JP4058795B2 - 画像処理装置および画像処理の方法 - Google Patents

画像処理装置および画像処理の方法 Download PDF

Info

Publication number
JP4058795B2
JP4058795B2 JP07684698A JP7684698A JP4058795B2 JP 4058795 B2 JP4058795 B2 JP 4058795B2 JP 07684698 A JP07684698 A JP 07684698A JP 7684698 A JP7684698 A JP 7684698A JP 4058795 B2 JP4058795 B2 JP 4058795B2
Authority
JP
Japan
Prior art keywords
image data
output
gradation
density
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07684698A
Other languages
English (en)
Other versions
JPH11268345A (ja
Inventor
勝行 平田
健太郎 鹿取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP07684698A priority Critical patent/JP4058795B2/ja
Priority to US09/275,294 priority patent/US6462838B1/en
Publication of JPH11268345A publication Critical patent/JPH11268345A/ja
Application granted granted Critical
Publication of JP4058795B2 publication Critical patent/JP4058795B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Color, Gradation (AREA)
  • Fax Reproducing Arrangements (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多階調の画像データをプリント出力するための画像処理装置に関し、露光の多値制御を行う電子写真プロセスによる画像形成に好適である。
【0002】
【従来の技術】
ディジタル複写機、ページプリンタなどの画像データをプリント出力する画像形成装置において、画素単位の多値の濃度制御と画素マトリクス単位の疑似階調制御とを組み合わせて多階調の中間調再現が行われている。画素単位の濃度制御の手法としては、電子写真プロセスの露光光源のパルス幅変調、強度変調などがある。また、疑似階調制御の手法としては誤差拡散法が一般的である。
【0003】
通常、画素単位での再現可能な階調数は4(2ビット)〜8(3ビット)程度であり、原画像データの階調数(一般に256:8ビット)よりも少ない。したがって、画像形成装置では原画像を示す入力画像データをそれよりビット数の少ない出力画像データに変換し、そのデータ変換に伴う画素値の誤差を周辺の画素に振り分ける画像処理が行われる。
【0004】
従来においては、入力画像データの各階調レベルと出力画像データの各階調レベルとの対応づけは固定であった。ただし、原画像のエッジ部分の先鋭度を確保し且つ他の部分の階調再現性を滑らかにするため、エッジ部分と他の部分とで出力画像データの階調数を変更するように構成されたものはあった。
【0005】
また、電子写真式の画像形成装置の機能として、所定パターンのトナー像を作成し、その濃度測定値に応じて感光体電位などの作像条件を調整するAIDC機能(自動画像濃度調整)が知られている。
【0006】
【発明が解決しようとする課題】
従来の画像形成装置においては、上述のとおり入力画像データと出力画像データとの階調レベルの対応関係が固定であったので、階調再現性が温度、湿度、現像剤のトナー比率、感光体の表面特性などの作像条件に依存してしまい、再現画像の品質が不安定であるという問題があった。すなわち、入力画像データの階調数を、これより小さな階調数に誤差拡散法によって変換するものにおいては、入力画像データの階調レベルと出力画像データの階調レベルとの対応関係は固定であったために、作像条件や環境変動などによって出力画像データの階調レベルで再現されるプリント出力濃度に変動が生じた場合であっても、出力画像データの階調レベルに基づいて誤差拡散が行われるので、入力画像データの示す濃度と実際にプリントされる濃度とにずれが生じる。特に、入力画像データの階調レベルと出力階調レベルとの誤差データを次に入力される入力画像データに加算して出力画像データの階調レベルに変換するものにおいては、出力画像データの階調レベルで適正な出力濃度を得ることができなくなると、画像全体に濃度のずれが生じてしまうという課題があった。つまり、入力画像データの示す濃度と実際にプリントされる濃度とが一定ではなかった。複数色のトナー像を重ね合わせるカラー画像形成装置では、各色の階調再現性の変化が再現色の変化となって目立ってしまう。
【0007】
本発明は、階調再現性を一定化し、品質の安定したプリント出力を実現することを目的としている。
【0008】
【課題を解決するための手段】
本発明においては、プリント出力手段における少なくとも1箇所、好ましくは複数箇所での濃度再現状態の測定値に基づいて、入出力の階調レベルの対応関係を変更する。複数箇所での測定値に基づく場合、各箇所に対応した領域に画像を区画して各領域毎に階調レベルの対応関係を変更してもよいし、複数箇所の測定値からこれらの箇所の間の位置での濃度再現状態を推定し、画像を細かく区画した領域毎にきめ細かく階調レベルの対応関係を変更してもよい。
【0009】
請求項1の発明の装置は、階調数Nが2(nは3以上の整数)の入力画像データを、誤差拡散法を適用して階調数Mが2 (mはnより小さい2以上の整数)の出力画像データに変換する画像処理装置であって、前記入力画像データのN段階の階調レベルと前記出力画像データのM段階の階調レベルとの対応関係が可変とされ、前記出力画像データを出力する出力手段と、前記入力画像データの階調レベルのうちの前記出力画像データへの変換において、入力画像データの濃度値と出力画像データの再現濃度値が等しい階調レベルである特定階調レベルに対応した前記出力手段の出力した出力画像データにおけるプリント出力濃度の測定データに応じて、前記階調レベルの対応関係を設定する制御手段を有したものである。
【0010】
請求項2の発明の装置において、前記制御手段は、前記出力画像データのプリント出力における主走査方向の複数の箇所のそれぞれでの前記プリント出力濃度の測定データに基づいて、当該箇所毎に独立に前記階調レベルの対応関係を設定する。
請求項3の発明の装置において、前記制御手段は、誤差拡散法により出力画像データに変換するための閾値を、前記プリント出力濃度の測定データに応じて設定する。
請求項4の発明の方法は、階調数Nが2(nは3以上の整数)の入力画像データを誤差拡散法を適用して階調数Mが2 (mはnより小さい2以上の整数)の出力画像データに変換する、当該出力画像データを出力する出力手段を有した画像処理装置が行う画像処理の方法であって、前記入力画像データのN段階の階調レベルと前記出力画像データのM段階の階調レベルとの対応関係が可変とされ、前記入力画像データの階調レベルのうちの前記出力画像データへの変換において、入力画像データの濃度値と出力画像データの再現濃度値が等しい階調レベルである特定階調レベルに対応した前記出力手段の出力した出力画像データにおけるプリント出力濃度の測定データに応じて、前記階調レベルの対応関係を設定する。
【0011】
【発明の実施の形態】
本発明の適用例としてディジタル複写機を挙げて説明する。最初に画像データのプリント出力に係わる構成を一通り説明し、その後に本発明に固有の構成について詳しく説明する。
〔全体構成〕
図1は本発明に係る複写機1の全体構成を示す図である。
【0012】
複写機1はディジタル式カラー複写機であり、自動原稿送り装置(ADF)10、縮小投影式のイメージリーダ部20、及び電子写真式のプリンタ部30から構成されている。また、複写機1は外部機器とのデータ通信のためのインタフェース27を備えており、イメージリーダ部20で読み取った画像デ−タを外部機器に出力したり、逆に外部機器からの画像デ−タをプリンタ部30へ送ってプリントしたりすることができる。
【0013】
自動原稿送り装置10は、原稿セットトレイ11にセットされた原稿をイメージリーダ部20の読み取り位置に搬送し、読み取り終了後に排出トレイ13上に排出する。原稿搬送動作は図示しない操作パネルからの指示に従って行われ、排出はイメージリーダ部20からの読取り終了信号に呼応して行われる。複数枚の原稿がセットされている場合には,これらの制御信号が連続的に発生し、原稿搬送、読み取り、原稿排出の一連の動作が効率的に行われる。
【0014】
イメージリーダ部20において、原稿台ガラス28の上に位置決めされた原稿は下方から露光ランプ21により照射され、原稿からの反射光がミラー群22及び結像レンズ23を経てCCDイメージセンサ24に入射する。露光ランプ21及び第1ミラ−が組付けられたスキャナはモータ29により倍率に応じた速度Vで副走査方向に移動する。これにより原稿を全面にわたって走査することができる。スキャナの移動に合わせて、第2ミラ−及び第3ミラ−は速度V/2で同方向へ移動し、光路長を一定に保つ。スキャナの位置は、ホーム位置を離れたことをセンサ26で検出した時点からの移動量(モ−タのステップ数)の算出値に基づいて制御される。イメージリーダ部20の読取り解像度は400dpiである。
【0015】
CCDイメージセンサ24に入射した光は、R,G,Bの各色成分毎に光電変換される。各色の光電変換信号に対して、画像処理回路25によってアナログ信号処理、A/D変換、デジタル画像処理が行われる。画像処理回路25からプリンタ部30又はインタ−フェ−ス27へ原稿に対応した画像データが送られる。
【0016】
なお、原稿台ガラス28の原稿読取り領域の外側にシェーディング補正用の白色板が配置されており,原稿の読み取りに先立って、シェ−ディング補正データを生成するために白色板の読取りが行われる。
【0017】
プリンタ部30において、イメージリーダ部20から送られてきた画像データは、プリントヘッド31のデータ処理系(本発明の画像処理装置に相当する)によって、シアン(C)、マゼンタ(M)、イエロ−(Y)、ブラック(K)の印字のための画像デ−タ(印字データ)に変換される。プリントヘッド31の制御部は各色の印字データに応じて露光光源である半導体レーザを発光させる。レーザ光はポリゴンミラーによって主走査方向に偏向され、ミラーによって計4個のイメ−ジングユニット32c,32m,32y,32kの感光体へ導かれる。
【0018】
各イメ−ジングユニット32c,32m,32y,32kの内部には、感光体を中心に電子写真プロセスに必要なエレメントが配置されている。図において感光体は時計回りに回転し、帯電→露光→現像→転写の各プロセスが連続的に行われる。イメ−ジングユニット32c,32m,32y,32kは色毎に独立に一体化されており、プリンタ部本体に脱着可能な構成になっている。
【0019】
感光体上で潜像を現像することによって得られるトナ−像は、用紙搬送ベルト34を挟んで感光体と対向する位置に配置された転写チャージャ33c,33m,33y,33kによってC,M,Y,Kの順に用紙に重ねて転写される。ただし、ブラックのイメ−ジングユニット32kのみを用いるモノクロコピーの場合には、用紙搬送ベルト34は、図中に鎖線で示すように他の3色のイメ−ジングユニット32c,32m,32yから離れた位置に配置される。感光体の磨耗を防ぐためである。
【0020】
用紙搬送路におけるイメ−ジングユニット32kの下流側には、レジスト補正センサ36、AIDCセンサ37、クリーナ38、及び定着ローラ対39が配置されている。定着プロセスを経た用紙は排紙トレイ49上に排出される。レジスト補正センサ36は色ずれを検出し、その検出信号は描画位置補正や歪み補正に用いられる。AIDCセンサ37は、本発明に係わるAIDCパターンの濃度を検出するフォトセンサである。AIDCパターンは濃度の再現状態を調べるためのトナー像であり、用紙搬送ベルト34における用紙の無い領域に形成される。クリーナ38はAIDCパターンを消去する。
【0021】
用紙搬送ベルト34の下方には、給紙カセット41a,41b,41cが装着されている。択一選択された給紙カセットから所定サイズの用紙が給紙ローラによって搬送路へ供給され、ローラ群により搬送ベルト34へ送られる。センサ35が用紙搬送ベルト34上の基準マークを検出するのを待って、用紙搬送ベルト34による搬送が開始される。そして、定着を含む電子写真プロセスを経た用紙は排紙トレイ49上に排出される。両面コピ−の場合には定着ロ−ラ−対39を通過した用紙がスイッチバック搬送により表裏反転されて両面ユニット48に送り込まれ、両面ユニット48から用紙搬送ベルト34へ再給紙される。
【0022】
画像処理回路25は、A/D変換回路251、シェーディング補正回路252、log変換回路253、UCR・BP処理回路254、マスキング回路255、濃度補正回路256、MTF補正回路257、及び図示しない付加機能回路から構成されている。これらの回路には、イメージリーダ部20の制御を担う第1のCPU201から所定の指示が与えられる。付加機能回路としては、読取り光学系の色収差を補正する回路、拡大/縮小を含む各種の画像編集を実現するための回路、及び紙幣や証券類の偽造を防止するための回路などがある。
【0023】
A/D変換回路251は、CCDイメージセンサ24から入力されるアナログ信号に対してオフセット及びゲインの補正を行い、補正後の信号をR,G,Bの各色毎に8ビット(256階調)の画像データに変換する。シェーディング補正回路253は、各色の画像データに対して、露光ランプ21の配光ムラ及びCCDイメージセンサ24の画素間の感度のバラツキに応じた補正を加える。log補正回路253は輝度を表す画像データを人間の比視感度に則した濃度を表す画像データに変換する。UCR・BP処理回路254は、ブラックトナーで再現すべき暗色成分を画像データから抽出し、抽出値に応じてR,G,Bのデータ値を修正する。マスキング回路255は、3色の画像データに基づいてC,M,Y,Kの4色の画像データを生成する。濃度補正回路256は、C,M,Yの画像データに所定の係数を乗じて色補正を行う。そして、MTF補正回路257は、スムージングなどの画質改善のための処理を行う。MTF補正回路257の出力は印字データとしてプリンタ部30へ送られる。
【0024】
ここで、MTF補正回路257におけるフィルタ処理について説明する。適用するフィルタは、一般的な1次微分フィルタ及びラプラシアンフィルタである。
MTF補正回路257の入力Dと出力DDとの関係は(1)式で表される。
【0025】
DD=D×〔F(ΔV)×G(ΔD)〕 …(1)
式中のΔVは、RGB色空間からVHC色空間への変換で得られる明度Vのラプラシアンデータであり、F(ΔV)は図5に示される空間周波数の補正関数である。また、ΔDは濃度補正回路256からの入力データ(濃度)の1次微分値であり、G(ΔD)は図6に示されるエッジ強度出力である。本例では、エッジ強度Gが所定の閾値以上である場合に、注目画素をエッジと見做し、エッジ信号をアクティブとする。このエッジ信号は、画像データとともにプリンタ部30へ送られ、中間調再現の制御に用いられる。
【0026】
図3はMTF補正回路257の要部のブロック図、図4は図3の各部の出力波形の一例を示す図である。
濃度補正回路256からの画像データ(D)は1次微分フィルタ2571によって微分され、得られた微分値ΔDを入力とする第1のテーブル2572から微分値ΔDに応じた値のエッジ強度信号G(ΔD)が出力される。一方、明度Vはラプラシアンフィルタ2574により微分され、得られた微分値ΔVは第2のテーブル2575に入力される。テーブル2575は微分値ΔVに応じた補正関数F(ΔV)を出力する。画像データ(D)、エッジ強度信号G(ΔD)、及び補正関数F(ΔV)は、乗算器2578で掛け合わされる。また、1次微分フィルタ2571で得られた微分値ΔDは比較器2579にも入力される。比較器2579は微分値ΔDが所定の閾値よりも大きい場合にエッジ信号を出力する。
【0027】
図4のような環状の原画像をそれを横切るラインに沿って読み取ると、4個のエッジが存在することになる。ラインに沿ったエッジ強度の推移は原画像の明暗変化と比べてなまっている。
【0028】
図5は空問周波数の補正関数F(ΔV)を示す図である。
ラプラシアンフィルタ2574による明度Vの微分値ΔVと補正関数F(ΔV)との関係は次式で表される。
【0029】
F(ΔV)=a・ΔV+b (ΔV>0) …(2)
F(ΔV)=a’・ΔV+b’(ΔV<0) …(2’)
すなわち、微分値ΔVが正(画像部分)であるか負(下地部分)であるかによって補正関数F(つまり、画像データ値DD)を正又は負にするので、エッジの一方側と他方側とのコントラストが高まる。
【0030】
図6は1次微分データ(ΔD)とエッジ強度G(ΔD)との関係を示すグラフである。
エッジ強度Gが負の部分はハーフトーン部に対応し、正の部分はエッジに対応する。図では3本のラインA1,A2,Anについての関係が示されている。Anは副走査方向のn番目の主走査ラインの関数Gn(ΔD)を示す。副走査方向のn番目における画素について、その1次微分データΔDが求まると、関数Gn(ΔD)からその画素におけるエッジ強度が求まる。関数G1(ΔD)〜Gn(ΔD)は、MTF補正回路257内にテーブル2572としてあらかじめ格納しておく。各濃度について、この値が負値の場合は、その値に応じたスムージングフィルタを選択する。スムージングフィルタとしては平均化フィルタやメディアンフィルタを用いる。スムージング処理は移動平均フィルタで行ってもよい。
【0031】
図6において、1次微分値(ΔD)が閾値より大きくなり、エッジ強度Gが正になると、画像データ値DDは画像のエッジ成分を表していることになる。この場合は上述のとおりエッジ信号をアクティブにする。1次微分値(ΔD)が大きいほどG(ΔV)も大きくなる。この成分は図4に示したように原画像に対しなまっているのが通常である。
〔プリンタ部における信号処理〕
プリンタ部30の構成は、4個のイメ−ジングユニット32c,32m,32y,32kを同時に使用してカラー画像を形成する“タンデム形式”である。プリンタ部30には、原稿に対する1回のスキャン期間中にイメージリーダ部20からC,M,Y,Kの4色の印字データが同時に転送されてくる。したがって、プリンタ部30における信号処理は基本的には4色の並列処理になる。
【0032】
カラーコピーでは4色のトナー像を用紙にずれなく重ねて転写しなければならないが、4個のイメ−ジングユニット32c,32m,32y,32kは用紙搬送方向に沿って等間隔に配置されている。このため、用紙上での転写位置を揃えるために、露光から転写までのプロセスは色毎に所定時間ずつずれたタイミングで行われる。したがって、同時に入力される4色の印字データを互いに異なるタイミングで露光制御に用いるため、感光体の配列間隔と用紙搬送速度とによって定まる時間だけ各色の印字データを順に遅延させる必要がある。また、1個のポリゴンミラーで4本のレーザビームを偏向するので、用紙搬送の上流側の2色(C,M)と下流側の2色(Y,K)とでは主走査の方向が逆になる。さらに主走査方向の露光位置のずれ、主走査倍率歪み、副走査方向のボー歪み、感光体の軸方向と偏向方向との平行でないときのスキュー歪みによって色ずれが生じる。これらのことから、プリンタ部30には所定容量の遅延メモリと色ずれを防止するための補正回路とが組み込まれている。また、プリンタ部30は両面コピ−時に片面の画像を記憶しておくためのメモリユニットを備えている。
【0033】
図7はプリンタ部30の信号処理系300の概略図である。
イメージリーダ部20から転送されたC,M,Y,Kの画像デ−タD20は、階調再現回路50に入力される。階調再現回路50は、プリンタ部30の制御を担うCPU301の指示に従って、後述のように文字分離型の多値誤差拡散形式で8ビットの各色の画像デ−タD20を3ビットの擬似階調デ−タ(例えば256階調)に変換する。ただし、エッジについては先鋭度を高めるために多値誤差拡散処理に代えて単純3値化処理が行われる。この処理の切換えはイメージリーダ部20からの階調再現属性信号(LIMOS信号)に従う。
【0034】
なお、図示しない画像歪み回路において、4色を重ねたレジスト検出用テストパターンにおけるKに対するC,M,Yのずれ量の検出結果に基づいて、C,M,Y成分の主走査倍率歪みと副走査のボ−・スキュ−歪みを濃度分配形式の補間処理によって補正する。そして、補正後のデータを紙幣認識結果に基づいて必要により黒ベタのデータに置き換える。
【0035】
階調再現回路50で低値化された各色の画像データは、遅延メモリ59a〜59fで上述のように適切に遅延され、各色毎に設けられたγ補正・PWM制御回路61,62,63,64に入力される。遅延においては、画像データが3ビットに低値化されているので、8ビットの場合と比べて必要メモリ容量が少ない。γ補正・PWM制御回路61〜64は、電子写真プロセスによるγ特性による階調の歪みを補正し、補正後のデータ値に応じたデューティ比のPWMパルスを生成する。生成されたPWMパルスによって感光体81〜84の露光光源である半導体レーザ71〜74のオンオフ制御が行われる。
【0036】
図8は階調再現回路50のブロック図である。C,M,Y,Kの4色のそれぞれに対応する回路構成は同一であるので、ここでは1色分の回路構成を図示してある。
【0037】
階調再現回路50には画素クロックに同期して画像データD20が入力される。ラッチされた画像データD20は、単純3値化回路51と本発明に係わる多値誤差拡散処理回路52とに共通に送られ、各回路において並行して所定の処理を受ける。そして、単純3値化回路51の出力と多値誤差拡散処理回路52の出力のどちらかがセレクタ55によって選択され、画像データD50として1ビットの階調再現属性信号と合わせて後段へ出力される。セレクタ55の選択制御信号はエッジ判別信号(階調再現属性信号に対応する)である。すなわち、注目する画素がエッジに対応する場合は、入力ダイナミックレンジ「0〜255」の最小値「0」、中央値「128」、又は最大値「255」のいずれかの値をとる単純3値化回路51の出力が選択され、他の場合には次に説明する多値誤差拡散処理回路52の出力が選択される。なお、階調再現回路50には有効画像領域信号に従うセレクタ53,54が設けられており、原稿の周囲にマージンをとった有効画像領域の外側を走査しているときには、画像データD20及びエッジ判別信号がそれぞれ無効領域を示す一定値のデータに置き換えられる。
【0038】
多値誤差拡散処理回路52は、疑似階調再現の手法として周知の誤差拡散法を適用して階調数を低減する回路であって、低値化回路520、誤差検出テーブル(ルックアップテーブル)530、セレクタ550、誤差拡散マトリクス560、除算器570、及び加算器580を有している。多値誤差拡散処理回路52の機能の概要は次のとおりである。
【0039】
加算器580は、注目画素の画像データD20に周辺画素から振り分けられた誤差分を加算する。低値化回路520は、加算器580の出力とCPU301が設定した閾値とを比較し、256段階から8段階への階調変換を行う。この階調変換に伴う誤差の値は予め算出することができる。256段階の各入力階調レベルに対応する誤差を示すデータ集合が誤差検出テーブル530である。ここで実際の誤差は正負の値をとるが、誤差拡散処理の便宜を図るため、誤差検出テーブル530のデータ作成に際して負の最大誤差に相当するオフセット値の加減算が行われる。まず、入力値(Din)からオフセット値(=32)を差し引き、次に低値化回路520で用いる閾値に対応した階調範囲での誤差を求める。そして、最後にオフセット値を加算する。この一連の演算はCPU301が行い、演算結果が誤差検出テーブル530としてテーブル用メモリにダウンロードされる。
【0040】
加算器580の出力は、次の画素に対する誤差を求めるために誤差検出テーブル530に入力される。その入力値に応じた誤差が誤差検出テーブル530から出力される。セレクタ550は、有効画像領域以外において誤差を一定値(例示は32)に固定するために設けられている。
【0041】
誤差拡散マトリクス560は、階調変換の誤差を周辺画素に重み付けをして振り分ける機能要素である。ここでも簡便化のために重みが整数とされており、除算器570によって誤差拡散マトリクス560の出力を重みの総和で除す演算が行われる。上述のように誤差検出テーブル530の内容設定の段階で誤差が必ず正となるようにオフセットの減算及び加算が行われるので、誤差拡散マトリクス560内での負数の演算が不要となる。これにより、回路構成が簡単で小規模になり、動作が高速になる。誤差拡散では注目画素の画像データD20が入力されるまでに加算すべき誤差分を算出しておく必要があるので、誤差拡散の処理時間が画像データの転送速度を規定することになる。したがって、誤差拡散マトリクス560の高速化によってコピー速度の向上が可能になる。
【0042】
図9は低値化回路520のブロック図である。
低値化回路520は、閾値設定レジスタ521、7個の比較器522a〜g、及び7個のセレクタ523a〜gから構成されている。閾値設定レジスタ521にはCPU301によって7個の閾値th0〜6がロードされる。各比較器522a〜gには誤差の振り分けられた画像データD580が共通に入力されるとともに、閾値設定レジスタ521から閾値th0〜6のうちの対応する1つが個別に入力される。セレクタ523a〜gは、比較器522a〜gによる画像データD580と閾値th0〜6との大小判別の結果に応じて、2つの選択肢(出力階調レベル)の一方を選択して出力する。
【0043】
閾値th0〜6のデフォルト値は順に17,53,90,127,164,201,238であって、画像データD580のダイナミックレンジをほぼ7等分するように設定されている。デフォルト状態における入力階調レベルと出力階調レベルとの対応関係は表1のとおりである。そして、閾値th0〜6で区画される計8個の入力階調範囲における入力階調レベル(32,64,96,128,160,192,224)が、階調変換に際して誤差が零となる特定入力階調レベルである。
【0044】
【表1】
Figure 0004058795
【0045】
図10はγ補正・PWM制御回路61のブロック図、図11はPWM変調の一例を示す波形図である。C,M,Y,Kの各色に対応するγ補正・PWM制御回路61〜64の構成は同一であるので、ここでは代表例としてCに対応するγ補正・PWM制御回路61を説明する。
【0046】
階調再現回路50からの画像データD50は、γ補正テーブル601で補正されるとともに8ビットのデータに変換される。そして、D/A変換器602を経てアナログの濃度データとなって2個の比較器604,605に共通に入力される。一方の比較器604には2画素周期の三角波信号がリファレンス信号Sref1として入力され、他方の比較器605には1画素周期の三角波信号がリファレンス信号Sref2として入力される。各比較器604,605は、濃度データとリファレンス信号Sref1,2との大小判別信号をPWMデータ(パルス幅変調データ)としてセレクタ606へ出力する。すなわち、濃度データの値に応じて各画素の露光パターンを決める。セレクタ606は、階調再現属性信号に応じて比較器604と比較器605のどちらかの出力を選択して第2のセレクタ607へ送る。階調再現属性信号が連続階調部を示す“H”のときには階調再現性をより滑らかにするために2dot周期のPWM変調が行われ、エッジを示す“L”のときには先鋭化に適した1dot周期のPWM変調が行われる。光変調方式を自動的に切り換えて画質を向上させるのである。なお、2dot周期のPWM変調では画像の粒状性が向上するように45度方向のスクリ−ン角を設けるため、ライン毎にリファレンス信号Sref1の位相を半周期ずつずらす。
【0047】
一方、階調再現回路50からの画像データD50は強度変調回路610にも入力され、信号レベルが濃度に応じて変化する強度変調データに変換される。セレクタ607は、セレクタ606からのパルス幅変調データと強度変調回路610から強度変調データの一方をCPU301の指示に従って選択し、LD駆動信号D61として出力する。このLD駆動信号D61を用いて半導体レーザ71の発光制御が行われる。
〔本発明を適用したデータ処理〕
本実施形態の複写機1においては、C,M,Y,Kの各色の濃度再現性を一定に保つために、AIDCパターンを作成し、その濃度測定の結果を階調再現回路50における入力階調レベル(256段階)と出力階調レベル(8段階)との対応関係に反映させる。具体的には、低値化回路520に与える閾値th0〜6を変更するとともに、誤差検出テーブル530を書き換えて上述した特定入力階調レベルを変更する。電子写真プロセスは温度や湿度などの環境条件に左右される。また、複写機1の内部環境が不均一になることもある。そこで、感光体71〜74における主走査方向の複数箇所でAIDCパターンを作成し、画像全体の再現性を均一化する。
【0048】
図12はAIDCパターン90の配置の一例を示す模式図である。
AIDCパターン90は、C,M,Y,Kの4色のそれぞれについて、用紙搬送ベルト34における主走査方向の一端部と他端部の2箇所に作成される。本例では各色毎に濃度の異なるAIDCパターン90が6個ずつ副走査方向に並べて配置され、1回の動作設定に際して形成されるAIDCパターン90の総数は48(=6×4×2)である。1個のAIDCパターン90の大きさは1cm角程度である。AIDCセンサ37は各箇所に4個ずつ配置され、1つのAIDCセンサ37は1色の6個のAIDCパターン90の濃度を順に検出する。
【0049】
図13は階調変換の設定変更の要領を説明するための図である。
上述のとおり電源投入直後の初期状態において、0〜255の256段階の入力階調レベルのうち、8段階への変換に際して誤差を生じない特定入力階調レベルは0,32,64,96,128,160,192,224である。これら8つの特定入力階調レベルのうちの0及び224を除いた6つの特定入力階調レベルについてAIDCパターン90を作成し、その濃度を測定する。特定入力階調レベルの場合には誤差拡散処理において周辺画素に振り分ける誤差が0であるので、1つのAIDCパターン90を構成する所定数の画素(400dpiで約1602 個)の露光パターンは全て同一になる。特定入力階調レベルは、疑似階調手法を適用しない場合における出力階調レベル(0〜7)と見ることができる。
【0050】
複写機1の設計段階で各特定入力階調レベルに対する再現濃度(目標値)が定められており、設計上の階調再現特性は線型特性である。例えば、特定入力階調レベル32に対する再現濃度の目標値は0.2である。しかし、動作環境の変化や部品の経年変化に因り、実際の再現濃度(測定値)が目標値とずれる場合がある。図13では主走査方向の一端側(例えば複写機1の前面側)の測定値が黒丸「●」で示され、他端側(背面側)の測定値が黒三角「▲」で示されている。前面側では総じて“濃いめ”に再現され、背面側では総じて“淡いめ”に再現されている(ただし、これは説明のための仮想の例示であって、必ずしも実際にこの特性が現れるとは限らない)。
【0051】
複写機1は、濃度の測定値に基づいて特定入力階調レベル間の実際の階調再現特性を例えば直線近似し、目標値に対応する推定階調レベルを求める。そして、求めた推定階調レベルを新たな特定入力階調レベルに設定する。図の横軸における丸「○」(前面側)又は三角「△」(背面側)で示される位置の階調レベルが推定階調レベルである。例えば、目標値0.2に対応する前面側の入力階調レベルが24であったとすると、出力階調レベル1に対する特定入力階調レベルを32から24に変更する。なお、前面側と背面側とで独立に特定入力階調レベルを設定してもよいし、前面側及び背面側の測定値の平均を求め、平均値に基づいて特性を近似して目標値に対応する特定入力階調レベルを算定してもよい。
【0052】
新たな特定入力階調レベルについて改めてAIDCパターン90を作成し、その濃度を測定する。目標値と測定値との差が許容範囲内になるまで、又は一定回数に達するまで、濃度測定に基づく特定入力階調レベルの修正を繰り返す。これにより、再現特性を理想に近づけることができる。
【0053】
このような階調変換の設定変更において重要な点は、実際の再現特性を近似し、近似特性から目標値に対応する入力階調レベルを求める一連の演算に係わる数値(階調レベル及び再現濃度)のビット数を、出力階調データのビット数(本例では3)より多くすることである。仮にAIDCパターン90で測定する階調レベルを出力階調データと同じ3ビットの数値(0〜7)とすると、特定入力階調レベルの変更の余地が無くなってしまう。数値演算のビット数が多いほど、特性の近似及び目標値に対応する階調レベルの算定の精度が高まる。例えば階調レベルを0.1刻みで表すようにした場合は、推定階調レベルの演算値が23.5〜24.4のときは24を特定入力階調レベルとし、24.5〜25.4のときは25を特定入力階調レベルとするといった設定が可能になる。
【0054】
以下、フローチャートに基づいて、本発明に係るプリンタ部30のCPU301の動作を説明する。
図14は画像安定化処理ルーチンのフローチャートである。
【0055】
このルーチンは、電源投入時、電源投入後の最初のコピー終了時、一定枚数のコピーを行った時、一定時間が経過した時、設定時刻など、あらかじめ定められた条件と一致する時に実行される。
【0056】
CPU301は、AIDCパターン作成(#1)、再現特性の測定(#2)、階調レベル設定(#3)、及びその他の安定化(#4)の各処理を実行する。その他の安定化処理では、トナー補給や帯電チャージャの出力制御などを行う。
【0057】
図15はAIDCパターン作成サブルーチンのフローチャートである。
階調レベルメモリ302(図8参照)から主走査方向の一端側についての現時点の特定入力階調レベルDf0 〜Df7 を読み出し(#11)、続いて他端側についての現時点の特定入力階調レベルDe0 〜De7 を読み出す(#12)。そして、図12で説明したように主走査方向の2箇所にAIDCパターン90を作成する(#13)。
【0058】
図16は再現特性の測定サブルーチンのフローチャートである。
各AIDCセンサ37の出力を周期的に取り込み、2箇所に作成された各色のAIDCパターン90の濃度を測定する(#21)。測定結果に基づいて、主走査方向の一端側及び他端側のそれぞれについて、各階調レベル間の再現特性を近似する直線Yfj ,Yej を求める(#22)。
【0059】
図17は階調レベル設定サブルーチンのフローチャートである。
まず、再現濃度の目標値Y0 〜Y7 を設定する(#31)。先に求めておいた直線Yfj ,Yej と目標値Y0 〜Y7 とから、実際の再現特性に適合する特定入力階調レベルDf0 ’〜Df7 ’,De0 ’〜De7 ’を演算する(#32)。そして、得られた特定入力階調レベルDf0 ’〜Df7 ’,De0 ’〜De7 ’を新たな特定入力階調レベルDf0 〜Df7 ,De0 〜De7 として階調レベルメモリ302に格納する(#33)。
【0060】
図18は印字処理ルーチンのフローチャートである。
このルーチンは、イメージリーダ部20からの原稿画像又は外部入力画像の印字要求に呼応して起動される。
【0061】
主走査方向の前半部の画像データの印字のときには、階調レベルメモリ302から一方の特定入力階調レベルDf0 〜Df7 を読み出す(#51、#52)。主走査方向の後半部の画像データの印字のときには、階調レベルメモリ302から他方の特定入力階調レベルDe0 〜De7 を読み出す(#51、#53)。
【0062】
読み出した特定入力階調レベルに合わせて閾値th0〜6を設定して誤差検出テーブル530の内容を書き換え(#54)、閾値設定レジスタ521の値を入れ換える。そして、階調再現回路50を制御する多値誤差拡散処理(#56)、電子写真プロセスを制御する印字制御(#57)を実行する。
【0063】
上述の実施形態によれば、低値化の閾値th0〜6及び誤差検出テーブル530の内容を書き換えることにより、濃度再現特性を柔軟に調整することができる。すなわち、上述のようにAIDCパターンの測定結果に基づいて濃度再現特性を線型特性に近づけることができるだけでなく、例えば原稿のハイライト部分(明部)の階調再現を他の部分より優先させるといった調整も可能である。ハイライト側の閾値間隔を狭めるのである。
【0064】
上述の実施形態において、AIDCパターン90を3以上の箇所に作成し、主走査方向の濃度傾斜をより詳しく測定し、結果を階調変換の設定に反映させてもよい。
【0065】
階調再現回路50における入力画像データD20の階調数Nを256、出力画像データD50の階調数Mを8として例を挙げたが、N>Mの関係を満たす範囲内で画像データのビット数n,mを任意に選定することができる。
【0066】
【発明の効果】
請求項1乃至請求項の発明によれば、階調再現性をより高精度に一定化し、品質の安定したプリント出力を実現することができる。
【0067】
請求項2の発明によれば、画像全体の階調再現性を一様化することができる。
【図面の簡単な説明】
【図1】本発明に係る複写機の全体構成を示す図である。
【図2】イメージリーダ部の画像処理回路のブロック図である。
【図3】MTF補正回路の要部のブロック図である。
【図4】図3の各部の出力波形の一例を示す図である。
【図5】空問周波数の補正関数を示す図である。
【図6】1次微分データとエッジ強度との関係を示すグラフである。
【図7】プリンタ部の信号処理系の概略図である。
【図8】階調再現回路のブロック図である。
【図9】低値化回路のブロック図である。
【図10】γ補正・PWM制御回路のブロック図である。
【図11】PWM変調の一例を示す波形図である。
【図12】AIDCパターンの配置の一例を示す模式図である。
【図13】階調変換の設定変更の要領を説明するための図である。
【図14】画像安定化処理ルーチンのフローチャートである。
【図15】AIDCパターン作成サブルーチンのフローチャートである。
【図16】再現特性の測定サブルーチンのフローチャートである。
【図17】階調レベル設定サブルーチンのフローチャートである。
【図18】印字処理ルーチンのフローチャートである。
【符号の説明】
300 データ処理系(画像処理装置)
D20 画像データ(入力画像データ)
D520 画像データ(出力画像データ)
Df,De 特定入力階調レベル(特定階調レベル)
301 CPU(制御手段)

