JP2017095293A - Boron nitride nano tube and thermosetting material - Google Patents

Boron nitride nano tube and thermosetting material Download PDF

Info

Publication number
JP2017095293A
JP2017095293A JP2015226937A JP2015226937A JP2017095293A JP 2017095293 A JP2017095293 A JP 2017095293A JP 2015226937 A JP2015226937 A JP 2015226937A JP 2015226937 A JP2015226937 A JP 2015226937A JP 2017095293 A JP2017095293 A JP 2017095293A
Authority
JP
Japan
Prior art keywords
boron nitride
thermosetting
less
skeleton
thermosetting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015226937A
Other languages
Japanese (ja)
Inventor
浩也 石田
Hiroya Ishida
浩也 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2015226937A priority Critical patent/JP2017095293A/en
Publication of JP2017095293A publication Critical patent/JP2017095293A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a boron nitride nano tube capable of enhancing thermal conductivity.SOLUTION: The boron nitride nano tube according to the present invention has half value width of a hexagonal crystal boron nitride h-BN(002) peak of 2 or less in an X-ray diffraction analysis.SELECTED DRAWING: Figure 1

Description

本発明は、窒化ホウ素ナノチューブに関する。また、本発明は、上記窒化ホウ素ナノチューブを用いた熱硬化性材料に関する。   The present invention relates to boron nitride nanotubes. The present invention also relates to a thermosetting material using the boron nitride nanotube.

近年、電気機器の小型化及び高性能化が進行している。これに伴って、電子部品の実装密度が高くなってきており、電子部品から発生する熱を放散させる必要が高まっている。熱を放散させるために、熱伝導性フィラーを含む熱伝導性組成物が用いられている。   In recent years, miniaturization and high performance of electric devices have been advanced. Along with this, the mounting density of electronic components is increasing, and the need to dissipate heat generated from electronic components is increasing. In order to dissipate heat, a heat conductive composition containing a heat conductive filler is used.

下記の特許文献1には、絶縁性樹脂、平均粒子径15μm〜30μmの窒化アルミニウム粒子、及び平均粒子径0.5μm〜2μmの略球状アルミナ粒子を含有する熱伝導性接着剤が開示されている。この熱伝導性接着剤では、上記窒化アルミニウム粒子と上記略球状アルミナ粒子との混合比率(体積比)が70:30〜80:20である。上記窒化アルミニウム粒子と上記略球状アルミナ粒子との合計量が、上記絶縁性樹脂、上記窒化アルミニウム粒子、及び上記アルミナ粒子の合計量に対して60〜70体積%である。   Patent Document 1 below discloses a heat conductive adhesive containing an insulating resin, aluminum nitride particles having an average particle diameter of 15 μm to 30 μm, and substantially spherical alumina particles having an average particle diameter of 0.5 μm to 2 μm. . In this heat conductive adhesive, the mixing ratio (volume ratio) of the aluminum nitride particles and the substantially spherical alumina particles is 70:30 to 80:20. The total amount of the aluminum nitride particles and the substantially spherical alumina particles is 60 to 70% by volume with respect to the total amount of the insulating resin, the aluminum nitride particles, and the alumina particles.

下記の特許文献2には、脂環式エポキシ樹脂と、硬化剤であるフェノール類ノボラック樹脂と、充填材である二酸化チタンと、充填材である熱伝導率20W/m・K以上の高熱伝導率材とを含有するエポキシ樹脂組成物が開示されている。   Patent Document 2 below discloses an alicyclic epoxy resin, a phenolic novolak resin as a curing agent, titanium dioxide as a filler, and a high thermal conductivity of 20 W / m · K or more as a filler. An epoxy resin composition containing a material is disclosed.

また、下記の特許文献3では、(A)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部と、(B)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が(A)成分由来のアルケニル基のモル数の0.1〜5.0倍となる量と、(C)熱伝導性充填材:1,200〜6,500質量部と、(D)白金族金属系硬化触媒:(A)成分に対して白金族金属元素質量換算で0.1〜2,000ppmとを含む熱伝導性シリコーン組成物が開示されている。この熱伝導性シリコーン組成物では、(C)成分の熱伝導性充填材が、(C−i)平均粒子径10〜30μmである不定形アルミナを500〜1,500質量部と、(C−ii)平均粒子径30〜85μmである球状アルミナを150〜4,000質量部と、(C−iii)平均粒子径0.1〜6μmである絶縁性無機フィラー500〜2,000質量部とを含む。   In Patent Document 3 below, (A) an organopolysiloxane having at least two alkenyl groups in one molecule: 100 parts by mass, and (B) an organo having at least two hydrogen atoms bonded directly to silicon atoms. Hydrogen polysiloxane: an amount in which the number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 to 5.0 times the number of moles of alkenyl groups derived from component (A); and (C) a thermally conductive filler. : Thermally conductive silicone containing 1,200-6,500 parts by mass and (D) platinum group metal-based curing catalyst: 0.1-2,000 ppm in terms of platinum group metal element mass relative to component (A) A composition is disclosed. In this thermally conductive silicone composition, the thermally conductive filler of component (C) is (Ci) 500 to 1,500 parts by mass of amorphous alumina having an average particle diameter of 10 to 30 μm, and (C— ii) 150 to 4,000 parts by mass of spherical alumina having an average particle size of 30 to 85 μm, and (C-iii) 500 to 2,000 parts by mass of an insulating inorganic filler having an average particle size of 0.1 to 6 μm. Including.

一方で、熱伝導率が高い熱伝導性フィラーとしては、窒化ホウ素ナノチューブがある。下記の特許文献4には、アルミナに担持されたニッケル硼化物を触媒として、ホウ素と、窒素ガス及びアンモニアガスの少なくともいずれかを反応性ガスとして加熱反応させる窒化ホウ素ナノチューブが開示されている。   On the other hand, there is a boron nitride nanotube as a thermally conductive filler having a high thermal conductivity. Patent Document 4 listed below discloses boron nitride nanotubes that heat react with boron and at least one of nitrogen gas and ammonia gas using nickel boride supported on alumina as a catalyst.

特開2008−258254号公報JP 2008-258254 A 特開2011−241279号公報JP 2011-241279 A 特開2013−147600号公報JP 2013-147600 A 特開2004−231455号公報JP 2004-231455 A

特許文献1,2では、硬化物の熱伝導性を高める場合には、フィラーを高密度に充填する必要がある。しかし、特許文献1,2では、フィラーの配合量を多くできる範囲に限界があり、フィラーの形状に起因して、硬化物中で接したフィラー間に樹脂成分が多く存在する。また、フィラーを高密度に充填したとしても、硬化物の熱伝導性が十分に高くならないことがある。また、フィラーを高密度に充填すると、組成物の粘度が高くなり、塗布性及び成型加工性が悪くなり、硬化物の機械的強度も低下する。   In Patent Documents 1 and 2, when increasing the thermal conductivity of the cured product, it is necessary to fill the filler with high density. However, in Patent Documents 1 and 2, there is a limit to the range in which the amount of filler can be increased, and there are many resin components between fillers in contact with the cured product due to the shape of the filler. Moreover, even if it fills with a filler with high density, the heat conductivity of hardened | cured material may not become high enough. Moreover, when a filler is filled with high density, the viscosity of a composition will become high, applicability | paintability and moldability will worsen, and the mechanical strength of hardened | cured material will also fall.

特許文献3では、フィラーの形状に起因して、硬化物中で接したフィラー間に他のフィラーをある程度配置させることができる。しかしながら、特許文献3でも、硬化物の熱伝導性を効果的に高めることは困難である。   In Patent Document 3, due to the shape of the filler, other fillers can be arranged to some extent between the fillers in contact with the cured product. However, even in Patent Document 3, it is difficult to effectively increase the thermal conductivity of the cured product.

一方で、窒化ホウ素ナノチューブを用いれば、熱伝導性を効果的に高めることができる。但し、特許文献4に記載のような従来の窒化ホウ素ナノチューブでは、熱伝導性を高めるには限界がある。従来の窒化ホウ素ナノチューブよりも熱伝導性に優れた窒化ホウ素ナノチューブは、窒化ホウ素ナノチューブの用途を大幅に拡大させる可能性がある。   On the other hand, if boron nitride nanotubes are used, the thermal conductivity can be effectively increased. However, the conventional boron nitride nanotubes described in Patent Document 4 have a limit in increasing the thermal conductivity. Boron nitride nanotubes, which have better thermal conductivity than conventional boron nitride nanotubes, can greatly expand the applications of boron nitride nanotubes.

本発明の目的は、熱伝導性を高めることができる窒化ホウ素ナノチューブを提供することである。また、本発明は、上記窒化ホウ素ナノチューブを用いた熱硬化性材料を提供することも目的とする。   An object of the present invention is to provide a boron nitride nanotube that can enhance thermal conductivity. Another object of the present invention is to provide a thermosetting material using the boron nitride nanotube.

本発明の広い局面では、X線回折分析において、六方晶窒化ホウ素h−BN(002)ピークの半値幅が2以下である、窒化ホウ素ナノチューブが提供される。   In a wide aspect of the present invention, a boron nitride nanotube is provided in which the half width of the hexagonal boron nitride h-BN (002) peak is 2 or less in X-ray diffraction analysis.

本発明に係る窒化ホウ素ナノチューブのある特定の局面では、X線回折分析において、六方晶窒化ホウ素h−BN(002)ピークの半値幅が1.8以下である。   In a specific aspect of the boron nitride nanotube according to the present invention, the half width of the hexagonal boron nitride h-BN (002) peak is 1.8 or less in X-ray diffraction analysis.

本発明に係る窒化ホウ素ナノチューブのある特定の局面では、X線回折分析において、六方晶窒化ホウ素h−BN(002)ピークの半値幅が1.6以下である。   In a specific aspect of the boron nitride nanotube according to the present invention, the half width of the hexagonal boron nitride h-BN (002) peak is 1.6 or less in X-ray diffraction analysis.

本発明に係る窒化ホウ素ナノチューブのある特定の局面では、平均直径が2nm以上、300nm以下である。   In a specific aspect of the boron nitride nanotube according to the present invention, the average diameter is 2 nm or more and 300 nm or less.

本発明に係る窒化ホウ素ナノチューブのある特定の局面では、前記窒化ホウ素ナノチューブは、単管又は多重管である。   In a specific aspect of the boron nitride nanotube according to the present invention, the boron nitride nanotube is a single tube or a multiple tube.

本発明の広い局面によれば、熱硬化性化合物と、熱硬化剤と、上述した窒化ホウ素ナノチューブとを含む熱硬化性材料が提供される。   According to a wide aspect of the present invention, there is provided a thermosetting material including a thermosetting compound, a thermosetting agent, and the boron nitride nanotube described above.

本発明に係る熱硬化性材料のある特定の局面では、前記熱硬化性材料は、ナノチューブではない絶縁性フィラーを含む。   On the specific situation with the thermosetting material which concerns on this invention, the said thermosetting material contains the insulating filler which is not a nanotube.

本発明に係る熱硬化性材料のある特定の局面では、前記絶縁性フィラーが、10W/m・K以上の熱伝導率を有する。   In a specific aspect of the thermosetting material according to the present invention, the insulating filler has a thermal conductivity of 10 W / m · K or more.

本発明に係る熱硬化性材料のある特定の局面では、前記絶縁性フィラーの材質が、アルミナ、合成マグネサイト、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛又は酸化マグネシウムである。   In a specific aspect of the thermosetting material according to the present invention, the material of the insulating filler is alumina, synthetic magnesite, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide, or magnesium oxide.

本発明に係る熱硬化性材料のある特定の局面では、熱硬化性材料100体積%中、前記窒化ホウ素ナノチューブの含有量が0.1体積%以上、40体積%以下である。   On the specific situation with the thermosetting material which concerns on this invention, content of the said boron nitride nanotube is 0.1 volume% or more and 40 volume% or less in 100 volume% of thermosetting materials.

本発明に係る熱硬化性材料のある特定の局面では、熱硬化性材料100体積%中、前記絶縁性フィラーの含有量が25体積%以上、90体積%以下である。   On the specific situation with the thermosetting material which concerns on this invention, content of the said insulating filler is 25 volume% or more and 90 volume% or less in 100 volume% of thermosetting materials.

本発明に係る熱硬化性材料のある特定の局面では、熱硬化性材料100体積%中での前記窒化ホウ素ナノチューブの含有量の、熱硬化性材料100体積%中での前記絶縁性フィラーの含有量に対する比が、0.001以上、1.6以下である。   In a specific aspect of the thermosetting material according to the present invention, the content of the boron nitride nanotube in 100% by volume of the thermosetting material includes the insulating filler in 100% by volume of the thermosetting material. The ratio to the amount is 0.001 or more and 1.6 or less.

本発明に係る熱硬化性材料のある特定の局面では、前記熱硬化性材料は、熱硬化性シートである。   On the specific situation with the thermosetting material which concerns on this invention, the said thermosetting material is a thermosetting sheet.

本発明に係る窒化ホウ素ナノチューブでは、X線回折分析において、六方晶窒化ホウ素h−BN(002)ピークの半値幅が2以下であるので、熱伝導性を高めることができる。   In the boron nitride nanotube according to the present invention, in the X-ray diffraction analysis, the half width of the hexagonal boron nitride h-BN (002) peak is 2 or less, so that the thermal conductivity can be increased.

図1は、本発明の一実施形態に係る熱硬化性材料の硬化物を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a cured product of a thermosetting material according to an embodiment of the present invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

(窒化ホウ素ナノチューブ)
本発明に係る窒化ホウ素ナノチューブ(Boron Nitride NanotubeもしくはBNNTと記載することがある)では、X線回折分析において、六方晶窒化ホウ素h−BN(002)ピークの半値幅が2以下である。
(Boron nitride nanotube)
In the boron nitride nanotube according to the present invention (may be described as Boron Nitride Nanotube or BNNT), the half width of the hexagonal boron nitride h-BN (002) peak is 2 or less in X-ray diffraction analysis.

本発明では、上記の構成が備えられているので、絶縁性を高く維持しつつ、熱伝導性を高めることができる。本発明に係る窒化ホウ素ナノチューブでは、結晶格子の歪みを抑え、フォノン散乱を抑えることによって熱伝導性を向上させることができる。   In this invention, since said structure is provided, heat conductivity can be improved, maintaining insulation high. In the boron nitride nanotube according to the present invention, thermal conductivity can be improved by suppressing distortion of the crystal lattice and suppressing phonon scattering.

X線回折における半値幅は、結晶性を示す指標で数値が小さいほど、結晶性が高いことを意味する。そのため、窒化ホウ素ナノチューブのX線回折分析において、六方晶窒化ホウ素(002)ピークの半値幅が小さいと、ホウ素原子Bと窒素原子Nから構成されるBN結晶の歪みが小さいことを示す。   The half width in X-ray diffraction means an index indicating crystallinity, and the smaller the numerical value, the higher the crystallinity. Therefore, in the X-ray diffraction analysis of the boron nitride nanotube, when the half width of the hexagonal boron nitride (002) peak is small, it indicates that the strain of the BN crystal composed of the boron atom B and the nitrogen atom N is small.

窒化ホウ素ナノチューブにおける熱伝搬は、ホウ素原子Bと窒素原子Nから構成されるBN結晶格子の振動(フォノン振動)によって起こるため、BN結晶格子の歪みが小さいと、BN結晶格子のフォノン振動の乱れや散乱が抑えられ、熱伝導性を高めることができる。   Since heat propagation in boron nitride nanotubes is caused by vibration (phonon vibration) of a BN crystal lattice composed of boron atoms B and nitrogen atoms N, if the distortion of the BN crystal lattice is small, the phonon vibration of the BN crystal lattice is disturbed. Scattering is suppressed and thermal conductivity can be increased.

化学的反応性を向上させ、かつ信頼性を高める観点からは、六方晶窒化ホウ素h−BN(002)ピークの半値幅は、好ましくは1.0以上、より好ましくは1.3以上である。   From the viewpoint of improving chemical reactivity and enhancing reliability, the half width of the hexagonal boron nitride h-BN (002) peak is preferably 1.0 or more, more preferably 1.3 or more.

本発明者は、格子欠陥は窒化ホウ素ナノチューブの表面処理における反応起点となる役割を担い、一定の格子欠陥は窒化ホウ素ナノチューブの化学的反応性を向上させ、所望の官能基を導入させやすくなることも見出した。所望の官能基を窒化ホウ素ナノチューブ表面に導入することにより、樹脂へのなじみや分散性を向上させることができる。樹脂へのなじみや分散性を向上させることができると、例えば、熱サイクル特性の向上が期待できる。   The present inventor believes that lattice defects serve as reaction starting points in the surface treatment of boron nitride nanotubes, and that certain lattice defects improve the chemical reactivity of boron nitride nanotubes and facilitate the introduction of desired functional groups. I also found. By introducing a desired functional group to the surface of the boron nitride nanotube, the familiarity with the resin and the dispersibility can be improved. If the familiarity and dispersibility of the resin can be improved, for example, an improvement in thermal cycle characteristics can be expected.

一方で、反応起点となる格子欠陥が多すぎると、導入される官能基が過剰で、窒化ホウ素ナノチューブの樹脂分散性が高くなりすぎる。そのため、窒化ホウ素ナノチューブ同士のネットワーク構造を十分に高め、硬化物の強度を高め、温度サイクル試験における信頼性を十分に高める観点からは、上記六方晶窒化ホウ素h−BN(002)ピークの半値幅が上記下限以上であることが好ましい。   On the other hand, when there are too many lattice defects serving as reaction starting points, the introduced functional groups are excessive and the resin dispersibility of the boron nitride nanotubes becomes too high. Therefore, from the viewpoint of sufficiently increasing the network structure between the boron nitride nanotubes, increasing the strength of the cured product, and sufficiently increasing the reliability in the temperature cycle test, the half width of the hexagonal boron nitride h-BN (002) peak is described above. Is preferably at least the above lower limit.

窒化ホウ素ナノチューブの六方晶窒化ホウ素h−BN(002)ピークの半値幅を制御する手法としては、合成における種々の反応条件、例えば合成時に使用する金属触媒の活性度合いを制御する方法等が挙げられ、詳細には例えば、金属触媒をボールミル等で処理することにより触媒活性を高める方法や、合成中の反応温度の高温化する方法、合成後にアニールする方法、反応時間の短縮化による結晶成長の促進などの方法等が挙げられる。   Examples of the method for controlling the half width of the hexagonal boron nitride h-BN (002) peak of the boron nitride nanotube include various reaction conditions in the synthesis, for example, a method for controlling the degree of activity of the metal catalyst used in the synthesis. In detail, for example, a method of increasing the catalytic activity by treating a metal catalyst with a ball mill or the like, a method of increasing the reaction temperature during synthesis, a method of annealing after synthesis, and promoting crystal growth by shortening the reaction time The method etc. are mentioned.

熱伝導性をより一層高める観点からは、六方晶窒化ホウ素h−BN(002)ピークの半値幅は、好ましくは1.8以下、より好ましくは1.6以下である。   From the viewpoint of further increasing the thermal conductivity, the half width of the hexagonal boron nitride h-BN (002) peak is preferably 1.8 or less, more preferably 1.6 or less.

上記窒化ホウ素ナノチューブは、アーク放電法、レーザー加熱法及び化学的気相成長法等を用いて合成できる。また、ホウ化ニッケルを触媒として使用し、ボラジンを原料として合成する方法も知られている。また、カーボンナノチューブを鋳型として利用して、酸化ホウ素と窒素を反応させて合成する方法も知られている。上記窒化ホウ素ナノチューブは、これらの合成方法により得られるものに限定されない。   The boron nitride nanotubes can be synthesized using an arc discharge method, a laser heating method, a chemical vapor deposition method, or the like. A method of synthesizing borazine as a raw material using nickel boride as a catalyst is also known. Also known is a method of synthesizing boron oxide and nitrogen by using carbon nanotubes as a template. The boron nitride nanotubes are not limited to those obtained by these synthesis methods.

窒化ホウ素ナノチューブを合成する反応式としては、例えば以下の反応式が挙げられる。   Examples of the reaction formula for synthesizing boron nitride nanotubes include the following reaction formula.

2MgO+2B→B+2Mg
2FeO+2B→B+2Fe
+2NH→2BN+2HO+H
2MgO + 2B → B 2 O 2 + 2Mg
2FeO + 2B → B 2 O 2 + 2Fe
B 2 O 2 + 2NH 3 → 2BN + 2H 2 O + H 2

上記窒化ホウ素ナノチューブは、ナノチューブである。上記窒化ホウ素ナノチューブの材質は、窒化ホウ素である。上記窒化ホウ素ナノチューブの形状は、チューブ状である。理想的な形状としては、6角網目の面がチューブ軸に平行に管を形成し、単管又は多重管になっている形状である。   The boron nitride nanotube is a nanotube. The material of the boron nitride nanotube is boron nitride. The boron nitride nanotube has a tube shape. The ideal shape is a shape in which a hexagonal mesh surface forms a tube parallel to the tube axis and is a single tube or multiple tubes.

熱伝導性が高い窒化ホウ素ナノチューブを容易に得る観点からは、窒化ホウ素ナノチューブが多重管である場合に、管数は好ましくは50以下である。窒化ホウ素ナノチューブは、単管又は管数50以下の多重管であることが好ましい。   From the viewpoint of easily obtaining boron nitride nanotubes having high thermal conductivity, the number of tubes is preferably 50 or less when the boron nitride nanotubes are multiple tubes. The boron nitride nanotube is preferably a single tube or a multiple tube having 50 or less tubes.

放熱性及び機械的強度を効果的に高める観点からは、上記窒化ホウ素ナノチューブの平均直径は好ましくは2nm以上、より好ましくは6nm以上、更に好ましくは10nm以上、特に好ましくは30nm以上、好ましくは300nm以下、より好ましくは200nm以下、更に好ましくは100nm以下、特に好ましくは50nm以下である。   From the viewpoint of effectively increasing heat dissipation and mechanical strength, the average diameter of the boron nitride nanotubes is preferably 2 nm or more, more preferably 6 nm or more, still more preferably 10 nm or more, particularly preferably 30 nm or more, preferably 300 nm or less. More preferably, it is 200 nm or less, More preferably, it is 100 nm or less, Most preferably, it is 50 nm or less.

平均直径とは、単管の場合には平均外径を示し、多重管の場合には最も外側に位置する管の平均外径を意味する。   The average diameter indicates an average outer diameter in the case of a single pipe, and means the average outer diameter of the outermost pipe in the case of a multiple pipe.

放熱性及び機械的強度を効果的に高める観点からは、上記窒化ホウ素ナノチューブの平均長さは、好ましくは1μm以上、好ましくは200μm以下、より好ましくは150μm以下、更に好ましくは100μm以下、特に好ましくは80μm以下である。   From the viewpoint of effectively increasing heat dissipation and mechanical strength, the average length of the boron nitride nanotubes is preferably 1 μm or more, preferably 200 μm or less, more preferably 150 μm or less, still more preferably 100 μm or less, particularly preferably. 80 μm or less.

上記窒化ホウ素ナノチューブのアスペクト比は好ましくは3以上である。上記窒化ホウ素ナノチューブのアスペクト比の上限は特に限定されない。上記窒化ホウ素ナノチューブのアスペクト比は100000以下であってもよい。   The aspect ratio of the boron nitride nanotube is preferably 3 or more. The upper limit of the aspect ratio of the boron nitride nanotube is not particularly limited. The aspect ratio of the boron nitride nanotube may be 100,000 or less.

上記平均直径、上記平均長さ及び上記アスペクト比は、電子顕微鏡による観察から求めることができる。例えばTEM(透過型電子顕微鏡)による測定を行い、得られた画像から直接、上記窒化ホウ素ナノチューブの直径、長さを測定することが可能である。また熱硬化性材料中の上記窒化ホウ素ナノチューブの形態は、例えば軸と平行に切断した繊維断面のTEM(透過型電子顕微鏡)測定により把握することができる。上記平均直径、上記平均長さ及び上記アスペクト比は、電子顕微鏡の画像中の任意の50個の算術平均により求めることが好ましい。   The average diameter, the average length, and the aspect ratio can be obtained from observation with an electron microscope. For example, it is possible to measure the diameter and length of the boron nitride nanotube directly from the obtained image by performing measurement with a TEM (transmission electron microscope). The form of the boron nitride nanotubes in the thermosetting material can be grasped by, for example, TEM (transmission electron microscope) measurement of a fiber cross section cut parallel to the axis. The average diameter, the average length, and the aspect ratio are preferably determined by an arithmetic average of 50 arbitrary images in an electron microscope image.

(熱硬化性材料)
本発明に係る熱硬化性材料は、(A)熱硬化性化合物と、(B)熱硬化剤と、(C)窒化ホウ素ナノチューブとを含む。
(Thermosetting material)
The thermosetting material according to the present invention includes (A) a thermosetting compound, (B) a thermosetting agent, and (C) a boron nitride nanotube.

(A)〜(C)成分を含む組成の採用によって、硬化物の放熱性をかなり高めることができる。   By adopting the composition containing the components (A) to (C), the heat dissipation of the cured product can be considerably enhanced.

機械的強度を高める観点からは、本発明に係る熱硬化性材料は、(A)熱硬化性化合物と、(B)熱硬化剤と、(C)窒化ホウ素ナノチューブと、(D)ナノチューブではない絶縁性フィラー(単に、(D)絶縁性フィラーと記載することがある)とを含むことが好ましい。   From the viewpoint of increasing mechanical strength, the thermosetting material according to the present invention is not (A) a thermosetting compound, (B) a thermosetting agent, (C) a boron nitride nanotube, and (D) a nanotube. It is preferable that an insulating filler (simply described as (D) insulating filler) may be included.

(A)〜(D)成分を含む組成の採用によって、硬化物の放熱性をかなり高めることができ、かつ、硬化物の機械的強度も高めることができる。例えば、(A)熱硬化性化合物と、(B)熱硬化剤と、(C)窒化ホウ素ナノチューブと、(D)絶縁性フィラーとを併用することで、これらを併用していない場合と比べて、放熱性及び機械的強度が効果的に高くなる。本発明では、従来両立することが困難であった高い放熱性と高い機械的強度との効果を両立することができる。   By adopting the composition containing the components (A) to (D), the heat dissipation property of the cured product can be considerably increased, and the mechanical strength of the cured product can be increased. For example, by using (A) a thermosetting compound, (B) a thermosetting agent, (C) a boron nitride nanotube, and (D) an insulating filler, compared with the case where these are not used together. The heat dissipation and mechanical strength are effectively increased. In the present invention, it is possible to achieve both the effects of high heat dissipation and high mechanical strength, which have been difficult to achieve in the past.

上記のような効果が得られるのは、(D)絶縁性フィラー間に(C)窒化ホウ素ナノチューブを配置することができ、更に、(D)絶縁性フィラーを(C)窒化ホウ素ナノチューブを介して他の(D)絶縁性フィラーに間接的に接するようにすることができるためであると考えられる。   The effects as described above can be obtained because (D) the boron nitride nanotubes can be arranged between the (D) insulating fillers, and (D) the insulating fillers can be placed via the (C) boron nitride nanotubes. It is thought that it is because it can be made to contact indirectly with other (D) insulating fillers.

以下、本発明に係る熱硬化性材料に含まれる成分を先ず説明する。   Hereinafter, components contained in the thermosetting material according to the present invention will be described first.

((A)熱硬化性化合物)
(A)熱硬化性化合物としては、スチレン化合物、フェノキシ化合物、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。(A)熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
((A) thermosetting compound)
(A) As thermosetting compounds, styrene compounds, phenoxy compounds, oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds and polyimide compounds Etc. (A) As for a thermosetting compound, only 1 type may be used and 2 or more types may be used together.

(A)熱硬化性化合物として、(A1)10000未満の分子量を有する熱硬化性化合物(単に、(A1)熱硬化性化合物と記載することがある)を用いてもよく、(A2)10000以上の分子量を有する熱硬化性化合物(単に、(A2)熱硬化性化合物と記載することがある)を用いてもよく、(A1)熱硬化性化合物と、(A2)熱硬化性化合物との双方を用いてもよい。   (A) As the thermosetting compound, (A1) a thermosetting compound having a molecular weight of less than 10,000 (sometimes simply referred to as (A1) thermosetting compound) may be used. (A2) 10,000 or more (A2) thermosetting compound and (A2) both thermosetting compound and a thermosetting compound having a molecular weight of (A2) may be used. May be used.

熱硬化性材料に含まれる成分のうち、溶剤、(C)窒化ホウ素ナノチューブ及び(D)絶縁性フィラーを除く成分100重量%中、(A)熱硬化性化合物の含有量は好ましくは10重量%以上、より好ましくは20重量%以上、好ましくは90重量%以下、より好ましくは80重量%以下、更に好ましくは70重量%以下、特に好ましくは60重量%以下、最も好ましくは50重量%以下である。(A)熱硬化性化合物の含有量が上記下限以上であると、硬化物の接着性及び耐熱性がより一層高くなる。(A)熱硬化性化合物の含有量が上記上限以下であると、熱硬化性材料の作製時の塗工性が高くなる。   Among the components contained in the thermosetting material, the content of the (A) thermosetting compound is preferably 10% by weight in 100% by weight of the component excluding the solvent, (C) boron nitride nanotubes and (D) insulating filler. Or more, more preferably 20% by weight or more, preferably 90% by weight or less, more preferably 80% by weight or less, still more preferably 70% by weight or less, particularly preferably 60% by weight or less, and most preferably 50% by weight or less. . (A) The adhesiveness and heat resistance of hardened | cured material become still higher that content of a thermosetting compound is more than the said minimum. (A) The coating property at the time of preparation of a thermosetting material becomes it high that content of a thermosetting compound is below the said upper limit.

熱硬化性材料に含まれる成分のうち、溶剤、(C)窒化ホウ素ナノチューブ及び(D)絶縁性フィラーを除く成分は、熱硬化性材料が溶剤を含まない場合には、(C)窒化ホウ素ナノチューブ及び(D)絶縁性フィラーを除く成分であり、熱硬化性材料が溶剤を含む場合には、溶剤、(C)窒化ホウ素ナノチューブ及び(D)絶縁性フィラーを除く成分である。   Among the components contained in the thermosetting material, the components other than the solvent, (C) boron nitride nanotube and (D) insulating filler are (C) boron nitride nanotube when the thermosetting material does not contain a solvent. And (D) a component excluding the insulating filler, and when the thermosetting material contains a solvent, it is a component excluding the solvent, (C) boron nitride nanotubes and (D) the insulating filler.

(A1)10000未満の分子量を有する熱硬化性化合物:
(A1)熱硬化性化合物としては、環状エーテル基を有する熱硬化性化合物が挙げられる。上記環状エーテル基としては、エポキシ基及びオキセタニル基等が挙げられる。上記環状エーテル基を有する熱硬化性化合物は、エポキシ基又はオキセタニル基を有する熱硬化性化合物であることが好ましい。(A1)熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(A1) Thermosetting compound having a molecular weight of less than 10,000:
(A1) As a thermosetting compound, the thermosetting compound which has a cyclic ether group is mentioned. Examples of the cyclic ether group include an epoxy group and an oxetanyl group. The thermosetting compound having a cyclic ether group is preferably a thermosetting compound having an epoxy group or an oxetanyl group. (A1) As for a thermosetting compound, only 1 type may be used and 2 or more types may be used together.

(A1)熱硬化性化合物は、(A1a)エポキシ基を有する熱硬化性化合物(単に、(A1a)熱硬化性化合物と記載することがある)を含んでいてもよく、(A1b)オキセタニル基を有する熱硬化性化合物(単に、(A1b)熱硬化性化合物と記載することがある)を含んでいてもよい。   The (A1) thermosetting compound may contain (A1a) a thermosetting compound having an epoxy group (sometimes simply referred to as (A1a) a thermosetting compound), and (A1b) an oxetanyl group. A thermosetting compound (which may be simply referred to as (A1b) thermosetting compound).

硬化物の耐熱性及び耐湿性をより一層高める観点からは、(A1)熱硬化性化合物は芳香族骨格を有することが好ましい。   From the viewpoint of further increasing the heat resistance and moisture resistance of the cured product, the (A1) thermosetting compound preferably has an aromatic skeleton.

上記芳香族骨格としては特に限定されず、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格及びビスフェノールA型骨格等が挙げられる。硬化物の耐冷熱サイクル特性及び耐熱性をより一層高める観点からは、ビフェニル骨格又はフルオレン骨格が好ましい。   The aromatic skeleton is not particularly limited, and examples thereof include naphthalene skeleton, fluorene skeleton, biphenyl skeleton, anthracene skeleton, pyrene skeleton, xanthene skeleton, adamantane skeleton, and bisphenol A skeleton. From the viewpoint of further improving the cold-heat cycle characteristics and heat resistance of the cured product, a biphenyl skeleton or a fluorene skeleton is preferable.

(A1a)熱硬化性化合物としては、ビスフェノール骨格を有するエポキシモノマー、ジシクロペンタジエン骨格を有するエポキシモノマー、ナフタレン骨格を有するエポキシモノマー、アダマンタン骨格を有するエポキシモノマー、フルオレン骨格を有するエポキシモノマー、ビフェニル骨格を有するエポキシモノマー、バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシモノマー、キサンテン骨格を有するエポキシモノマー、アントラセン骨格を有するエポキシモノマー、及びピレン骨格を有するエポキシモノマー等が挙げられる。これらの水素添加物又は変性物を用いてもよい。(A1a)熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。   (A1a) The thermosetting compound includes an epoxy monomer having a bisphenol skeleton, an epoxy monomer having a dicyclopentadiene skeleton, an epoxy monomer having a naphthalene skeleton, an epoxy monomer having an adamantane skeleton, an epoxy monomer having a fluorene skeleton, and a biphenyl skeleton. Epoxy monomers having a bi (glycidyloxyphenyl) methane skeleton, epoxy monomers having a xanthene skeleton, epoxy monomers having an anthracene skeleton, and epoxy monomers having a pyrene skeleton. These hydrogenated products or modified products may be used. (A1a) As for a thermosetting compound, only 1 type may be used and 2 or more types may be used together.

上記ビスフェノール骨格を有するエポキシモノマーとしては、例えば、ビスフェノールA型、ビスフェノールF型又はビスフェノールS型のビスフェノール骨格を有するエポキシモノマー等が挙げられる。   Examples of the epoxy monomer having a bisphenol skeleton include an epoxy monomer having a bisphenol A type, bisphenol F type, or bisphenol S type bisphenol skeleton.

上記ジシクロペンタジエン骨格を有するエポキシモノマーとしては、ジシクロペンタジエンジオキシド、及びジシクロペンタジエン骨格を有するフェノールノボラックエポキシモノマー等が挙げられる。   Examples of the epoxy monomer having a dicyclopentadiene skeleton include dicyclopentadiene dioxide and a phenol novolac epoxy monomer having a dicyclopentadiene skeleton.

上記ナフタレン骨格を有するエポキシモノマーとしては、1−グリシジルナフタレン、2−グリシジルナフタレン、1,2−ジグリシジルナフタレン、1,5−ジグリシジルナフタレン、1,6−ジグリシジルナフタレン、1,7−ジグリシジルナフタレン、2,7−ジグリシジルナフタレン、トリグリシジルナフタレン、及び1,2,5,6−テトラグリシジルナフタレン等が挙げられる。   Examples of the epoxy monomer having a naphthalene skeleton include 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1,7-diglycidyl. Naphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene, 1,2,5,6-tetraglycidylnaphthalene and the like can be mentioned.

上記アダマンタン骨格を有するエポキシモノマーとしては、1,3−ビス(4−グリシジルオキシフェニル)アダマンタン、及び2,2−ビス(4−グリシジルオキシフェニル)アダマンタン等が挙げられる。   Examples of the epoxy monomer having an adamantane skeleton include 1,3-bis (4-glycidyloxyphenyl) adamantane and 2,2-bis (4-glycidyloxyphenyl) adamantane.

上記フルオレン骨格を有するエポキシモノマーとしては、9,9−ビス(4−グリシジルオキシフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3−クロロフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3−ブロモフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3−フルオロフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3−メトキシフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3,5−ジクロロフェニル)フルオレン、及び9,9−ビス(4−グリシジルオキシ−3,5−ジブロモフェニル)フルオレン等が挙げられる。   Examples of the epoxy monomer having a fluorene skeleton include 9,9-bis (4-glycidyloxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3-methylphenyl) fluorene, and 9,9-bis (4- Glycidyloxy-3-chlorophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-bromophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-fluorophenyl) fluorene, 9,9-bis (4-Glycidyloxy-3-methoxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dichlorophenyl) Fluorene and 9,9-bis (4-glycidyloxy-3,5-dibromophenyl) Fluorene, and the like.

上記ビフェニル骨格を有するエポキシモノマーとしては、4,4’−ジグリシジルビフェニル、及び4,4’−ジグリシジル−3,3’,5,5’−テトラメチルビフェニル等が挙げられる。   Examples of the epoxy monomer having a biphenyl skeleton include 4,4'-diglycidylbiphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethylbiphenyl.

上記バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシモノマーとしては、1,1’−バイ(2,7−グリシジルオキシナフチル)メタン、1,8’−バイ(2,7−グリシジルオキシナフチル)メタン、1,1’−バイ(3,7−グリシジルオキシナフチル)メタン、1,8’−バイ(3,7−グリシジルオキシナフチル)メタン、1,1’−バイ(3,5−グリシジルオキシナフチル)メタン、1,8’−バイ(3,5−グリシジルオキシナフチル)メタン、1,2’−バイ(2,7−グリシジルオキシナフチル)メタン、1,2’−バイ(3,7−グリシジルオキシナフチル)メタン、及び1,2’−バイ(3,5−グリシジルオキシナフチル)メタン等が挙げられる。   Examples of the epoxy monomer having a bi (glycidyloxyphenyl) methane skeleton include 1,1′-bi (2,7-glycidyloxynaphthyl) methane, 1,8′-bi (2,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,7-glycidyloxynaphthyl) methane, 1,8′-bi (3,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,5-glycidyloxynaphthyl) methane 1,8'-bi (3,5-glycidyloxynaphthyl) methane, 1,2'-bi (2,7-glycidyloxynaphthyl) methane, 1,2'-bi (3,7-glycidyloxynaphthyl) Examples include methane and 1,2′-bi (3,5-glycidyloxynaphthyl) methane.

上記キサンテン骨格を有するエポキシモノマーとしては、1,3,4,5,6,8−ヘキサメチル−2,7−ビス−オキシラニルメトキシ−9−フェニル−9H−キサンテン等が挙げられる。   Examples of the epoxy monomer having a xanthene skeleton include 1,3,4,5,6,8-hexamethyl-2,7-bis-oxiranylmethoxy-9-phenyl-9H-xanthene.

(A1b)熱硬化性化合物の具体例としては、例えば、4,4’−ビス[(3−エチル−3−オキセタニル)メトキシメチル]ビフェニル、1,4−ベンゼンジカルボン酸ビス[(3−エチル−3−オキセタニル)メチル]エステル、1,4−ビス[(3−エチル−3−オキセタニル)メトキシメチル]ベンゼン、及びオキセタン変性フェノールノボラック等が挙げられる。(A1b)熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。   Specific examples of the (A1b) thermosetting compound include, for example, 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, 1,4-benzenedicarboxylic acid bis [(3-ethyl- 3-oxetanyl) methyl] ester, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, oxetane-modified phenol novolak, and the like. (A1b) Only 1 type may be used for a thermosetting compound and 2 or more types may be used together.

硬化物の耐熱性をより一層良好にする観点からは、(A1)熱硬化性化合物は、環状エーテル基を2個以上有する熱硬化性化合物を含むことが好ましい。   From the viewpoint of further improving the heat resistance of the cured product, the (A1) thermosetting compound preferably includes a thermosetting compound having two or more cyclic ether groups.

硬化物の耐熱性をより一層良好にする観点からは、(A1)熱硬化性化合物100重量%中、環状エーテル基を2個以上有する熱硬化性化合物の含有量は、好ましくは70重量%以上、より好ましくは80重量%以上、100重量%以下である。(A1)熱硬化性化合物100重量%中、環状エーテル基を2個以上有する熱硬化性化合物の含有量は10重量%以上、100重量%以下であってもよい。また、(A1)熱硬化性化合物の全体が、環状エーテル基を2個以上有する熱硬化性化合物であってもよい。   From the viewpoint of further improving the heat resistance of the cured product, the content of the thermosetting compound having two or more cyclic ether groups is preferably 70% by weight or more in 100% by weight of the (A1) thermosetting compound. More preferably, it is 80% by weight or more and 100% by weight or less. (A1) In 100% by weight of the thermosetting compound, the content of the thermosetting compound having two or more cyclic ether groups may be 10% by weight or more and 100% by weight or less. Further, the whole (A1) thermosetting compound may be a thermosetting compound having two or more cyclic ether groups.

(A1)熱硬化性化合物の分子量は、10000未満である。(A1)熱硬化性化合物の分子量は、好ましくは200以上、好ましくは1200以下、より好ましくは600以下、更に好ましくは550以下である。(A1)熱硬化性化合物の分子量が上記下限以上であると、硬化物の表面の粘着性が低くなり、硬化性組成物の取扱性がより一層高くなる。(A1)熱硬化性化合物の分子量が上記上限以下であると、硬化物の接着性がより一層高くなる。さらに、硬化物が固くかつ脆くなり難く、硬化物の接着性がより一層高くなる。   (A1) The molecular weight of the thermosetting compound is less than 10,000. (A1) The molecular weight of the thermosetting compound is preferably 200 or more, preferably 1200 or less, more preferably 600 or less, and still more preferably 550 or less. (A1) When the molecular weight of the thermosetting compound is equal to or more than the above lower limit, the adhesiveness of the surface of the cured product is lowered, and the handleability of the curable composition is further enhanced. (A1) When the molecular weight of the thermosetting compound is not more than the above upper limit, the adhesiveness of the cured product is further enhanced. Furthermore, the cured product is hard and hard to be brittle, and the adhesiveness of the cured product is further enhanced.

なお、本明細書において、(A1)熱硬化性化合物における分子量とは、(A1)熱硬化性化合物が重合体ではない場合、及び(A1)熱硬化性化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味し、(A1)熱硬化性化合物が重合体である場合は、重量平均分子量を意味する。   In this specification, (A1) the molecular weight of the thermosetting compound is (A1) when the thermosetting compound is not a polymer, and (A1) when the structural formula of the thermosetting compound can be specified. It means the molecular weight that can be calculated from the structural formula. When the thermosetting compound (A1) is a polymer, it means the weight average molecular weight.

熱硬化性材料に含まれる成分のうち、溶剤、(C)窒化ホウ素ナノチューブ及び(D)絶縁性フィラーを除く成分100重量%中、(A1)熱硬化性化合物の含有量は好ましくは10重量%以上、より好ましくは20重量%以上、好ましくは90重量%以下、より好ましくは80重量%以下、更に好ましくは70重量%以下、特に好ましくは60重量%以下、最も好ましくは50重量%以下である。(A1)熱硬化性化合物の含有量が上記下限以上であると、硬化物の接着性及び耐熱性がより一層高くなる。(A1)熱硬化性化合物の含有量が上記上限以下であると、熱硬化性材料の作製時の塗工性が高くなる。   Of the components contained in the thermosetting material, the content of (A1) thermosetting compound is preferably 10% by weight in 100% by weight of the component excluding the solvent, (C) boron nitride nanotubes and (D) insulating filler. Or more, more preferably 20% by weight or more, preferably 90% by weight or less, more preferably 80% by weight or less, still more preferably 70% by weight or less, particularly preferably 60% by weight or less, and most preferably 50% by weight or less. . (A1) When the content of the thermosetting compound is not less than the above lower limit, the adhesiveness and heat resistance of the cured product are further enhanced. (A1) The coating property at the time of preparation of a thermosetting material becomes it high that content of a thermosetting compound is below the said upper limit.

(A2)10000以上の分子量を有する熱硬化性化合物:
(A2)熱硬化性化合物は、分子量が10000以上である熱硬化性化合物である。(A2)熱硬化性化合物の分子量は10000以上であるので、(A2)熱硬化性化合物は一般にポリマーであり、上記分子量は、一般に重量平均分子量を意味する。
(A2) Thermosetting compound having a molecular weight of 10,000 or more:
(A2) The thermosetting compound is a thermosetting compound having a molecular weight of 10,000 or more. Since the molecular weight of the (A2) thermosetting compound is 10,000 or more, the (A2) thermosetting compound is generally a polymer, and the above molecular weight generally means a weight average molecular weight.

硬化物の耐熱性及び耐湿性をより一層高める観点からは、(A2)熱硬化性化合物は、芳香族骨格を有することが好ましい。(A2)熱硬化性化合物がポリマーであり、(A2)熱硬化性化合物が芳香族骨格を有する場合には、(A2)熱硬化性化合物は、芳香族骨格をポリマー全体のいずれかの部分に有していればよく、主鎖骨格内に有していてもよく、側鎖中に有していてもよい。硬化物の耐熱性をより一層高くし、かつ硬化物の耐湿性をより一層高くする観点からは、(A2)熱硬化性化合物は、芳香族骨格を主鎖骨格内に有することが好ましい。(A2)熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。   From the viewpoint of further improving the heat resistance and moisture resistance of the cured product, the (A2) thermosetting compound preferably has an aromatic skeleton. (A2) When the thermosetting compound is a polymer and (A2) the thermosetting compound has an aromatic skeleton, (A2) the thermosetting compound has an aromatic skeleton in any part of the whole polymer. What is necessary is just to have, it may have in the main chain frame | skeleton, and you may have in a side chain. From the viewpoint of further increasing the heat resistance of the cured product and further increasing the moisture resistance of the cured product, the (A2) thermosetting compound preferably has an aromatic skeleton in the main chain skeleton. (A2) As for a thermosetting compound, only 1 type may be used and 2 or more types may be used together.

上記芳香族骨格としては特に限定されず、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格及びビスフェノールA型骨格等が挙げられる。ビフェニル骨格又はフルオレン骨格が好ましい。この場合には、硬化物の耐冷熱サイクル特性及び耐熱性がより一層高くなる。   The aromatic skeleton is not particularly limited, and examples thereof include naphthalene skeleton, fluorene skeleton, biphenyl skeleton, anthracene skeleton, pyrene skeleton, xanthene skeleton, adamantane skeleton, and bisphenol A skeleton. A biphenyl skeleton or a fluorene skeleton is preferred. In this case, the thermal cycle resistance and heat resistance of the cured product are further enhanced.

(A2)熱硬化性化合物としては特に限定されず、スチレン樹脂、フェノキシ樹脂、オキセタン樹脂、エポキシ樹脂、エピスルフィド化合物、(メタ)アクリル樹脂、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂及びポリイミド樹脂等が挙げられる。   (A2) The thermosetting compound is not particularly limited. Styrene resin, phenoxy resin, oxetane resin, epoxy resin, episulfide compound, (meth) acrylic resin, phenol resin, amino resin, unsaturated polyester resin, polyurethane resin, silicone Examples thereof include resins and polyimide resins.

硬化物の酸化劣化を抑え、硬化物の耐冷熱サイクル特性及び耐熱性をより一層高め、更に硬化物の吸水率をより一層低くする観点からは、(A2)熱硬化性化合物は、スチレン樹脂、フェノキシ樹脂又はエポキシ樹脂であることが好ましく、フェノキシ樹脂又はエポキシ樹脂であることがより好ましく、フェノキシ樹脂であることが更に好ましい。特に、フェノキシ樹脂又はエポキシ樹脂の使用により、硬化物の耐熱性がより一層高くなる。また、フェノキシ樹脂の使用により、硬化物の弾性率がより一層低くなり、かつ硬化物の耐冷熱サイクル特性がより一層高くなる。なお、(A2)熱硬化性化合物は、エポキシ基などの環状エーテル基を有していなくてもよい。   From the viewpoint of suppressing the oxidative degradation of the cured product, further improving the heat cycle resistance and heat resistance of the cured product, and further reducing the water absorption of the cured product, (A2) the thermosetting compound is a styrene resin, It is preferably a phenoxy resin or an epoxy resin, more preferably a phenoxy resin or an epoxy resin, and further preferably a phenoxy resin. In particular, use of a phenoxy resin or an epoxy resin further increases the heat resistance of the cured product. Moreover, use of a phenoxy resin further lowers the elastic modulus of the cured product and further improves the cold-heat cycle characteristics of the cured product. In addition, the (A2) thermosetting compound does not need to have cyclic ether groups, such as an epoxy group.

上記スチレン樹脂として、具体的には、スチレン系モノマーの単独重合体、及びスチレン系モノマーとアクリル系モノマーとの共重合体等が使用可能である。スチレン−メタクリル酸グリシジルの構造を有するスチレン重合体が好ましい。   As the styrene resin, specifically, a homopolymer of a styrene monomer, a copolymer of a styrene monomer and an acrylic monomer, or the like can be used. Styrene polymers having a styrene-glycidyl methacrylate structure are preferred.

上記スチレン系モノマーとしては、例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−フェニルスチレン、p−クロロスチレン、p−エチルスチレン、p−n−ブチルスチレン、p−tert−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、2,4−ジメチルスチレン及び3,4−ジクロロスチレン等が挙げられる。   Examples of the styrene monomer include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, p-ethylstyrene, and pn-. Butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, 2,4-dimethyl Examples include styrene and 3,4-dichlorostyrene.

上記フェノキシ樹脂は、具体的には、例えばエピハロヒドリンと2価のフェノール化合物とを反応させて得られる樹脂、又は2価のエポキシ化合物と2価のフェノール化合物とを反応させて得られる樹脂である。   Specifically, the phenoxy resin is, for example, a resin obtained by reacting an epihalohydrin with a divalent phenol compound, or a resin obtained by reacting a divalent epoxy compound with a divalent phenol compound.

上記フェノキシ樹脂は、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格又はジシクロペンタジエン骨格を有することが好ましい。上記フェノキシ樹脂は、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、フルオレン骨格又はビフェニル骨格を有することがより好ましく、フルオレン骨格及びビフェニル骨格の内の少なくとも1種の骨格を有することが更に好ましい。これらの好ましい骨格を有するフェノキシ樹脂の使用により、硬化物の耐熱性が更に一層高くなる。   The phenoxy resin has a bisphenol A skeleton, bisphenol F skeleton, bisphenol A / F mixed skeleton, naphthalene skeleton, fluorene skeleton, biphenyl skeleton, anthracene skeleton, pyrene skeleton, xanthene skeleton, adamantane skeleton or dicyclopentadiene skeleton. It is preferable. More preferably, the phenoxy resin has a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol A / F mixed skeleton, a naphthalene skeleton, a fluorene skeleton, or a biphenyl skeleton, and at least one of the fluorene skeleton and the biphenyl skeleton. More preferably, it has a skeleton. Use of the phenoxy resin having these preferable skeletons further increases the heat resistance of the cured product.

上記エポキシ樹脂は、上記フェノキシ樹脂以外のエポキシ樹脂である。上記エポキシ樹脂としては、スチレン骨格含有エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が挙げられる。   The epoxy resin is an epoxy resin other than the phenoxy resin. Examples of the epoxy resins include styrene skeleton-containing epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, biphenol type epoxy resins, naphthalene type epoxy resins, and fluorene type epoxy resins. , Phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, anthracene type epoxy resin, epoxy resin having adamantane skeleton, epoxy resin having tricyclodecane skeleton, and epoxy resin having triazine nucleus in skeleton Etc.

(A2)熱硬化性化合物の分子量は10000以上である。(A2)熱硬化性化合物の分子量は、好ましくは30000以上、より好ましくは40000以上、好ましくは1000000以下、より好ましくは250000以下である。(A2)熱硬化性化合物の分子量が上記下限以上であると、硬化物が熱劣化し難い。(A2)熱硬化性化合物の分子量が上記上限以下であると、(A2)熱硬化性化合物と他の成分との相溶性が高くなる。この結果、硬化物の耐熱性がより一層高くなる。   (A2) The molecular weight of the thermosetting compound is 10,000 or more. (A2) The molecular weight of the thermosetting compound is preferably 30000 or more, more preferably 40000 or more, preferably 1000000 or less, more preferably 250,000 or less. (A2) When the molecular weight of the thermosetting compound is not less than the above lower limit, the cured product is hardly thermally deteriorated. When the molecular weight of the (A2) thermosetting compound is not more than the above upper limit, the compatibility between the (A2) thermosetting compound and other components is increased. As a result, the heat resistance of the cured product is further increased.

熱硬化性材料に含まれる成分のうち、溶剤、(C)窒化ホウ素ナノチューブ及び(D)絶縁性フィラーを除く成分100重量%中、(A2)熱硬化性化合物の含有量は好ましくは20重量%以上、より好ましくは30重量%以上、好ましくは60重量%以下、より好ましくは50重量%以下である。(A2)熱硬化性化合物の含有量が上記下限以上であると、熱硬化性材料の取扱性が良好になる。(A2)熱硬化性化合物の含有量が上記上限以下であると、(C)窒化ホウ素ナノチューブ及び(D)絶縁性フィラーの分散が容易になる。   Of the components contained in the thermosetting material, the content of the (A2) thermosetting compound is preferably 20% by weight in 100% by weight of the component excluding the solvent, (C) boron nitride nanotube and (D) insulating filler. Above, more preferably 30% by weight or more, preferably 60% by weight or less, more preferably 50% by weight or less. (A2) When the content of the thermosetting compound is not less than the above lower limit, the handleability of the thermosetting material is improved. When the content of (A2) thermosetting compound is not more than the above upper limit, dispersion of (C) boron nitride nanotubes and (D) insulating filler is facilitated.

((B)熱硬化剤)
(B)熱硬化剤は特に限定されない。(B)熱硬化剤として、(A)熱硬化性化合物を硬化させることができる適宜の熱硬化剤を用いることができる。また、本明細書において、(B)熱硬化剤には、硬化触媒が含まれる。(B)熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
((B) thermosetting agent)
(B) The thermosetting agent is not particularly limited. As the (B) thermosetting agent, an appropriate thermosetting agent capable of curing the (A) thermosetting compound can be used. In the present specification, the thermosetting agent (B) includes a curing catalyst. (B) As for a thermosetting agent, only 1 type may be used and 2 or more types may be used together.

硬化物の耐熱性をより一層高める観点からは、(B)熱硬化剤は、芳香族骨格又は脂環式骨格を有することが好ましい。(B)熱硬化剤は、アミン硬化剤(アミン化合物)、イミダゾール硬化剤、フェノール硬化剤(フェノール化合物)又は酸無水物硬化剤(酸無水物)を含むことが好ましく、アミン硬化剤を含むことがより好ましい。上記酸無水物硬化剤は、芳香族骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物を含むか、又は、脂環式骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物を含むことが好ましい。   From the viewpoint of further increasing the heat resistance of the cured product, the (B) thermosetting agent preferably has an aromatic skeleton or an alicyclic skeleton. (B) The thermosetting agent preferably includes an amine curing agent (amine compound), an imidazole curing agent, a phenol curing agent (phenol compound) or an acid anhydride curing agent (acid anhydride), and includes an amine curing agent. Is more preferable. The acid anhydride curing agent includes an acid anhydride having an aromatic skeleton, a water additive of the acid anhydride or a modified product of the acid anhydride, or an acid anhydride having an alicyclic skeleton, It is preferable to include a water additive of an acid anhydride or a modified product of the acid anhydride.

上記アミン硬化剤としては、ジシアンジアミド、イミダゾール化合物、ジアミノジフェニルメタン及びジアミノジフェニルスルフォン等が挙げられる。硬化物の接着性をより一層高める観点からは、上記アミン硬化剤は、ジシアンジアミド又はイミダゾール化合物であることがより一層好ましい。硬化性組成物の貯蔵安定性をより一層高める観点からは、(B)熱硬化剤は、融点が180℃以上である硬化剤を含むことが好ましく、融点が180℃以上であるアミン硬化剤を含むことがより好ましい。   Examples of the amine curing agent include dicyandiamide, imidazole compounds, diaminodiphenylmethane, and diaminodiphenylsulfone. From the viewpoint of further improving the adhesiveness of the cured product, the amine curing agent is more preferably a dicyandiamide or an imidazole compound. From the viewpoint of further improving the storage stability of the curable composition, the (B) thermosetting agent preferably contains a curing agent having a melting point of 180 ° C. or higher, and an amine curing agent having a melting point of 180 ° C. or higher. More preferably.

上記イミダゾール硬化剤としては、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1,2−ジメチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−メチルイミダゾールイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール及び2−フェニル−4−メチル−5−ジヒドロキシメチルイミダゾール等が挙げられる。   Examples of the imidazole curing agent include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl. 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2- Undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 '-Methyl Midazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6 [2′-Ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine Isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-dihydroxymethylimidazole Can be mentioned.

上記フェノール硬化剤としては、フェノールノボラック、o−クレゾールノボラック、p−クレゾールノボラック、t−ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、ビスフェノールA型ノボラック、キシリレン変性ノボラック、デカリン変性ノボラック、ポリ(ジ−o−ヒドロキシフェニル)メタン、ポリ(ジ−m−ヒドロキシフェニル)メタン、及びポリ(ジ−p−ヒドロキシフェニル)メタン等が挙げられる。硬化物の柔軟性及び硬化物の難燃性をより一層高める観点からは、メラミン骨格を有するフェノール樹脂、トリアジン骨格を有するフェノール樹脂、又はアリル基を有するフェノール樹脂が好ましい。   Examples of the phenol curing agent include phenol novolak, o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiene cresol, polyparavinylphenol, bisphenol A type novolak, xylylene modified novolak, decalin modified novolak, poly ( And di-o-hydroxyphenyl) methane, poly (di-m-hydroxyphenyl) methane, and poly (di-p-hydroxyphenyl) methane. From the viewpoint of further enhancing the flexibility of the cured product and the flame retardancy of the cured product, a phenol resin having a melamine skeleton, a phenol resin having a triazine skeleton, or a phenol resin having an allyl group is preferable.

上記フェノール硬化剤の市販品としては、MEH−8005、MEH−8010及びMEH−8015(以上いずれも明和化成社製)、YLH903(三菱化学社製)、LA−7052、LA−7054、LA−7751、LA−1356及びLA−3018−50P(以上いずれもDIC社製)、並びにPS6313及びPS6492(以上いずれも群栄化学社製)等が挙げられる。   Commercially available products of the phenol curing agent include MEH-8005, MEH-8010, and MEH-8015 (all of which are manufactured by Meiwa Kasei Co., Ltd.), YLH903 (manufactured by Mitsubishi Chemical Corporation), LA-7052, LA-7054, and LA-7751. LA-1356 and LA-3018-50P (all of which are manufactured by DIC Corporation), PS6313 and PS6492 (all of which are manufactured by Gunei Chemical Co., Ltd.), and the like.

上記芳香族骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物としては、例えば、スチレン/無水マレイン酸コポリマー、ベンゾフェノンテトラカルボン酸無水物、ピロメリット酸無水物、トリメリット酸無水物、4,4’−オキシジフタル酸無水物、フェニルエチニルフタル酸無水物、グリセロールビス(アンヒドロトリメリテート)モノアセテート、エチレングリコールビス(アンヒドロトリメリテート)、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、及びトリアルキルテトラヒドロ無水フタル酸等が挙げられる。   Examples of the acid anhydride having an aromatic skeleton, a water additive of the acid anhydride, or a modified product of the acid anhydride include, for example, a styrene / maleic anhydride copolymer, a benzophenone tetracarboxylic acid anhydride, and a pyromellitic acid anhydride. , Trimellitic anhydride, 4,4'-oxydiphthalic anhydride, phenylethynyl phthalic anhydride, glycerol bis (anhydrotrimellitate) monoacetate, ethylene glycol bis (anhydrotrimellitate), methyltetrahydroanhydride Examples include phthalic acid, methylhexahydrophthalic anhydride, and trialkyltetrahydrophthalic anhydride.

上記芳香族骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物の市販品としては、SMAレジンEF30、SMAレジンEF40、SMAレジンEF60及びSMAレジンEF80(以上いずれもサートマー・ジャパン社製)、ODPA−M及びPEPA(以上いずれもマナック社製)、リカシッドMTA−10、リカシッドMTA−15、リカシッドTMTA、リカシッドTMEG−100、リカシッドTMEG−200、リカシッドTMEG−300、リカシッドTMEG−500、リカシッドTMEG−S、リカシッドTH、リカシッドHT−1A、リカシッドHH、リカシッドMH−700、リカシッドMT−500、リカシッドDSDA及びリカシッドTDA−100(以上いずれも新日本理化社製)、並びにEPICLON B4400、EPICLON B650、及びEPICLON B570(以上いずれもDIC社製)等が挙げられる。   Examples of commercially available acid anhydrides having an aromatic skeleton, water additives of the acid anhydrides, or modified products of the acid anhydrides include SMA Resin EF30, SMA Resin EF40, SMA Resin EF60, and SMA Resin EF80 (any of the above Also manufactured by Sartomer Japan), ODPA-M and PEPA (all manufactured by Manac), Ricacid MTA-10, Ricacid MTA-15, Ricacid TMTA, Ricacid TMEG-100, Ricacid TMEG-200, Ricacid TMEG-300, Ricacid TMEG-500, Ricacid TMEG-S, Ricacid TH, Ricacid HT-1A, Ricacid HH, Ricacid MH-700, Ricacid MT-500, Ricacid DSDA and Ricacid TDA-100 (all of which are manufactured by Shin Nippon Rika Co., Ltd.) PICLON B4400, EPICLON B650, and EPICLON B570 (all manufactured by both DIC Corporation).

上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物は、多脂環式骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物、又はテルペン系化合物と無水マレイン酸との付加反応により得られる脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物であることが好ましい。これらの硬化剤の使用により、硬化物の柔軟性、並びに硬化物の耐湿性及び接着性がより一層高くなる。   The acid anhydride having an alicyclic skeleton, a water additive of the acid anhydride, or a modified product of the acid anhydride is an acid anhydride having a polyalicyclic skeleton, a water additive of the acid anhydride, or the A modified product of an acid anhydride, or an acid anhydride having an alicyclic skeleton obtained by addition reaction of a terpene compound and maleic anhydride, a water additive of the acid anhydride, or a modified product of the acid anhydride It is preferable. By using these curing agents, the flexibility of the cured product and the moisture resistance and adhesion of the cured product are further increased.

上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物としては、メチルナジック酸無水物、ジシクロペンタジエン骨格を有する酸無水物又は該酸無水物の変性物等も挙げられる。   Examples of the acid anhydride having an alicyclic skeleton, a water addition of the acid anhydride, or a modified product of the acid anhydride include methyl nadic acid anhydride, acid anhydride having a dicyclopentadiene skeleton, and the acid anhydride And the like.

上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物の市販品としては、リカシッドHNA及びリカシッドHNA−100(以上いずれも新日本理化社製)、並びにエピキュアYH306、エピキュアYH307、エピキュアYH308H及びエピキュアYH309(以上いずれも三菱化学社製)等が挙げられる。   Examples of commercially available acid anhydrides having the alicyclic skeleton, water additions of the acid anhydrides, or modified products of the acid anhydrides include Ricacid HNA and Ricacid HNA-100 (all of which are manufactured by Shin Nippon Rika Co., Ltd.) , And EpiCure YH306, EpiCure YH307, EpiCure YH308H, EpiCure YH309 (all of which are manufactured by Mitsubishi Chemical Corporation) and the like.

(B)熱硬化剤は、メチルナジック酸無水物又はトリアルキルテトラヒドロ無水フタル酸であることも好ましい。メチルナジック酸無水物又はトリアルキルテトラヒドロ無水フタル酸の使用により、硬化物の耐水性が高くなる。   (B) It is also preferred that the thermosetting agent is methyl nadic acid anhydride or trialkyltetrahydrophthalic anhydride. Use of methyl nadic anhydride or trialkyltetrahydrophthalic anhydride increases the water resistance of the cured product.

熱硬化性材料に含まれる成分のうち、溶剤、(C)窒化ホウ素ナノチューブ及び(D)絶縁性フィラーを除く成分100重量%中、(B)熱硬化剤の含有量は好ましくは0.1重量%以上、より好ましくは1重量%以上、好ましくは40重量%以下、より好ましくは25重量%以下である。(B)熱硬化剤の含有量が上記下限以上であると、熱硬化性材料を充分に硬化させることが容易である。(B)熱硬化剤の含有量が上記上限以下であると、硬化に関与しない余剰な(B)熱硬化剤が発生し難くなる。このため、硬化物の耐熱性及び接着性がより一層高くなる。   Among the components contained in the thermosetting material, the content of the (B) thermosetting agent is preferably 0.1% in 100% by weight of the component excluding the solvent, (C) boron nitride nanotubes and (D) insulating filler. % Or more, more preferably 1% by weight or more, preferably 40% by weight or less, more preferably 25% by weight or less. (B) It is easy to fully harden a thermosetting material as content of a thermosetting agent is more than the said minimum. (B) When content of a thermosetting agent is below the said upper limit, the excess (B) thermosetting agent which does not participate in hardening becomes difficult to generate | occur | produce. For this reason, the heat resistance and adhesiveness of hardened | cured material become still higher.

((C)窒化ホウ素ナノチューブ)
(C)窒化ホウ素ナノチューブは、上述したX線回折分析における特定の半値幅を満足する窒化ホウ素ナノチューブである。
((C) Boron nitride nanotube)
(C) The boron nitride nanotube is a boron nitride nanotube that satisfies a specific half width in the X-ray diffraction analysis described above.

放熱性及び機械的強度を効果的に高める観点からは、上記窒化ホウ素ナノチューブの平均長さの、(D)絶縁性フィラーの平均粒子径に対する比は、好ましくは0.01以上、より好ましくは0.2以上、好ましくは200以下、より好ましくは10以下である。   From the viewpoint of effectively increasing heat dissipation and mechanical strength, the ratio of the average length of the boron nitride nanotubes to the average particle diameter of the (D) insulating filler is preferably 0.01 or more, more preferably 0. .2 or more, preferably 200 or less, more preferably 10 or less.

熱硬化性材料に含まれる成分のうち、溶剤を除く成分100体積%中、及び硬化物100体積%中、(C)窒化ホウ素ナノチューブの含有量は好ましくは0.1体積%以上、より好ましくは1体積%以上、好ましくは40体積%以下、より好ましくは20体積%以下である。(C)窒化ホウ素ナノチューブの含有量が上記下限以上であると、放熱性及び機械的強度が効果的に高くなる。(C)窒化ホウ素ナノチューブの含有量が上記上限以下であると、熱硬化性材料を充分に硬化させることが容易である。(C)窒化ホウ素ナノチューブの含有量が上記上限以下であると、硬化物による熱伝導率及び接着性がより一層高くなる。   Among the components contained in the thermosetting material, the content of (C) boron nitride nanotubes is preferably 0.1% by volume or more, more preferably in 100% by volume of components excluding the solvent and in 100% by volume of the cured product. 1 vol% or more, preferably 40 vol% or less, more preferably 20 vol% or less. (C) When the content of boron nitride nanotubes is not less than the above lower limit, the heat dissipation and mechanical strength are effectively increased. (C) It is easy to fully harden a thermosetting material as content of a boron nitride nanotube is below the said upper limit. (C) When the content of boron nitride nanotubes is not more than the above upper limit, the thermal conductivity and adhesiveness of the cured product are further increased.

熱硬化性材料に含まれる成分のうち、溶剤を除く成分は、熱硬化性材料が溶剤を含まない場合には、熱硬化性材料であり、熱硬化性材料が溶剤を含む場合には、溶剤を除く成分である。   Among the components contained in the thermosetting material, the components excluding the solvent are thermosetting materials when the thermosetting material does not contain a solvent, and the solvents when the thermosetting material contains a solvent. It is a component excluding

放熱性及び機械的強度を効果的に高める観点からは、熱硬化性材料100体積%中での(C)窒化ホウ素ナノチューブの含有量の、熱硬化性材料100体積%中での(D)絶縁性フィラーの含有量に対する比は、好ましくは0.001以上、より好ましくは0.02以上、好ましくは1.6以下、より好ましくは1.0以下である。   From the viewpoint of effectively increasing heat dissipation and mechanical strength, (D) insulation in 100% by volume of the thermosetting material with the content of (C) boron nitride nanotube in 100% by volume of the thermosetting material. The ratio to the content of the functional filler is preferably 0.001 or more, more preferably 0.02 or more, preferably 1.6 or less, more preferably 1.0 or less.

((D)ナノチューブではない絶縁性フィラー)
(D)絶縁性フィラーは絶縁性を有する。(D)絶縁性フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。放熱性を効果的に高める観点からは、(D)絶縁性フィラーは、無機フィラーであることが好ましい。放熱性を効果的に高める観点から、(D)絶縁性フィラーは、10W/m・K以上の熱伝導率を有することが好ましい。(D)絶縁性フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。なお、絶縁性とは、フィラーの体積抵抗率が10Ω・cm以上であることを意味する。
((D) Insulating filler that is not a nanotube)
(D) The insulating filler has insulating properties. (D) The insulating filler may be an organic filler or an inorganic filler. From the viewpoint of effectively improving heat dissipation, the (D) insulating filler is preferably an inorganic filler. From the viewpoint of effectively improving heat dissipation, the (D) insulating filler preferably has a thermal conductivity of 10 W / m · K or more. (D) As for an insulating filler, only 1 type may be used and 2 or more types may be used together. Insulation means that the volume resistivity of the filler is 10 6 Ω · cm or more.

硬化物の放熱性をより一層高める観点からは、(D)絶縁性フィラーの熱伝導率は好ましくは10W/m・K以上、より好ましくは15W/m・K以上、更に好ましくは20W/m・K以上である。(D)絶縁性フィラーの熱伝導率の上限は特に限定されない。熱伝導率が300W/m・K程度である無機フィラーは広く知られており、また熱伝導率が200W/m・K程度である無機フィラーは容易に入手できる。   From the viewpoint of further improving the heat dissipation of the cured product, the thermal conductivity of the (D) insulating filler is preferably 10 W / m · K or more, more preferably 15 W / m · K or more, and even more preferably 20 W / m ·. K or more. (D) The upper limit of the thermal conductivity of the insulating filler is not particularly limited. Inorganic fillers having a thermal conductivity of about 300 W / m · K are widely known, and inorganic fillers having a thermal conductivity of about 200 W / m · K are easily available.

(D)絶縁性フィラーの材質は、アルミナ、合成マグネサイト、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛又は酸化マグネシウムであることが好ましく、アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛又は酸化マグネシウムであることがより好ましい。これらの好ましい絶縁性フィラーの使用により、硬化物の放熱性がより一層高くなる。   (D) The material of the insulating filler is preferably alumina, synthetic magnesite, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide or magnesium oxide, alumina, boron nitride, aluminum nitride, silicon nitride, More preferred is silicon carbide, zinc oxide or magnesium oxide. Use of these preferable insulating fillers further enhances the heat dissipation of the cured product.

(D)絶縁性フィラーは、球状粒子、又は、独立した絶縁性フィラーが凝集した球状粒子であることが好ましい。これら絶縁性フィラーの使用により、硬化物の放熱性がより一層高くなる。球状粒子のアスペクト比は、2以下である。   (D) It is preferable that an insulating filler is a spherical particle or the spherical particle which the independent insulating filler aggregated. By using these insulating fillers, the heat dissipation of the cured product is further enhanced. The aspect ratio of the spherical particles is 2 or less.

(D)絶縁性フィラーの材質の新モース硬度は、好ましくは12以下、より好ましくは9以下である。(D)絶縁性フィラーの材質の新モース硬度が9以下であると、硬化物の加工性がより一層高くなる。   (D) The new Mohs hardness of the insulating filler material is preferably 12 or less, more preferably 9 or less. (D) When the new Mohs hardness of the insulating filler material is 9 or less, the workability of the cured product is further enhanced.

硬化物の加工性をより一層高める観点からは、(D)絶縁性フィラーの材質は、合成マグネサイト、結晶シリカ、酸化亜鉛、又は酸化マグネシウムであることが好ましい。これらの無機フィラーの材質の新モース硬度は9以下である。   From the viewpoint of further improving the workability of the cured product, the material of the (D) insulating filler is preferably synthetic magnesite, crystalline silica, zinc oxide, or magnesium oxide. The new Mohs hardness of these inorganic filler materials is 9 or less.

放熱性を効果的に高める観点からは、(D)絶縁性フィラーの平均粒子径は、好ましくは1μm以上、好ましくは100μm以下である。平均粒子径が上記下限以上であると、(D)絶縁性フィラーを高密度で容易に充填できる。平均粒子径が上記上限以下であると、硬化物の耐電圧性がより一層高くなる。   From the viewpoint of effectively improving heat dissipation, the average particle diameter of the (D) insulating filler is preferably 1 μm or more, and preferably 100 μm or less. When the average particle diameter is not less than the above lower limit, (D) the insulating filler can be easily filled at a high density. When the average particle size is not more than the above upper limit, the withstand voltage of the cured product is further enhanced.

上記「平均粒子径」とは、レーザー回折式粒度分布測定装置により測定した体積平均での粒度分布測定結果から求められる平均粒子径である。   The “average particle diameter” is an average particle diameter obtained from a volume average particle size distribution measurement result measured by a laser diffraction particle size distribution measuring apparatus.

熱硬化性材料に含まれる成分のうち、溶剤を除く成分100体積%中、及び硬化物100体積%中、(D)絶縁性フィラーの含有量は好ましくは25体積%以上、より好ましくは30体積%以上、好ましくは90体積%以下、より好ましくは80体積%以下である。(D)絶縁性フィラーの含有量が上記下限以上及び上記上限以下であると、硬化物の放熱性及び機械的強度が効果的に高くなる。   Among the components contained in the thermosetting material, the content of the (D) insulating filler is preferably 25% by volume or more, more preferably 30% in 100% by volume of the component excluding the solvent and 100% by volume of the cured product. % Or more, preferably 90% by volume or less, more preferably 80% by volume or less. (D) When content of an insulating filler is more than the said minimum and below the said upper limit, the heat dissipation and mechanical strength of hardened | cured material will become high effectively.

(他の成分)
上記熱硬化性材料は、上述した成分の他に、分散剤、キレート剤、酸化防止剤等の熱硬化性組成物及び熱硬化性シートに一般に用いられる他の成分を含んでいてもよい。
(Other ingredients)
The said thermosetting material may contain the other component generally used for thermosetting compositions and thermosetting sheets, such as a dispersing agent, a chelating agent, antioxidant, besides the component mentioned above.

(熱硬化性材料及び硬化物の他の詳細)
熱硬化性材料は、熱硬化性ペーストであってもよく、熱硬化性シートであってもよい。
(Other details of thermosetting materials and cured products)
The thermosetting material may be a thermosetting paste or a thermosetting sheet.

放熱性及び機械的強度を効果的に高める観点からは、上記熱硬化性材料の断面観察において、(D)絶縁性フィラーの全個数の1%以上(好ましくは3%以上、より好ましくは5%以上)が、(D)絶縁性フィラーの表面に接している(C)窒化ホウ素ナノチューブを有することが好ましい。同様の観点から、上記熱硬化性材料の断面観察において、(D)絶縁性フィラーの全個数の90%以下(好ましくは85%以下、より好ましくは80%以下)が、(D)絶縁性フィラーの表面に接している(C)窒化ホウ素ナノチューブを有していることが好ましい。(D)絶縁性フィラーの表面に接している(C)窒化ホウ素ナノチューブの量を多くするために、(D)絶縁性フィラーに(C)窒化ホウ素ナノチューブを付着させた後に、(C)窒化ホウ素ナノチューブ及び(D)絶縁性フィラーを、他の成分と配合することが好ましい。   From the viewpoint of effectively increasing heat dissipation and mechanical strength, in the cross-sectional observation of the thermosetting material, (D) 1% or more (preferably 3% or more, more preferably 5%) of the total number of insulating fillers (D) preferably has (C) boron nitride nanotubes in contact with the surface of the insulating filler. From the same viewpoint, in the cross-sectional observation of the thermosetting material, (D) 90% or less (preferably 85% or less, more preferably 80% or less) of the total number of (D) insulating filler is (D) insulating filler. It is preferable to have (C) boron nitride nanotubes in contact with the surface. (D) In order to increase the amount of (C) boron nitride nanotubes in contact with the surface of the insulating filler, (C) boron nitride nanotubes are attached to the insulating filler, and (C) boron nitride. It is preferable to mix the nanotube and (D) insulating filler with other components.

放熱性及び機械的強度を効果的に高める観点からは、上記熱硬化性シートにおいて、(D)絶縁性フィラーの全個数の1%以上(好ましくは3%以上、より好ましくは5%以上)が、他の上記絶縁性フィラーと直接接しているか、又は、上記窒化ホウ素ナノチューブを介して他の上記絶縁性フィラーと間接的に接していることが好ましい。同様の観点から、上記熱硬化性シートにおいて、(D)絶縁性フィラーの全個数の90%以下(好ましくは85%以下、より好ましくは80%以下)が、他の上記絶縁性フィラーと直接接しているか、又は、上記窒化ホウ素ナノチューブを解して他の上記絶縁性フィラーと間接的に接していることが好ましい。絶縁性フィラーや窒化ホウ素ナノチューブが接しているか否かの判断は、エネルギー分散型X線分析装置(SEM−EDS)による元素マッピング法で行うことができる。   From the viewpoint of effectively increasing heat dissipation and mechanical strength, in the thermosetting sheet, (D) 1% or more (preferably 3% or more, more preferably 5% or more) of the total number of insulating fillers. It is preferable to be in direct contact with the other insulating filler or indirectly in contact with the other insulating filler through the boron nitride nanotube. From the same viewpoint, in the thermosetting sheet, (D) 90% or less (preferably 85% or less, more preferably 80% or less) of the total number of insulating fillers is in direct contact with the other insulating fillers. It is preferable that the boron nitride nanotubes are in contact with other insulating fillers indirectly. Whether or not the insulating filler or boron nitride nanotube is in contact can be determined by an element mapping method using an energy dispersive X-ray analyzer (SEM-EDS).

上記熱硬化性シートを厚み方向に3等分した3つの領域を第1の表面側の領域、中央の領域、及び第2の表面側の領域とする。硬化物全体での放熱性及び機械的強度を効果的に高める観点からは、第1の表面側の領域における窒化ホウ素ナノチューブの含有量の中央の領域における窒化ホウ素ナノチューブの含有量に対する比は、好ましくは0.5以上、より好ましくは1.0以上、好ましくは2.0以下、より好ましくは1.5以下である。   Three regions obtained by equally dividing the thermosetting sheet into three in the thickness direction are defined as a first surface side region, a central region, and a second surface side region. From the viewpoint of effectively increasing the heat dissipation and mechanical strength of the entire cured product, the ratio of the boron nitride nanotube content in the first surface side region to the boron nitride nanotube content in the central region is preferably Is 0.5 or more, more preferably 1.0 or more, preferably 2.0 or less, more preferably 1.5 or less.

放熱性、機械的強度及び接着性を効果的に高める観点からは、上記熱硬化性シートの表面のX線光電子分光法による元素分析において、Bの存在量のCの存在量に対する比は、好ましくは0.15以上、より好ましくは0.3以上、更に好ましくは0.5以上、好ましくは4.5以下、より好ましくは2.0以下、更に好ましくは1.2以下である。   From the viewpoint of effectively increasing heat dissipation, mechanical strength, and adhesion, the ratio of the amount of B to the amount of C in the elemental analysis by X-ray photoelectron spectroscopy of the surface of the thermosetting sheet is preferably Is 0.15 or more, more preferably 0.3 or more, still more preferably 0.5 or more, preferably 4.5 or less, more preferably 2.0 or less, still more preferably 1.2 or less.

本発明に係る硬化物は、上記熱硬化性材料の硬化物であり、上記熱硬化性材料を硬化させることにより得られる。   The cured product according to the present invention is a cured product of the thermosetting material, and is obtained by curing the thermosetting material.

放熱性、機械的強度及び接着性を効果的に高める観点からは、上記硬化物の表面のX線光電子分光法による元素分析において、Bの存在量のCの存在量に対する比は、好ましくは0.15以上、より好ましくは0.3以上、更に好ましくは0.5以上、好ましくは4.5以下、より好ましくは2.0以下、更に好ましくは1.2以下である。   From the viewpoint of effectively increasing heat dissipation, mechanical strength, and adhesion, the ratio of the amount of B to the amount of C is preferably 0 in elemental analysis of the surface of the cured product by X-ray photoelectron spectroscopy. .15 or more, more preferably 0.3 or more, still more preferably 0.5 or more, preferably 4.5 or less, more preferably 2.0 or less, still more preferably 1.2 or less.

図1は、本発明の一実施形態に係る熱硬化性材料の硬化物を模式的に示す断面図である。なお、図1では、図示の便宜上、実際の大きさ及び厚みとは異なっている。   FIG. 1 is a cross-sectional view schematically showing a cured product of a thermosetting material according to an embodiment of the present invention. In FIG. 1, the actual size and thickness are different for convenience of illustration.

図1に示す硬化物1は、硬化物部11と、窒化ホウ素ナノチューブ12と、絶縁性フィラー13とを含む。絶縁性フィラー13は、ナノチューブではない。硬化物部11は、熱硬化性化合物及び熱硬化剤を含む熱硬化性成分が硬化した部分であり、熱硬化性成分を硬化させることにより得られる。   A cured product 1 shown in FIG. 1 includes a cured product portion 11, a boron nitride nanotube 12, and an insulating filler 13. The insulating filler 13 is not a nanotube. The hardened | cured material part 11 is a part which the thermosetting component containing a thermosetting compound and a thermosetting agent hardened | cured, and is obtained by hardening a thermosetting component.

上記熱硬化性材料及び上記硬化物は、放熱性及び機械的強度などが高いことが求められる様々な用途に用いることができる。上記硬化物は、例えば、電子機器において、発熱部品と放熱部品との間に配置されて用いられる。   The said thermosetting material and the said hardened | cured material can be used for various uses as which heat dissipation, mechanical strength, etc. are calculated | required. The cured product is used by being disposed between a heat generating component and a heat radiating component, for example, in an electronic device.

放熱性及び機械的強度を効果的に高める観点からは、上記硬化物において、(D)絶縁性フィラーの全個数の1%以上(好ましくは3%以上、より好ましくは5%以上)が、他の上記絶縁性フィラーと直接接しているか、又は、上記窒化ホウ素ナノチューブを介して他の上記絶縁性フィラーと間接的に接していることが好ましい。同様の観点から、上記硬化物において、(D)絶縁性フィラーの全個数の90%以下(好ましくは85%以下、より好ましくは80%以下)が、他の上記絶縁性フィラーと直接接しているか、又は、上記窒化ホウ素ナノチューブを解して他の上記絶縁性フィラーと間接的に接していることが好ましい。   From the viewpoint of effectively increasing heat dissipation and mechanical strength, in the above cured product, (D) 1% or more (preferably 3% or more, more preferably 5% or more) of the total number of insulating fillers, It is preferable that the insulating filler is in direct contact with the insulating filler or indirectly in contact with the other insulating filler through the boron nitride nanotubes. From the same viewpoint, in the cured product, (D) 90% or less (preferably 85% or less, more preferably 80% or less) of the total number of insulating fillers is in direct contact with the other insulating fillers. Alternatively, it is preferable that the boron nitride nanotubes are in contact with other insulating fillers indirectly.

上記硬化物を厚み方向に3等分した3つの領域を第1の表面側の領域、中央の領域、及び第2の表面側の領域とする。硬化物全体での放熱性及び機械的強度を効果的に高める観点からは、第1の表面側の領域における窒化ホウ素ナノチューブの含有量の中央の領域における窒化ホウ素ナノチューブの含有量に対する比は、好ましくは0.5以上、より好ましくは1.0以上、好ましくは2.0以下、より好ましくは1.5以下である。   Three regions obtained by dividing the cured product into three equal parts in the thickness direction are defined as a first surface side region, a central region, and a second surface side region. From the viewpoint of effectively increasing the heat dissipation and mechanical strength of the entire cured product, the ratio of the boron nitride nanotube content in the first surface side region to the boron nitride nanotube content in the central region is preferably Is 0.5 or more, more preferably 1.0 or more, preferably 2.0 or less, more preferably 1.5 or less.

以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。本発明は以下の実施例に限定されない。   Hereinafter, the present invention will be clarified by giving specific examples and comparative examples of the present invention. The present invention is not limited to the following examples.

(実施例1)
(窒化ホウ素ナノチューブの製造)
窒化ホウ素製のるつぼに、2:1:1のモル比でホウ素、酸化マグネシウム及び酸化鉄を入れ、るつぼを高周波誘導加熱炉で1700℃に加熱した(加熱工程1)。生成物にアンモニアガスを導入して、2000℃で5時間加熱した(加熱工程2)。得られた白色固体を濃塩酸で洗浄し、イオン交換水で中性になるまで洗浄した後、乾燥させ、更に窒素雰囲気下で2000℃で3時間アニーリング処理をして窒化ホウ素ナノチューブ(BNNT)を得た。得られたBNNTでは、平均直径が20nm、平均長さが80μmであった。
Example 1
(Manufacture of boron nitride nanotubes)
Boron, crucible oxide and iron oxide were put in a boron nitride crucible at a molar ratio of 2: 1: 1, and the crucible was heated to 1700 ° C. in a high frequency induction heating furnace (heating step 1). Ammonia gas was introduced into the product and heated at 2000 ° C. for 5 hours (heating step 2). The obtained white solid was washed with concentrated hydrochloric acid, washed with ion-exchanged water until neutral, then dried, and further annealed at 2000 ° C. for 3 hours in a nitrogen atmosphere to obtain boron nitride nanotubes (BNNT). Obtained. In the obtained BNNT, the average diameter was 20 nm and the average length was 80 μm.

(窒化ホウ素ナノチューブの表面処理)
BNNTをステンレス容器に入れ、窒素を充填したのち、300Wの出力でプラズマ処理を5分間施し、表面にアミノ基を導入した窒化ホウ素ナノチューブを得た。
(Surface treatment of boron nitride nanotubes)
After putting BNNT into a stainless steel container and filling with nitrogen, plasma treatment was performed at an output of 300 W for 5 minutes to obtain boron nitride nanotubes having amino groups introduced on the surface.

(硬化物の製造)
ポリマーとしてビスフェノールA型フェノキシ樹脂50重量部と、エポキシ樹脂としてビスフェノールA型エポキシ樹脂30重量部と、硬化剤として脂環式骨格酸無水物(新日本理化社製「リカシッドMH−700」)及びジシアンジアミドとを合計で15重量部と、添加剤としてエポキシシランカップリング剤5重量部とを配合してマトリックス樹脂を作製した。マトリックス樹脂に、窒化ホウ素ナノチューブ、及び絶縁性フィラーとして熱伝導率60W/m・Kの平均粒子径60μmの球状窒化ホウ素を30:40:30の配合比(単位は体積%)で添加し、ホモディスパー型攪拌機で混練して、ペースト(熱硬化性材料)を得た。
(Manufacture of cured product)
50 parts by weight of bisphenol A type phenoxy resin as a polymer, 30 parts by weight of bisphenol A type epoxy resin as an epoxy resin, alicyclic skeleton acid anhydride (“Ricacid MH-700” manufactured by Shin Nippon Rika Co., Ltd.) and dicyandiamide as a curing agent 15 parts by weight in total and 5 parts by weight of an epoxy silane coupling agent as an additive were blended to prepare a matrix resin. To the matrix resin, boron nitride nanotubes and spherical boron nitride having an average particle diameter of 60 μm having a thermal conductivity of 60 W / m · K as an insulating filler are added in a mixing ratio of 30:40:30 (unit: volume%). The paste (thermosetting material) was obtained by kneading with a disper type stirrer.

厚み50μmの離型PETシートに、上記熱硬化性材料を厚み200μmになるように塗工し、90℃のオーブン内で30分乾燥して、PETシート上に熱硬化性シートを作製した。   The thermosetting material was applied to a release PET sheet having a thickness of 50 μm so as to have a thickness of 200 μm, and dried in an oven at 90 ° C. for 30 minutes to prepare a thermosetting sheet on the PET sheet.

(実施例2)
窒化ホウ素ナノチューブの製造のアニーリング処理の時間を6時間にしたこと以外は実施例1と同様にして、熱硬化性シートを作製した。
(Example 2)
A thermosetting sheet was produced in the same manner as in Example 1 except that the annealing time for producing the boron nitride nanotubes was 6 hours.

(比較例1)
窒化ホウ素ナノチューブの製造の加熱工程2で温度を1300℃、時間を1時間にしたこと以外は実施例1と同様にして、熱硬化性シートを作製した。
(Comparative Example 1)
A thermosetting sheet was produced in the same manner as in Example 1, except that the temperature was 1300 ° C. and the time was 1 hour in the heating step 2 of the production of boron nitride nanotubes.

(評価)
(1)X線回折測定
得られた窒化ホウ素ナノチューブについて、X線回折分析により、六方晶窒化ホウ素h−BN(002)ピークの半値幅を求めた。測定装置として、リガク社製「SmartLab」を用いた。
(Evaluation)
(1) X-ray diffraction measurement About the obtained boron nitride nanotube, the half width of the hexagonal boron nitride h-BN (002) peak was determined by X-ray diffraction analysis. As a measuring apparatus, “SmartLab” manufactured by Rigaku Corporation was used.

(2)熱伝導率の測定
熱硬化性シートを120℃のオーブン内で1時間、その後200℃のオーブン内で1時間加温処理し、熱硬化性シートを硬化させた。硬化物シートの熱伝導率を、京都電子工業社製熱伝導率計「迅速熱伝導率計QTM−500」を用いて測定した。また、比較例1の硬化物シートの熱伝導率を同様にして測定した。比較例1の熱伝導率を1.0として、その他の実施例及び比較例の硬化物シートの熱伝導率を比較した。各実施例における熱伝導率の比較例1における熱伝導率に対する比(熱伝導率比)を求めた。
(2) Measurement of thermal conductivity The thermosetting sheet was heated in an oven at 120 ° C. for 1 hour and then in an oven at 200 ° C. for 1 hour to cure the thermosetting sheet. The thermal conductivity of the cured sheet was measured using a thermal conductivity meter “rapid thermal conductivity meter QTM-500” manufactured by Kyoto Electronics Industry Co., Ltd. Further, the thermal conductivity of the cured product sheet of Comparative Example 1 was measured in the same manner. The thermal conductivity of Comparative Example 1 was set to 1.0, and the thermal conductivity of the cured sheets of other examples and comparative examples were compared. The ratio of the thermal conductivity in each example to the thermal conductivity in Comparative Example 1 (thermal conductivity ratio) was determined.

(3)分散性の評価
窒化ホウ素ナノチューブを0.1g秤量し、水中で38kHzの超音波で10分間分散させ、以下の基準で判定した。
(3) Evaluation of dispersibility 0.1 g of boron nitride nanotubes were weighed and dispersed in water with 38 kHz ultrasonic waves for 10 minutes, and judged according to the following criteria.

◎:36時間放置後、スラリーが乳白色であるように観察される
○:24時間放置後、スラリーが乳白色であるように観察される
×:24時間放置後、窒化ホウ素ナノチューブが凝集し、水溶液の一部が透明であるように観察される
◎: After standing for 36 hours, the slurry is observed to be milky white ○: After being left for 24 hours, the slurry is observed to be milky white ×: After standing for 24 hours, the boron nitride nanotubes aggregate and Some are observed to be transparent

(4)温度サイクル信頼性(温度サイクル試験)
熱硬化性シートを厚み1.5mmのアルミニウム板と厚み35μmの電解銅箔との間に挟み、真空プレス機で4MPaの圧力を保持しながら120℃で1時間、更に200℃で1時間、熱硬化性シートをプレス硬化させ、銅張り積層板を作製した。得られた銅張り積層板を用いて、−40℃〜125℃を1サイクルとする温度サイクル試験を実施した。温度サイクル試験のヒートプロファイルは、−40℃で10分間保持し、−40℃から125℃まで2分間で昇温させ、125℃で10分間保持し、125℃から−40℃まで2分間で降温させるヒートプロファイルであった。
(4) Temperature cycle reliability (temperature cycle test)
A thermosetting sheet is sandwiched between an aluminum plate having a thickness of 1.5 mm and an electrolytic copper foil having a thickness of 35 μm, and maintained at a pressure of 4 MPa with a vacuum press machine at 120 ° C. for 1 hour, and further at 200 ° C. for 1 hour. The curable sheet was press-cured to produce a copper-clad laminate. Using the obtained copper-clad laminate, a temperature cycle test was performed with -40 ° C to 125 ° C as one cycle. The heat profile of the temperature cycle test was held at −40 ° C. for 10 minutes, raised from −40 ° C. to 125 ° C. over 2 minutes, held at 125 ° C. for 10 minutes, and lowered from 125 ° C. to −40 ° C. over 2 minutes. It was a heat profile.

1000サイクルの温度サイクル試験を実施し、温度サイクル信頼性を以下の基準で判定した。   A temperature cycle test of 1000 cycles was performed, and the temperature cycle reliability was determined according to the following criteria.

[温度サイクル信頼性の判定基準]
○:面積の10%未満で剥離が発生又は剥離無し
△:面積の10%以上、30%未満で剥離が発生
×:面積の30%以上で剥離が発生
[Criteria for temperature cycle reliability]
○: Peeling occurs when the area is less than 10% or no peeling. Δ: Peeling occurs when the area is 10% or more and less than 30%.

Figure 2017095293
Figure 2017095293

1…硬化物
11…硬化物部(熱硬化性成分の硬化物部)
12…窒化ホウ素ナノチューブ
13…絶縁性フィラー
DESCRIPTION OF SYMBOLS 1 ... Hardened | cured material 11 ... Hardened | cured material part (cured material part of a thermosetting component)
12 ... Boron nitride nanotubes 13 ... Insulating filler

Claims (13)

X線回折分析において、六方晶窒化ホウ素h−BN(002)ピークの半値幅が2以下である、窒化ホウ素ナノチューブ。   A boron nitride nanotube in which the half width of the hexagonal boron nitride h-BN (002) peak is 2 or less in X-ray diffraction analysis. X線回折分析において、六方晶窒化ホウ素h−BN(002)ピークの半値幅が1.8以下である、請求項1に記載の窒化ホウ素ナノチューブ。   2. The boron nitride nanotube according to claim 1, wherein a half width of a hexagonal boron nitride h-BN (002) peak is 1.8 or less in X-ray diffraction analysis. X線回折分析において、六方晶窒化ホウ素h−BN(002)ピークの半値幅が1.6以下である、請求項2に記載の窒化ホウ素ナノチューブ。   The boron nitride nanotube according to claim 2, wherein a half width of a hexagonal boron nitride h-BN (002) peak is 1.6 or less in X-ray diffraction analysis. 平均直径が2nm以上、300nm以下である、請求項1〜3のいずれか1項に記載の窒化ホウ素ナノチューブ。   The boron nitride nanotube according to any one of claims 1 to 3, wherein an average diameter is 2 nm or more and 300 nm or less. 単管又は多重管である、請求項1〜4のいずれか1項に記載の窒化ホウ素ナノチューブ。   The boron nitride nanotube according to any one of claims 1 to 4, which is a single tube or a multiple tube. 熱硬化性化合物と、
熱硬化剤と、
請求項1〜5のいずれか1項に記載の窒化ホウ素ナノチューブとを含む、熱硬化性材料。
A thermosetting compound;
A thermosetting agent;
The thermosetting material containing the boron nitride nanotube of any one of Claims 1-5.
ナノチューブではない絶縁性フィラーを含む、請求項6に記載の熱硬化性材料。   The thermosetting material according to claim 6, comprising an insulating filler that is not a nanotube. 前記絶縁性フィラーが、10W/m・K以上の熱伝導率を有する、請求項7に記載の熱硬化性材料。   The thermosetting material according to claim 7, wherein the insulating filler has a thermal conductivity of 10 W / m · K or more. 前記絶縁性フィラーの材質が、アルミナ、合成マグネサイト、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛又は酸化マグネシウムである、請求項6〜8のいずれか1項に記載の熱硬化性材料。   The thermosetting according to any one of claims 6 to 8, wherein a material of the insulating filler is alumina, synthetic magnesite, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide or magnesium oxide. material. 熱硬化性材料100体積%中、前記窒化ホウ素ナノチューブの含有量が0.1体積%以上、40体積%以下である、請求項6〜9のいずれか1項に記載の熱硬化性材料。   The thermosetting material according to any one of claims 6 to 9, wherein a content of the boron nitride nanotube is 0.1 volume% or more and 40 volume% or less in 100 volume% of the thermosetting material. 熱硬化性材料100体積%中、前記絶縁性フィラーの含有量が25体積%以上、90体積%以下である、請求項6〜10のいずれか1項に記載の熱硬化性材料。   The thermosetting material according to any one of claims 6 to 10, wherein a content of the insulating filler is 25% by volume or more and 90% by volume or less in 100% by volume of the thermosetting material. 熱硬化性材料100体積%中での前記窒化ホウ素ナノチューブの含有量の、熱硬化性材料100体積%中での前記絶縁性フィラーの含有量に対する比が、0.001以上、1.6以下である、請求項6〜11のいずれか1項に記載の熱硬化性材料。   The ratio of the boron nitride nanotube content in 100% by volume of the thermosetting material to the content of the insulating filler in 100% by volume of the thermosetting material is 0.001 or more and 1.6 or less. The thermosetting material according to any one of claims 6 to 11. 熱硬化性シートである、請求項6〜12のいずれか1項に記載の熱硬化性材料。   The thermosetting material according to any one of claims 6 to 12, which is a thermosetting sheet.
JP2015226937A 2015-11-19 2015-11-19 Boron nitride nano tube and thermosetting material Pending JP2017095293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015226937A JP2017095293A (en) 2015-11-19 2015-11-19 Boron nitride nano tube and thermosetting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015226937A JP2017095293A (en) 2015-11-19 2015-11-19 Boron nitride nano tube and thermosetting material

Publications (1)

Publication Number Publication Date
JP2017095293A true JP2017095293A (en) 2017-06-01

Family

ID=58816779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015226937A Pending JP2017095293A (en) 2015-11-19 2015-11-19 Boron nitride nano tube and thermosetting material

Country Status (1)

Country Link
JP (1) JP2017095293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048296A (en) * 2016-09-21 2018-03-29 ナイール テクノロジーNAiEEL Technology Resin composition, and article produced therefrom, and method for producing the same
CN110546758A (en) * 2017-06-23 2019-12-06 积水化学工业株式会社 heat sink, method for manufacturing heat sink, and laminate
JP2020164352A (en) * 2019-03-28 2020-10-08 日亜化学工業株式会社 Hexagonal boron nitride fiber and method for producing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182571A (en) * 2002-12-05 2004-07-02 National Institute For Materials Science Method of manufacturing boron nitride nanotube using gallium oxide as catalyst
JP2007231031A (en) * 2006-02-27 2007-09-13 National Institute For Materials Science Composite film and method for producing the same
WO2008123326A1 (en) * 2007-03-23 2008-10-16 Teijin Limited Thermosetting resin composite composition, resin molded body, and method for producing the composition
WO2008146400A1 (en) * 2007-05-25 2008-12-04 Teijin Limited Resin composition
CN101633498A (en) * 2009-09-01 2010-01-27 北京工业大学 Preparation method of boron nitride nano tube with controllable dimension
JP2010510168A (en) * 2006-11-22 2010-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Functionalized boron nitride nanotubes
CN101708828A (en) * 2009-11-24 2010-05-19 哈尔滨工业大学 Boron nitride nanotube purification method
CN101789300A (en) * 2010-02-09 2010-07-28 武汉工程大学 Process for preparing nanometer iron particles filled boron nitride nanometer tubes
WO2014199200A1 (en) * 2013-06-14 2014-12-18 Yeditepe Universitesi A production method for the boron nitride nanotubes
US20170018357A1 (en) * 2013-11-27 2017-01-19 Board Of Trustees Of Northern Illinois University Boron nitride and method of producing boron nitride
JP2017520633A (en) * 2014-04-30 2017-07-27 ロジャーズ コーポレーション Thermally conductive composite material, method for producing the same, and article containing the composite material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182571A (en) * 2002-12-05 2004-07-02 National Institute For Materials Science Method of manufacturing boron nitride nanotube using gallium oxide as catalyst
JP2007231031A (en) * 2006-02-27 2007-09-13 National Institute For Materials Science Composite film and method for producing the same
JP2010510168A (en) * 2006-11-22 2010-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Functionalized boron nitride nanotubes
WO2008123326A1 (en) * 2007-03-23 2008-10-16 Teijin Limited Thermosetting resin composite composition, resin molded body, and method for producing the composition
WO2008146400A1 (en) * 2007-05-25 2008-12-04 Teijin Limited Resin composition
CN101633498A (en) * 2009-09-01 2010-01-27 北京工业大学 Preparation method of boron nitride nano tube with controllable dimension
CN101708828A (en) * 2009-11-24 2010-05-19 哈尔滨工业大学 Boron nitride nanotube purification method
CN101789300A (en) * 2010-02-09 2010-07-28 武汉工程大学 Process for preparing nanometer iron particles filled boron nitride nanometer tubes
WO2014199200A1 (en) * 2013-06-14 2014-12-18 Yeditepe Universitesi A production method for the boron nitride nanotubes
US20170018357A1 (en) * 2013-11-27 2017-01-19 Board Of Trustees Of Northern Illinois University Boron nitride and method of producing boron nitride
JP2017520633A (en) * 2014-04-30 2017-07-27 ロジャーズ コーポレーション Thermally conductive composite material, method for producing the same, and article containing the composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048296A (en) * 2016-09-21 2018-03-29 ナイール テクノロジーNAiEEL Technology Resin composition, and article produced therefrom, and method for producing the same
US10246623B2 (en) 2016-09-21 2019-04-02 NAiEEL Technology Resin composition, article prepared by using the same, and method of preparing the same
CN110546758A (en) * 2017-06-23 2019-12-06 积水化学工业株式会社 heat sink, method for manufacturing heat sink, and laminate
CN110546758B (en) * 2017-06-23 2023-09-19 积水化学工业株式会社 Heat sink, method for manufacturing heat sink, and laminate
JP2020164352A (en) * 2019-03-28 2020-10-08 日亜化学工業株式会社 Hexagonal boron nitride fiber and method for producing the same
JP7376764B2 (en) 2019-03-28 2023-11-09 日亜化学工業株式会社 Hexagonal boron nitride fiber and its manufacturing method

Similar Documents

Publication Publication Date Title
JP6835685B2 (en) Thermosetting materials and cured products
JP6974303B2 (en) Resin material and laminate
JP6683485B2 (en) Boron nitride nanotube material and thermosetting material
WO2013061981A1 (en) Laminate and method for producing component for power semiconductor modules
JP2013143440A (en) Metal base substrate
JP2022048175A (en) Resin material and laminate
JP2018188350A (en) Boron nitride particle aggregate and thermosetting material
JP2017095293A (en) Boron nitride nano tube and thermosetting material
JP4987161B1 (en) Insulation material
JP2017095555A (en) Filler complex and thermosetting material
JPWO2018139642A1 (en) Resin material and laminate
JP6560599B2 (en) Thermosetting sheet, cured product sheet and laminate
JP6581481B2 (en) Boron nitride nanotubes and thermosetting materials
JP6606410B2 (en) Laminated body
JP7036984B2 (en) Resin material and laminate
JP7036983B2 (en) Resin material and laminate
JP2018188628A (en) Thermosetting material
JP2018188632A (en) Thermosetting sheet, and method of producing cured sheet
JP2018082164A (en) Curable material and laminate
JP2018082165A (en) Hardening material and laminate
JP2013107353A (en) Laminated structure
JP2018115275A (en) Curable material, method for producing curable material and laminate
JP2013094987A (en) Laminate
JP2018082166A (en) Hardening material and laminate
JP2018080326A (en) Curable material, and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200204