量検出センサの取付位置の誤差を検出し、基準色以外の各色の特定パターンにより基準色以外の各色について印字位置補正データを発生する。
好ましくは、前記検出手段は、前記画像歪み量検出センサの取付位置の主走査方向及び副走査方向における誤差を検出する
好ましくは、前記検出手段は、前記画像歪み量検出センサにより検出された基準色の特定パターンの画像の検出データ及び基準色の特定パターンの画像の設計上の基準位置に基づいて、前記画像歪み量検出センサの取付位置の誤差を検出する。
【0006】
【発明の実施の形態】
以下、添付の図面を参照して発明の実施の形態を説明する。なお、図面において同一の参照記号は同一または同様なものをさす。
図1は、カラーデジタル複写機の全体構成を示す。この複写機は、自動原稿送り装置100と画像読み取り部200と画像形成部300から構成される。通常は自動原稿送り装置100により画像読み取り位置に搬送された原稿を画像読み取り部200で読み取り、読み取られた画像データを画像形成部300に転送し、画像を形成できる(複写機能)。またインターフェイス207により外部機器との接続が可能である。そのため画像読み取り部200で読み取った画像データを外部機器に出力でき(画像読み取り機能)、逆に外部機器から受け取った画像データを画像形成部300に送ることにより、画像を形成できる(プリンタ機能)。
【0007】
次に、自動原稿送り装置100について説明する。自動原稿送り装置100は、原稿セットトレイ101にセットされた原稿を画像読み取り部200の画像読み取り位置に搬送し、画像読み取り終了後に原稿排出トレイ103上に排出する。
原稿搬送の動作は操作パネル(図示しない)からの指令に従って行い、原稿排出の動作は画像読み取り装置200の読み取り終了信号に基づいて行う。複数枚の原稿がセットされている場合には、これらの制御信号が連続的に発生され、原稿搬送、読み取り、原稿排出の動作が効率よく行われる。
【0008】
次に、画像読み取り部200について説明すると、露光ランプ201により照射された原稿ガラス208上の原稿の反射光は、3枚のミラー群202によりレンズ203に導かれCCDセンサ204に結像する。露光ランプ201と第1ミラーはスキャナモータ209により矢印の方向へ倍率に応じた速度Vでスキャンすることにより原稿ガラス208上の原稿を全面にわたって走査することができる。また露光ランプ201と第1ミラーのスキャンに伴い、第2ミラーと第3ミラーは速度V/2で同方向へスキャンされる。露光ランプ201の位置はスキャナホームセンサ210とホーム位置からの移動量(モータのステップ数)により算出され、制御される。CCDセンサ204に入射した原稿の反射光はセンサ内で電気信号に変換され画像処理回路205により電気信号のアナログ処理、A/D変換、デジタル画像処理が行なわれた後、インターフェイス部207と画像形成部300へ送られる。原稿ガラス208の原稿読み取り位置とは別に白色のシェーディング補正板209が配置されており、原稿上の画像情報の読み取りに先立ちシェーディング補正用の補正データを作成するため、シェーディング補正板209を読み取る。
【0009】
次に、タンデム構成の画像形成部300について説明する。まず、露光とイメージングについて説明する。
画像読み取り部200またはインターフェイス207から送られてきた画像データは、シアン(C)、マゼンタ(M)、イエロー(Y)、ブラック(K)の印字用データに変換され、各露光ヘッドの制御部(図示せず)に送られる。各露光ヘッド制御部では送られてきた画像データの電気信号に応じてレーザーを発光させて、その光をポリゴンミラー301により1次元走査し、各イメージングユニット302c、302m、302y、302k内の感光体を露光する。イメージングユニット302c、302m、302y、302kは、用紙搬送ベルト304の用紙搬送方向にそって縦に1列に並んで配置される。各イメージングユニット内部には感光体を中心に電子写真プロセスを行なうために必要なエレメントが配置されている。C,M,Y,K用の各感光体が時計周りに回転することにより各画像形成プロセスが連続的に行なわれる。またこれらの画像形成に必要なイメージングユニットは各プロセスごとに一体化され、本体に着脱自在な構成になっている。各イメージングユニット内の感光体上の潜像は各色現像器により現像される。感光体上のトナー像は用紙搬送ベルト304内に上述の各感光体と対向して設置された転写チャージャ303c、303m、303y、303kにより、用紙搬送ベルト304上の用紙に転写される。
【0010】
次に、給紙/搬送/定着について説明する。転写される側の用紙は以下の順序で転写位置に供給されて画像をその上に形成する。給紙カセット群310a、310b、310cの中には様々なサイズの用紙がセットされており、所望のサイズの用紙が各給紙カセット310a、310b、310cに取付けられている給紙ローラー312により搬送路へ供給される。搬送路へ供給された用紙は搬送ローラー対313により用紙搬送ベルト304へ送られる。ここではタイミングセンサ306により、用紙搬送ベルト304上の基準マークを検出し、搬送される用紙の搬送タイミング合わせが行われる。またイメージングユニットの最下流には、3個のレジスト補正センサ314が、ベルト304の搬送方向と垂直な方向(主走査方向に)に一列に配置されている。用紙搬送ベルト304上のレジストパターンを形成した際、このセンサによってC,M,Y,K画像の主・副走査方向の色ずれ量を検出し、プリントイメージング制御部(PIC部)での描画位置補正と画像歪み補正を行うことによって、用紙上のC,M,Y,K画像の色ずれを防止している。そして転写された用紙上のトナー像は定着ローラー対307により加熱され溶かされて用紙上に定着された後、排紙トレイ311へ排出される。
また両面コピーの場合には、裏面の画像形成のため、定着ローラー対307により定着された用紙は用紙反転ユニット309により反転され、両面ユニット308により導かれ、両面ユニットから用紙を再給紙する。なお、用紙搬送ベルト304はベルト退避ローラー305の挙動により、C,M,Yの各イメージングユニットから退避でき、用紙搬送ベルト304と感光体が非接触状態にできる。そこで、モノクロ画像形成時にはC,M,Yの各イメージングユニットの駆動を停止できるため、感光体や周辺プロセスの摩耗を削減できる。
【0011】
図2は、ポリゴンミラー301を含むレーザー光学系(LDヘッド)の上部からみた構成を示す。LDヘッドは、1ポリゴン4ビーム方式で構成されている。このため、各色の感光体をレーザーで露光する際、上流側の描画色であるC,Mは、下流側の描画色Y,Kに対して逆方向からの露光走査になる。このため、後述するが、プリントイメージング制御部において、上流側2色の走査方向に対して、鏡像処理を行い、この問題を解決している。
【0012】
次に、画像読み取り部200の信号処理について説明する。図3と図4は画像読み取り部200における画像処理部205の全体ブロック図である。縮小型光学系によって原稿面からの反射光をCCDセンサ204に結像させて、R,G,Bの各色分解情報に光電変換されたアナログ信号を得る。A/D変換部401では、CCDセンサ204で光電変換された400dpiの画像データを基準駆動パルス生成部411より転送されるタイミング信号によって、A/D変換器を用いてR,G,Bの色情報毎に8ビット(256階調)のデジタルデータに変換する。
シェーディング補正部402では、R,G,Bデータの主走査方向の光量ムラをなくすため、各R,G,B毎に独立して、原稿読み取りに先立ってシェーディング補正用白色板209を読み取ったデータを内部のシェーディングメモリに基準データとして格納しておき、原稿走査時に逆数変換し、原稿情報の読み取りデータと乗算して、補正を行なう。
【0013】
ライン間補正部403では、R,G,Bの各センサチップのスキャン方向の読み取り位置を合わせるためにスキャン速度(副走査倍率に依存)に応じて、内部のフィールドメモリを用いて、各色データをライン単位でディレイ制御する。
光学レンズによって生じる色収差現象によって、主走査側の原稿端部側ほどR,G,Bの読み取り位相差が大きくなる。この影響によって、単なる色ずれ以外に後述するACS判定や黒文字判別で誤判定を引き起こす。そこで色収差補正部404では、R,G,Bの位相差を彩度情報に基づいて補正する。
【0014】
変倍・移動処理部405では、R,G,Bデータ毎に変倍用ラインメモリを2個用いて、1ライン毎に入出力を交互動作させ、そのライト・リードタイミングを独立して制御することで主走査方向の変倍・移動処理を行う。すなわち、メモリ書き込み時にデータを間引くことで縮小を行い、メモリ読み出し時にデータを水増しして拡大を行っている。この制御において、変倍率に応じて縮小側ではメモリ書き込み前に、拡大側ではメモリ読み出し後に補間処理を行い、画像欠損やガタツキを防止している。このブロック上の制御とスキャン制御を組み合わせて、拡大と縮小だけでなく、センタリング・イメージリピート・拡大連写・綴じ代縮小などを行なう。
【0015】
ヒストグラム生成部412および自動カラー判定(ACS)部413では、原稿をコピーする動作に先立ち、予備スキャンして得られたR,G,Bデータから明度データ生成をして、そのヒストグラムをメモリ(ヒストグラムメモリ)上に作成する一方、彩度データによって1ドット毎にカラードットか否かを判定し、原稿上512ドット角のメッシュ毎にカラードット数をメモリ(ACSメモリ)上に作成する。この結果に基づいて、コピー下地レベル自動制御(AE処理)およびカラーコピー動作かモノクロコピー動作かの自動カラー判定(ACS処理)をする。
【0016】
ラインバッファ部414では、画像読み取り部200で読み取ったR,G,Bデータを1ライン分記憶できるメモリを有し、A/D変換部401でのCCDセンサの自動感度補正や自動クランプ補正のための画像解析用に画像データのモニタができる。
また、紙幣認識部415では、原稿ガラス208上に紙幣などの有価証券が積載されコピー動作した場合に正常なコピー画像ができないように、R,G,Bデータの領域切り出しを随時行い、パターンマッチングによって紙幣か否かを判断する。紙幣と判断した場合すぐに、画像読み取り部200の読み取り動作および画像処理部205を制御するCPUがプリントイメージング制御部側に対して黒べた塗りつぶし信号(−PNT="L")を出力して、プリントイメージング制御部側でKデータを黒べたに切替えて正常コピーを禁止している。
