JP3817703B2 - Method and apparatus for producing coiled carbon fiber - Google Patents

Method and apparatus for producing coiled carbon fiber Download PDF

Info

Publication number
JP3817703B2
JP3817703B2 JP18606496A JP18606496A JP3817703B2 JP 3817703 B2 JP3817703 B2 JP 3817703B2 JP 18606496 A JP18606496 A JP 18606496A JP 18606496 A JP18606496 A JP 18606496A JP 3817703 B2 JP3817703 B2 JP 3817703B2
Authority
JP
Japan
Prior art keywords
catalyst
substrate
carbon fiber
coil
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18606496A
Other languages
Japanese (ja)
Other versions
JPH1037024A (en
Inventor
栖二 元島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP18606496A priority Critical patent/JP3817703B2/en
Publication of JPH1037024A publication Critical patent/JPH1037024A/en
Application granted granted Critical
Publication of JP3817703B2 publication Critical patent/JP3817703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、三次元強化複合材、電磁波吸着材、ミクロメカニカル素子、ミクロスイッチング素子、ミクロセンサー、ミクロフィルター、吸着剤などの材料として適用しうるコイル状炭素繊維の製造方法及び製造装置に関する。
【0002】
【従来技術】
炭素繊維には、従来からの有機前駆体繊維を原料とし、これを不融化、炭化、黒鉛化などの処理を行って得られる炭素繊維、例えばポリアクリロニトリル繊維から得られるPAN系炭素繊維、ピッチ系繊維から得られるピッチ系炭素繊維などの他に、最近開発された炭化水素の気相熱分解によって得られる気相成長炭素繊維がある。気相成長炭素繊維は、グラファイトの網面が同心円状に巻いており、高強度で、金属的から半導体的導電性までの巾広い特性を持ち、機能性材料としての応用が期待されている。
気相成長炭素繊維の製造方法として、ベンゼンなどの炭化水素とキャリアガスとの混合ガスを、1000℃以上の温度に保持され金属粉末触媒を担持させた反応管内で、先ず100〜1500cm/分の流速で繊維成長の核を形成させ、次いで流速を10〜30cm/分として繊維を成長させる方法が開示されている(特公昭51−33210号公報参照)。この他、気相成長炭素繊維を製造するに、種々の触媒金属粉末及び種々の製造方法が提案されている。しかしこれらの方法ではコイル状の炭素繊維は全く得られない。
コイル状炭素繊維の製造方法としては、本発明者らは先に遷移金属及び第V族もしくは第VI族の化合物が存在する系内で、炭化水素系ガスまたは一酸化炭素を含むガスを300〜1000℃で気相熱分解させる方法を提案した(特開平4−222228号公報参照)。
【0003】
遷移金属を触媒として用いた場合、金属のメーカー、貯蔵条件、前処理条件などによりコイル収率が著しく変化し、コイルが全く得られないこともある。金属表面は通常薄い酸化膜で覆われており、この酸化膜がコイル成長に大きな影響を及ぼす可能性がある。一方、金属触媒は、反応中イオウ(又は燐)及び炭素種を含む高温の反応性ガス中に晒されている。したがって、金属触媒はイオウ(又は燐)及び炭素、あるいはイオウと炭素との化合物あるいはそれらとの固溶体となっている可能性があり、これらが実際の触媒作用を示すものと考えられる。一方、上記の実験室規模の方法で得られるコイル状炭素繊維の量は極めて少なく100mgオーダーである。しかし、コイル状炭素繊維の特性を評価し、実用化するためには、さらに有効な触媒の探索と共に、大量合成のための合成装置の開発やそのスケールアップが必要である。
【0004】
【発明が解決しようとする課題】
そこで、本発明者らは、コイル状炭素繊維の新しい合成用触媒の探索及び大量合成のための新しい装置の開発やスケールアップについて検討した結果、本発明を完成させたものある。本発明の目的は、コイル状炭素繊維の大量合成に有効な触媒及び合成装置を提供することである。
【0005】
【課題を解決するための手段】
本発明の要旨は、遷移金属の酸化物、炭化物、硫化物、リン化物、炭酸化物、炭硫化物よりなる群から選ばれた1種又は複数の触媒の存在下、微量のチオフェンなどの硫黄系化合物あるいは三塩化リンなどのリン系化合物を含有するアセチレンガスを600〜850℃の温度範囲で気相熱分解させることを特徴とするコイル状炭素繊維の製造方法である。また、その装置として、原料ガス導入口と、これに対向する位置に廃ガス排出口とを有する反応容器内に、無端ベルトを設け、該無端ベルト上に触媒を塗布した基板あるいは金属板(触媒兼基板)を設置し、原料ガス導入口より導入された原料ガス流と基板とがほぼ直交するようにし、且つ、原料ガス導入口と基板との距離を1〜20mmに保つようにしたことを特徴とするコイル状炭素繊維製造装置である。
即ち、本発明はコイル状炭素繊維の製造方法における、触媒、不純物ガス、熱分解条件、装置の形状などの製造条件を検討した結果、遷移金属の酸化物、炭化物、硫化物、リン化物、炭酸化物、炭硫化物よりなる群から選ばれた一種又は複数の混合物が触媒として有効であり、さらに原料ガス中に微量のチオフエンなどの硫黄系化合物あるいは三塩化リンなどのリン系化合物が含まれている場合、特に高いコイル収率が得られるのである。また、製造装置としては、原料ガス導入口と、これに対向する位置に廃ガス排出口とを有する反応器内に、無端ベルトを設け、該無端ベルト上に触媒を塗布した基板或いは金属板(触媒兼基板)を設置し、原料ガス導入口より導入された原料ガス流と基板とがほぼ直交するようにし、両者の距離を1〜20mmに保つことにより、コイルの大量合成を可能とした。
【0006】
【発明の実施の形態】
本発明で使用する原料ガスとしては、アセチレンに不純物として微量のチオフェンなどの硫黄系化合物あるいは三塩化リンなどのリン系化合物が含まれているものであって、好ましい不純物はチオフェンである。原料ガス中にはキャリアガスとしてアルゴンガス、水素ガスが存在してもよく、反応器内へ導入する原料ガスの好ましい流量比は、水素:アルゴン:アセチレン:チオフェン=7:4:3:0.05である。
【0007】
本発明で使用しうる触媒としては、遷移金属の酸化物、炭化物、硫化物、リン化物、炭酸化物、炭硫化物よりなる群から選ばれた一種又は複数の混合物であり、好ましい触媒は、ニッケル、チタンおよびタングステンの酸素との固溶体または酸化物、炭化物、硫化物、リン化物、炭酸化物、炭硫化物である。これらの触媒は、あらかじめ固溶体或いは化合物となったものの他、金属粉末或いは板を反応器内で反応前に所定条件で酸化、炭化、硫化、リン化、炭酸化、炭硫化処理して得たものでも使用できる。
【0008】
本発明で使用しうる触媒としては、NiおよびTi化合物の他、ほとんどあらゆる遷移金属の上記化合物が利用できる。例えば、4族のZr、Hf、5族のV、Nb、Ta、6族のCr、Mo、W、7族のMn、8族のFe、9族のCo、10族のNiなどの化合物はいずれもコイル成長に対して触媒効果を示す。特に、化合物中の酸素、イオウ、リン、炭素などの含有量が比較的少なく、また非化学量論性の強い化合物が優れた触媒作用を示す。例えば、Ti酸化物の場合の好ましい酸素含有量は、40〜62at.%であり、またTi炭化物の場合の好ましい炭素含有量は15〜45at.%である。そのような好ましいTi化合物の例としては、Ti2C、Ti23、Ti34、Ti2P、TiCxS1x(x<0.5)などがある。また、好ましいNi化合物の例としては、Ni23、Ni32、NiSなどがある。金属成分としては、単一成分のほか、2成分あるいはそれ以上の多元系合金も使用できる。
【0009】
本発明で使用しうる触媒のうち、金属の硫化物、炭硫化物、リン化物等の場合には不純物としてイオウ系あるいはリン系不純物を原料ガス中に添加しなくてもある程度のコイルを得ることが出来る。
【0010】
本発明で使用しうる触媒の形態としては、粉末状、金属板、粉末の焼結板などいずれでも良く、好ましくは平均粒径が5ミクロン程度の微粉末状あるいはこれを焼結した焼結板である。粉末状触媒の場合、基板上へ散布あるいは塗布しても良く、また原料ガス中に流動状態で用いても良い。
【0011】
本発明で得られる炭素繊維は、本質的に炭素のみからなり、繊維直径は0.01〜1μm、コイル外径は0.1〜10μm、コイルピッチは0.01〜5μm、コイル長さは1〜3,000μmの範囲のマイクロコイル状の繊維である。このマイクロコイル状繊維は、ほとんどの場合、2本のコイルが互いに巻き合いながら成長した二重コイルであり、元の長さの3倍前後まで完全弾性的に伸び縮みする。また、ほぼ直線状まで伸ばすことができるが、この場合、歪みが残り元の長さまで戻らない。
【0012】
本発明のコイル状炭素繊維は、既存の炭素繊維が用いられている種々の用途に応用できるが、特にそのコイル状という特異的形態からもたらされる種々特性を利用して、FRPやFRMなどの三次元強化用繊維、電磁波吸収材、ミクロメカニカル素子、ミクロスイッチング素子、ミクロセンサー、ミクロフィルター、吸着剤などの機能性材料として有用である。
【0013】
次に、本発明にかかる製造装置を説明する。図1は本発明にかかる製造装置の概念図である。図1において、反応器1は、原料ガス導入口2と廃ガス排出口3とが対向する位置に存在する。反応器1には、無端ベルト4を設け、この無端ベルト4に触媒5を設置する。原料ガス導入管は、原料アセチレンの好ましくない分解を防ぐため原料ガス導入口2の反応器中央に内部ヒーター6と外部ヒーター7とを設ける。原料ガス導入管に水冷却器8を設ける。原料ガス導入口と無端ベルト上の触媒を担持した基板との距離を1〜20mmとする。このような装置において内部ヒーター6と外部ヒーター7とによって反応器内を所定の温度に加熱し、原料ガスを原料ガス導入口2を通して反応器内に導入し、排出口3より排出させる。このようなガス流に対してほぼ直交するように無端ベルト4を移動させると無端ベルトの基板上の触媒と原料ガスとが接触して反応が進行する。
【0014】
本発明にかかる製造装置の形としては、断面が円形状、楕円状、正方形、あるいは矩形などのいずれでも良い。また反応器の材質としては、銅を含まず、また高温で侵炭、侵硫、侵リン脆化あるいは腐食されない材料、たとえばステンレス、好ましくはインコネル製が良い。反応器の大きさについては特に限定はなく、また、反応器の大きさに関係なく原料ガス導入口と無端ベルト上の触媒を担持した基板との距離を1〜20mm、好ましくは、2〜7mmとする以外、特に限定はない。
【0015】
アセチレンは高温では分解しやすく、アセチレンを触媒と接触するまでの間、長時間、400℃以上に加熱すると分解反応が進行して粉末(アセチレンブラック)あるいは直線状繊維が析出しやすく、コイル収率は低下する。したがって、原料導入は外から冷却したり、原料導入口の面積を小さくしてガスの線速度を上げたりすることにより、原料アセチレンの温度上昇を防ぎ、できるだけ未分解の原料アセチレンを触媒と接触させることが重要である。このような理由によって原料ガス導入管を水冷却し、またガス導入口4と無端ベルト上の触媒を担持した基板との距離を1〜20mmと限定する。
【0016】
本発明に係る製造装置の一例を挙げると、断面が200mm(高さ)×350mm(奥行き)の矩形で、幅1500mmのインコネル製の箱型反応器内に無端ベルトを装置し、これに30mm(幅)×300mm(長さ)のグラファイト基板を10枚セットした。基板と基板との距離は5mmとした。基板上には、酸化チタン(Ti23)粉末触媒を均一に散布した。原料ガス導入口(上部)とガス排出口(下部)とは対向し、それぞれ5mm(幅)×300mm(奥行き)の矩形とした。原料導入管は、外から水冷却した。
【0017】
【実施例】
以下、本発明を実施例により具体的に示すが、本発明はかかる実施例により限定されるものではない。
実施例1
内径が約23mm、長さ500mmの不透明石英管からなる小型の熱CVD装置の中央部に、酸化チタン(Ti23)粉末触媒を散布したグラファイト基板をセットし、アルゴン中で775℃まで加熱した。その後、チオフェン不純物を1.51mol%含むアセチレンを30cc/分、水素を70cc/分、アルゴンを40cc/分で流し、常圧下で、15分間反応を行った。この時の全ガスに対するチオフェンの含有量は、0.323mol%となる。析出物は0.45g得られ、その中にコイルが0.30g含まれていた。これは、導入した原料アセチレン中の炭素量の62モル%(コイル収率62モル%)に相当する。アセチレン中のチオフェン含有量が上記値より少しでも減少あるいは増加するとコイル収率は急激に低下し、0.2モル%以下あるいは8モル%以上ではコイルは全く析出しなかった。
【0018】
実施例2
市販のチタン粉末を予め、空気中650℃で30分間表面酸化したものを触媒とし、他の条件は実施例1と同じとした場合、コイル収率は57%であった。この触媒表面中には、約57at.%の酸素が含有されていた。
実施例3
市販のチタン粉末を予め、空気中850℃で30分間表面酸化したものを触媒とし、他の条件は実施例1と同じとした場合、コイル収率は60%であった。この触媒表面には、約60at.%の酸素が含有されていた。
【0019】
実施例4
市販のチタン粉末をそのまま(未処理)触媒として用い、他の条件は実施例1と同じとした場合、コイル収率は40%であった。この触媒表面には、約40at.%の酸素が含有されていた。
比較例1
市販のチタン金属板を予め#120のエメリー紙で研磨し、その後50℃の濃塩酸中に60分浸して表面の酸化物層を除去したものを触媒とし、他の条件は実施例1と同じとした場合、コイルの成長はまったく認められなかった。
【0020】
実施例5
市販のニッケル粉末を予め、空気中850℃で30分間表面酸化したものを触媒とし、他の条件は実施例1と同じとした場合、コイル収率は65%であった。この触媒表面には、約45at.%の酸素が含有されていた。
比較例2
市販のニッケル金属板を、予め#120のエメリー紙で研磨し、その後50〜80℃の濃塩酸中に30〜60分浸して表面の酸化物層を除去したものを触媒とし、他の条件は実施例1と同じとした場合、コイルの成長はまったく認められなかった。
【0021】
実施例6
硫化チタン(Ti34)粉末(平均粒径5μm)を触媒とし、チオフェン不純物を1.67mol%含むアセチレンを30cc/分、水素を70cc/分、アルゴンを40cc/分で流して15分間反応を行った。反応温度とコイル収率との関係を図2に示す。750℃で最高収率50%が得られ、この温度より低くあるいは高くなると、コイル収率は急激に低下した。また、アセチレン中のチオフェン含有量が上記の値より低下あるいは上昇するとコイル収率は急激に低下した。例えば8%では、コイルは全く成長しなかった。不純物としてチオフェンを添加しない場合のコイル収率は35%であった。
【0022】
実施例7
硫化ニッケル(Ni82)粉末を触媒とし、他の条件は実施例1と同じとした場合、コイル収率は35%であった。また、不純物としてチオフェンを添加しない場合のコイル収率は25%であった。
実施例8
硫化モリブデン(Mo23)粉末を触媒とし、他の条件は実施例1と同じとした場合、コイル収率は45%であった。また、不純物としてチオフェンを添加しない場合のコイル収率は30%であった。
【0023】
実施例9
リン化チタン(Ti2P)粉末を触媒とし、不純物としてチオフェンのかわりに三塩化リンを原料アセチレン中に0.21モル%添加した以外は実施例1と同じとした場合、コイル収率は45%であった。不純物として三塩化リンを添加しない場合のコイル収率は30%であった。
実施例10
図1に示した反応器上部の原料ガス導入口から、少量のチオフェンを含んだアセチレン水素およびアルゴンの混合ガスを導入し、導入口直下約3mmの位置にセットした基板上の触媒と接触させて反応を行った。触媒として実施例8の硫化モリブデン(Mo23)を使用した。基板温度は750℃、一枚の基板当たりの反応時間は15分、反応圧力は常圧とした。また、それぞれのガス流量は、以下の通りとした。チオフェン;50cc/分、水素1,000cc/分、アルゴン1,500cc/分、一枚の基板上に2.1gのコイル状炭素繊維が析出した。これはコイル収率約50%に相当する。
【0024】
実施例11
実施例10において一枚の基板について15分間反応を行った後これを移動し、次の基板を原料ガス導入口直下に移動して反応を15分間行った。この操作を10枚の基板について繰り返した。10枚の基板上に析出したコイルの総量は、約21.0gであった。これはコイル収率約50%に相当する。
実施例12
実施例10において原料導入口と基板との距離を5mmとし、一枚の基板を用い、他の条件は実施例11と同じで反応を行った場合、コイル収率は60%であった。
【0025】
実施例13
実施例10において原料導入口と基板との距離を20mmとし、他の条件は実施例9と同じで反応を行った場合、コイル収率は20%であった。
比較例3
実施例10において原料導入口と基板との距離を30mmとし、一枚の基板を用い、他の条件は実施例11と同じで反応を行った場合、コイルは全く得られなかった。
実施例13に於いて、原料導入口を水冷却しない場合、コイル収率は20%に低下した。また原料導入口の幅を実施例13の2倍(10mm)とした場合、コイル収率は15%に低下した。
【0026】
【発明の効果】
以上述べたように、本発明の触媒を使用することによってコイル状炭素繊維を高収率で得ることができ、特に本発明の製造装置を使用すると、容易にスケールアップすることができる等の効果を奏する。
【図面の簡単な説明】
【図1】 本発明にかかる製造装置の概念図である。
【図2】 硫化チタン(Ti34)触媒を使用した場合の反応温度に対するコイル収率を示す。
【符号の説明】
1 反応器 2 原料ガス導入口 3 廃ガス排出口
4 無端ベルト 5 触媒 6 内部ヒーター
7 外部ヒーター 8 水冷部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for producing a coiled carbon fiber that can be applied as a material such as a three-dimensional reinforced composite material, an electromagnetic wave adsorbent, a micromechanical element, a microswitching element, a microsensor, a microfilter, and an adsorbent.
[0002]
[Prior art]
Carbon fiber is obtained by using conventional organic precursor fiber as a raw material, and processing such as infusibilization, carbonization, graphitization, etc., for example, PAN-based carbon fiber obtained from polyacrylonitrile fiber, pitch-based In addition to the pitch-based carbon fibers obtained from the fibers, there are vapor-grown carbon fibers obtained by vapor phase pyrolysis of hydrocarbons that have been recently developed. Vapor-grown carbon fiber has a graphite net surface wound concentrically, has high strength, has a wide range of properties from metallic to semiconductive, and is expected to be applied as a functional material.
As a method for producing vapor-grown carbon fiber, first, a mixed gas of a hydrocarbon such as benzene and a carrier gas is maintained at a temperature of 1000 ° C. or higher and a metal powder catalyst is supported, and first, 100-1500 cm / min. A method is disclosed in which nuclei for fiber growth are formed at a flow rate, and then fibers are grown at a flow rate of 10 to 30 cm / min (see Japanese Patent Publication No. 51-33210). In addition, various catalytic metal powders and various production methods have been proposed for producing vapor-grown carbon fibers. However, these methods do not provide any coiled carbon fiber.
As a method for producing a coiled carbon fiber, the present inventors previously used a hydrocarbon gas or a gas containing carbon monoxide in a system in which a transition metal and a Group V or Group VI compound existed 300 to 300- A method of vapor phase pyrolysis at 1000 ° C. has been proposed (see Japanese Patent Application Laid-Open No. 4-222228).
[0003]
When a transition metal is used as a catalyst, the coil yield varies significantly depending on the metal manufacturer, storage conditions, pretreatment conditions, etc., and the coil may not be obtained at all. The metal surface is usually covered with a thin oxide film, and this oxide film can greatly affect coil growth. On the other hand, the metal catalyst is exposed to a high-temperature reactive gas containing sulfur (or phosphorus) and carbon species during the reaction. Therefore, the metal catalyst may be in the form of sulfur (or phosphorus) and carbon, or a compound of sulfur and carbon, or a solid solution thereof, and these are considered to exhibit actual catalytic action. On the other hand, the amount of coiled carbon fiber obtained by the laboratory scale method described above is extremely small, on the order of 100 mg. However, in order to evaluate the characteristics of coiled carbon fibers and put them to practical use, it is necessary to search for a more effective catalyst and to develop a synthesis apparatus for mass synthesis and scale it up.
[0004]
[Problems to be solved by the invention]
Therefore, the present inventors have completed the present invention as a result of searching for a new catalyst for synthesis of coiled carbon fibers and developing a new apparatus for mass synthesis and scaling up. An object of the present invention is to provide a catalyst and a synthesis apparatus effective for mass synthesis of coiled carbon fibers.
[0005]
[Means for Solving the Problems]
The gist of the present invention is a sulfur system such as a trace amount of thiophene in the presence of one or more catalysts selected from the group consisting of transition metal oxides, carbides, sulfides, phosphides, carbonates, and carbonates. A method for producing a coiled carbon fiber, comprising vapor-phase thermal decomposition of a compound or an acetylene gas containing a phosphorus compound such as phosphorus trichloride in a temperature range of 600 to 850 ° C. Further, as the apparatus, a substrate or a metal plate (catalyst) in which an endless belt is provided in a reaction vessel having a source gas inlet and a waste gas outlet at a position opposite to the source gas, and a catalyst is applied on the endless belt. That the source gas flow introduced from the source gas inlet and the substrate are substantially orthogonal to each other, and the distance between the source gas inlet and the substrate is maintained at 1 to 20 mm. It is the coiled carbon fiber manufacturing apparatus characterized.
That is, as a result of studying production conditions such as catalyst, impurity gas, thermal decomposition conditions, and apparatus shape in the method for producing coiled carbon fiber, the present invention has resulted in transition metal oxides, carbides, sulfides, phosphides, carbonic acids. One or a mixture selected from the group consisting of fluoride and carbon sulfide is effective as a catalyst, and the raw material gas contains a small amount of a sulfur compound such as thiophene or a phosphorus compound such as phosphorus trichloride. A particularly high coil yield is obtained. In addition, as a manufacturing apparatus, a substrate or a metal plate in which an endless belt is provided in a reactor having a raw material gas inlet and a waste gas outlet at a position opposite to this, and a catalyst is applied on the endless belt ( The catalyst / substrate) was installed, the raw material gas flow introduced from the raw material gas inlet and the substrate were substantially orthogonal to each other, and the distance between the two was kept at 1 to 20 mm, thereby enabling mass synthesis of the coil.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
As the source gas used in the present invention, acetylene contains a trace amount of a sulfur compound such as thiophene or a phosphorus compound such as phosphorus trichloride as an impurity, and a preferred impurity is thiophene. Argon gas and hydrogen gas may be present as a carrier gas in the source gas, and the preferred flow rate ratio of the source gas introduced into the reactor is hydrogen: argon: acetylene: thiophene = 7: 4: 3: 0. 05.
[0007]
The catalyst that can be used in the present invention is one or a mixture selected from the group consisting of oxides, carbides, sulfides, phosphides, carbonates, and carbosulfides of transition metals, and preferred catalysts are nickel. , Solid solutions or oxides of titanium and tungsten with oxygen, carbides, sulfides, phosphides, carbonates, carbosulfides. These catalysts, which have been previously formed into solid solutions or compounds, are obtained by oxidizing, carbonizing, sulfiding, phosphating, carbonating, carbonitriding the metal powder or plate in the reactor under predetermined conditions before the reaction. But you can use it.
[0008]
As the catalyst that can be used in the present invention, in addition to Ni and Ti compounds, the above compounds of almost all transition metals can be used. For example, compounds such as Group 4 Zr, Hf, Group 5 V, Nb, Ta, Group 6 Cr, Mo, W, Group 7 Mn, Group 8 Fe, Group 9 Co, Group 10 Ni, etc. Both show a catalytic effect on coil growth. In particular, a compound having a relatively low content of oxygen, sulfur, phosphorus, carbon and the like in the compound and having a strong non-stoichiometry exhibits excellent catalytic action. For example, the preferable oxygen content in the case of Ti oxide is 40 to 62 at. %, And the preferable carbon content in the case of Ti carbide is 15 to 45 at. %. Examples of such preferable Ti compounds include Ti 2 C, Ti 2 O 3 , Ti 3 S 4 , Ti 2 P, and TiCxS 1 x (x <0.5). Examples of preferred Ni compounds include Ni 2 O 3 , Ni 3 S 2 and NiS. As the metal component, in addition to a single component, a multicomponent alloy having two or more components can also be used.
[0009]
Among the catalysts that can be used in the present invention, in the case of metal sulfides, carbon sulfides, phosphides, etc., a certain degree of coil can be obtained without adding sulfur-based or phosphorus-based impurities as source impurities. I can do it.
[0010]
The form of the catalyst that can be used in the present invention may be any of powder, metal plate, powder sintered plate, etc., preferably a fine powder having an average particle size of about 5 microns or a sintered plate obtained by sintering the powder. It is. In the case of a powdered catalyst, it may be sprayed or coated on the substrate, or may be used in a flowing state in the raw material gas.
[0011]
The carbon fiber obtained by the present invention consists essentially of carbon, the fiber diameter is 0.01 to 1 μm, the coil outer diameter is 0.1 to 10 μm, the coil pitch is 0.01 to 5 μm, and the coil length is 1. It is a microcoiled fiber in the range of ˜3,000 μm. In most cases, the microcoiled fiber is a double coil that is grown while two coils are wound around each other, and expands and contracts completely elastically to about three times the original length. Moreover, although it can extend to substantially linear form, in this case, distortion remains and does not return to the original length.
[0012]
The coiled carbon fiber of the present invention can be applied to various uses in which the existing carbon fiber is used. In particular, by utilizing various characteristics brought about by the specific form of the coiled shape, a tertiary such as FRP and FRM is used. It is useful as functional materials such as original reinforcing fibers, electromagnetic wave absorbers, micromechanical elements, microswitching elements, microsensors, microfilters, and adsorbents.
[0013]
Next, the manufacturing apparatus according to the present invention will be described. FIG. 1 is a conceptual diagram of a manufacturing apparatus according to the present invention. In FIG. 1, the reactor 1 exists in the position where the raw material gas inlet 2 and the waste gas outlet 3 face each other. The reactor 1 is provided with an endless belt 4, and a catalyst 5 is installed on the endless belt 4. The raw material gas introduction pipe is provided with an internal heater 6 and an external heater 7 in the center of the reactor of the raw material gas inlet 2 in order to prevent undesired decomposition of the raw material acetylene. A water cooler 8 is provided in the source gas introduction pipe. The distance between the raw material gas inlet and the substrate carrying the catalyst on the endless belt is set to 1 to 20 mm. In such an apparatus, the inside of the reactor is heated to a predetermined temperature by the internal heater 6 and the external heater 7, and the source gas is introduced into the reactor through the source gas inlet 2 and discharged from the outlet 3. When the endless belt 4 is moved so as to be substantially perpendicular to such a gas flow, the catalyst on the substrate of the endless belt and the raw material gas come into contact with each other and the reaction proceeds.
[0014]
The shape of the manufacturing apparatus according to the present invention may be any of a circular shape, an elliptical shape, a square shape, a rectangular shape, and the like. The material of the reactor is preferably made of a material that does not contain copper and that does not corrode, vulcanize, phosphorus embrittle, or corrode at high temperatures, such as stainless steel, preferably Inconel. The size of the reactor is not particularly limited, and the distance between the raw material gas inlet and the substrate carrying the catalyst on the endless belt is 1 to 20 mm, preferably 2 to 7 mm, regardless of the size of the reactor. Other than the above, there is no particular limitation.
[0015]
Acetylene is easily decomposed at high temperatures, and when it is heated to 400 ° C or higher for a long time until it contacts the catalyst, the decomposition reaction proceeds and powder (acetylene black) or linear fibers are likely to precipitate, resulting in a coil yield. Will decline. Therefore, the raw material introduction is cooled from outside, or the area of the raw material inlet is reduced to increase the linear velocity of the gas, thereby preventing the temperature rise of the raw material acetylene and bringing the undecomposed raw material acetylene into contact with the catalyst as much as possible. This is very important. For this reason, the source gas introduction pipe is water-cooled, and the distance between the gas introduction port 4 and the substrate carrying the catalyst on the endless belt is limited to 1 to 20 mm.
[0016]
As an example of the production apparatus according to the present invention, an endless belt is installed in an Inconel box reactor having a rectangular cross section of 200 mm (height) × 350 mm (depth) and a width of 1500 mm. Ten graphite substrates each having a width of 300 mm (length) were set. The distance between the substrates was 5 mm. A titanium oxide (Ti 2 O 3 ) powder catalyst was uniformly dispersed on the substrate. The source gas inlet (upper part) and the gas outlet (lower part) face each other, and each was a rectangle of 5 mm (width) × 300 mm (depth). The raw material introduction pipe was water-cooled from the outside.
[0017]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples.
Example 1
A graphite substrate on which a titanium oxide (Ti 2 O 3 ) powder catalyst is dispersed is set in the center of a small thermal CVD apparatus consisting of an opaque quartz tube having an inner diameter of about 23 mm and a length of 500 mm, and heated to 775 ° C. in argon. did. Thereafter, acetylene containing 1.51 mol% of thiophene impurities was flowed at 30 cc / min, hydrogen at 70 cc / min, and argon at 40 cc / min, and the reaction was performed for 15 minutes under normal pressure. At this time, the content of thiophene with respect to the total gas is 0.323 mol%. 0.45 g of a precipitate was obtained, and 0.30 g of a coil was contained therein. This corresponds to 62 mol% (coil yield 62 mol%) of the carbon content in the introduced raw acetylene. When the thiophene content in acetylene decreased or increased even slightly from the above value, the coil yield decreased rapidly, and no coil was deposited at 0.2 mol% or less or 8 mol% or more.
[0018]
Example 2
When a commercially available titanium powder was surface-oxidized in air at 650 ° C. for 30 minutes in advance as a catalyst and the other conditions were the same as in Example 1, the coil yield was 57%. In this catalyst surface, about 57 at. % Oxygen was contained.
Example 3
When a commercially available titanium powder was surface-oxidized in advance at 850 ° C. for 30 minutes in the air as a catalyst and other conditions were the same as in Example 1, the coil yield was 60%. About 60 at. % Oxygen was contained.
[0019]
Example 4
When a commercially available titanium powder was used as it was (untreated) as a catalyst and the other conditions were the same as in Example 1, the coil yield was 40%. About 40 at. % Oxygen was contained.
Comparative Example 1
A commercially available titanium metal plate was previously polished with # 120 emery paper and then immersed in concentrated hydrochloric acid at 50 ° C. for 60 minutes to remove the oxide layer on the surface. The other conditions were the same as in Example 1. In this case, no coil growth was observed.
[0020]
Example 5
When a commercially available nickel powder was surface-oxidized in advance at 850 ° C. for 30 minutes in the air as a catalyst and other conditions were the same as in Example 1, the coil yield was 65%. About 45 at. % Oxygen was contained.
Comparative Example 2
A commercially available nickel metal plate was previously polished with # 120 emery paper and then immersed in concentrated hydrochloric acid at 50 to 80 ° C. for 30 to 60 minutes to remove the oxide layer on the surface. The other conditions were as follows. When the same as in Example 1, no coil growth was observed.
[0021]
Example 6
Using titanium sulfide (Ti 3 S 4 ) powder (average particle size 5 μm) as a catalyst, acetylene containing 1.67 mol% of thiophene impurities was flowed at 30 cc / min, hydrogen at 70 cc / min, and argon at 40 cc / min for 15 minutes. Went. The relationship between reaction temperature and coil yield is shown in FIG. A maximum yield of 50% was obtained at 750 ° C., and the coil yield dropped sharply below or above this temperature. Moreover, when the thiophene content in acetylene decreased or increased from the above value, the coil yield decreased rapidly. For example, at 8%, the coil did not grow at all. The coil yield when no thiophene was added as an impurity was 35%.
[0022]
Example 7
When nickel sulfide (Ni 8 S 2 ) powder was used as a catalyst and other conditions were the same as in Example 1, the coil yield was 35%. The coil yield when no thiophene was added as an impurity was 25%.
Example 8
When molybdenum sulfide (Mo 2 S 3 ) powder was used as a catalyst and other conditions were the same as in Example 1, the coil yield was 45%. The coil yield when no thiophene was added as an impurity was 30%.
[0023]
Example 9
When titanium phosphide (Ti 2 P) powder was used as a catalyst and phosphorus trichloride was added in an amount of 0.21 mol% in the raw material acetylene instead of thiophene as an impurity, the coil yield was 45. %Met. The coil yield when phosphorus trichloride was not added as an impurity was 30%.
Example 10
A mixed gas of acetylene hydrogen and argon containing a small amount of thiophene is introduced from the raw material gas inlet at the top of the reactor shown in FIG. 1, and is brought into contact with the catalyst on the substrate set at a position of about 3 mm immediately below the inlet. Reaction was performed. The molybdenum sulfide (Mo 2 S 3 ) of Example 8 was used as the catalyst. The substrate temperature was 750 ° C., the reaction time per substrate was 15 minutes, and the reaction pressure was normal pressure. Each gas flow rate was as follows. Thiophene: 50 cc / min, hydrogen 1,000 cc / min, argon 1,500 cc / min, 2.1 g of coiled carbon fiber was deposited on one substrate. This corresponds to a coil yield of about 50%.
[0024]
Example 11
In Example 10, a substrate was reacted for 15 minutes and then moved, and the next substrate was moved directly under the raw material gas inlet and reacted for 15 minutes. This operation was repeated for 10 substrates. The total amount of coils deposited on 10 substrates was about 21.0 g. This corresponds to a coil yield of about 50%.
Example 12
In Example 10, when the distance between the raw material inlet and the substrate was 5 mm, a single substrate was used, and the reaction was carried out under the same conditions as in Example 11, the coil yield was 60%.
[0025]
Example 13
In Example 10, when the reaction was performed under the same conditions as in Example 9 except that the distance between the raw material inlet and the substrate was 20 mm, the coil yield was 20%.
Comparative Example 3
In Example 10, when the distance between the raw material inlet and the substrate was 30 mm, a single substrate was used and the reaction was carried out under the same conditions as in Example 11, no coil was obtained.
In Example 13, when the raw material inlet was not cooled with water, the coil yield was reduced to 20%. Moreover, when the width | variety of the raw material inlet was made into twice (10 mm) of Example 13, the coil yield fell to 15%.
[0026]
【The invention's effect】
As described above, by using the catalyst of the present invention, the coiled carbon fiber can be obtained in high yield, and in particular, when the production apparatus of the present invention is used, it can be easily scaled up. Play.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a manufacturing apparatus according to the present invention.
FIG. 2 shows the coil yield with respect to the reaction temperature when a titanium sulfide (Ti 3 S 4 ) catalyst is used.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reactor 2 Raw material gas introduction port 3 Waste gas discharge port 4 Endless belt 5 Catalyst 6 Internal heater 7 External heater 8 Water cooling part

Claims (2)

遷移金属の酸化物、炭化物、硫化物、リン化物、炭酸化物、炭硫化物よりなる群から選ばれた1種又は複数の触媒の存在下、微量のチオフェンなどの硫黄系化合物あるいは三塩化リンなどのリン系化合物を含有するアセチレンガスを600〜850℃の温度範囲で気相熱分解させることを特徴とするコイル状炭素繊維の製造方法。  In the presence of one or more catalysts selected from the group consisting of transition metal oxides, carbides, sulfides, phosphides, carbonates, and sulfides, trace amounts of sulfur compounds such as thiophene, phosphorus trichloride, etc. A process for producing a coiled carbon fiber, characterized in that acetylene gas containing a phosphorus compound is vapor-phase pyrolyzed in a temperature range of 600 to 850 ° C. 冷却部を有する原料ガス導入口と、これに対向する位置に廃ガス排出口とを有する反応容器内に、無端ベルトを設け、該無端ベルト上に触媒を塗布した基板あるいは金属板(触媒兼基板)を設置し、原料ガス導入口より導入された原料ガス流と基板とがほぼ直交するようにし、且つ、原料ガス導入口と基板との距離を1〜20mmに保つようにしたことを特徴とするコイル状炭素繊維製造装置。A substrate or a metal plate (catalyst and substrate) in which an endless belt is provided in a reaction vessel having a raw material gas inlet having a cooling unit and a waste gas outlet at a position opposite to this, and a catalyst is applied on the endless belt. ), The source gas flow introduced from the source gas inlet and the substrate are substantially orthogonal, and the distance between the source gas inlet and the substrate is maintained at 1 to 20 mm. Coiled carbon fiber manufacturing equipment.
JP18606496A 1996-07-16 1996-07-16 Method and apparatus for producing coiled carbon fiber Expired - Fee Related JP3817703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18606496A JP3817703B2 (en) 1996-07-16 1996-07-16 Method and apparatus for producing coiled carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18606496A JP3817703B2 (en) 1996-07-16 1996-07-16 Method and apparatus for producing coiled carbon fiber

Publications (2)

Publication Number Publication Date
JPH1037024A JPH1037024A (en) 1998-02-10
JP3817703B2 true JP3817703B2 (en) 2006-09-06

Family

ID=16181766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18606496A Expired - Fee Related JP3817703B2 (en) 1996-07-16 1996-07-16 Method and apparatus for producing coiled carbon fiber

Country Status (1)

Country Link
JP (1) JP3817703B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4064514B2 (en) * 1998-02-19 2008-03-19 栖二 元島 Vapor phase production method and production apparatus for coiled carbon fiber
JP3734400B2 (en) * 2000-02-25 2006-01-11 双葉電子工業株式会社 Electron emitter
JP3585033B2 (en) * 2000-04-29 2004-11-04 喜萬 中山 Method for producing indium-tin-iron catalyst for producing carbon nanocoils
JP3822806B2 (en) * 2001-07-11 2006-09-20 喜萬 中山 Mass production method of carbon nanocoils
JP3962773B2 (en) * 2002-12-05 2007-08-22 独立行政法人科学技術振興機構 Raw material spray type carbon nanostructure manufacturing method and apparatus
EP2062642A1 (en) * 2003-05-29 2009-05-27 Japan Science and Technology Agency Catalyst for synthesizing carbon nanocoils, synthesising method of the same and synthesizing method of carbon nanocoils
JP4197729B2 (en) * 2006-12-21 2008-12-17 昭和電工株式会社 Carbon fiber and catalyst for carbon fiber production
NO2749379T3 (en) 2012-04-16 2018-07-28
CN104284861A (en) 2012-04-16 2015-01-14 赛尔斯通股份有限公司 Methods for treating offgas containing carbon oxides
US20150078981A1 (en) * 2012-04-16 2015-03-19 Seerstone Llc Methods for using metal catalysts in carbon oxide catalytic converters
CN104271498B (en) 2012-04-16 2017-10-24 赛尔斯通股份有限公司 The method and structure of oxycarbide is reduced with non-iron catalyst
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Also Published As

Publication number Publication date
JPH1037024A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
KR101753918B1 (en) Method for producing solid carbon by reducing carbon oxides
JP3817703B2 (en) Method and apparatus for producing coiled carbon fiber
US20150078981A1 (en) Methods for using metal catalysts in carbon oxide catalytic converters
JP2944246B2 (en) Method for producing coiled carbon fiber
US20150064092A1 (en) Methods and reactors for producing solid carbon nanotubes, solid carbon clusters, and forests
JP4612287B2 (en) Silicon carbide fiber substantially free of whiskers and method for producing the same
JPS6249363B2 (en)
US20070111885A1 (en) Method for manufacturing nano-carbon substances
CN103288072A (en) Preparation method of iron filled carbon nano tube and reaction device
US7829494B2 (en) Catalyst for synthesizing carbon nanocoils, synthesizing method of the same, synthesizing method of carbon nanocoils, and carbon nanocoils
Baker et al. The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum
Yang et al. Coiling-chirality changes in carbon microcoils obtained by catalyzed pyrolysis of acetylene and its mechanism
JPH02289497A (en) Manufacturing process for silicon carbide whisker and nucleating agent
EP0375397A2 (en) Process for producing graphite whiskers
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
JPS58110493A (en) Production of graphite whisker
JPH0411651B2 (en)
Shivanna et al. Fe-Ni nanoparticle-catalyzed controlled synthesis of multi-walled carbon nanotubes on CaCO3
JPS6021806A (en) Interlayer compound of nickel chloride and graphite
Wulan et al. Synthesis Of Aligned Carbon Nanotube (ACNT) Through Catalytic Decomposition Of Methane By Water Assisted Chemical Vapor Deposition (WA-CVD)
JPS6278217A (en) Vapor-phase production of carbon fiber
JPH11124740A (en) Carbon micro-coil and its production
JP4723228B2 (en) Mustache fiber
JP2001146643A (en) Method for producing carbon nanofiber
Kinka et al. CCVD preparation of highly uniform carbon micro-and nanocoil fibers

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees