JP3834634B2 - Boron nitride precursor formation method and boron nitride nanotube manufacturing method using boron nitride precursor - Google Patents

Boron nitride precursor formation method and boron nitride nanotube manufacturing method using boron nitride precursor Download PDF

Info

Publication number
JP3834634B2
JP3834634B2 JP2002330041A JP2002330041A JP3834634B2 JP 3834634 B2 JP3834634 B2 JP 3834634B2 JP 2002330041 A JP2002330041 A JP 2002330041A JP 2002330041 A JP2002330041 A JP 2002330041A JP 3834634 B2 JP3834634 B2 JP 3834634B2
Authority
JP
Japan
Prior art keywords
boron nitride
boron
precursor
nitride precursor
nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002330041A
Other languages
Japanese (ja)
Other versions
JP2004161546A (en
Inventor
義雄 板東
チェンチュン・タン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002330041A priority Critical patent/JP3834634B2/en
Publication of JP2004161546A publication Critical patent/JP2004161546A/en
Application granted granted Critical
Publication of JP3834634B2 publication Critical patent/JP3834634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この出願の発明は、窒化ホウ素前駆物質の形成方法と窒化ホウ素前駆物質を利用した窒化ホウ素ナノチューブの製造方法に関するものである。さらに詳しくは、この出願の発明は、高純度の窒化ホウ素ナノチューブを大量に製造することのできる、窒化ホウ素前駆物質の形成方法と窒化ホウ素前駆物質を利用した窒化ホウ素ナノチューブの製造方法に関するものである。
【0002】
【従来の技術】
炭素原子が筒状に並んだナノメートルサイズのカーボンナノチューブが知られている。このカーボンナノチューブは、アーク放電法、レーザー加熱法、化学的気相堆積法等により合成されている。
【0003】
近年、窒化ホウ素ナノチューブもまた上記と同様な方法により合成されることが知られている。たとえば、ホウ化ニッケル(NiB)を触媒に用い、ボラジンを前駆物質として窒化ホウ素ナノチューブを合成する方法が提案されている(たとえば、非特許文献1参照)。
【0004】
【非特許文献1】
O. R. Lourie, 外5名,ケミカル・マテリアル(Chem. Mater.) ,2000年,第12巻,p. 1808
【0005】
【発明が解決しようとする課題】
窒化ホウ素は、半導体材料、エミッタ−材料、耐熱性充填材料、高強度材料、触媒等に、従来にない特性を有する材料として利用されることが期待されている。
【0006】
しかしながら、これまでの製造方法については、窒化ホウ素ナノチューブの収率が悪く、少量しか合成することができず、また、炭素等の不純物が混入するため、半導体特性や強度等の物理的性質の測定を十分に行うことができないという問題がある。
【0007】
この出願の発明は、このような事情に鑑みてなされたものであり、高純度の窒化ホウ素ナノチューブを大量に製造することのできる、窒化ホウ素前駆物質の形成方法と窒化ホウ素前駆物質を利用した窒化ホウ素ナノチューブの製造方法を提供することを解決すべき課題としている。
【0008】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、ホウ素と酸化マグネシウムを1000℃〜2100℃の温度域で反応させ、窒化ホウ素前駆物質である酸化ホウ素(B2O2)を形成させることを特徴とする窒化ホウ素前駆物質の形成方法(請求項1)を提供する。
【0009】
上記請求項1に係る発明に関し、この出願の発明は、ホウ素と酸化マグネシウムのモル比を1:1とすること(請求項2)を一形態として提供する。
【0010】
また、この出願の発明は、請求項1記載の窒化ホウ素前駆物質が得られた後、引き続いて1000℃〜1500℃の温度域でアンモニアと反応させることを特徴とする窒化ホウ素ナノチューブの製造方法(請求項3)を提供する。
【0011】
上記請求項3に係る発明に関し、この出願の発明は、反応終了後の生成物を加熱することにより副生成物を蒸発除去すること(請求項4)を一態様として提供する。
【0012】
以下、実施例を示しつつこの出願の発明の窒化ホウ素前駆物質の形成方法と窒化ホウ素前駆物質を利用した窒化ホウ素ナノチューブの製造方法についてさらに詳しく説明する。
【0013】
【発明の実施の形態】
この出願の発明の窒化ホウ素ナノチューブの製造方法では、高純度かつ大量の窒化ホウ素ナノチューブを製造するために、まず、ホウ素と酸化マグネシウムを反応させ、窒化ホウ素前駆物質である酸化ホウ素(B2O2)を形成させる。具体的には、窒化ホウ素製のるつぼにホウ素と酸化マグネシウムの混合物を入れ、るつぼを高周波誘導加熱炉中で高温に加熱する。この時の温度は、1000℃〜2100℃の温度域が適当である。1000℃未満では反応が遅く、2100℃を超えるとエネルギーの無駄になるからである。好ましくは1100℃〜1800℃の温度域である。反応により窒化ホウ素の前駆物質となる気体状の酸化ホウ素(B2O2)と金属マグネシウムの蒸気が生成する。
【0014】
次いで、この出願の発明の窒化ホウ素ナノチューブの製造方法では、上記生成物を、たとえばアルゴンなどの不活性気体を流すことにより反応室へと移動させ、反応室内にアンモニアガスを導入し、酸化ホウ素(B2O2)とアンモニアを反応させる。この時の反応温度は1000℃〜1500℃が適当である。1000℃未満では反応が遅く、1500℃を超えると、窒化ホウ素の板状晶が形成され、チューブ状の形態の維持が難しくなるからである。反応により酸化ホウ素(B2O2)が窒化ホウ素に転換する。反応後に十分加熱することにより副生成物を蒸発除去させると、白色の窒化ホウ素ナノチューブが得られる。
【0015】
生成した窒化ホウ素ナノチューブは、六方晶系と菱面体晶系の混合相を示し、酸化ホウ素や他の原料に基づく不純物は存在せず、非常に高純度の結晶である。走査型電子顕微鏡で観察すると、直径が数ナノメートル〜約70ナノメートルで、長さが約10マイクロメートルのナノチューブであることが確認される。
【0016】
このように、この出願の発明の窒化ホウ素前駆物質の形成方法と窒化ホウ素前駆物質を用いた窒化ホウ素ナノチューブの製造方法では、原料に炭素を含む化合物を使用しないため、炭素が不純物として混入することはない。また、高純度の窒化ホウ素ナノチューブが大量に製造される。さらに、触媒として高価な遷移金属を使用しないため、この出願の発明の窒化ホウ素前駆物質の形成方法と窒化ホウ素前駆物質を用いた窒化ホウ素ナノチューブの製造方法は、経済的に有利である。
【0017】
【実施例】
窒化ホウ素製のるつぼに1:1のモル比でホウ素と酸化マグネシウムの混合物を入れ、るつぼを高周波誘導加熱炉で1300℃に加熱した。ホウ素と酸化マグネシウムは反応し、気体状の酸化ホウ素(B2O2)とマグネシウムの蒸気が生成した。この生成物をアルゴンガスにより反応室へ移送し、温度を1100℃に維持してアンモニアガスを導入した。酸化ホウ素とアンモニアが反応し、窒化ホウ素が生成した。1.55gの混合物を十分に加熱し、副生成物を蒸発させると、反応室の壁から310mgの白色の固体が得られた。出発原料のホウ素を基準とする窒化ホウ素への転換率は40%以上であった。
【0018】
得られた窒化ホウ素の結晶構造は、X線回折パターンから六方晶系と菱面体晶系の混合相であった。また、X線回折パターンからは、原料や反応途中の中間生成物等の結晶形態を示すピークはなく、得られた窒化ホウ素は高純度品であることが確認された。
【0019】
さらに、得られた窒化ホウ素を走査型電子顕微鏡及び透過型電子顕微鏡で観察した。図1aは走査型電子顕微鏡写真である。窒化ホウ素は、直径数ナノメートル〜約70ナノメートルで、長さが約10マイクロメートルの一次元のナノ構造を有している。そして、互いに絡み合い、曲線的な形態となっている。図1bは、透過型電子顕微鏡写真である。直径10ナノメートルの直線状の窒化ホウ素ナノチューブが確認される。
【0020】
もちろん、この出願の発明は、以上の実施形態及び実施例によって限定されるものではない。反応条件等の細部については様々な態様が可能であることはいうまでもない。
【0021】
【発明の効果】
以上詳しく説明した通り、この出願の発明によって、高純度の窒化ホウ素ナノチューブを大量に製造することが可能となる。
【図面の簡単な説明】
【図1】a、bは、それぞれ、実施例で得られた窒化ホウ素の走査型電子顕微鏡写真、透過型電子顕微鏡写真である。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method of forming a boron nitride precursor and a method of manufacturing a boron nitride nanotube using the boron nitride precursor. More specifically, the invention of this application relates to a method of forming a boron nitride precursor and a method of manufacturing a boron nitride nanotube using the boron nitride precursor, which can manufacture high-purity boron nitride nanotubes in large quantities. .
[0002]
[Prior art]
Nanometer-sized carbon nanotubes in which carbon atoms are arranged in a cylindrical shape are known. The carbon nanotubes are synthesized by an arc discharge method, a laser heating method, a chemical vapor deposition method, or the like.
[0003]
In recent years, boron nitride nanotubes are also known to be synthesized by the same method as described above. For example, a method of synthesizing boron nitride nanotubes using nickel boride (NiB) as a catalyst and borazine as a precursor has been proposed (see, for example, Non-Patent Document 1).
[0004]
[Non-Patent Document 1]
OR Lourie, 5 others, Chemical Material (Chem. Mater.), 2000, Vol. 12, p. 1808
[0005]
[Problems to be solved by the invention]
Boron nitride is expected to be used as a material having unprecedented characteristics for semiconductor materials, emitter materials, heat-resistant filling materials, high-strength materials, catalysts, and the like.
[0006]
However, with the conventional manufacturing method, the yield of boron nitride nanotubes is poor, and only a small amount can be synthesized, and impurities such as carbon are mixed in, so physical properties such as semiconductor properties and strength are measured. There is a problem that it is not possible to do enough.
[0007]
The invention of this application was made in view of such circumstances, and a boron nitride precursor forming method capable of producing a large amount of high-purity boron nitride nanotubes and nitriding using a boron nitride precursor Providing a method for producing boron nanotubes is a problem to be solved.
[0008]
[Means for Solving the Problems]
The invention of this application is to solve the above-mentioned problems by reacting boron and magnesium oxide in a temperature range of 1000 ° C. to 2100 ° C. to form boron oxide (B 2 O 2 ) which is a boron nitride precursor. A method for forming a boron nitride precursor (claim 1) is provided.
[0009]
With respect to the invention according to claim 1, the invention of this application provides a form in which the molar ratio of boron to magnesium oxide is 1: 1 (claim 2).
[0010]
The invention of this application is characterized in that after the boron nitride precursor according to claim 1 is obtained, it is subsequently reacted with ammonia in a temperature range of 1000 ° C. to 1500 ° C. Claim 3) is provided.
[0011]
With respect to the invention according to claim 3, the invention of this application provides, as one aspect, that the by-product is removed by evaporation by heating the product after completion of the reaction (claim 4).
[0012]
Hereinafter, the method for forming a boron nitride precursor and the method for producing a boron nitride nanotube using the boron nitride precursor according to the present invention will be described in more detail with reference to examples.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing boron nitride nanotubes of the invention of this application, in order to produce high-purity and a large amount of boron nitride nanotubes, first, boron and magnesium oxide are reacted, and boron oxide (B 2 O 2) as a boron nitride precursor is reacted. ). Specifically, a mixture of boron and magnesium oxide is put into a crucible made of boron nitride, and the crucible is heated to a high temperature in a high frequency induction heating furnace. A temperature range of 1000 ° C. to 2100 ° C. is appropriate at this time. This is because the reaction is slow when the temperature is lower than 1000 ° C, and energy is wasted when the temperature exceeds 2100 ° C. The temperature range is preferably 1100 ° C to 1800 ° C. The reaction produces gaseous boron oxide (B 2 O 2 ) and metallic magnesium vapor, which are boron nitride precursors.
[0014]
Next, in the method for producing boron nitride nanotubes of the present invention, the product is moved to the reaction chamber by flowing an inert gas such as argon, ammonia gas is introduced into the reaction chamber, and boron oxide ( B 2 O 2 ) and ammonia are reacted. The reaction temperature at this time is suitably 1000 ° C to 1500 ° C. If the temperature is lower than 1000 ° C., the reaction is slow, and if it exceeds 1500 ° C., a plate-like crystal of boron nitride is formed, making it difficult to maintain a tubular shape. The reaction converts boron oxide (B 2 O 2 ) into boron nitride. When the by-product is evaporated and removed by heating sufficiently after the reaction, white boron nitride nanotubes are obtained.
[0015]
The produced boron nitride nanotubes show a mixed phase of hexagonal system and rhombohedral system, are free of impurities based on boron oxide and other raw materials, and are very high-purity crystals. Observation with a scanning electron microscope confirms that the nanotube has a diameter of several nanometers to about 70 nanometers and a length of about 10 micrometers.
[0016]
As described above, the boron nitride precursor forming method and the boron nitride nanotube manufacturing method using the boron nitride precursor according to the invention of this application do not use a compound containing carbon as a raw material, so that carbon is mixed as an impurity. There is no. In addition, high-purity boron nitride nanotubes are produced in large quantities. Furthermore, since an expensive transition metal is not used as a catalyst, the method for forming a boron nitride precursor and the method for producing a boron nitride nanotube using the boron nitride precursor of the present invention are economically advantageous.
[0017]
【Example】
A boron nitride crucible was charged with a mixture of boron and magnesium oxide at a molar ratio of 1: 1, and the crucible was heated to 1300 ° C. in a high frequency induction heating furnace. Boron and magnesium oxide reacted to produce gaseous boron oxide (B 2 O 2 ) and magnesium vapor. This product was transferred to the reaction chamber with argon gas, and ammonia gas was introduced while maintaining the temperature at 1100 ° C. Boron oxide and ammonia reacted to form boron nitride. When 1.55 g of the mixture was fully heated and the by-products were evaporated, 310 mg of a white solid was obtained from the walls of the reaction chamber. The conversion rate to boron nitride based on boron as a starting material was 40% or more.
[0018]
The crystal structure of the obtained boron nitride was a mixed phase of hexagonal system and rhombohedral system from the X-ray diffraction pattern. Further, from the X-ray diffraction pattern, there was no peak indicating the crystal form of the raw material and intermediate products during the reaction, and it was confirmed that the obtained boron nitride was a high-purity product.
[0019]
Furthermore, the obtained boron nitride was observed with a scanning electron microscope and a transmission electron microscope. FIG. 1a is a scanning electron micrograph. Boron nitride has a one-dimensional nanostructure with a diameter of a few nanometers to about 70 nanometers and a length of about 10 micrometers. And they are intertwined with each other and have a curvilinear form. FIG. 1b is a transmission electron micrograph. A linear boron nitride nanotube having a diameter of 10 nanometers is confirmed.
[0020]
Of course, the invention of this application is not limited by the above embodiments and examples. Needless to say, various aspects such as reaction conditions are possible.
[0021]
【The invention's effect】
As explained in detail above, the invention of this application makes it possible to produce high-purity boron nitride nanotubes in large quantities.
[Brief description of the drawings]
FIGS. 1A and 1B are a scanning electron micrograph and a transmission electron micrograph of boron nitride obtained in the examples, respectively.

Claims (4)

ホウ素と酸化マグネシウムを1000℃〜2100℃の温度域で反応させ、窒化ホウ素前駆物質である酸化ホウ素(B2O2)を形成させることを特徴とする窒化ホウ素前駆物質の形成方法。A method for forming a boron nitride precursor, comprising reacting boron and magnesium oxide in a temperature range of 1000 ° C. to 2100 ° C. to form boron oxide (B 2 O 2 ) as a boron nitride precursor. ホウ素と酸化マグネシウムのモル比を1:1とする請求項1記載の窒化ホウ素前駆物質の形成方法。The method for forming a boron nitride precursor according to claim 1, wherein the molar ratio of boron to magnesium oxide is 1: 1. 請求項1記載の窒化ホウ素前駆物質が得られた後、引き続いて1000℃〜1500℃の温度域でアンモニアと反応させることを特徴とする窒化ホウ素ナノチューブの製造方法。After the boron nitride precursor according to claim 1 is obtained, a method for producing boron nitride nanotubes, which is subsequently reacted with ammonia in a temperature range of 1000 ° C to 1500 ° C. 反応終了後の生成物を加熱することにより副生成物を蒸発除去する請求項3記載の窒化ホウ素ナノチューブの製造方法。The method for producing a boron nitride nanotube according to claim 3, wherein the by-product is removed by evaporation by heating the product after completion of the reaction.
JP2002330041A 2002-11-13 2002-11-13 Boron nitride precursor formation method and boron nitride nanotube manufacturing method using boron nitride precursor Expired - Lifetime JP3834634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002330041A JP3834634B2 (en) 2002-11-13 2002-11-13 Boron nitride precursor formation method and boron nitride nanotube manufacturing method using boron nitride precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002330041A JP3834634B2 (en) 2002-11-13 2002-11-13 Boron nitride precursor formation method and boron nitride nanotube manufacturing method using boron nitride precursor

Publications (2)

Publication Number Publication Date
JP2004161546A JP2004161546A (en) 2004-06-10
JP3834634B2 true JP3834634B2 (en) 2006-10-18

Family

ID=32807862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330041A Expired - Lifetime JP3834634B2 (en) 2002-11-13 2002-11-13 Boron nitride precursor formation method and boron nitride nanotube manufacturing method using boron nitride precursor

Country Status (1)

Country Link
JP (1) JP3834634B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534016B2 (en) * 2005-03-04 2010-09-01 独立行政法人物質・材料研究機構 Method for producing high purity boron nitride nanotubes
JP4706077B2 (en) * 2005-07-22 2011-06-22 独立行政法人物質・材料研究機構 Method for producing boron nitride nanohorn
JP4674353B2 (en) * 2005-10-07 2011-04-20 独立行政法人物質・材料研究機構 Boron nitride nanotubes introduced with fluorine atoms and method for producing the same
JP5154760B2 (en) * 2006-03-01 2013-02-27 帝人株式会社 Polyether ester amide elastomer resin composition and process for producing the same
CN100526217C (en) * 2006-04-29 2009-08-12 中国科学院金属研究所 Preparation method of quasi one-dimensional boron nitride nanostructure
JP4725890B2 (en) * 2006-05-09 2011-07-13 独立行政法人物質・材料研究機構 Acylated boron nitride nanotubes, dispersion thereof, and method for producing the boron nitride nanotubes
JP2007321071A (en) * 2006-06-01 2007-12-13 Teijin Ltd Resin composite composition and its manufacturing method
JP5099117B2 (en) * 2007-03-05 2012-12-12 帝人株式会社 Method for producing boron nitride fiber paper
JP5059589B2 (en) * 2007-12-27 2012-10-24 帝人株式会社 Boron nitride nanofiber and method for producing the same
CN101913576B (en) * 2010-08-12 2012-01-04 山东大学 Preparation method of ultrathin boron nitride nanosheet with high specific surface area
WO2018014494A1 (en) * 2016-07-22 2018-01-25 中国科学院苏州纳米技术与纳米仿生研究所 Boron nitride nanomaterial, and manufacturing method and application thereof
CN109052343A (en) * 2018-10-08 2018-12-21 河北工业大学 A kind of preparation method of ultra-thin hexagonal boron nitride piece
CA3199050A1 (en) * 2020-11-16 2022-05-19 Tadashi Fujieda Method for producing boron nitride nanotubes
JP7350874B2 (en) * 2020-11-20 2023-09-26 ナイエール・テクノロジー・インコーポレイテッド Independent precursor for nanomaterial synthesis and nanomaterial synthesis device using the same

Also Published As

Publication number Publication date
JP2004161546A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP3834634B2 (en) Boron nitride precursor formation method and boron nitride nanotube manufacturing method using boron nitride precursor
JP4534016B2 (en) Method for producing high purity boron nitride nanotubes
Li et al. SiC nanowire networks
JP5059589B2 (en) Boron nitride nanofiber and method for producing the same
Tang et al. Effective growth of boron nitride nanotubes
Fu et al. The synthesis of boron nitride nanotubes by an extended vapour–liquid–solid method
JP2020508866A (en) Catalyst for mass production of multi-walled carbon nanotubes
JP4817103B2 (en) Method for producing boron nitride nanotubes
Hwang et al. Synthesis of β-silicon carbide nanofiber from an exfoliated graphite and amorphous silica
JP3882077B2 (en) Method for producing boron nitride nanotubes using gallium oxide as a catalyst
Sun et al. Synthesis of SiC/SiO2 nanochains by carbonthermal reduction process and its optimization
CN112573505A (en) Method for preparing MXene/carbon nano tube composite material
Han Anisotropic Hexagonal Boron Nitride Nanomaterials-Synthesis and Applications
JP5448067B2 (en) Method for producing boron nitride nanotubes
JP3893465B2 (en) Method for producing boron nitride nanotubes
Shi et al. Morphology-controlled synthesis of quasi-aligned AlN nanowhiskers by combustion method: Effect of NH4Cl additive
JP2004161561A (en) Manufacturing process of boron nitride nanotube
JP3834640B2 (en) Method for producing boron nitride nanotubes
KR100684649B1 (en) Manufacturing method of metal doped polycarbosilane and manufacturing method of nano-crystallized silicon carbide fiber comprising the smae, and sic fiber thereby
JP3896487B2 (en) Method for producing magnesium oxide nanowire and magnesium oxide nanorod
Tang et al. Controlled synthesis of quasi-one-dimensional boron nitride nanostructures
JP3834638B2 (en) Method for producing boron nitride nanotubes filled with nickel or nickel silicide
Chesnokov et al. Effect of the carbon nanomaterials structure on silica carbothermal reduction
JP2004161560A (en) Manufacturing process of boron carbide nanowire
Meng et al. Synthesis of one-dimensional nanostructures—β-SiC nanorods with and without amorphous SiO 2 wrapping layers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Ref document number: 3834634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term