Claims (4)

  1. 階調数Nが2(nは3以上の整数)の入力画像データを誤差拡散法を適用して階調数Mが2 (mはnより小さい2以上の整数)の出力画像データに変換する画像処理装置であって、
    前記入力画像データのN段階の階調レベルと前記出力画像データのM段階の階調レベルとの対応関係が可変とされ、
    前記出力画像データを出力する出力手段と、
    前記入力画像データの階調レベルのうちの前記出力画像データへの変換において、入力画像データの濃度値と出力画像データの再現濃度値が等しい階調レベルである特定階調レベルに対応した前記出力手段の出力した出力画像データにおけるプリント出力濃度の測定データに応じて、前記階調レベルの対応関係を設定する制御手段を有した
    ことを特徴とする画像処理装置。
  2. 前記制御手段は、前記出力画像データのプリント出力における主走査方向の複数の箇所のそれぞれでの前記プリント出力濃度の測定データに基づいて、当該箇所毎に独立に前記階調レベルの対応関係を設定する
    請求項1記載の画像処理装置。
  3. 前記制御手段は、誤差拡散法により出力画像データに変換するための閾値を、前記プリント出力濃度の測定データに応じて設定することを特徴とする
    請求項1記載の画像処理装置。
  4. 階調数Nが2(nは3以上の整数)の入力画像データを誤差拡散法を適用して階調数Mが2 (mはnより小さい2以上の整数)の出力画像データに変換する、当該出力画像データを出力する出力手段を有した画像処理装置が行う画像処理の方法であって、
    前記入力画像データのN段階の階調レベルと前記出力画像データのM段階の階調レベルとの対応関係が可変とされ、
    前記入力画像データの階調レベルのうちの前記出力画像データへの変換において、入力画像データの濃度値と出力画像データの再現濃度値が等しい階調レベルである特定階調レベルに対応した前記出力手段の出力した出力画像データにおけるプリント出力濃度の測定データに応じて、前記階調レベルの対応関係を設定する
    ことを特徴とする画像処理の方法。
JP07684698A 1998-03-25 1998-03-25 画像処理装置および画像処理の方法 Expired - Fee Related JP4058795B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07684698A JP4058795B2 (ja) 1998-03-25 1998-03-25 画像処理装置および画像処理の方法
US09/275,294 US6462838B1 (en) 1998-03-25 1999-03-24 Method of and apparatus for forming an image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07684698A JP4058795B2 (ja) 1998-03-25 1998-03-25 画像処理装置および画像処理の方法

Publications (2)

Publication Number Publication Date
JPH11268345A JPH11268345A (ja) 1999-10-05
JP4058795B2 true JP4058795B2 (ja) 2008-03-12

Family

ID=13617035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07684698A Expired - Fee Related JP4058795B2 (ja) 1998-03-25 1998-03-25 画像処理装置および画像処理の方法

Country Status (1)

Country Link
JP (1) JP4058795B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4281583B2 (ja) 2004-03-03 2009-06-17 ソニー株式会社 画像信号処理方法、画像信号処理装置及び印刷装置

Also Published As

Publication number Publication date
JPH11268345A (ja) 1999-10-05

Similar Documents

Publication Publication Date Title
JP3887951B2 (ja) 画像形成装置
JP5576712B2 (ja) 画像形成装置及びその制御方法
JPH0413163A (ja) デジタル画像形成装置
JPH11348352A (ja) 画像形成装置
JP2012255945A (ja) 画像形成装置
JP2009157369A (ja) 画像形成装置
JP5300418B2 (ja) 画像形成装置
JP4661375B2 (ja) 画像形成装置
US8045809B2 (en) Image forming apparatus
US6462838B1 (en) Method of and apparatus for forming an image
JP2015018170A (ja) 画像形成装置、画像形成方法およびプログラム
KR100905630B1 (ko) 화상 형성 장치
JP2014085379A (ja) 画像形成装置、画像形成方法、プログラムおよび記録媒体
JP2008107803A (ja) 画像形成装置及び画像形成方法
US20080247769A1 (en) Image forming apparatus
JP4058795B2 (ja) 画像処理装置および画像処理の方法
JP3790877B2 (ja) 画像処理装置
JP3728383B2 (ja) 画像出力システム
JP4158345B2 (ja) 画像処理装置、画像形成装置及び画像処理方法
US10073397B2 (en) Image forming apparatus and control method for updating conversion condition converting measurement result of measurement unit
JP4882847B2 (ja) 画像形成装置
JP5981962B2 (ja) 画像形成装置及びその制御方法
JPH11284850A (ja) 画像出力装置
JP3947810B2 (ja) 画像形成装置
JP3680466B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees