JP2004182571A - Method of manufacturing boron nitride nanotube using gallium oxide as catalyst - Google Patents

Method of manufacturing boron nitride nanotube using gallium oxide as catalyst Download PDF

Info

Publication number
JP2004182571A
JP2004182571A JP2002354427A JP2002354427A JP2004182571A JP 2004182571 A JP2004182571 A JP 2004182571A JP 2002354427 A JP2002354427 A JP 2002354427A JP 2002354427 A JP2002354427 A JP 2002354427A JP 2004182571 A JP2004182571 A JP 2004182571A
Authority
JP
Japan
Prior art keywords
boron nitride
gallium oxide
catalyst
boron
nitride nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002354427A
Other languages
Japanese (ja)
Other versions
JP3882077B2 (en
Inventor
Yoshio Bando
義雄 板東
Tang Chengchun
チェンチュン・タン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002354427A priority Critical patent/JP3882077B2/en
Publication of JP2004182571A publication Critical patent/JP2004182571A/en
Application granted granted Critical
Publication of JP3882077B2 publication Critical patent/JP3882077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a high purity, small diameter and defect-free boron nitride nanotube in a large quantity. <P>SOLUTION: The boron nitride nanotube is manufactured by heating a mixture of boron with gallium oxide at 1,000-2,100°C to react and successively reacting the reaction product with ammonia. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明は、酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法に関するものである。さらに詳しくは、この出願の発明は、高純度で、小径かつ無欠陥の窒化ホウ素ナノチューブを大量に製造することのできる酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法に関するものである。
【0002】
【従来の技術】
炭素原子が筒状に並んだナノメートルサイズのチューブ状炭素物質、カーボンナノチューブが知られている。カーボンナノチューブは、アーク放電法、レーザー加熱法、化学的気相成長法等により合成されている。
【0003】
窒化ホウ素は、炭素からなるグラファイトと構造的類似性があることから、窒化ホウ素ナノチューブもまたカーボンナノチューブと同様に合成されている。たとえば、ホウ化ニッケル(NiB)を触媒に使用し、ボラジンを原料として窒化ホウ素を合成する方法(たとえば、非特許文献1参照)やカーボンナノチューブを鋳型として利用し、酸化ホウ素と窒素を高周波誘導加熱炉中で反応させて合成する方法(たとえば、特許文献1参照)等が提案されている。
【0004】
【非特許文献1】
ケミカル・マテリアル(Chem. Mater.),2000年,第12巻,p.1808
【特許文献1】
特開2000−109306号公報
【0005】
【発明が解決しようとする課題】
窒化ホウ素は、従来にない特性を有する半導体材料、エミッター材料、耐熱性充填材料、高強度材料、触媒等として利用が期待されている。
【0006】
しかしながら、これまでの製造方法には、窒化ホウ素ナノチューブの収率が悪く、少量しか合成できず、また、炭素等の不純物が混入するという問題があり、半導体特性や強度等の物理的性質の測定を十分に行うことができない。
【0007】
この出願の発明は、このような事情に鑑みてなされたものであり、高純度で、小径かつ無欠陥の窒化ホウ素ナノチューブを大量に製造することのできる酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法を提供することを解決すべき課題としている。
【0008】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、ホウ素と酸化ガリウムの混合物を1000℃〜2100℃に加熱し反応させ、反応生成物を引き続いてアンモニアと反応させ、窒化ホウ素ナノチューブを製造することを特徴とする酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法(請求項1)を提供する。
【0009】
また、この出願の発明は、窒化ホウ素ナノチューブを基板上に堆積させ、基板の温度をホウ素と酸化ガリウムの反応温度より低くすること(請求項2)、基板がシリコンウエハーであること(請求項3)をそれぞれ一態様として提供する。
【0010】
以下、実施例を示しつつこの出願の発明の酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法についてさらに詳しく説明する。
【0011】
【発明の実施の形態】
この出願の発明の酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法では、上記のとおり、ホウ素と酸化ガリウムの混合物を1000℃〜2100℃に加熱し反応させ、反応生成物を引き続いてアンモニアと反応させ、窒化ホウ素ナノチューブを製造する。したがって、原料に炭素を含む化合物を使用しないため、炭素が不純物として混入することがなく、高純度の窒化ホウ素ナノチューブを製造することができる。しかも、反応により生成する金属ガリウムは、高温で触媒活性を失わないため、小径で欠陥のない窒化ホウ素ナノチューブを製造することができる。
【0012】
加熱温度を1000℃未満とすると、反応が遅く、2100℃を超えると、蒸発速度が速くなり、基板への付着量が減少する。
【0013】
この出願の発明の酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法では、窒化ホウ素ナノチューブは基板上に堆積させることが好ましく、この場合、基板の温度をホウ素と酸化ガリウムの反応温度より低くすることが好ましい。これは、基板への窒化ホウ素ナノチューブの付着性、堆積性を考慮してのことである。また、基板には、好ましくはシリコンウエハーが使用される。
【0014】
【実施例】
6:1のモル比でホウ素と酸化ガリウムの混合物2gをボールミルで6時間粉砕して微粉化した。シリコンウエハーをアセトンで洗浄し、さらに硝酸とフッ酸でエッチングして表面を清浄にした。このシリコンウエハーを基板として上記原料混合物とともに窒化ホウ素製の容器の中に離して配置した。窒化ホウ素製の容器を高周波誘導加熱炉の中に取り付けたグラファイト製の支持台上に起き、原料混合物を1550℃に加熱した。原料のホウ素と酸化ガリウムが反応して酸化ホウ素と金属ガリウムが生成した。この反応生成物をアルゴンガス(流速30sccm)でシリコンウエハーに移送し、シリコンウエハーの温度が1100℃になった時、アンモニアガスを200sccmの流速で流した。30分間この状態を保った後、アンモニアガスの導入を停止して高周波誘導加熱炉の温度を室温まで冷却した。シリコンウエハー上に無色の反応生成物が堆積した。
【0015】
無色の反応生成物の結晶構造は、図1に示したX線回折パターンより、窒化ホウ素の六方晶系と菱面体晶系の混合相であることが確認され、また、ガリウムや酸化ガリウムが含まれていず、高純度であることも確認される。
【0016】
図2は透過型電子顕微鏡像であるが、結晶は、直径15nm〜80nmであり、長さ数十ミクロンである。
【0017】
図3(a)は高倍率の透過型電子顕微鏡像である。図3(a)から、直線状できれいに配列した欠陥のない窒化ホウ素ナノチューブであることが確認される。また、図3(b)は電子エネルギー損失スペクトル分析のパターンである。図3(b)から生成物はホウ素と窒素からなり、その組成はほぼ1:1であることが確認される。
【0018】
もちろん、この出願の発明は、以上の実施例によって限定されるものではない。細部については様々な態様が可能であることはいうまでもない。
【0019】
【発明の効果】
以上詳しく説明した通り、この出願の発明によって、高純度で、小径かつ無欠陥の窒化ホウ素ナノチューブを大量に製造することができる。
【図面の簡単な説明】
【図1】実施例で得られた反応生成物のX線回折のパターンである。
【図2】実施例で得られた反応生成物の低倍率の透過型電子顕微鏡像である。
【図3】(a)(b)は、それぞれ、実施例で得られた反応生成物の高倍率の透過型電子顕微鏡像、電子エネルギー損失スペクトル分析のパターンである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a method for producing boron nitride nanotubes using gallium oxide as a catalyst. More specifically, the invention of this application relates to a method for producing boron nitride nanotubes using gallium oxide as a catalyst, which can produce high-purity, small-diameter, defect-free boron nitride nanotubes in large quantities.
[0002]
[Prior art]
BACKGROUND ART A carbon nanotube, a nanometer-sized tubular carbon material in which carbon atoms are arranged in a cylindrical shape, is known. Carbon nanotubes are synthesized by an arc discharge method, a laser heating method, a chemical vapor deposition method, or the like.
[0003]
Because boron nitride has structural similarity to graphite made of carbon, boron nitride nanotubes have also been synthesized similarly to carbon nanotubes. For example, using nickel boride (NiB) as a catalyst, a method of synthesizing boron nitride using borazine as a raw material (for example, see Non-Patent Document 1), or using a carbon nanotube as a template, high-frequency induction heating of boron oxide and nitrogen A method of reacting and synthesizing in a furnace (for example, see Patent Document 1) and the like have been proposed.
[0004]
[Non-patent document 1]
Chemical Materials (Chem. Mater.), 2000, Vol. 12, p. 1808
[Patent Document 1]
JP 2000-109306 A
[Problems to be solved by the invention]
Boron nitride is expected to be used as a semiconductor material, an emitter material, a heat-resistant filling material, a high-strength material, a catalyst, and the like, which have unprecedented characteristics.
[0006]
However, the conventional production methods have problems that the yield of boron nitride nanotubes is poor, that only a small amount can be synthesized, and that impurities such as carbon are mixed, and that physical properties such as semiconductor properties and strength are measured. Can not do enough.
[0007]
The invention of this application has been made in view of such circumstances, and is directed to production of boron nitride nanotubes using gallium oxide as a catalyst capable of producing high-purity, small-diameter, defect-free boron nitride nanotubes in large quantities. Providing a method is an issue to be solved.
[0008]
[Means for Solving the Problems]
The invention of this application solves the above-mentioned problems, and heats and reacts a mixture of boron and gallium oxide at 1000 to 2100 ° C., and subsequently reacts the reaction product with ammonia to produce boron nitride nanotubes. A method for producing boron nitride nanotubes using gallium oxide as a catalyst (claim 1) is provided.
[0009]
Further, the invention of this application is that boron nitride nanotubes are deposited on a substrate, the temperature of the substrate is lower than the reaction temperature of boron and gallium oxide (claim 2), and the substrate is a silicon wafer (claim 3). ) Are provided as one embodiment.
[0010]
Hereinafter, the method for producing boron nitride nanotubes using the gallium oxide catalyst of the invention of the present application will be described in more detail with reference to examples.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for producing boron nitride nanotubes using gallium oxide as a catalyst of the invention of this application, as described above, a mixture of boron and gallium oxide is heated to 1000 ° C. to 2100 ° C. to cause a reaction, and the reaction product is subsequently reacted with ammonia. Then, a boron nitride nanotube is manufactured. Therefore, since a compound containing carbon is not used as a raw material, high-purity boron nitride nanotubes can be manufactured without mixing carbon as impurities. In addition, the metal gallium produced by the reaction does not lose its catalytic activity at a high temperature, so that a small-diameter, defect-free boron nitride nanotube can be produced.
[0012]
When the heating temperature is lower than 1000 ° C., the reaction is slow. When the heating temperature is higher than 2100 ° C., the evaporation rate is increased, and the amount of adhesion to the substrate is reduced.
[0013]
In the method for producing boron nitride nanotubes using gallium oxide as a catalyst according to the invention of the present application, it is preferable that the boron nitride nanotubes be deposited on a substrate. In this case, the temperature of the substrate should be lower than the reaction temperature of boron and gallium oxide. Is preferred. This is in consideration of the adhesion and deposition properties of the boron nitride nanotube on the substrate. Preferably, a silicon wafer is used for the substrate.
[0014]
【Example】
2 g of a mixture of boron and gallium oxide at a molar ratio of 6: 1 was pulverized with a ball mill for 6 hours to be pulverized. The silicon wafer was washed with acetone, and further etched with nitric acid and hydrofluoric acid to clean the surface. The silicon wafer was used as a substrate and placed separately in a container made of boron nitride together with the raw material mixture. The container made of boron nitride was raised on a graphite support mounted in a high-frequency induction heating furnace, and the raw material mixture was heated to 1550 ° C. The raw material boron and gallium oxide reacted to produce boron oxide and metal gallium. The reaction product was transferred to a silicon wafer with an argon gas (flow rate of 30 sccm), and when the temperature of the silicon wafer reached 1100 ° C., an ammonia gas was flowed at a flow rate of 200 sccm. After maintaining this state for 30 minutes, the introduction of ammonia gas was stopped, and the temperature of the high-frequency induction heating furnace was cooled to room temperature. A colorless reaction product was deposited on the silicon wafer.
[0015]
From the X-ray diffraction pattern shown in FIG. 1, the crystal structure of the colorless reaction product was confirmed to be a mixed phase of hexagonal and rhombohedral boron nitride and contained gallium and gallium oxide. It is also confirmed that it is not pure and has high purity.
[0016]
FIG. 2 is a transmission electron microscope image. The crystal has a diameter of 15 nm to 80 nm and a length of several tens of microns.
[0017]
FIG. 3A is a high magnification transmission electron microscope image. From FIG. 3A, it is confirmed that the boron nitride nanotubes are linear and neatly arranged without any defects. FIG. 3B shows a pattern of the electron energy loss spectrum analysis. From FIG. 3B, it is confirmed that the product is composed of boron and nitrogen, and the composition is almost 1: 1.
[0018]
Of course, the invention of this application is not limited by the above embodiments. It goes without saying that various aspects are possible for the details.
[0019]
【The invention's effect】
As described above in detail, according to the invention of this application, a high-purity, small-diameter, defect-free boron nitride nanotube can be produced in a large amount.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of a reaction product obtained in an example.
FIG. 2 is a transmission electron microscope image at a low magnification of a reaction product obtained in an example.
FIGS. 3 (a) and 3 (b) are a high magnification transmission electron microscope image and a pattern of electron energy loss spectrum analysis of a reaction product obtained in an example, respectively.

Claims (3)

ホウ素と酸化ガリウムの混合物を1000℃〜2100℃に加熱し反応させ、反応生成物を引き続いてアンモニアと反応させ、窒化ホウ素ナノチューブを製造することを特徴とする酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法。A mixture of boron and gallium oxide is heated to 1000 ° C. to 2100 ° C. and reacted, and the reaction product is subsequently reacted with ammonia to produce boron nitride nanotubes. Production method. 窒化ホウ素ナノチューブを基板上に堆積させ、基板の温度をホウ素と酸化ガリウムの反応温度より低くする請求項1記載の酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法。2. The method for producing boron nitride nanotubes using gallium oxide as a catalyst according to claim 1, wherein the boron nitride nanotubes are deposited on the substrate, and the temperature of the substrate is lower than the reaction temperature of boron and gallium oxide. 基板がシリコンウエハーである請求項2記載の酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法。3. The method for producing boron nitride nanotubes using gallium oxide as a catalyst according to claim 2, wherein the substrate is a silicon wafer.
JP2002354427A 2002-12-05 2002-12-05 Method for producing boron nitride nanotubes using gallium oxide as a catalyst Expired - Lifetime JP3882077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354427A JP3882077B2 (en) 2002-12-05 2002-12-05 Method for producing boron nitride nanotubes using gallium oxide as a catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354427A JP3882077B2 (en) 2002-12-05 2002-12-05 Method for producing boron nitride nanotubes using gallium oxide as a catalyst

Publications (2)

Publication Number Publication Date
JP2004182571A true JP2004182571A (en) 2004-07-02
JP3882077B2 JP3882077B2 (en) 2007-02-14

Family

ID=32755410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354427A Expired - Lifetime JP3882077B2 (en) 2002-12-05 2002-12-05 Method for producing boron nitride nanotubes using gallium oxide as a catalyst

Country Status (1)

Country Link
JP (1) JP3882077B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240942A (en) * 2005-03-04 2006-09-14 National Institute For Materials Science Method for manufacturing high purity boron nitride nanotube
JP2007031167A (en) * 2005-07-22 2007-02-08 National Institute For Materials Science Method for manufacturing boron nitride nanohorn
CN100369806C (en) * 2006-06-27 2008-02-20 华南理工大学 Method for synthesizing single shape boron nitride nano tube
JP2008266101A (en) * 2007-04-25 2008-11-06 National Institute For Materials Science Boron nitride nanotube and method for manufacturing the same
JP2010159176A (en) * 2009-01-07 2010-07-22 Sumitomo Electric Ind Ltd Method of manufacturing heat dissipating sheet
JP2012516827A (en) * 2009-02-04 2012-07-26 マイケル, ダブリュー. スミス, Boron nitride nanotube fibrils and yarns
JP2013505194A (en) * 2009-09-21 2013-02-14 ディーキン ユニバーシティ Production method
JP2017095293A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Boron nitride nano tube and thermosetting material
JP2020164352A (en) * 2019-03-28 2020-10-08 日亜化学工業株式会社 Hexagonal boron nitride fiber and method for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534016B2 (en) * 2005-03-04 2010-09-01 独立行政法人物質・材料研究機構 Method for producing high purity boron nitride nanotubes
JP2006240942A (en) * 2005-03-04 2006-09-14 National Institute For Materials Science Method for manufacturing high purity boron nitride nanotube
JP2007031167A (en) * 2005-07-22 2007-02-08 National Institute For Materials Science Method for manufacturing boron nitride nanohorn
JP4706077B2 (en) * 2005-07-22 2011-06-22 独立行政法人物質・材料研究機構 Method for producing boron nitride nanohorn
CN100369806C (en) * 2006-06-27 2008-02-20 华南理工大学 Method for synthesizing single shape boron nitride nano tube
JP2008266101A (en) * 2007-04-25 2008-11-06 National Institute For Materials Science Boron nitride nanotube and method for manufacturing the same
JP2010159176A (en) * 2009-01-07 2010-07-22 Sumitomo Electric Ind Ltd Method of manufacturing heat dissipating sheet
JP2012516827A (en) * 2009-02-04 2012-07-26 マイケル, ダブリュー. スミス, Boron nitride nanotube fibrils and yarns
JP2013505194A (en) * 2009-09-21 2013-02-14 ディーキン ユニバーシティ Production method
US9199854B2 (en) 2009-09-21 2015-12-01 Deakin University Method of manufacture
JP2017095293A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Boron nitride nano tube and thermosetting material
JP2020164352A (en) * 2019-03-28 2020-10-08 日亜化学工業株式会社 Hexagonal boron nitride fiber and method for producing the same
JP7376764B2 (en) 2019-03-28 2023-11-09 日亜化学工業株式会社 Hexagonal boron nitride fiber and its manufacturing method

Also Published As

Publication number Publication date
JP3882077B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
Meng et al. Preparation of β–SiC nanorods with and without amorphous SiO2 wrapping layers
Liang et al. Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles
JP2010180066A (en) Boron nitride spherical nanoparticle and method of producing the same
JP5059589B2 (en) Boron nitride nanofiber and method for producing the same
Tang et al. Effective growth of boron nitride nanotubes
JP3834634B2 (en) Boron nitride precursor formation method and boron nitride nanotube manufacturing method using boron nitride precursor
CN111268656A (en) Preparation method of boron nitride nanotube
JP3882077B2 (en) Method for producing boron nitride nanotubes using gallium oxide as a catalyst
Guo et al. Preparation of SiC nanowires with fins by chemical vapor deposition
JP2004161561A (en) Manufacturing process of boron nitride nanotube
Han Anisotropic Hexagonal Boron Nitride Nanomaterials-Synthesis and Applications
JP5448067B2 (en) Method for producing boron nitride nanotubes
JP4556015B2 (en) Zinc sulfide / silicon core / shell nanowire and method for producing the same
JP3985044B2 (en) Single crystal silicon nanotube and method for producing the same
JP3834639B2 (en) Method for producing silicon nitride nanowire coated with boron nitride
JP2002097004A (en) Method for manufacturing boron nitride nanotube by using oxide catalyst
JP3834638B2 (en) Method for producing boron nitride nanotubes filled with nickel or nickel silicide
JP2000281323A (en) Production of carbon nanotube containing boron
JP2002154819A (en) Method for manufacturing nanowire of silicon oxide
JP3893465B2 (en) Method for producing boron nitride nanotubes
Meng et al. Synthesis of one-dimensional nanostructures—β-SiC nanorods with and without amorphous SiO 2 wrapping layers
KR101916270B1 (en) Method of fabricating silicon carbide powder
Yue et al. One-step synthesis of single-crystal Si3N4 nanowires-amorphous SiO2 beads nanochains by chemical vapor deposition
Chesnokov et al. Effect of the carbon nanomaterials structure on silica carbothermal reduction
JP2004323302A (en) Method for manufacturing magnesium oxide nanowire and magnesium oxide nanorod

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Ref document number: 3882077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term