JP2001146643A - Method for producing carbon nanofiber - Google Patents

Method for producing carbon nanofiber

Info

Publication number
JP2001146643A
JP2001146643A JP33258299A JP33258299A JP2001146643A JP 2001146643 A JP2001146643 A JP 2001146643A JP 33258299 A JP33258299 A JP 33258299A JP 33258299 A JP33258299 A JP 33258299A JP 2001146643 A JP2001146643 A JP 2001146643A
Authority
JP
Japan
Prior art keywords
catalyst
carbon
ultrafine
metal
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33258299A
Other languages
Japanese (ja)
Inventor
Hiroshi Yokota
洋 横田
Tadashi Shimoyama
正 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP33258299A priority Critical patent/JP2001146643A/en
Publication of JP2001146643A publication Critical patent/JP2001146643A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing carbon nanofibers by which carbon fibers having a high hydrogen absorptivity can readily be produced. SOLUTION: An ultrafine particulate metal catalyst 12 having <=50 nm particle diameter is prepared and a gas containing carbon is made to flow over the catalyst 12. Thereby, the gas is dissociated with the catalyst 12 to deposit a graphitic carbon 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ナノメートル(n
m)オーダの極細の繊維径を有する炭素繊維である、ナ
ノカーボンファイバの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
m) A method for producing a nanocarbon fiber, which is a carbon fiber having an ultrafine fiber diameter on the order.

【0002】[0002]

【従来の技術】炭素繊維にも種々の構造のものが知られ
ているが、ナノカーボンファイバと呼ばれる繊維径が1
から50nm程度の極細のものが、高い水素の吸蔵能力
を有することから最近注目を集めている。一般に広く普
及している炭素繊維は、繊維径が約10μm程度である
が、このような炭素繊維には水素吸蔵能力は殆ど存在し
ない。従って、炭素繊維の繊維径を50nm以下にする
ことができれば、この炭素繊維は高い水素の吸蔵能力を
期待できる。
2. Description of the Related Art Carbon fibers having various structures are known.
Ultra-fine particles of about 50 nm to 50 nm have recently attracted attention because of their high hydrogen storage capacity. Generally, carbon fibers which are widely used have a fiber diameter of about 10 μm, but such carbon fibers have almost no hydrogen storage capacity. Therefore, if the fiber diameter of the carbon fiber can be reduced to 50 nm or less, the carbon fiber can be expected to have a high hydrogen storage capacity.

【0003】黒鉛状の炭素繊維を合成するための触媒と
しては、Ni,Fe,Co等の遷移金属が有効であるこ
とが知られている。これらの金属触媒は、通常、硝酸
塩、塩化物などの無機塩を熱分解した後、水素還元して
作られている。金属触媒を担体上に高分散保持させるた
め、無機塩は溶媒に溶かされた後、担体に含浸して乾燥
され、次に水素還元性雰囲気下で熱分解される。無機塩
は、乾燥時に溶媒より析出して固体となるが、無機塩の
結晶として析出するため、この時すでに比較的大きな粒
子となっている。又、熱分解にも、水素還元にも350
℃以上の高温が必要なため、析出した金属触媒は容易に
周囲の金属粒子と焼結して粒成長を生じ、50nm以上
のものになってしまう。このような大きな金属触媒で、
炭素繊維を合成した場合、炭素繊維の太さは、殆ど触媒
径に一致するため、50nm以上の太いファイバーとな
り、水素吸蔵能力は期待できない。
As a catalyst for synthesizing graphite-like carbon fibers, transition metals such as Ni, Fe, and Co are known to be effective. These metal catalysts are usually produced by thermally decomposing inorganic salts such as nitrates and chlorides and then reducing them with hydrogen. In order to keep the metal catalyst highly dispersed on the carrier, the inorganic salt is dissolved in a solvent, then impregnated into the carrier, dried, and then thermally decomposed in a hydrogen reducing atmosphere. The inorganic salt precipitates from the solvent during drying to form a solid, but since it precipitates as crystals of the inorganic salt, it has already become relatively large particles at this time. In addition, for thermal decomposition and hydrogen reduction, 350
Since a high temperature of not less than ° C. is required, the deposited metal catalyst easily sinters with surrounding metal particles to cause grain growth, and becomes larger than 50 nm. With such a large metal catalyst,
When carbon fiber is synthesized, the thickness of the carbon fiber almost matches the diameter of the catalyst, so that the fiber becomes a thick fiber of 50 nm or more, and the hydrogen storage capacity cannot be expected.

【0004】[0004]

【発明が解決しようとする課題】本発明は上述した事情
に鑑みて為されたもので、水素吸蔵能力の高い極細の炭
素繊維を容易に製造することができる、ナノカーボンフ
ァイバの製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a method for producing a nanocarbon fiber which can easily produce an ultrafine carbon fiber having a high hydrogen storage capacity. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明
は、粒径が50nm以下の超微粒子金属触媒を準備し、
該触媒に炭素を含むガスを流し、該ガスを前記触媒によ
り解離させて、黒鉛状の炭素を析出させることを特徴と
するナノカーボンファイバの製造方法である。これによ
り、50nm以下の超微粒子金属触媒から極細の炭素繊
維が成長するので、50nm以下の極細のナノカーボン
ファイバを容易に製造することができる。係るナノカー
ボンファイバは高い水素吸蔵能力が期待できる。
According to the first aspect of the present invention, there is provided an ultrafine metal catalyst having a particle size of 50 nm or less,
A method for producing a nanocarbon fiber, characterized by flowing a gas containing carbon through the catalyst and dissociating the gas with the catalyst to precipitate graphite-like carbon. As a result, ultrafine carbon fibers grow from the ultrafine metal catalyst of 50 nm or less, so that ultrafine nanocarbon fibers of 50 nm or less can be easily produced. Such a nanocarbon fiber can be expected to have a high hydrogen storage capacity.

【0006】請求項2に記載の発明は、前記粒径が50
nm以下の超微粒子金属触媒は、有機金属化合物を20
0℃から600℃の温度で熱分解して有機物で被覆され
た金属超微粒子を合成し、その後不活性雰囲気又は還元
性雰囲気中で熱分解して金属粒子を生成することを特徴
とする。これにより、50nm以下、特に好ましくは1
0nm程度の金属超微粒子を容易に生成することができ
る。この中間生成物である有機物で被覆された金属超微
粒子は、内部が金属であり、その周囲に有機物が取り囲
んでいるので、取扱いが容易であり、安定に処理するこ
とができる。
According to a second aspect of the present invention, the particle size is 50
Ultra-fine particle metal catalyst having a particle size of less than 20 nm
It is characterized in that it is thermally decomposed at a temperature of 0 ° C. to 600 ° C. to synthesize ultrafine metal particles coated with an organic substance, and then thermally decomposed in an inert atmosphere or a reducing atmosphere to produce metal particles. Thereby, it is preferably 50 nm or less, particularly preferably 1 nm or less.
Ultrafine metal particles of about 0 nm can be easily generated. The metal ultrafine particles coated with an organic substance, which is an intermediate product, have a metal inside and are surrounded by an organic substance, so that they are easy to handle and can be stably processed.

【0007】請求項3に記載の発明は、前記超微粒子金
属触媒は、耐熱性を有する無機材料からなる基板上に、
高密度に分散して配置された金属超微粒子からなるもの
であることを特徴とする。これにより、高密度に分散配
置された金属触媒である超微粒子からnmオーダの炭素
繊維を成長させることができ、極細の炭素繊維を量産す
ることができる。
According to a third aspect of the present invention, the ultrafine metal catalyst is provided on a substrate made of an inorganic material having heat resistance.
It is characterized by being made of ultra-fine metal particles dispersed at a high density. As a result, carbon fibers of the order of nm can be grown from ultrafine particles, which are metal catalysts dispersed and arranged at a high density, and ultrafine carbon fibers can be mass-produced.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て添付図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0009】図1は、本発明の実施の形態のナノカーボ
ンファイバの製造手順を示す。まず、50nm以下、好
ましくは10nm程度の金属超微粒子からなる触媒を耐
熱性の無機材料上に生成する。ナノカーボンファイバを
製造するための触媒としては、コバルト(Co)、ニッ
ケル(Ni)、鉄(Fe)等又はこれらの合金が好まし
い。これらの金属の原料として、オクチル酸やステアリ
ン酸、その他のカルボン酸の金属塩を用いる。これらの
有機金属塩は、熱分解が200〜350℃で生じるた
め、不活性雰囲気中で上記の温度範囲に加熱する。即
ち、有機金属化合物の熱分解開始温度と完全に分解する
温度の中間の温度でこれらを熱分解することにより、有
機物で被覆された金属超微粒子が合成される。ここで得
られた金属超微粒子の寸法は1〜20nm程度であり、
ナノカーボンファイバの合成に好適な10nm程度のサ
イズの金属超微粒子を比較的容易に且つ大量に得ること
ができる。そして、この超微粒子は有機物で被覆されて
いるため、空気中に放置しても酸化等が起こらず、取扱
いが容易である。
FIG. 1 shows a procedure for manufacturing a nanocarbon fiber according to an embodiment of the present invention. First, a catalyst composed of ultrafine metal particles of 50 nm or less, preferably about 10 nm, is formed on a heat-resistant inorganic material. As a catalyst for producing a nanocarbon fiber, cobalt (Co), nickel (Ni), iron (Fe), or the like, or an alloy thereof is preferable. Octylic acid, stearic acid, and other metal salts of carboxylic acids are used as raw materials for these metals. These organic metal salts are heated to the above temperature range in an inert atmosphere because thermal decomposition occurs at 200 to 350 ° C. That is, by thermally decomposing the organometallic compound at a temperature intermediate between the temperature at which thermal decomposition starts and the temperature at which the organometallic compound is completely decomposed, ultrafine metal particles coated with an organic substance are synthesized. The dimensions of the obtained ultrafine metal particles are about 1 to 20 nm,
Ultrafine metal particles having a size of about 10 nm suitable for synthesizing nanocarbon fibers can be obtained relatively easily and in large quantities. Since the ultrafine particles are covered with an organic substance, they do not oxidize even when left in the air, and are easy to handle.

【0010】次に、この有機物で被覆された金属超微粒
子から触媒として機能する金属単体の超微粒子の生成を
行う。これは、有機物被覆金属超微粒子をトルエンなど
の溶媒に溶解させて、均一溶液とする。尚、合金触媒を
調整する場合には、所定の重量比になるように2種以上
の有機被覆金属微粒子を秤量、混合し、これを上記溶媒
に溶かして同様に均一溶液にする。次に、シリカ、アル
ミナ、活性炭等の耐熱性の無機材料からなる基板を用
い、これに上記溶液を含浸して乾燥させる。これにより
容易に均一に金属超微粒子を高密度で基板上に分散保持
させることができる。ここで、有機物被覆金属超微粒子
は有機溶剤に単分子分散するため、この溶剤を基板に含
浸し、乾燥することで金属超微粒子を分散した状態で保
持できる。又、有機溶剤は極性が小さく、水よりも濡れ
性がよいため細孔内までも浸透し、基板に対して均一な
被覆が為される。乾燥時においても、有機物で被覆され
た金属超微粒子は、そのままの状態で単分散保持され
る。
Next, ultrafine particles of a simple metal functioning as a catalyst are generated from the ultrafine metal particles coated with the organic substance. In this method, ultrafine organic substance-coated metal particles are dissolved in a solvent such as toluene to form a uniform solution. When adjusting the alloy catalyst, two or more kinds of organic-coated metal fine particles are weighed and mixed so as to have a predetermined weight ratio, and the mixed fine particles are dissolved in the above-mentioned solvent to form a uniform solution. Next, a substrate made of a heat-resistant inorganic material such as silica, alumina, or activated carbon is used, impregnated with the above solution, and dried. This makes it possible to easily and uniformly disperse and hold the metal ultrafine particles at high density on the substrate. Here, since the organic substance-coated ultrafine metal particles are monomolecularly dispersed in an organic solvent, the solvent can be impregnated into a substrate and dried to hold the ultrafine metal particles in a dispersed state. In addition, since the organic solvent has a small polarity and has better wettability than water, it penetrates into the pores, so that the substrate is uniformly coated. Even at the time of drying, the ultrafine metal particles coated with the organic substance are kept in a monodispersed state as they are.

【0011】そして、これを不活性雰囲気又は水素等の
還元性雰囲気中で熱分解して、有機物を除去して金属粒
子を析出させる。基板に低濃度で含浸すれば、単分散状
態のままで金属になるため、最初に合成された有機被覆
金属超微粒子の大きさのままでそのまま基板上に担持さ
れる。又、より濃度が高くても一部で焼結が進むことが
あるが、有機物を除去する温度は500℃以下と比較的
低温であるため、粒子成長は抑制される。即ち、有機物
被覆金属超微粒子のうちの有機物を250〜500℃の
温度で完全に熱分解させて除去し、更に完全な金属に戻
すために水素還元処理を行うことが好ましい。
Then, this is thermally decomposed in an inert atmosphere or a reducing atmosphere such as hydrogen to remove organic substances and precipitate metal particles. If the substrate is impregnated at a low concentration, it becomes a metal in a monodispersed state, so that it is supported on the substrate as it is with the size of the organic-coated ultrafine metal particles synthesized first. In addition, although sintering may proceed partially even when the concentration is higher, since the temperature for removing organic substances is relatively low at 500 ° C. or less, particle growth is suppressed. That is, it is preferable to completely decompose and remove the organic substances in the organic substance-coated ultrafine metal particles at a temperature of 250 to 500 ° C., and to carry out a hydrogen reduction treatment in order to return the metal to a complete metal.

【0012】これらの有機物の熱分解による除去と、金
属に付着した酸化物を除去するための還元処理は同時に
行っても良く、又2段階で行っても良い。尚、ニッケル
(Ni)等の水素還元が容易な金属では、有機物の除去
を酸素が存在する雰囲気下で加熱除去し、一度酸化物に
した後に水素還元して金属超微粒子にすることもでき
る。これにより、耐熱性を有する無機材料からなる基板
上に50nm以下、特に10nm程度の金属超微粒子が
高密度で分散した状態で触媒として担持される。
The removal of these organic substances by thermal decomposition and the reduction treatment for removing the oxide attached to the metal may be performed simultaneously or in two stages. In the case of a metal such as nickel (Ni), which can be easily reduced with hydrogen, the organic substance can be removed by heating under an atmosphere containing oxygen, and once converted into an oxide, then reduced with hydrogen to obtain ultrafine metal particles. As a result, ultrafine metal particles of 50 nm or less, particularly about 10 nm, are supported as a catalyst in a state of being dispersed at high density on a substrate made of a heat-resistant inorganic material.

【0013】次に、得られた触媒上への黒鉛状の炭素の
析出(炭素繊維の合成)について説明する。これは、炭
素を含むガス、例えば一酸化炭素、メタン、エチレン等
のガスと必要により水素ガスを加えて上記超微粒子金属
からなる触媒上に供給し、温度を400〜1200℃程
度に保つ。これにより、コバルト、ニッケル、鉄等の金
属微粒子により触媒反応として一酸化炭素の還元や炭化
水素の分解反応を起こし、金属微粒子上に炭素が析出す
る。析出した炭素は、主に黒鉛であり、触媒上に図2に
示すようにファイバ状に形成される。即ち、基板11の
表面に分散配置された金属超微粒子触媒12上に平面的
な炭素の層状結晶13が析出し、極細の炭素繊維14を
構成する。このため、形成されるファイバの太さは、金
属超微粒子触媒の大きさAとほぼ一致し、上記触媒によ
る超微粒子の寸法である5〜20nmを中心として50
nm以下の線径の炭素繊維を形成できる。
Next, the deposition of graphite-like carbon (synthesis of carbon fibers) on the obtained catalyst will be described. In this method, a gas containing carbon, for example, a gas such as carbon monoxide, methane, ethylene and the like, and a hydrogen gas as necessary, are added and supplied onto a catalyst made of the above-mentioned ultrafine metal, and the temperature is maintained at about 400 to 1200 ° C. Thereby, reduction of carbon monoxide and decomposition reaction of hydrocarbons are caused as a catalytic reaction by the fine metal particles of cobalt, nickel, iron and the like, and carbon is deposited on the fine metal particles. The deposited carbon is mainly graphite, and is formed in a fiber shape on the catalyst as shown in FIG. That is, the planar carbon layered crystal 13 precipitates on the metal ultrafine particle catalyst 12 dispersedly arranged on the surface of the substrate 11, thereby forming an ultrafine carbon fiber 14. For this reason, the thickness of the formed fiber is almost equal to the size A of the metal ultrafine particle catalyst, and the thickness of the fiber is about 50 to 20 nm, which is the size of the ultrafine particle by the above catalyst.
It is possible to form a carbon fiber having a wire diameter of not more than nm.

【0014】係るナノカーボンファイバは、炭素の結合
が平面的な六角網面を形成し、異方性の強い層状結晶を
作り、繊維の軸方向にはファンデルワールス力により結
合されていると考えられる。このため、比較的弱い結合
力であるファンデルワールス力によって結合された平面
的な層状結晶13の相互間に水素を吸蔵することがで
き、これにより高い水素吸蔵能力を有するものと考えら
れる。
It is considered that such a nanocarbon fiber is formed such that carbon bonds form a planar hexagonal mesh plane, form a layered crystal with strong anisotropy, and are bonded in the axial direction of the fiber by van der Waals force. Can be For this reason, it is considered that hydrogen can be absorbed between the planar layered crystals 13 bonded by the Van der Waals force, which is a relatively weak bonding force, and thereby the hydrogen has a high hydrogen storage capacity.

【0015】このようにして合成された炭素繊維を取り
出し、圧力容器に入れ、次に水素を導入して加圧した
後、更に温度を300℃まで上げ保持した。その後の圧
力変化を数十時間にわたりモニタし、炭素繊維に吸蔵さ
れた水素量を圧力の減少分として測定した。100nm
を越える線径の炭素繊維では、殆ど水素吸収がないのに
対して、上記超微粒子金属触媒を用いて形成した炭素繊
維14では、自重の0.5%以上の水素吸収量を示して
おり、明らかに高い水素吸蔵能力があることが示され
た。
The carbon fiber synthesized in this manner was taken out, put into a pressure vessel, then pressurized by introducing hydrogen, and the temperature was further raised to 300 ° C. and held. The subsequent change in pressure was monitored for several tens of hours, and the amount of hydrogen stored in the carbon fiber was measured as a decrease in pressure. 100nm
The carbon fiber having a wire diameter exceeding the above has almost no hydrogen absorption, whereas the carbon fiber 14 formed using the ultrafine metal catalyst has a hydrogen absorption of 0.5% or more of its own weight, It was shown that there was a clearly high hydrogen storage capacity.

【0016】[0016]

【実施例】オクチル酸コバルトを用い、まずこれを窒素
気流中で250℃で4時間熱分解を行った。得られた固
体のX線分析から、コバルト金属が生成していることが
確認された。又、熱分析により、有機物が30%ほど残
留していることも確認できた。この固体をトルエンに溶
解し、20wt%の透明液にした後、シリカ多孔体に浸
漬して、溶液を含浸させた。金属としての担持量は、担
体の重さに対して5wt%とした。乾燥によりトルエン
を蒸発させた後、触媒付き担体を1g採取し、石英ガラ
ス反応管に入れて、水素を流し、500℃で有機物の熱
分解及び水素還元を行った。
EXAMPLE Cobalt octylate was first pyrolyzed at 250 ° C. for 4 hours in a nitrogen stream. X-ray analysis of the obtained solid confirmed that cobalt metal was generated. Thermal analysis also confirmed that about 30% of organic matter remained. This solid was dissolved in toluene to make a 20 wt% transparent liquid, and then immersed in porous silica to impregnate the solution. The amount of the metal carried was 5 wt% based on the weight of the carrier. After evaporating toluene by drying, 1 g of the catalyst-carrying carrier was sampled, placed in a quartz glass reaction tube, hydrogen was flown therein, and thermal decomposition of organic substances and hydrogen reduction were performed at 500 ° C.

【0017】続いて、一酸化炭素と水素の混合ガス(C
o:H=4:1)を、65ml/minの流量で5時間流
して反応させた。金属触媒単体上には、黒く炭素が析出
してきており、重量増加は0.98gであった。この炭
素付きの触媒のX線分析では、Coと黒鉛の解析ピーク
が現れており、黒鉛状の炭素が生成していることが確認
された。
Subsequently, a mixed gas of carbon monoxide and hydrogen (C
o: H 2 = 4: 1) was reacted at a flow rate of 65 ml / min for 5 hours. Carbon was deposited black on the metal catalyst alone, and the weight increase was 0.98 g. In the X-ray analysis of the catalyst with carbon, analysis peaks of Co and graphite appeared, and it was confirmed that graphite-like carbon was generated.

【0018】次に容量100mlのオートクレーブに上記
の触媒と黒鉛を入れ、100%水素で約1000N/cm
まで加圧した。一晩保持して、圧力の変化がないこと
を確認した後、300℃まで加熱して保持した。300
℃に加熱した初期状態では、圧力は1805N/cm
示した。この圧力を50時間モニタしてその変化を観察
した。圧力はゆっくりと低下し、50時間後には約17
70N/cmを示した。圧力が約35N/cm低下したの
は、300℃で360mlの水素がガス相からなくなった
ことを示している。
Next, the above catalyst and graphite were placed in an autoclave having a capacity of 100 ml, and the autoclave was charged with 100% hydrogen to about 1000 N / cm 2.
Pressurized to 2 . After holding overnight to confirm that there was no change in pressure, it was heated to 300 ° C. and held. 300
In the initial state heated to ° C., the pressure showed 1805 N / cm 2 . This pressure was monitored for 50 hours and the change was observed. The pressure drops slowly, and after 50 hours about 17
70 N / cm 2 . The pressure drop of about 35 N / cm 2 indicates that at 300 ° C., 360 ml of hydrogen had disappeared from the gas phase.

【0019】これにより、水素吸収量は、 (360(ml)/22400(ml)×(298(K)/593(K)×2(g)=0.0162g となり、単位重さ当たりでは、 [0.0162/(0.98+0.0162)]×100=1.6wt% と高い値を示すことが判った。As a result, the amount of absorbed hydrogen is (360 (ml) / 22400 (ml) × (298 (K) / 593 (K) × 2 (g) = 0.0162 g). /(0.98+0.0162)]×100=1.6 wt%.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、5
0nm以下の金属超微粒子触媒から、容易に50nm以
下の線径の極細の炭素繊維を得ることができる。これに
より高い水素吸蔵能力を示すナノカーボンファイバを容
易に比較的簡単な工程で製造することが可能になる。
As described above, according to the present invention, 5
Ultrafine carbon fibers having a wire diameter of 50 nm or less can be easily obtained from a metal ultrafine particle catalyst of 0 nm or less. This makes it possible to easily produce a nanocarbon fiber exhibiting a high hydrogen storage capacity in a relatively simple process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態のナノカーボンファイバー
の製造工程を示すフロー図である。
FIG. 1 is a flowchart showing a process for producing a nanocarbon fiber according to an embodiment of the present invention.

【図2】超微粒子金属触媒上への炭素繊維の成長を概念
的に示す図である。
FIG. 2 is a view conceptually showing growth of carbon fibers on an ultrafine metal catalyst.

【符号の説明】[Explanation of symbols]

11 基板 12 金属超微粒子触媒 13 炭素の層状結晶 14 炭素繊維 DESCRIPTION OF SYMBOLS 11 Substrate 12 Metal ultrafine particle catalyst 13 Layered crystal of carbon 14 Carbon fiber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粒径が50nm以下の超微粒子金属触媒
を準備し、該触媒に炭素を含むガスを流し、該ガスを前
記触媒により解離させて、黒鉛状の炭素を析出させるこ
とを特徴とするナノカーボンファイバの製造方法。
An ultrafine metal catalyst having a particle size of 50 nm or less is prepared, a gas containing carbon is passed through the catalyst, and the gas is dissociated by the catalyst to precipitate graphite-like carbon. Of producing nano carbon fiber.
【請求項2】 前記粒径が50nm以下の超微粒子金属
触媒は、有機金属化合物を200℃から600℃の温度
で熱分解して有機物で被覆された金属超微粒子を合成
し、その後不活性雰囲気又は還元性雰囲気中で熱分解し
て金属粒子を生成することを特徴とする請求項1に記載
のナノカーボンファイバの製造方法。
2. The ultrafine metal catalyst having a particle size of 50 nm or less is used to thermally decompose an organometallic compound at a temperature of 200 ° C. to 600 ° C. to synthesize ultrafine metal particles coated with an organic substance. The method according to claim 1, wherein the metal particles are generated by thermal decomposition in a reducing atmosphere.
【請求項3】 前記超微粒子金属触媒は、耐熱性を有す
る無機材料からなる基板上に、高密度に分散して配置さ
れた金属超微粒子からなることを特徴とする請求項1に
記載のナノカーボンファイバの製造方法。
3. The nano-particle according to claim 1, wherein the ultra-fine particle metal catalyst is composed of ultra-fine metal particles arranged at high density on a substrate made of a heat-resistant inorganic material. Manufacturing method of carbon fiber.
JP33258299A 1999-11-24 1999-11-24 Method for producing carbon nanofiber Pending JP2001146643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33258299A JP2001146643A (en) 1999-11-24 1999-11-24 Method for producing carbon nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33258299A JP2001146643A (en) 1999-11-24 1999-11-24 Method for producing carbon nanofiber

Publications (1)

Publication Number Publication Date
JP2001146643A true JP2001146643A (en) 2001-05-29

Family

ID=18256552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33258299A Pending JP2001146643A (en) 1999-11-24 1999-11-24 Method for producing carbon nanofiber

Country Status (1)

Country Link
JP (1) JP2001146643A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122344A2 (en) * 2000-02-04 2001-08-08 Nihon Shinku Gijutsu Kabushiki Kaisha Graphite nanofibers and their use
KR100578269B1 (en) * 2004-02-20 2006-05-11 (주)넥센나노텍 Carbon nanostructure for electron emitter, its preparation method, and preparation method of cathode for electron emitter by useing carbon nanostructure
CN113060989A (en) * 2021-03-25 2021-07-02 中国人民解放军空军工程大学 Method for enhancing concrete resistance and electromagnetic shielding performance by using carbon nanofibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122344A2 (en) * 2000-02-04 2001-08-08 Nihon Shinku Gijutsu Kabushiki Kaisha Graphite nanofibers and their use
EP1122344A3 (en) * 2000-02-04 2002-01-30 Nihon Shinku Gijutsu Kabushiki Kaisha Graphite nanofibers and their use
KR100578269B1 (en) * 2004-02-20 2006-05-11 (주)넥센나노텍 Carbon nanostructure for electron emitter, its preparation method, and preparation method of cathode for electron emitter by useing carbon nanostructure
CN113060989A (en) * 2021-03-25 2021-07-02 中国人民解放军空军工程大学 Method for enhancing concrete resistance and electromagnetic shielding performance by using carbon nanofibers

Similar Documents

Publication Publication Date Title
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
JP6056904B2 (en) Simultaneous production method of carbon nanotube and hydrogen, and simultaneous production apparatus of carbon nanotube and hydrogen
JP5447367B2 (en) Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus
TWI237064B (en) Supported metal catalyst for synthesizing carbon nanotubes by low-temperature thermal chemical vapor deposition and method of synthesizing nanotubes using the same
JP6328611B2 (en) Method and structure for reducing carbon oxides with non-ferrous catalysts
JP5702043B2 (en) Catalyst for producing carbon nanotubes by decomposing gaseous carbon compounds with heterogeneous catalysts
JP5368323B2 (en) Method for producing carbon nanotubes including electrodes
JP5709954B2 (en) Method for producing metal-carbon composite supported catalyst
TWI573905B (en) Process for porducing carbon nanofibres and/or carbon nanotubes
JPS63503555A (en) Novel carbon fibrils
KR101357628B1 (en) Metal Nano Catalyst, Method for Preparing thereof and Carbon Nanotube Synthesized Using the Same
CN103537293B (en) For the preparation of Catalysts and its preparation method and the application of chiral selectivity and the selective SWCN of electric conductivity
KR100875861B1 (en) Catalyst for producing carbon nanocoils, its production method and method for producing carbon nanocoils
Müller et al. Synthesis of nanotubes via catalytic pyrolysis of acetylene: a SEM study
Liu et al. A simple method for coating carbon nanotubes with Co–B amorphous alloy
CN110255626B (en) Method for preparing surface-active onion-shaped carbon nanospheres based on vapor deposition
CN112452315A (en) Application of high-temperature sintering-resistant catalyst
JP4967536B2 (en) Nanocarbon material composite and method for producing the same
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
JP6403144B2 (en) Process for producing vapor-deposited fine carbon fiber
KR100596677B1 (en) Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth
JP2001146643A (en) Method for producing carbon nanofiber
TW200800397A (en) Method of preparing catalyst for catalyzing carbon nanotubes growth
KR100596676B1 (en) Massive synthesis method of single-walled carbon nanotubes using the vapor phase growth
JP4048138B2 (en) Coin-stacked nanographite, method for producing the same, and catalyst for the production thereof