JP3882077B2 - Method for producing boron nitride nanotubes using gallium oxide as a catalyst - Google Patents

Method for producing boron nitride nanotubes using gallium oxide as a catalyst Download PDF

Info

Publication number
JP3882077B2
JP3882077B2 JP2002354427A JP2002354427A JP3882077B2 JP 3882077 B2 JP3882077 B2 JP 3882077B2 JP 2002354427 A JP2002354427 A JP 2002354427A JP 2002354427 A JP2002354427 A JP 2002354427A JP 3882077 B2 JP3882077 B2 JP 3882077B2
Authority
JP
Japan
Prior art keywords
boron nitride
gallium oxide
nitride nanotubes
catalyst
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002354427A
Other languages
Japanese (ja)
Other versions
JP2004182571A (en
Inventor
義雄 板東
チェンチュン・タン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002354427A priority Critical patent/JP3882077B2/en
Publication of JP2004182571A publication Critical patent/JP2004182571A/en
Application granted granted Critical
Publication of JP3882077B2 publication Critical patent/JP3882077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この出願の発明は、酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法に関するものである。さらに詳しくは、この出願の発明は、高純度で、小径かつ無欠陥の窒化ホウ素ナノチューブを大量に製造することのできる酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法に関するものである。
【0002】
【従来の技術】
炭素原子が筒状に並んだナノメートルサイズのチューブ状炭素物質、カーボンナノチューブが知られている。カーボンナノチューブは、アーク放電法、レーザー加熱法、化学的気相成長法等により合成されている。
【0003】
窒化ホウ素は、炭素からなるグラファイトと構造的類似性があることから、窒化ホウ素ナノチューブもまたカーボンナノチューブと同様に合成されている。たとえば、ホウ化ニッケル(NiB)を触媒に使用し、ボラジンを原料として窒化ホウ素を合成する方法(たとえば、非特許文献1参照)やカーボンナノチューブを鋳型として利用し、酸化ホウ素と窒素を高周波誘導加熱炉中で反応させて合成する方法(たとえば、特許文献1参照)等が提案されている。
【0004】
【非特許文献1】
ケミカル・マテリアル(Chem. Mater.),2000年,第12巻,p.1808
【特許文献1】
特開2000−109306号公報
【0005】
【発明が解決しようとする課題】
窒化ホウ素は、従来にない特性を有する半導体材料、エミッター材料、耐熱性充填材料、高強度材料、触媒等として利用が期待されている。
【0006】
しかしながら、これまでの製造方法には、窒化ホウ素ナノチューブの収率が悪く、少量しか合成できず、また、炭素等の不純物が混入するという問題があり、半導体特性や強度等の物理的性質の測定を十分に行うことができない。
【0007】
この出願の発明は、このような事情に鑑みてなされたものであり、高純度で、小径かつ無欠陥の窒化ホウ素ナノチューブを大量に製造することのできる酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法を提供することを解決すべき課題としている。
【0008】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、ホウ素と酸化ガリウムの混合物を1000℃〜2100℃に加熱し反応させ、反応生成物を引き続いてアンモニアと反応させ、窒化ホウ素ナノチューブを製造することを特徴とする酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法(請求項1)を提供する。
【0009】
また、この出願の発明は、窒化ホウ素ナノチューブを基板上に堆積させ、基板の温度をホウ素と酸化ガリウムの反応温度より低くすること(請求項2)、基板がシリコンウエハーであること(請求項3)をそれぞれ一態様として提供する。
【0010】
以下、実施例を示しつつこの出願の発明の酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法についてさらに詳しく説明する。
【0011】
【発明の実施の形態】
この出願の発明の酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法では、上記のとおり、ホウ素と酸化ガリウムの混合物を1000℃〜2100℃に加熱し反応させ、反応生成物を引き続いてアンモニアと反応させ、窒化ホウ素ナノチューブを製造する。したがって、原料に炭素を含む化合物を使用しないため、炭素が不純物として混入することがなく、高純度の窒化ホウ素ナノチューブを製造することができる。しかも、反応により生成する金属ガリウムは、高温で触媒活性を失わないため、小径で欠陥のない窒化ホウ素ナノチューブを製造することができる。
【0012】
加熱温度を1000℃未満とすると、反応が遅く、2100℃を超えると、蒸発速度が速くなり、基板への付着量が減少する。
【0013】
この出願の発明の酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法では、窒化ホウ素ナノチューブは基板上に堆積させることが好ましく、この場合、基板の温度をホウ素と酸化ガリウムの反応温度より低くすることが好ましい。これは、基板への窒化ホウ素ナノチューブの付着性、堆積性を考慮してのことである。また、基板には、好ましくはシリコンウエハーが使用される。
【0014】
【実施例】
6:1のモル比でホウ素と酸化ガリウムの混合物2gをボールミルで6時間粉砕して微粉化した。シリコンウエハーをアセトンで洗浄し、さらに硝酸とフッ酸でエッチングして表面を清浄にした。このシリコンウエハーを基板として上記原料混合物とともに窒化ホウ素製の容器の中に離して配置した。窒化ホウ素製の容器を高周波誘導加熱炉の中に取り付けたグラファイト製の支持台上に起き、原料混合物を1550℃に加熱した。原料のホウ素と酸化ガリウムが反応して酸化ホウ素と金属ガリウムが生成した。この反応生成物をアルゴンガス(流速30sccm)でシリコンウエハーに移送し、シリコンウエハーの温度が1100℃になった時、アンモニアガスを200sccmの流速で流した。30分間この状態を保った後、アンモニアガスの導入を停止して高周波誘導加熱炉の温度を室温まで冷却した。シリコンウエハー上に無色の反応生成物が堆積した。
【0015】
無色の反応生成物の結晶構造は、図1に示したX線回折パターンより、窒化ホウ素の六方晶系と菱面体晶系の混合相であることが確認され、また、ガリウムや酸化ガリウムが含まれていず、高純度であることも確認される。
【0016】
図2は透過型電子顕微鏡像であるが、結晶は、直径15nm〜80nmであり、長さ数十ミクロンである。
【0017】
図3(a)は高倍率の透過型電子顕微鏡像である。図3(a)から、直線状できれいに配列した欠陥のない窒化ホウ素ナノチューブであることが確認される。また、図3(b)は電子エネルギー損失スペクトル分析のパターンである。図3(b)から生成物はホウ素と窒素からなり、その組成はほぼ1:1であることが確認される。
【0018】
もちろん、この出願の発明は、以上の実施例によって限定されるものではない。細部については様々な態様が可能であることはいうまでもない。
【0019】
【発明の効果】
以上詳しく説明した通り、この出願の発明によって、高純度で、小径かつ無欠陥の窒化ホウ素ナノチューブを大量に製造することができる。
【図面の簡単な説明】
【図1】実施例で得られた反応生成物のX線回折のパターンである。
【図2】実施例で得られた反応生成物の低倍率の透過型電子顕微鏡像である。
【図3】(a)(b)は、それぞれ、実施例で得られた反応生成物の高倍率の透過型電子顕微鏡像、電子エネルギー損失スペクトル分析のパターンである。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for producing boron nitride nanotubes using gallium oxide as a catalyst. More specifically, the invention of this application relates to a method for producing boron nitride nanotubes using gallium oxide as a catalyst, which can produce a high purity, small-diameter, defect-free boron nitride nanotubes in large quantities.
[0002]
[Prior art]
A carbon nanotube, a nanometer-sized tubular carbon material in which carbon atoms are arranged in a cylindrical shape, is known. Carbon nanotubes are synthesized by an arc discharge method, a laser heating method, a chemical vapor deposition method, or the like.
[0003]
Since boron nitride has a structural similarity with graphite made of carbon, boron nitride nanotubes are also synthesized in the same manner as carbon nanotubes. For example, nickel boride (NiB) is used as a catalyst, boron nitride is synthesized using borazine as a raw material (for example, see Non-Patent Document 1), carbon nanotubes are used as a template, and boron oxide and nitrogen are heated by high frequency induction. A method of synthesizing by reacting in a furnace (for example, see Patent Document 1) has been proposed.
[0004]
[Non-Patent Document 1]
Chemical Material (Chem. Mater.), 2000, Vol. 12, p. 1808
[Patent Document 1]
JP 2000-109306 A
[Problems to be solved by the invention]
Boron nitride is expected to be used as a semiconductor material, an emitter material, a heat-resistant filling material, a high-strength material, a catalyst, and the like having unprecedented characteristics.
[0006]
However, the conventional production methods have a problem that the yield of boron nitride nanotubes is poor, only a small amount can be synthesized, and impurities such as carbon are mixed, and physical properties such as semiconductor characteristics and strength are measured. Can not do enough.
[0007]
The invention of this application has been made in view of such circumstances, and the production of boron nitride nanotubes using gallium oxide as a catalyst, which can produce a large amount of high-purity, small-diameter, defect-free boron nitride nanotubes. Providing a method is an issue to be solved.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of this application heats and reacts a mixture of boron and gallium oxide at 1000 ° C. to 2100 ° C., and then reacts the reaction product with ammonia to produce boron nitride nanotubes. A method for producing boron nitride nanotubes using gallium oxide as a catalyst is provided.
[0009]
In the invention of this application, boron nitride nanotubes are deposited on a substrate, the temperature of the substrate is lower than the reaction temperature of boron and gallium oxide (claim 2), and the substrate is a silicon wafer (claim 3). ) Are provided as an embodiment.
[0010]
Hereinafter, the method for producing boron nitride nanotubes using gallium oxide as a catalyst according to the present invention will be described in more detail with reference to examples.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing boron nitride nanotubes using the gallium oxide catalyst of the invention of this application, as described above, the mixture of boron and gallium oxide is heated to 1000 ° C. to 2100 ° C. for reaction, and the reaction product is subsequently reacted with ammonia. To produce boron nitride nanotubes. Therefore, since a compound containing carbon is not used as a raw material, carbon is not mixed as an impurity, and a high-purity boron nitride nanotube can be produced. Moreover, since the metallic gallium produced by the reaction does not lose its catalytic activity at high temperatures, it is possible to produce boron nitride nanotubes having a small diameter and no defects.
[0012]
When the heating temperature is less than 1000 ° C., the reaction is slow, and when it exceeds 2100 ° C., the evaporation rate increases and the amount of adhesion to the substrate decreases.
[0013]
In the method for producing boron nitride nanotubes using the gallium oxide catalyst of the invention of this application, the boron nitride nanotubes are preferably deposited on the substrate, and in this case, the temperature of the substrate should be lower than the reaction temperature of boron and gallium oxide. Is preferred. This is in consideration of the adhesion and deposition of boron nitride nanotubes to the substrate. The substrate is preferably a silicon wafer.
[0014]
【Example】
2 g of a mixture of boron and gallium oxide at a molar ratio of 6: 1 was pulverized with a ball mill for 6 hours to make fine powder. The silicon wafer was washed with acetone and further etched with nitric acid and hydrofluoric acid to clean the surface. The silicon wafer was placed as a substrate in a boron nitride container together with the raw material mixture. A container made of boron nitride was raised on a support made of graphite mounted in a high frequency induction heating furnace, and the raw material mixture was heated to 1550 ° C. The raw material boron and gallium oxide reacted to form boron oxide and metal gallium. The reaction product was transferred to a silicon wafer with argon gas (flow rate 30 sccm). When the temperature of the silicon wafer reached 1100 ° C., ammonia gas was flowed at a flow rate of 200 sccm. After maintaining this state for 30 minutes, the introduction of ammonia gas was stopped and the temperature of the high-frequency induction heating furnace was cooled to room temperature. A colorless reaction product was deposited on the silicon wafer.
[0015]
The crystal structure of the colorless reaction product is confirmed to be a hexagonal and rhombohedral mixed phase of boron nitride from the X-ray diffraction pattern shown in FIG. 1, and contains gallium and gallium oxide. It is also confirmed that it is of high purity.
[0016]
FIG. 2 is a transmission electron microscope image. The crystal has a diameter of 15 nm to 80 nm and a length of several tens of microns.
[0017]
FIG. 3A is a transmission electron microscope image at a high magnification. From FIG. 3A, it is confirmed that the boron nitride nanotubes are linear and neatly arranged without defects. FIG. 3B shows an electron energy loss spectrum analysis pattern. FIG. 3 (b) confirms that the product is composed of boron and nitrogen, and the composition is approximately 1: 1.
[0018]
Of course, the invention of this application is not limited by the above embodiments. Needless to say, various details are possible.
[0019]
【The invention's effect】
As explained in detail above, the invention of this application makes it possible to produce a large amount of boron nitride nanotubes with high purity, small diameter and defect-free.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of a reaction product obtained in an example.
FIG. 2 is a low-magnification transmission electron microscope image of the reaction product obtained in the examples.
FIGS. 3A and 3B are a high magnification transmission electron microscope image and a pattern of electron energy loss spectrum analysis of the reaction products obtained in the examples, respectively.

Claims (3)

ホウ素と酸化ガリウムの混合物を1000℃〜2100℃に加熱し反応させ、反応生成物を引き続いてアンモニアと反応させ、窒化ホウ素ナノチューブを製造することを特徴とする酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法。A boron nitride gallium nanotube-catalyzed gallium oxide nanotube is produced by heating a boron and gallium oxide mixture to 1000 ° C. to 2100 ° C. Production method. 窒化ホウ素ナノチューブを基板上に堆積させ、基板の温度をホウ素と酸化ガリウムの反応温度より低くする請求項1記載の酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法。2. The method for producing boron nitride nanotubes using gallium oxide as a catalyst according to claim 1, wherein boron nitride nanotubes are deposited on the substrate, and the temperature of the substrate is lower than the reaction temperature of boron and gallium oxide. 基板がシリコンウエハーである請求項2記載の酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法。3. The method for producing boron nitride nanotubes using gallium oxide as a catalyst according to claim 2, wherein the substrate is a silicon wafer.
JP2002354427A 2002-12-05 2002-12-05 Method for producing boron nitride nanotubes using gallium oxide as a catalyst Expired - Lifetime JP3882077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354427A JP3882077B2 (en) 2002-12-05 2002-12-05 Method for producing boron nitride nanotubes using gallium oxide as a catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354427A JP3882077B2 (en) 2002-12-05 2002-12-05 Method for producing boron nitride nanotubes using gallium oxide as a catalyst

Publications (2)

Publication Number Publication Date
JP2004182571A JP2004182571A (en) 2004-07-02
JP3882077B2 true JP3882077B2 (en) 2007-02-14

Family

ID=32755410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354427A Expired - Lifetime JP3882077B2 (en) 2002-12-05 2002-12-05 Method for producing boron nitride nanotubes using gallium oxide as a catalyst

Country Status (1)

Country Link
JP (1) JP3882077B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534016B2 (en) * 2005-03-04 2010-09-01 独立行政法人物質・材料研究機構 Method for producing high purity boron nitride nanotubes
JP4706077B2 (en) * 2005-07-22 2011-06-22 独立行政法人物質・材料研究機構 Method for producing boron nitride nanohorn
CN100369806C (en) * 2006-06-27 2008-02-20 华南理工大学 Method for synthesizing single shape boron nitride nano tube
JP4817103B2 (en) * 2007-04-25 2011-11-16 独立行政法人物質・材料研究機構 Method for producing boron nitride nanotubes
JP5252562B2 (en) * 2009-01-07 2013-07-31 住友電気工業株式会社 Manufacturing method of heat dissipation sheet
US20100192535A1 (en) * 2009-02-04 2010-08-05 Smith Michael W Boron nitride nanotube fibrils and yarns
WO2011032231A1 (en) * 2009-09-21 2011-03-24 Deakin University Method of manufacture
JP2017095293A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Boron nitride nano tube and thermosetting material
JP7376764B2 (en) * 2019-03-28 2023-11-09 日亜化学工業株式会社 Hexagonal boron nitride fiber and its manufacturing method

Also Published As

Publication number Publication date
JP2004182571A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
Meng et al. Preparation of β–SiC nanorods with and without amorphous SiO2 wrapping layers
JP5105372B2 (en) Boron nitride spherical nanoparticles and production method thereof
JP2008512341A (en) Metal carbide and manufacturing method thereof
JP3834634B2 (en) Boron nitride precursor formation method and boron nitride nanotube manufacturing method using boron nitride precursor
Tang et al. Effective growth of boron nitride nanotubes
JP3882077B2 (en) Method for producing boron nitride nanotubes using gallium oxide as a catalyst
WO2003010114A1 (en) A method of producing nanometer silicon carbide material
CN111268656A (en) Preparation method of boron nitride nanotube
CN100384725C (en) Method for preparing silicon carbide nano line
Chung et al. Growth mechanism of Si 3 N 4 nanowires from amorphous Si 3 N 4 powders synthesized by low-temperature vapor-phase reaction
Peng et al. Growth and Mechanism of Network‐Like Branched Si3N4 Nanostructures
Sun et al. Synthesis of SiC/SiO2 nanochains by carbonthermal reduction process and its optimization
JP2004161561A (en) Manufacturing process of boron nitride nanotube
JP5448067B2 (en) Method for producing boron nitride nanotubes
JP4556015B2 (en) Zinc sulfide / silicon core / shell nanowire and method for producing the same
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element
JP3834639B2 (en) Method for producing silicon nitride nanowire coated with boron nitride
Li et al. Synthesis, characterization and growth mechanism of SiC fibers
Kim et al. Temperature-controlled growth and photoluminescence of AlN nanowires
JP3834638B2 (en) Method for producing boron nitride nanotubes filled with nickel or nickel silicide
JP2002097004A (en) Method for manufacturing boron nitride nanotube by using oxide catalyst
JP3893465B2 (en) Method for producing boron nitride nanotubes
Chesnokov et al. Effect of the carbon nanomaterials structure on silica carbothermal reduction
KR101916270B1 (en) Method of fabricating silicon carbide powder
Meng et al. Synthesis of one-dimensional nanostructures—β-SiC nanorods with and without amorphous SiO 2 wrapping layers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Ref document number: 3882077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term