【0017】
HVC変換部422では、データセレクタ421を介して入力されたR,G,Bデータから3*3の行列演算によって、明度(Vデータ)および色差信号(Cr、Cbデータ)に一旦変換する。
次にAE処理部423で前記した下地レベル制御値に基づいてVデータを補正し、操作パネル上で設定された彩度レベルおよび色相レベルに応じてCr、Cbデータの補正を行なう。この後、逆HVC変換部424で3*3の逆行列演算をおこない、R,G,Bデータに再変換する。
【0018】
色補正部では、LOG補正部431で各R,G,Bデータを濃度データ(DR,DG,DBデータ)に変換後、墨抽出部432でDR,DG,DBデータの最小色レベルを原稿下色成分として検出し、同時にR,G,Bデータの最大色と最小色の階調レベル差を原稿彩度データとして検出する。DR,DG,DBデータは、マスキング演算部433で3*6の非線型行列演算処理がされて、プリンタのカラートナーにマッチングした色データ(C,M,Y,Kデータ)に変換される。
【0019】
下色除去・墨加刷処理部(UCR・BP処理部)434では、前述した原稿下色成分(Min(R,G,B))に対して、原稿彩度データに応じたUCR・BP係数を算出して、乗算処理によってUCR・BP量を決定し、マスキング演算後のC,M,Yデータから下色除去量(UCR量)を差分して、C,M,Yデータを算出し、BP量=Kデータを算出する。また、モノクロデータ生成部435では、R,G,Bデータから明度成分を作成し、LOG補正してブラックデータ(DVデータ)として出力する。最後に色データ選択部436で、カラーコピー用画像であるC,M,Y,Kデータとモノクロコピー用画像であるDVデータ(C,M,Yは白)を選択する。
【0020】
領域判別部441では、データセレクタ441を介して入力されたR,G,Bデータより最小色(Min(R,G,B))と最大色と最小色との差(Max(R,G,B)−Min(R,G,B))を検出し、黒文字判別・色文字判別・網点判別など行う。また、黒文字判別時の文字エッジ補正を行い、判別結果とともに文字エッジ再生部451に転送する。同時にプリントイメージング制御部側およびプリントヘッド制御部側に対して、階調再現方法を切り替えるための属性信号を作成して転送する。
【0021】
文字エッジ再生部451では、領域判別結果から、色補正部からのC,M,Y,Kデータに対して、各判別領域に適した補正処理(エッジ強調・スムージング・文字エッジ除去)を行なう。最後に、シャープネス・ガンマ・カラーバランス調整部452は、操作パネル上で指定されたシャープネス・カラーバランス・ガンマレベルに応じてC,M,Y,Kデータの画像補正を行い、階調再現属性信号−LIMOSをプリントイメージ制御インターフェース453に転送する。また、C,M,Y,Kデータを、データセレクタ461を介して画像インタフェース部462へ送る。
【0022】
階調再現属性信号−LIMOSについて説明すると、階調再現属性信号は、後段でのプリントイメージング制御部内の階調再現処理およびプリントヘッド制御部での階調再現周期を自動的に切り替える目的で、C,M,Y,Kの画像データとともに転送される。この信号は、エッジ処理をするべき領域(非網点領域かつ文字エッジ領域かつ文字内部側のエッジ領域)において"L"レベルとなり、解像度を優先した文字がたつきがない階調再現処理を指示する。プリントイメージング制御部での階調再現処理では、通常多値誤差拡散と呼ばれる擬似256階調処理を行うが、−LIMOS="L"に相当する文字エッジ部では、単純量子化処理を行い、エッジのがたつきを防止している。
また、プリントヘッド制御部では、通常45°方向のスクリーン角に設定された2ドットパルス幅変調再現を行うが、−LIMOS="L"に相当する領域では、解像度を優先した1ドットパルス幅変調再現を行う。なお、文字エッジ部内の内側エッジに対して処理を切り替えることで、文字エッジ境界部で、プリントヘッド制御部の階調再現周期が切り替わるため、それによる濃度ジャンプ(ガンマ特性の違いによる)が目立ちにくくなる。
【0023】
最後に、画像インターフェイス部462について説明すると、外部装置と画像入出力を行う。動作は、R、G,Bデータの同時入出力とC,M,Y,Kデータの面順次入出力が可能であり、外部装置側は、スキャナ機能やプリンタ機能としてカラー複写機を利用できる。
【0024】
本システムは、1スキャン4色同時カラー出力の複写機であり、タンデム構成の画像形成部300では、シアン(C)、マゼンタ(M)、イエロー(Y)、ブラック(X)の4色のイメージングユニット302C、302M、302Y、302Kは、用紙搬送方向に縦に1列に配置されている(図1参照)。図5と図6は、システム構成とプリントイメージング制御部のブロックの関連を示す。この図のように画像読み取り部200からのC,M,Y,Kデータは、1スキャン動作によって同時にプリントイメージング制御部側に転送されてくる。したがって、プリントイメージング制御部側の処理は、C,M,Yデータごとの並列動作が基本になる。本システムでは、C,M,Y,Kトナー成分を、用紙搬送ベルト304上に給紙されたぺーパー上に色ずれなく画像を転写する必要がある。
しかし、図7に図式的に示すように各種の要因により色ずれが生じる。C,M,Y,Kの各トナーの現像タイミングは、各色の感光体が用紙搬送ベルト304に対してほぼ等間隔で配置されているため、感光体の間隔に応じた時間だけずれて行われる。したがって、副走査遅延モジュールを用いて、C,M,Y,K毎に副走査方向に感光体間隔に応じた量だけ遅延制御をする。しかし、(a)に示すように、副走査方向にたとえばCの描画位置がずれると、色ずれが生じる。また、1ポリゴンミラー4ビームによるレーザー走査によって感光体上に画像を潜像させるため、最初の2色(C,M)と後半の2色(Y,K)では、ラスタスキャン方向が逆になるが、この鏡像関係によりずれが生じる(f)。この他にも各色のレーザー走査による主走査方向印字開始位置ずれ(e)・主走査倍率歪み(d)・副走査方向のボー歪み(c)や感光体配置とレーザ走査の平行度ずれによるスキュー歪み(b)が生じ、色ずれ原因になる。これらの現象をC,M,Y,Kデータに対して、位置補正や画像補正を行なうことで色ずれを防止している。
【0025】
これらの補正処理を行なうのが図8に示すプリントイメージング制御部である。まず、画像処理部205から転送されたC,M,Y,Kの画像データは、階調再現部500に入力される。ここでは、−LIMOS信号(階調再現属性信号)に応じて、文字分離型多値誤差拡散方式にてC,M,Y,Kデータの階調レベルを8ビットから3ビットの擬似256階調データに変換する。次に、描画位置制御部510において、各感光体間隔(図1参照)に応じた現像タイミングのずれを補正するため、最下流に配置されているK現像ユニットでの描画位置をぺーパー基準にK成分の位置補正をし、他の色成分はK成分に対して副走査側の位置補正を行う。次に、レーザー走査方向の違いと主走査開始位置ずれを補正するため、C,M像は主走査鏡像処理を行い、副走査と同様にぺーパー基準に対してK成分位置を補正し、他の色はK成分に対して位置を補正する。また、フレームメモリ部520は、両面コピー時に表面側の画像を前もって記憶しておく必要があるため、階調再現部500からのデータを記憶するA3の1面分のメモリユニットを搭載している。
【0026】
テストデータ生成部530で作成されたレジスト検出用テストパターンデータを用紙搬送ベルト304上にC,M,Y,K同時に転写させ、最下流のK現像ユニットのさらに下流側に配置されたレジスト検出センサ314によって、K成分に対するC,M,Y成分の色ずれ量を検出する。この色ずれ検出結果に基づいて、画像歪み補正部540では、図9に図式的に示すように、C,M,Y成分の主走査倍率歪みと副走査のボー歪みとスキュー歪みを濃度分配処理による補間処理によって補正する。また、K画像だけ、描画位置制御部510からのデータを256階調レベルにデコード化し、前記した紙幣認識結果に基づいて、黒べたデータとの選択が行われる。最後に補正されたC,M,Y,Kデータをプリントイメージング制御部・プリントヘッド制御部インターフェイス部でぺーパー基準の画像位置にシフトし、プリントヘッド制御部に転送して、画像再現を行なう。なお、基準位置信号生成部550は、各種入力信号を基に各種基準位置信号を発生する。
【0027】
図10はプリントヘッド制御部を示す。ここでは、電子写真プロセスによるガンマ特性による階調歪みをガンマ補正テーブル320により補正し、次に、D/Aコンバータ321により各階調レベルのD/A変換をする。各色の最上位ビットは、画像読み取り部から転送された−LIMOS信号(階調再現属性信号)に対応していて、光変調方式は、この階調再現属性信号によりスイッチ326で切り替えられる。最上位ビットが、"L"(=文字エッジ部)の時は、1ドット用リファレンス信号322と比較器323で比較する1ドット周期のパルス幅変調(PWM)により、"H"(=連続階調部)の時は、2ドット用リファレンス信号324と比較器325で比較する2ドット周期のパルス幅変調によりLD駆動信号を発生し、これにより半導体レーザーを駆動して、各感光体上に画像を露光して階調表現をおこなう。この時、2ドットパルス幅変調は、画像の粒状性が向上するように45゜方向のスクリーン角を設定している。ここでは、文字エッジ部は解像度を優先した文字切れのない1ドットパルス幅変調によって再現し、その他の領域については、2ドットパルス幅変調と45゜スクリーン角変調による画像ノイズに強い粒状性に優れた滑らかな階調再現を自動的に行っている。
【0028】
次に、プリントイメージング制御部(図8参照)について説明する。画像読取部200で読み取られたR,G,Bデータを画像処理回路205にて変換された8ビットC,M,Y,Kデータを、プリントイメージング制御部の階調再現部500が同時に入力する。そして、C,M,Y,K各色の画像データ(8ビット)と階調再現属性信号−LIMOSを受けて、文字分離型多値誤差拡散手法によって擬似256階調化処理を行い、3ビット(階調データ)+1ビット(階調再現属性信号)の各色データを出力する。ここで8ビットの画像データが階調数の少ない3ビットの階調データに変換される。
図11は、階調再現部500のブロック図を示す。セレクタ901、902によりレジスト検出用テストデータTD_C,M,Y,Kか画像読取部200からの画像データC,M,Y,Kかを選択する。選択された8ビットのデータED17-10は、3ビットコード化処理部903(図12参照)にて単純に0〜255の階調範囲をほぼ7等分した3ビットの8階調データED62-60に変換される。すなわち以下のようなコード化を行う。
【0029】
Figure 0003887951
【0030】
一方、誤差拡散処理のため、加算器904によって、入力データED17-10と誤差拡散されたフィードバック誤差データED47-40を加算し、ED27-20を出力する。次に、減算器905により、加算されたデータED27-20からオフセット量(OFFSET7-0=18)を減算する。これにより、後述するが誤差検出テーブル906でマイナス値の誤差が出ないようにしたオフセット誤差データをキャンセルする。誤差検出テーブル906では、もしDin−18≧239なら、Dout=(Din−18)−255+18とし、もし238≧Din−18≧202なら、Dout=(Din−18)−220+18とし、もし201≧Din−18≧162なら、Dout=(Din−18)−183+18とし、もし164≧Din−18≧128なら、Dout=(Din−18)−146+18とし、もし127≧Din−18≧91なら、Dout=(Din−18)−109+18とし、もし90≧Din−18≧54なら、Dout=(Din−18)−72+18とし、もし53≧Din−18≧17なら、Dout=(Din−18)−35+18とし、もし16≧Din−18なら、Dout=(Din−18)+18とする。減算した値ED57-50を同様に3ビットコード化処理部907で3ビットの8階調レベルのデータにコード化する。
【0031】
セレクタ908は、階調再現属性信号−LIMOSにより、誤差拡散処理した画像データED72-70と単純に入力画像データを8階調化した画像データED62-60のいずれかを選択する。階調再現属性信号−LIMOSは、画像データに同期して、"L"ならば文字エッジ部を示し、"H"ならば連続階調部(非エッジ部)を示している。すなわち、文字エッジ部は、単純に8階調の3ビットデータにコード化され、非エッジ部は8値の誤差拡散処理を行った3ビットデータでコード化される。これによって、文字エッジ部において誤差拡散特有のがたつきやテクスチャーがでないようになる一方、連続階調部では多値誤差拡散による滑らかな階調再現が実現される。こうして階調再現処理された3ビットのC,M,Y,K階調データは階調再現属性信号(各色のbit3のデータ)とともに次段の描画位置補正部に転送される。
【0032】
つぎに、誤差拡散処理の誤差フィードバック経路について説明する。フィードバック誤差ED47-40と入力画像データED17-10の加算値ED27-20は、次の画素に加算すべき誤差データを求めるため、誤差検出テーブル906に入力される。誤差検出テーブル906では、まずオフセット誤差量(=18)を減算し、次に3ビットコード化処理部907でのしきい値レベル(=1、7、53、90、127、164、201、238)と一致した階調範囲での階調誤差を求める。最後に誤差拡散マトリクス911での誤差の重み付け積分処理を高速で行うことができるように、最大マイナス誤差値分だけオフセット値(=18)を加算する。これらの一連の処理をルックアップテーブル906によるテーブル索引によって演算し、誤差データED37-30を出力する。テーブル内容は、プリントイメージング制御部のCPUによってダウンロードされ、3ビットコード化処理のしきい値レベルや後述する階調レベルデコード部の階調レベルと関連して容易に可変できる。たとえば本実施形態では0〜255の階調範囲を7等分した誤差拡散処理を行っている。しかし、ハイライト側の階調を優先させたければ、3ビットコード化処理内でのしきい値レベルを0側に間隔をつめた値を設定し、それに応じて階調レベルデコード部での階調レベルや誤差検出テーブル内での階調誤差をプリントイメージング制御部のCPUが設定してダウンロードすれば実現できる。このため、非常にフレキシブルな階調再現を行うことができる。また、この手法によって、テーブル内での一連の処理が高速に演算できる。
【0033】
出力された誤差データED37-30は、ラインメモリ909、910を用いて、
誤差拡散マトリクス911によって注目画素付近の誤差重み付け積分処理をし、次の画像データのフィードバック誤差データED47-40を出力する。誤差検出テーブル906の出力段階で、誤差データにマイナス最大誤差量(=−18)をキャンセルして0にするようにオフセット演算させているため、誤差拡散マトリクス内でのマイナス演算が必要がなくなり(単純な加算回路だけで構成でき)、回路動作が速く規模も小さくてすむ。
誤差フィードバック系の高速化が必要なのは、入力されたC,M,Y,Kの画像データの転送速度が速い場合、誤差拡散処理をした画像の誤差演算を次の画素データが来る前に求めておく必要があるためである。
【0034】
上述のように、多値誤差拡散を行った後で、以下に説明するように、画像遅延を行い、描画位置ずれを補正する。多値誤差拡散を行った後で、画像遅延をするので、遅延メモリのメモリ容量が少なくてすむ。また、多値誤差拡散を行ったデータをいったんもとの階調数に戻し、ボー補正を行うことにより、きめ細かい補正が可能になる。ボー補正の後で多値誤差拡散を行うと、階調再現のスクリーン角にずれが生じ、画像モアレが生じる可能性があるが、本実施形態では多値誤差拡散の後でボー補正をするので、そのような問題は生じない。
プリントイメージング制御部の描画位置制御部510(図8)の機能は以下の2つである。
(1)走査方向の感光体の位置により発生する時間遅延量分だけメモリに画像を蓄え、遅延させて出力する。
(2)主走査位置制御では主走査のプリントヘッドの取り付け誤差量を補正するための主走査方向描画開始位置制御と、プリントヘッドの構成により発生するC,Mデータの鏡像現象を補正する処理を行う。
図13と図14は、副走査側の描画位置制御部510を示す。C,M,Y,Kの4色について同様な回路が備えられるが、副走査遅延制御DRAMモジュール513の数が異なっている。まず、デ―タセレクタ511では、階調再現部500から送られてくるデータC,M,Y,K23-20とフレームメモリ部520から送られてくるデータC,M,Y,K33-30のいずれかを選択する。どちらの信号を選択するかは基準位置信号生成部550により設定されるFSEL信号により決定する。8ドットS/P変換部512では、データセレクタ511により選択された4ビット画像データ主走査8ドット分を1パックのシリアルデータとして入力し、32ビット幅のパラレルデータに変換する。これによって、次段のDRAM制御では、8ドットを1周期としてメモリのリード・ライト動作を行う。
【0035】
副走査遅延制御DRAMモジュール513(詳細は図15参照)では、副走査方向に対するC,M,Y,Kデータ毎の遅延制御を行う。メモリ制御は、DRAMコントローラ514から出力されるアドレスADR9-0、RAS、−CAS0,1,2、WE、−OEによって行われ、ライトアドレスカウンタとリードアドレスカウンタのカウント値の差によって、副走査の遅延量が決定される。すなわち、ライトアドレスのカウンタ初期値が"0"にあるのに対して、リードカウンタの初期値はプリントイメージング制御部のCPUによって設定されるVSA11-0であるから、各色の副走査遅延量は、それぞれのVSA11-0ライン分ということになる。
リードアドレスカウンタおよびライトアドレスカウンタは、それぞれ主・副走査方向毎にアドレスを生成し、主走査側アドレスは、VCLK(画像同期クロック)でカウントされ、−TG(主走査同期信号)で初期値にリセットされる。副走査側は、−TG信号にてカウントされ、前述したようにリード側はプリントイメージング制御部のCPUによってセットされるVSA11-0にカウント値を定期的にロードし、ライト側は0にロードされる。これらのカウント値は、次段のアドレスセレクタによって、DRAM制御動作に同期して、DRAMモジュール513へのアドレスを選択する。
【0036】
−FREEZEは基準信号生成部550より送られてくる信号であり、OHP・厚紙コピー時に1ライン毎に"L"/"H"を繰り返す信号である(通常コピー時は"H”)。OHPや厚紙上に画像を再現する際、定着ユニットの熱伝導特性で通常コピー時のぺーパー搬送速度を1/2に落とす必要がある。この時、副走査方向は800dpiで再現するように動作する。しかし、通常の800dpi動作では、遅延メモリの容量が各色とも2倍必要になり、後述する副走査の歪み補正部でも、FIFOバッファ部の容量が2倍必要になる。また、800dpiデータでは、ペーパー上のトナー付着量が2倍になるため、1ライン毎に白データを挿入する必要がある。そこで、半速制御時には、この副走査遅延メモリのリード・ライト動作を1ライン毎に禁止させるため、DRAMコントローラ514内の制御パルス生成部から出力されるDRAM制御信号を−FREEZE="L"になると、非アクティブ状態にし、かつリード・ライトアドレスカウンタをカウントしないように停止させ、メモリ容量の増加を必要としないようにする。
次に、8ドットP/S変換部515では、副走査DRAM遅延制御モジュール513から出力された32ビット幅8ドット分のパラレル画像データを元の4ビットシリアルデータC,M,Y,K43-40に変換して出力する。
【0037】
図16は、主走査側描画位置補正部516を示す。副走査側描画位置制御から送られてくるデータC,M,Y,K43-40を入力し、主走査描画位置補正および必要なデータに対して鏡像処理を行った後、画像歪み補正部540にデータC,M,Y,K53-50を出力する。主走査描画位置メモリ5161は、主走査1ライン分のデータを蓄積できるメモリを2個並列接続で構成されており、ライントグルカウンタ5162により書き込み動作および読み出し動作をメモリに対して交互に切り換える。
主走査描画位置メモリ5161のライト・リ―ドアドレスは、どちらもカウンタ5163、5164により画像同期クロックVCLKをカウントして主走査アドレスを生成する。主走査の先頭でアドレスカウンタ5163、5164を初期値に設定するため、主走査同期信号(−TG)をリセットあるいはロード信号として入力し、ライト側は"0"にリセットされ、リード側はプリントイメージング制御部のCPUが設定するHSA12-0にロードされる。C,Mデータは、基準色信号Kデータに対してレーザ走査のラスタ方向が逆になるため、ライトアドレスカウンタ5163を初期値"0"からダウンカウントさせる。
このため、Y,K信号用のUDSELを"H"として正像を制御させ、C,M信号用のUDSELを"L"として鏡像を制御させる。リードアドレスにロード値としてプリントイメージング制御部のCPUより設定されるHSA12-0は、主走査方向の描画開始位置を示すことになるから、この値によって各色の主走査描画位置制御が可能となる。ここで、K画像データは、転写ベルト304上に給紙される用紙の適切な描画位置に描画されるように主・副走査の描画位置を設定し、他の色データC,M,YはK画像データを基準に描画位置を設定する。
【0038】
図17と図18は、画像歪み補正部540を示す。画像歪み補正部540では、描画位置制御部510から送られてきた4ビットデータC,M,Y,K53-50に対して主・副走査方向の画像歪み補正処理を行い、プリントヘッド制御部へ9ビットデータC,M,Y,K78-70を出力する。主走査方向と副走査方向の画像補正は、画素またはライン単位のずれ量は、アドレスを切り換えて補正する。アドレスの切り替えでは補正しきれない例えば0.5画素のずれなどについては、隣り合う2画素または2ラインにおいて、1画素のデータを2つのアドレスに濃度を半減させて分配することにより、微妙なずれを補正できる(図9参照)。画像歪み補正部540の機能は以下の2つである。
(1)各色の感光体上のレーザ露光位置の相対的なずれにより発生する転写ベルト304上で画像の副走査方向の歪み量(ボー歪み・スキュー歪み)の最大幅に相当するライン数のデータをメモリ上に蓄え、副走査方向の歪みを補間処理して出力する。
(2)各色の感光体上のレーザ露光位置の相対的なずれにより発生する転写ベルト304上で画像の主走査方向の歪み量(主走査倍率ずれ)の最大幅に相当するドット数のデータをフリップフロップ回路において蓄え、主走査方向の歪みを補間処理して出力する。
上記に示す画像歪み補正の基準は黒(K)データとし、他の3色C,M,Yとの相対的な歪み量を補正するため、黒データK53-50に対しては画像歪み補正処理は行わず、その他のデータC,M,Y53-50については黒データの歪みと一致するように各色ごとに補正データの生成と補間処理を行う。C,M,Yの3色については同様な回路が設けられる。補間データKDは、後で説明するように、あらかじめ主走査アドレスごとにそれぞれ主走査と副走査についてラインセレクト信号と濃度分配量が計算されラインメモリに格納されている。ラインメモリは、アドレスカウンタから発生するアドレスに応じて連続的に読み出される(図24参照)。
【0039】
図19と図20に示すように、副走査側画像歪み補正部541〜544では、まず最大歪み幅(24ライン分)のデータを蓄えることのできるFIFOバッファ部541に画像データを転送する。FIFOバッファ部541では、1ライン毎に連続的に送られてくる画像データC,M,Y,K53-50の24ライン分をメモリする。FIFOバッファ部541のリード・ライトクロックはVCLKであり、−TG信号にてアドレスリセットが行われる。FIFOバッファ部541は、従属接続されており、1 ライン毎にデータが順次遅延していく構成である。"H"ならば副走査遅延制御DRAMのリード、ライト動作停止と同様に、ここで、−FREEZE信号によって、RE/−WE信号を非アクティブとして、動作を1ライン毎に停止して、800dpi動作の半速制御を行う。
【0040】
画像セレクタ部542では各FIFOバッファの遅延データを並列入力し、後段の濃度分配処理部544の動作を行いやすくするために、FIFOバッファ部541から供給される24ライン*4ビット分のデータから、隣接する2ラインのデータを平行出力する。どの2ラインを選択するかは、画像歪み補正係数データ生成部548からセレクト制御端子S4-0に送られてくる補間データに応じて決定する。すなわち、Xout3-0がnラインディレイデータを選択するとYout3-0はn+1ラインディレイデータを出力する。Xout3-0に選択出力する信号は、24ラインのXin003-0〜Xin233-0から選択され、副走査補間データKD17-13の5ビットの信号により決定される。
階調レベルデコード部543(詳細は図21参照)では、Din3-0の内、階調コードを示すビット2〜0を階調再現部(図11)での3ビットコード化処理部(図12)のしきい値レベルに対応した階調レベルに変換(デコ-ド化)する。すなわち、
Figure 0003887951
というように変る。Dout8は、各色の階調再現属性信号を示し、Dout8としてスルーする。こうして、隣接する2ラインの画像データを擬似階調再現前の元の階調数にデコードする。
−FREEZE信号="L"の時には、400dpiの通常動作時の付着量と等価になるように1ライン毎に白("00")に置換する。
【0041】
濃度分配処理部544では、デコードされた隣接2ライン間のデータを用いて、1/8ドット毎の濃度分配型補間処理を行う。すなわち、A=nライン階調データ、B=n+1ライン階調データとすると、
KD12-10=0 → Y=A
KD12-10=1 → Y=(7A+B)/8
KD12-10=2 → Y=(3A+B)/4
KD12-10=3 → Y=(5A+3B)/8
KD12-10=4 → Y=(A+B)/2
KD12-10=5 → Y=(3A+5B)/8
KD12-10=6 → Y=(A+3B)/4
KD12-10=7 → Y=(A+7B)/8
となる。
【0042】
このように、副走査補間データKDによって、出力Yに対する入力A:Bの混合比率が8通りに変化される。どの演算結果を採用するかは、補間データKDにより決定する。したがって、補間データKD17-10は、歪みによる補正量をqラインとすると、KD17-10=8*qとなる。これによって、歪み補正部540では24ライン幅内を1/8ドット毎の高精度な歪み補正が可能としている。すなわち、階調再現処理部500では、8ビット画質を維持したまま、4ビットにコード化することで副走査描画位置制御で必要になる遅延メモリの容量を1/2におさえ(画像歪み補正部のFIFOバッファ部も同様)、大量のメモリを必要としない補間処理部では、その前に高精度な補間処理が可能なように階調レベルを8ビットにデコード化して、濃度分配処理を行っている。図9は、副走査側の濃度分配処理を利用した画像歪み補正の1例を示す。
そして副走査側の濃度分配処理後のデータはC,M,Y67-60として主走査側画像歪み補正部545〜547へ出力される。
【0043】
一方、濃度分配処理部544内の階調再現属性を示すビットDout8は、同様に隣接2ラインのデータから以下のような処理をする。階調再現属性は、先に述べたように階調再現属性信号−LIMOSから得られるものであり、最上位ビットが"L"ならば文字エッジ部を示す。いま、nラインの属性信号をAとし、n+1ラインの属性信号をBとすると、補間データKDに対応して以下の値が採用される。すなわち、階調再現属性(エッジ識別データ)の修正においては、3通りの演算処理(Aのエッジデータを採用/Bのエッジデータを採用/AとBのどちらかがエッジであればエッジとするエッジ優先)が行われ、どの演算結果を採用するかは、画像歪み補正係数データ生成部544から送られてくる補間データKDによって決定する。ここで、
KD12-10=0 → Y=A
KD12-10=1 → Y=A
KD12-10=2 → Y=A
KD12-10=3 → Y=AまたはB(どちらかがエッジ部ならエッジ)
KD12-10=4 → Y=AまたはB
KD12-10=5 → Y=AまたはB
KD12-10=6 → Y=B
KD12-10=7 → Y=B
とする。このように、基準位置(Kデータ)に対するラインのずれ量が少ない場合(±2/8ライン以内)には近いラインのエッジ属性データを採用し、基準位置に対するラインのずれ量が大きい場合(±3/8ラインまたは±4/8ライン)には両方のエッジ情報のORを参照するようにしている(エッジ優先)。さらに、基準位置(Kデータ)に対するラインのずれ量が大きい場合(±5/8ライン以上)には隣のラインのエッジ属性データを採用する。そして選択されたエッジ判定されたデータはC,M,Y68として主走査側画像歪み補正部545〜547へ出力される。
【0044】
図22と図23に示すように、主走査側画像歪み補正部545〜547では、副走査側歪み補正と同様に濃度分配による補間処理を行う。副走査側と異なり、FIFOバッファ部の代わりに主走査方向の連続的なディレイデータを作成するため、フリップフロップ回路を用いたシフトレジスタ部545を用いる。この時、最大歪み補正幅は、32ドットで9ビットのデータを遅延できる構成になっている。また、画像セレクト部546では、今度は隣接2ドットのデータを並行選択し、その値はすでに階調レベルにデコード化されているため、デコード回路を必要としない。濃度分配処理部547は、隣接2ドット間のデータで行われることになる。濃度分配処理と隣接2ライン画像のセレクトは、主走査補間データKD27-20によって行われる。
【0045】
以上に説明した副走査側の画像歪み補正と主走査側の画像歪み補正において、エッジ判定結果の補正において、まず画像描画位置補正部より送られてきた擬似階調再現後の画像データC,M,Y,Kとエッジ判定結果とをFIFOバッファ部541、シフトレジスタ部545の複数ライン、複数画素のメモリに保存する。すなわち、画像セレクタ部542、546において、複数ライン、複数画素のメモリから隣り合う2ライン、2画素を選択する。どのラインを選択するかは、画像歪み補正係数データ生成部548から送られてくる補間データKDによって決定する。濃度分配処理部544、547において、隣り合う2ラインまたは2画素のエッジ判定結果と濃度分配量信号に基づいてエッジ判定結果の修正が行われる。なお、補間データはあらかじめ主走査アドレスごとに、それぞれ、主走査、副走査についてラインセレクト信号と濃度分配量が計算され、画像歪み補正係数データ生成部548においてラインメモリに格納されている。
こうして、主走査方向と副走査方向の画像補正をアドレス切り換えと濃度分配とを組み合わせて行うことにより、タンデム構成の画像形成部のためのアドレス単位より高精度の、きめ細かい画像歪み補正システムを提供できる。
【0046】
図24に示す画像歪み補正係数データ生成部548では、主走査アドレスカウンタ5481と2種の補正用ラインメモリ5482、5483を用いて、主・副走査方向の画像歪みを補正するための補正データを生成する。補正の対象となる主走査方向と副走査方向の画像歪み補正量は、主走査位置(アドレス)ごとにデータが連続的に変化する。したがって、プリントイメージング制御部のCPUがレジスト検出センサ314で得られたK画像に対するC,M,Y画像のずれ量を基に1ラインの連続的な補正分布データに展開して、各主走査画素毎の補正量を作成する。
ここで、画像補正のための補正データ、すなわち、ライン選択データKD17-13(5ビット)と濃度補正データKD12-10(3ビット)、を1つのデータ単位(1バイト)としてまとめ、主走査アドレスカウンタ5481(図24)に対応したアドレス空間をもつ主、副走査方向それぞれのラインメモリ5482,5483に格納する。データの読み出しを主走査アドレスカウンタ5481によりおこなう。補正データを1つのデータ単位にまとめアドレスカウンタに連動してデータを供給することにより、補正データの管理が簡単になる。こうして、画像歪み補正システムを従来より小さい回路規模で提供できる。
【0047】
また、K画像はC,M,Y画像に対して、基準画像データになっていることは前に述べたが、転写ベルト304上の画像すなわち用紙上の適切な位置の描画形成のため、Kデータは前述した描画位置制御部510において、遅延メモリで副走査位置が、主走査描画位置制御部で主走査位置が決定される。しかし、レジスト検出センサ314(主走査方向に3個)は、転写ベルト304上に適切な位置(主走査方向)にマシンばらつきなく配置されるわけではない。したがって、補正係数を展開する2種のラインメモリ(主走査画像歪み補正RAM5482と副走査画像歪み補正RAM5483)上のアドレスとセンサ検出位置の相対関係は、一定していない。このため、Kレジスト画像から得られるセンサ位置によって、補正データの分布もずらす必要があり、プリントイメージング制御部のCPUはセンサ検出位置によって歪み補正量のデータのメモリ展開を変えている。
また、主走査アドレスカウンタ3581の読み出し開始位置は、プリントイメージング制御部のCPUからセットされるADRSET12-0(C,M,Y共通)によって変更できる。このカウンタは、VCLKによってカウントし、−TG信号によってADRSET12-0にロードされる。通紙用紙サイズの変更などにより、補正データの内容が変更される場合においても、主走査アドレスカウンタ5481の開始アドレスを変更するだけで対応でき、補正データの再設定などの複雑な処理を行う必要がない。この値ADRSETの可変は、さらに、以下の理由によって制御される。
【0048】
プリントイメージング制御部からプリントヘッド制御部にデータを転送する際、画像読取装置200の側の画像は、主走査側に対して原稿ガラス208の端部を基準として原稿が積載されるため、常に片側基準である。しかし、画像形成装置300の側では、ポリゴンモータの中心位置(転写ベルト中央)が基準で用紙が給紙される中央合わせが用いられる。このため、図25に示すように、プリントイメージング制御部とプリントヘッド制御部とのインターフェイス部はインターフェイスFIFOメモリからなり、プリントイメージング制御部からの画像出力を、片側基準画像を中央基準画像に変換してプリントヘッド制御部に転送している。図26は、このタイミングチャートである。画像読取装置側の主走査基準信号−TGを、インターフェイス時のアドレスライトリセット−WRESとして、主走査有効領域信号−HDを、ライトイネーブル(−WE)として、インターフェイスFIFOメモリの書き込み制御を行う。−SOSは、ポリゴン回転に伴う1ライン毎のLD走査開始信号であり、−HIAは主走査描画エリア信号であり、リードイネーブル信号−REとしてインターフェイスFIFOメモリの読み出し制御を行う。−TGと−SOSは、どちらも主走査基準信号であるから周期は同じ信号であり、CCDセンサの読み取り基準は−TGであり、レーザ走査の書き込み基準は−SOSである。−HD信号は、−TG信号を基準に片側方向から画像読み取りエリアに応じて可変されるのに対して、−HIA信号は、−SOS信号の中心位置を基準に給紙される用紙の主走査幅に応じて可変される。
【0049】
画像歪み補正データを展開するメモリのアドレスは−TG基準に生成されており、そのデータ生成にあたっては、後述するが転写ベルト304上でのレジストパターンの検出によって導かれるため、給紙される用紙サイズによって、補正データの展開位置を可変する必要がある。しかし、用紙サイズ決定後に補正メモリ内の歪み補正データの展開を行うため、時間的に無駄が大きい。したがって、主走査アドレス生成部のロード値を給紙された用紙に応じて可変された−HIA、−SOS信号からの開始位置に応じて可変して、歪み補正係数の主走査位置を合わせている。
【0050】
Kデータは画像歪み補正の後に、プリントヘッド制御部とのインターフェスにおいて、FIFOメモリへの書き込み前に黒べたデータ(1FF(h))と選択される。画像読取装置側の画像処理部内の紙幣認識部415が原稿ガラスに積載された原稿が紙幣であるか否かを検出している。この時、紙幣が検出された場合正常なコピーができないように、画像全面を黒データで塗りつぶす。従来の4回スキャンによる面順次方式のフルカラー複写機では、黒画像形成前のC,M,Y画像形成スキャン時に紙幣を認識し、K画像形成時に黒べた塗りつぶしを行えばよかったが、本システムのように1スキャン4色同時カラーコピーでは、スキャンしながら黒べたを描画すべき原稿かを判断する必要がある。しかし、紙幣認識にはある程度の原稿領域を随時切り出し、ある基準パターンとのマッチングして判断する構成が必然であるため、スキャン時の画像読み取り位置に対して多少の判断時間が必要になり、画像形成時点では間に合わない場合が生じる。(ペーパー上の紙幣の画像形成をしてから、紙幣認識部415が紙幣と判断する。) このため、塗りつぶし制御は、副走査描画位置制御の後で行うようにしている。これだと、少なくとも感光体間隔に相当する分だけは、K画像の遅延制御をおこなっており、紙幣認識の判断がスキャン開始からK画像の感光体への画像形成の間に完了しさえすれば、正常コピー動作を禁止できる。
こうして、主・副走査方向の画像歪み補正をしたC,M,Y,K画像C,M,Y,K78-70は、プリントイメージング制御部とプリントヘッド制御部のインターフェイス部(図25)に転送されて、描画位置をペーパー基準にシフトし、図10に示すプリントヘッド制御部に転送され、各色感光体上に光変調されて露光され、画像が形成される。
【0051】
タンデム構成におけるメモリによる画像遅延と各色の露光位置のずれとにより発生する印字位置ずれは、以下に説明するように補正する。プリントイメージング制御部において、レジストパターンの印字、レジスト量の検出、および、レジスト補正データ設定が行われる。そこで、画像歪み量を測定するためのレジスト検出センサ314の取り付け位置のずれを検出し、ずれ量を考慮した上で画像歪み補正データを求める。次にレジスト検出センサ314からのずれ量のフィードバックについて説明する。
図27は、3個のレジスト検出センサ314、レジストパターンおよび各種のずれ量などを示す。レジストパターンは、テストデータ生成部530によって生成され、階調再現部500で画像データとして選択される。3個のレジスタ検出センサ314に対して、4色C,M,Y,Kのレジストパターンのため、主走査方向に3個のZ文字状のデータを生成している。
【0052】
レジストパターンは次のように印字される。
(1) プリントイメージング制御部のCPU(PIC_CPU)は、副走査描画位置制御の各色の副走査遅延量C,M,Y,K_VSA11-0をC,M,Y,Kデータとも同一値Voに設定する。ここで、Voは、K画像の設計上の基準位置である。
(2) 次に、主走査描画位置制御の各色の主走査描画開始位置C,M,Y,K_HSA11-0を、C,M,Y,Kとも、K画像が転写ベルト304上の適切な描画位置に描画されるように設定された同一値Hoに設定する。ここで、Hoは、K画像の設計上の基準位置である。
(3) そして、C,Mについては鏡像処理(UDSEL)を設定する。
(4) 歪み補正を行わないようにするため、画像補正係数データ生成部548の主副走査画像歪み補正RAM(図24、5482、5483)の値をクリアする。すなわち、メモリのデータKD17-10とKD27-20にすべて0を書きこむ。
すなわち、主・副走査方向とも画像歪み補正値(補間データK17-10とK27-20)は0になるようにしておく。そして、テストデータ生成部530から各色に対応したZパターンを出力する。
【0053】
次に、レジスト量(副走査ずれ量)の検出について説明する。各色のZパターンが最初にセンサ上に通過する時間差によって、レジスト量Vck,Vmk,Vykは、Zパターンがセンサ314上を通過する時間差によって検出される。Z文字のパターンは、横方向に対して斜め方向に45゜にしているため、Z文字の横線と斜め線の通過時間がわかれば、最初の交差から次の交差までの時間差により、横方向(主走査方向)の位置ずれは検出できる。すなわち、各色のKに対する主走査方向色ずれ量Hck1〜3,Hmk1〜3,Hyk1〜3は、Kの位置ずれ量Hk1〜3と各色の位置ずれ量Hc1〜3,Hm1〜3,Hy1〜3との差によって求められる。また、各色間の横方向のずれ量は、Zパターンの上辺の水平線間の距離をKパターンとY,M,Cパターンの間で時間差を測定し、同様に求めることができる。
【0054】
まず、基準色KのZパターン(Kパターン)を読み取ったときの読み取り量と設計値とのずれを演算し、このずれから3個のセンサ314の取り付け位置のずれ量(誤差)Tk1〜Tk3を算出する。
Tk1=Hk0−Hk1
Tk2=Hk0−Hk2
Tk3=Hk0−Hk3
この値Tk1〜Tk3とZパターンの印字アドレスα1〜α3によって、センサ314の取り付け位置β1〜β3を検出できる。
次に、基準色以外の色のZパターンを読み取ったときの読み取り量と設計値とのずれを求め、このずれから各色における画像歪み量を検出する。まず、Y,M,Cパターンから各色のKパターンに対する相対的な主走査方向ずれ量を算出する。すなわち、
Hck1〜3=Hc1〜3−Hk1〜3
Hmk1〜3=Hm1〜3−Hk1〜3
Hyk1〜3=Hy1〜3−Hk1〜3
次に、各色の感光体間の相対的な距離を測定するために、3個のセンサ314の平均値を求める。
Hyk=(Hyk1+Hyk2+Hyk3)/3
Hmk=(Hmk1+Hmk2+Hmk3)/3
Hyk=(Hck1+Hck2+Hck3)/3
同様に、Y,M,Cパターンから各色のKパターンに対する相対的な副走査方向のずれ量を算出する。すなわち、各色の感光体間の相対的な距離を測定するために、3個のセンサ314のずれ量の平均値を求める。
Vyk=(Vyk1+Vyk2+Vyk3)/3
Vmk=(Vmk1+Vmk2+Vmk3)/3
Vyk=(Vck1+Vck2+Vck3)/3
【0055】
以上に説明したように、レジストパターンを検出することによりレジスト検出センサ314からプリントイメージング制御部のCPUに転送される色ずれデータは、センサ毎の、主走査方向における色ずれ量(Hck1〜3、Hmk1〜3、Hyk1〜3)、副走査方向における色ずれ量(Vck1〜3、Vmk1〜3、Vyk1〜3)、および、K画像から算出した各センサ位置ずれ量Tk1〜Tk3である(図27参照)。これによって、基準色(K)に対する他の色(C,M,Y)の副走査方向色ずれ量Vyk1〜3、Vmk1〜3、Vck1〜3はほぼ各色の感光体間隔値と一致している。
【0056】
次に、レジスト補正データ設定を説明する。ここで、主走査方向と副走査方向のHck、Hmk、Hyk、Vck、Vmk、Vykなどの補正データの演算結果の絶対値は、Hen/2またはVen/2以下であるものとする。Hck、Hmk、Hyk、Vck、Vmk、Vykの絶対値がHen/2またはVen/2より大きい場合には、補正可能幅以上の補正は不可能であるため、Hen/2またはVen/2の値に書きかえるクランプ処理を行うものとする。すなわち、画像歪み量検出による歪み量検出結果(補正データ)がボー歪み補正可能な歪み量(Hen/2またはVen/2)を超えていた場合においても、その部分の値をボー歪み可能な最大の歪み量に置き換えて補正をする。これにより、わずかな歪み量であれば、歪み補正回路の能力を最大限に活用することにより、コピー可能な条件を整える。
主走査方向描画位置補正データを次のように設定する。ここで、デフォルトが水平方向補正可能幅の中央となるように、オフセットをはかせる。
K−HSA12-0=Ho
Y−HSA12-0=Ho−Hen/2−Hyk
M−HSA12-0=Ho−Hen/2−Hmk
C−HSA12-0=Ho−Hen/2−Hck
ここに、Hoは、K画像の設計上の基準位置であり、Henは、水平方向の補正可能幅(たとえば32)である。
また、副走査方向描画位置補正データを次のように設定する。ここで、デフォルトが垂直方向補正可能幅の中央となるように、オフセットをはかせる。
K−VSA12-0=Vo
Y−VSA12-0=Vo−Ven/2−Vyk
M−VSA12-0=Vo−Ven/2−Vmk
C−VSA12-0=Vo−Ven/2−Vck
ここに、Hoは、K画像の設計上の基準位置であり、Henは、水平方向の補正可能幅(たとえば32)である。
【0057】
次に、主走査歪み補正データを次のように設定する。各センサの取り付け位置ずれ量Tk1〜Tk3と、K画像に対する水平方向のずれ量Hck1〜3、Hmk1〜3、Hyk1〜3から、主走査方向歪み補正メモリ内に、図28に示す主走査方向に2次近似曲線となるように展開する。歪み補正部540ではqライン分のずれ量は、補間データKD17-10にとって8*qである。
次に、副走査歪み補正データを次のように設定する。各センサ314の取り付け位置ずれ量Tk1〜Tk3と、各色のK画像に対する垂直方向のずれ量Vck1〜3、Vmk1〜3、Vyk1〜3から、副走査方向歪み補正メモリ内に、図29に示す主走査方向に2次近似曲線となるように展開する。歪み補正部540ではqライン分のずれ量は、補間データKD27-20にとって8*qである。
【0058】
図30は、プリントイメージング制御部のメインルーチンを示す。初期設定(ステップS2)と前処理(ステップS4)を行った後で、各種処理を行う。まず補正データ演算処理であるか否かを判定する(ステップS6)。補正データ演算である場合、レジストパターン印字処理(ステップS8)、レジスト量検出処理(ステップS10)およびレジスト補正データ設定処理(ステップS12)を行う。次に、画像形成であるか否かを判定し、画像形成処理であると判断されると(ステップS14でYES)、画像形成処理(ステップS16)を行う。そして、その他の処理(ステップS18)をして、ステップS4に戻り、次の処理を行う。
【0059】
図31はレジストパターン印字処理(図30、ステップS8)のフローを示す。副走査方向の描画位置アドレスのデフォルト設定(ステップS82)と主走査方向の描画位置アドレスのデフォルト設定(ステップS84)とをした後で、鏡像設定処理(ステップS86)をする。そして、主副走査方向の歪み補正をし、RAMをゼロにクリアする(ステップS88)。そして、Zパターンを印字して(ステップS810)、リターンする。
図32は、レジスト量検出処理(図30、ステップS10)のフローを示す。
各センサ314の位置ずれ量を算出し(ステップS102)、それを基に、主走査方向のずれ量を算出し(ステップS104)、副走査方向のずれ量を算出する(ステップS106)。
【0060】
図33は、レジスト補正データ設定処理(図30、ステップS12)のフローを示す。まず、主走査方向の描画位置補正データを演算し(ステップS122)、クランプ処理をする(ステップS124)。そして、主走査方向の描画位置補正データを書込む(ステップS126)。また、副走査方向の描画位置補正データを演算し(ステップS128)、クランプ処理をする(ステップS1210)。そして、副走査方向の描画位置補正データを書込む(ステップS1212)。
次に、主走査方向の歪み補正データを演算し(ステップS1214)、クランプ処理をする(ステップS1216)。そして、主走査方向の歪み補正データを書込む(ステップS1218)。また、副走査方向の歪み補正データを演算し(ステップS1220)、クランプ処理をする(ステップS1222)。そして、副走査方向の歪み補正データを書込む(ステップS1224)。
【0061】
図34と図35は、フレームメモリ部520を示す。本システムの両面動作(A4横サイズの時)は、転写ベルト上および用紙反転経路上に5枚の描画を行う。したがって、マルチ両面動作は、5ごとに表面コピーと裏面コピーを繰り返すことになる。このため、表面コピーに対応する原稿面のC,M,Y,Kデータを画像読取装置がいったんフレームメモリ上に蓄積する必要がある。なお、裏面コピー側の原稿面は、画像読取装置の繰り返し読み取り(通常コピーと同じ)によって行う。このメモリおよびその制御部がフレームメモリ部520の役割である。
DRAMコントローラ部4401では、主走査方向のアドレスをVCLK(画像同期クロック)でカウントし、−TG信号(主走査同期信号)でクリアし、DRAM制御に必要な−RAS、−CAS、−WE信号を生成する。副走査側は、TG信号でカウントし、−VD信号(副走査有効領域信号)でクリアする。これとともに各色のデータライト許可エリア信号−C,M,Y,K_WEとデータリード許可エリア信号−C,M,Y,K_REとを入力し、DRAMモジュール4402へのWE信号,−CAS信号を許可・禁止制御することによって、各色毎に独立してライト/リード動作を領域毎に可能にしている。具体的には、−C,M,Y,K_WE信号のいずれかがアクティブ("L")なエリアでは、WE信号は所定のタイミングでアクティブになる。このとき、各色の−C,M,Y,K_WE信号のアクティブなエリアでは、−C,M,Y,K_CAS信号を独立して出力が許可され、色データ毎のDRAMモジュールの任意の領域へ書き込みを制御する。また、−C,M,Y,K_RE信号のいずれかがアクティブなエリアでは、WE信号を不許可とし、各色の−C,M,Y,K_CAS信号を許可することによって、所定のエリアでの各色データのDRAMモジュールからの読み出しを行うことができる。−RAS信号については、所定のタイミングで常に出ており、メモリのリフレッシュ動作は保証されている。複数個のDRAMより構成されたDRAMモジュールは、A3原稿1面のCMYK各色のデータを格納する領域を持つ。DRAMコントローラ4401からのWE、−CAS、−RASに応じてライト/リードが行われる。
【0062】
入出力の画像データは、描画位置制御部の副走査側と同様に、入力側は主走査8ドットを1パックS/P変換して、32ビット幅のパラレルデータをライトし、出力側は逆にP/S変換して、4ビットのシリアルデ−タでリード動作する。
入力側では、−WHDWR信号がアクティブ("L")であるとき、メモリを初期化するためのデータ(4h)をフレ−ムメモリ部への入力データとして、ライト制御に従いメモリ内のイレース処理を行う。−WHDWR信号が非アクティブ("H")であるとき、階調再現部500からのデータC,M,Y,K23-20をフレームメモリ部への入力データとしてライト制御を行い、メモリ内への各色データの書き込みを行う。出力側では、−C,M,Y,K_CLR信号が"H"である時、所定の値(4h)をフレームメモリからの出力データとして次段(描画位置制御部)への転送デー夕C,M,Y,K33-30とする。これは、主・副走査側の有効領域でないエリア(−HD="H"または−VD="H")の1ノード制御や各色のデータリード許可エリア信号(−C,M,Y,K_RE)が非アクティブの領域は、画像データをクリアして出力するためである。このメモリ制御を利用して、外部装置から転送されるC,M,Y,Kの面順次データをプリントアウトする動作に対しては、面順次入力で転送されるC,M,Y,Kの画像データを各色毎の所定色フレームメモリに順次書き込みを行い、4色同時に読み出し、フルカラープリントを行う。
【0063】
【発明の効果】
各色の特定のパターンを1種類のセンサで読み取ることにより、センサの取付誤差量と各色における画像歪み量を同時に検出できるため、複雑な構成を用いることなく、画像の歪みが補正できる。
また、従来行っていたセンサの取り付け位置調整は必要が無くなるので、機械の組み立て時間が短縮できる。
したがって、印字ユニットを1列に配置するタンデム構成の画像歪み補正システムを安価に提供できる。
【図面の簡単な説明】
【図1】 カラーデジタル複写機の断面図。
【図2】 レーザー光学系の構成の概略を示す図。
【図3】 画像処理部の1部のブロック図。
【図4】 画像処理部の残りの部分のブロック図。
【図5】 複写機のシステム構成とプリントイメージング制御部のブロックとの関連を示す図の1部。
【図6】 複写機のシステム構成とプリントイメージング制御部のブロックとの関連を示す図の残りの部分。
【図7】 6種の要因による色ずれ現象を示す図。
【図8】 プリントイメージング制御部のブロック図。
【図9】 濃度分配による画像補正の1例の図。
【図10】 プリントヘッド制御部の図。
【図11】 プリントイメージング制御部の階調再現部のブロック図。
【図12】 3ビットコード化処理部のブロック図。
【図13】 副走査側描画位置制御部の1部のブロック図。
【図14】 副走査側描画位置制御部の残りの部分ブロック図。
【図15】 副走査側描画位置制御部の図。
【図16】 主走査側描画位置補正部のブロック図。
【図17】 画像歪み補正部の1部のブロック図。
【図18】 画像歪み補正部の残りの部分のブロック図。
【図19】 副走査側画像歪み補正の1部のブロック図。
【図20】 副走査側画像歪み補正の残りの部分のブロック図。
【図21】 階調レベルデコード部のブロック図。
【図22】 主走査側画像歪み補正部の1部のブロック図。
【図23】 主走査側画像歪み補正部の残りの部分のブロック図。
【図24】 画像歪み係数データ生成部のブロック図。
【図25】 プリントイメージング制御部とプリントヘッド制御部との間のインターフェイスの図。
【図26】 プリントイメージング制御部からプリントヘッド制御部へのデータ転送のタイミングチャート。
【図27】 レジストパターンの図。
【図28】 副走査歪み補正の図。
【図29】 主走査歪み補正の図。
【図30】 プリントイメージング制御部のメインフローチャート。
【図31】 レジストパターン印字処理のフローチャート。
【図32】 レジスト量検出処理のフローチャート。
【図33】 レジスト補正データ設定処理のフローチャート。
【図34】 フレームメモリの1部のブロック図。
【図35】 フレームメモリの残りの部分のブロック図。
【符号の説明】
302k、302y、302m、302c イメージングユニット、 305 転写ベルト、 312 レジスト検出センサ、 541〜544 副走査側画像歪み補正部、 545〜547 主走査側画像歪み補正部。

Claims (4)

  1. 一列に配置した複数色の印字ユニットを備え、画像データに基づいてカラー画像を形成するカラー画像形成手段と、
    特定パターンの複数の色の画像データを発生する特定パターン発生手段と、
    特定パターン発生手段により発生される画像データを基に画像形成手段の各印字ユニットにより形成された複数の特定パターンの画像を検出する画像歪み量検出センサと、
    画像歪み量検出センサにより検出された特定パターンの画像の検出データから、画像歪み量検出センサの取付位置の誤差と、特定パターンの画像の歪み量とを検出する検出手段と、
    検出手段により検出された取付位置の誤差と画像の歪み量とに基づいてカラー画像形成手段の各印字ユニットの画像印字位置を補正する印字位置補正データを発生する印字位置補正データ発生手段と、
    印字位置補正データ発生手段から発生される印字位置補正データに基づいて、印字位置を補正した画像データを出力する画像印字位置補正手段と
    からなることを特徴とする画像形成装置。
  2. 請求項1に記載された画像形成装置において、
    前記の検出手段は、基準色の特定パターンにより画像歪み量検出センサの取付位置の誤差を検出し、基準色以外の各色の特定パターンにより基準色以外の各色について印字位置補正データを発生することを特徴とする画像形成装置。
  3. 請求項1または2のいずれかに記載の画像形成装置において、
    前記検出手段は、前記画像歪み量検出センサの取付位置の主走査方向及び副走査方向における誤差を検出することを特徴とする画像形成装置。
  4. 請求項2または3のいずれかに記載の画像形成装置において、
    前記検出手段は、前記画像歪み量検出センサにより検出された基準色の特定パターンの画像の検出データ及び基準色の特定パターンの画像の設計上の基準位置に基づいて、前記画像歪み量検出センサの取付位置の誤差を検出することを特徴とする画橡形成装置。
JP16339598A 1998-06-11 1998-06-11 画像形成装置 Expired - Fee Related JP3887951B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16339598A JP3887951B2 (ja) 1998-06-11 1998-06-11 画像形成装置
US09/328,590 US6215512B1 (en) 1998-06-11 1999-06-10 Image forming apparatus with image distortion correction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16339598A JP3887951B2 (ja) 1998-06-11 1998-06-11 画像形成装置

Publications (2)

Publication Number Publication Date
JPH11352744A JPH11352744A (ja) 1999-12-24
JP3887951B2 true JP3887951B2 (ja) 2007-02-28

Family

ID=15773084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16339598A Expired - Fee Related JP3887951B2 (ja) 1998-06-11 1998-06-11 画像形成装置

Country Status (2)

Country Link
US (1) US6215512B1 (ja)
JP (1) JP3887951B2 (ja)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6625331B1 (en) * 1998-07-03 2003-09-23 Minolta Co., Ltd. Image forming apparatus
US6791713B1 (en) * 1998-10-13 2004-09-14 Ricoh Company, Ltd. Image forming apparatus
JP2000246965A (ja) * 1999-03-02 2000-09-12 Matsushita Electric Ind Co Ltd プリンタコントロール装置
US7003641B2 (en) * 2000-01-31 2006-02-21 Commvault Systems, Inc. Logical view with granular access to exchange data managed by a modular data and storage management system
JP2001301232A (ja) * 2000-02-18 2001-10-30 Minolta Co Ltd 画像形成装置
US6229555B1 (en) * 2000-05-17 2001-05-08 Lexmark International, Inc. Method and apparatus for minimizing visual artifacts generated by an electrophotographic machine during imaging
US6906832B2 (en) 2001-03-27 2005-06-14 Kabushiki Kaisha Toshiba Image forming apparatus with function of tilt adjustment to laser-beam reflecting mirror
JP4259028B2 (ja) * 2002-03-19 2009-04-30 富士ゼロックス株式会社 画像処理装置
JP2003324602A (ja) 2002-04-30 2003-11-14 Toshiba Tec Corp 画像形成装置
JP4656598B2 (ja) * 2003-12-02 2011-03-23 富士ゼロックス株式会社 画像形成装置、校正方法及びそのプログラム
JP4111181B2 (ja) * 2004-09-30 2008-07-02 コニカミノルタビジネステクノロジーズ株式会社 画像読取装置
JP4305351B2 (ja) * 2004-09-30 2009-07-29 コニカミノルタビジネステクノロジーズ株式会社 画像読取装置
JP4165488B2 (ja) * 2004-09-30 2008-10-15 コニカミノルタビジネステクノロジーズ株式会社 画像読取装置
JP4075881B2 (ja) * 2004-09-30 2008-04-16 コニカミノルタビジネステクノロジーズ株式会社 画像読取装置
JP4244899B2 (ja) * 2004-09-30 2009-03-25 コニカミノルタビジネステクノロジーズ株式会社 画像読取装置
JP4244898B2 (ja) * 2004-09-30 2009-03-25 コニカミノルタビジネステクノロジーズ株式会社 画像読取装置
JP4305352B2 (ja) * 2004-09-30 2009-07-29 コニカミノルタビジネステクノロジーズ株式会社 画像読取装置
JP4265517B2 (ja) * 2004-09-30 2009-05-20 コニカミノルタビジネステクノロジーズ株式会社 画像読取装置
JP3918844B2 (ja) * 2004-09-30 2007-05-23 コニカミノルタビジネステクノロジーズ株式会社 画像読取装置
JP4305369B2 (ja) * 2004-11-10 2009-07-29 コニカミノルタビジネステクノロジーズ株式会社 画像読取装置
US7684079B2 (en) 2004-12-02 2010-03-23 Canon Kabushiki Kaisha Image forming apparatus and its control method
JP4689284B2 (ja) * 2005-01-21 2011-05-25 株式会社リコー 光走査装置および画像形成装置
US7630100B2 (en) * 2005-04-08 2009-12-08 Canon Kabushiki Kaisha Color image forming apparatus
JP4920966B2 (ja) * 2005-12-21 2012-04-18 キヤノン株式会社 画像形成装置
JP4865529B2 (ja) * 2005-12-22 2012-02-01 キヤノン株式会社 画像形成システム及び画像形成装置並びにその画像形成方法
JP2007195062A (ja) * 2006-01-20 2007-08-02 Fujitsu Ltd 画像静止領域判定装置、およびインタレース−プログレッシブ画像変換装置
KR100782833B1 (ko) * 2006-01-20 2007-12-06 삼성전자주식회사 칼라 레지스트레이션 오차 검출수단을 구비하는 인쇄기 및그 칼라 레지스트레이션 오차 검출 방법
JP4944478B2 (ja) * 2006-04-07 2012-05-30 キヤノン株式会社 画像形成装置
JP4950562B2 (ja) * 2006-05-31 2012-06-13 キヤノン株式会社 カラー画像形成装置及びその制御方法
US7894109B2 (en) 2006-08-01 2011-02-22 Xerox Corporation System and method for characterizing spatial variance of color separation misregistration
US8270049B2 (en) 2006-08-01 2012-09-18 Xerox Corporation System and method for high resolution characterization of spatial variance of color separation misregistration
US8274717B2 (en) * 2006-08-01 2012-09-25 Xerox Corporation System and method for characterizing color separation misregistration
US7826095B2 (en) * 2007-01-16 2010-11-02 Xerox Corporation System and method for estimating color separation misregistration utilizing frequency-shifted halftone patterns that form a moiré pattern
JP4633078B2 (ja) * 2007-03-09 2011-02-16 Necアクセステクニカ株式会社 カラー画像処理装置および画像メモリアクセス制御方法
JP2008259070A (ja) * 2007-04-06 2008-10-23 Canon Inc 画像形成装置及びその制御方法、プログラム、記憶媒体
US7630672B2 (en) 2007-05-21 2009-12-08 Xerox Corporation System and method for determining and correcting color separation registration errors in a multi-color printing system
US8228559B2 (en) * 2007-05-21 2012-07-24 Xerox Corporation System and method for characterizing color separation misregistration utilizing a broadband multi-channel scanning module
JP4942205B2 (ja) * 2008-01-07 2012-05-30 キヤノン株式会社 画像形成装置、画像形成装置の制御方法およびプログラム
JP4981000B2 (ja) * 2008-09-01 2012-07-18 株式会社リコー 画像の秘匿方法および画像形成装置
JP5254740B2 (ja) * 2008-10-24 2013-08-07 キヤノン株式会社 画像処理装置および画像処理方法
JP5241429B2 (ja) * 2008-10-24 2013-07-17 キヤノン株式会社 画像形成装置およびその制御方法
JP5254739B2 (ja) 2008-10-24 2013-08-07 キヤノン株式会社 画像形成装置およびその制御方法
JP5822625B2 (ja) * 2011-09-30 2015-11-24 キヤノン株式会社 カラー画像形成装置
JP2013195691A (ja) 2012-03-19 2013-09-30 Ricoh Co Ltd 画像形成装置および画像形成装置の制御方法
JP6146140B2 (ja) * 2013-05-30 2017-06-14 ブラザー工業株式会社 画像形成装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539868B1 (en) * 1991-10-29 1999-02-24 SHARP Corporation Color copying machine provided with color correcting circuit
JP3246008B2 (ja) 1992-10-22 2002-01-15 富士ゼロックス株式会社 カラーレジストレーション誤差検出装置
US5448277A (en) * 1993-06-30 1995-09-05 Xerox Corporation Virtual process controls test pattern for electronic printers
JP3307077B2 (ja) 1994-05-13 2002-07-24 富士ゼロックス株式会社 タンデムタイプのカラー画像形成装置
JP3234878B2 (ja) * 1994-09-29 2001-12-04 株式会社東芝 画像形成装置
JP3079940B2 (ja) 1995-04-14 2000-08-21 富士ゼロックス株式会社 多重画像形成装置
JP3353629B2 (ja) 1995-12-26 2002-12-03 カシオ電子工業株式会社 多色画像記録装置

Also Published As

Publication number Publication date
JPH11352744A (ja) 1999-12-24
US6215512B1 (en) 2001-04-10

Similar Documents

Publication Publication Date Title
JP3887951B2 (ja) 画像形成装置
US6625331B1 (en) Image forming apparatus
JP3777785B2 (ja) 画像処理装置
JP3700381B2 (ja) 画像処理装置
US6441915B1 (en) Image forming apparatus
JP4269521B2 (ja) 画像処理装置及び画像形成装置
US6323959B1 (en) Color image processor
US6559976B1 (en) Color image processor
JP2004056752A (ja) 画像処理装置と画像処理方法
US7099045B2 (en) Image processing apparatus, image forming apparatus, and image processing method for judging pixels in edge area of character in halftone-dot area
US6462838B1 (en) Method of and apparatus for forming an image
JP3302041B2 (ja) 画像処理装置
JP3777813B2 (ja) 網点画像判別方法及び画像処理装置
US7092124B2 (en) Image processing apparatus, image forming apparatus, and image processing method with judging pixels in halftone-dot areas based on isolated pixel counts
JP3253117B2 (ja) 画像処理装置および方法
US7136194B2 (en) Image processing apparatus, image forming apparatus, and image processing method
JP3988355B2 (ja) 画像処理装置
JP2000015871A (ja) 画像処理装置
JP2000287077A (ja) 網点画像判別方法及び装置
JP3627889B2 (ja) ディジタル画像処理装置
JP2000015870A (ja) 画像処理装置
JP2000015869A (ja) 画像処理装置
JPH11266360A (ja) 画像処理装置
JP4058795B2 (ja) 画像処理装置および画像処理の方法
JP3790877B2 (ja) 画像処理装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees