JPH1037024A - Production of coil-like carbon fiber and device for producing the same - Google Patents

Production of coil-like carbon fiber and device for producing the same

Info

Publication number
JPH1037024A
JPH1037024A JP8186064A JP18606496A JPH1037024A JP H1037024 A JPH1037024 A JP H1037024A JP 8186064 A JP8186064 A JP 8186064A JP 18606496 A JP18606496 A JP 18606496A JP H1037024 A JPH1037024 A JP H1037024A
Authority
JP
Japan
Prior art keywords
catalyst
coil
substrate
carbon fiber
source gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8186064A
Other languages
Japanese (ja)
Other versions
JP3817703B2 (en
Inventor
Seiji Motojima
栖二 元島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP18606496A priority Critical patent/JP3817703B2/en
Publication of JPH1037024A publication Critical patent/JPH1037024A/en
Application granted granted Critical
Publication of JP3817703B2 publication Critical patent/JP3817703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing coil-like carbon fibers, suitable for improving the production yield, and to provide a device for producing the same. SOLUTION: This method for producing coil-like carbon fibers comprises pyrolyzing acetylene gas containing a fine amount of sulfur compounds such as thiophene or phosphorus compounds such as phosphorus trichloride in the presence of one or more kinds of catalyst selected from the group consisting of the oxides, carbides, sulfides, phosphites, carbonates and carbosulfides of transition metals in a temperature range of 600-850 deg.C in a gaseous phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三次元強化複合
材、電磁波吸着材、ミクロメカニカル素子、ミクロスイ
ッチング素子、ミクロセンサー、ミクロフィルター、吸
着剤などの材料として適用しうるコイル状炭素繊維の製
造方法及び製造装置に関する。
The present invention relates to the production of coiled carbon fibers which can be used as materials for three-dimensional reinforced composites, electromagnetic wave absorbing materials, micromechanical devices, microswitching devices, microsensors, microfilters, adsorbents, and the like. The present invention relates to a method and a manufacturing apparatus.

【0002】[0002]

【従来技術】炭素繊維には、従来からの有機前駆体繊維
を原料とし、これを不融化、炭化、黒鉛化などの処理を
行って得られる炭素繊維、例えばポリアクリロニトリル
繊維から得られるPAN系炭素繊維、ピッチ系繊維から
得られるピッチ系炭素繊維などの他に、最近開発された
炭化水素の気相熱分解によって得られる気相成長炭素繊
維がある。気相成長炭素繊維は、グラファイトの網面が
同心円状に巻いており、高強度で、金属的から半導体的
導電性までの巾広い特性を持ち、機能性材料としての応
用が期待されている。気相成長炭素繊維の製造方法とし
て、ベンゼンなどの炭化水素とキャリアガスとの混合ガ
スを、1000℃以上の温度に保持され金属粉末触媒を
担持させた反応管内で、先ず100〜1500cm/分
の流速で繊維成長の核を形成させ、次いで流速を10〜
30cm/分として繊維を成長させる方法が開示されて
いる(特公昭51−33210号公報参照)。この他、
気相成長炭素繊維を製造するに、種々の触媒金属粉末及
び種々の製造方法が提案されている。しかしこれらの方
法ではコイル状の炭素繊維は全く得られない。コイル状
炭素繊維の製造方法としては、本発明者らは先に遷移金
属及び第V族もしくは第VI族の化合物が存在する系内
で、炭化水素系ガスまたは一酸化炭素を含むガスを30
0〜1000℃で気相熱分解させる方法を提案した(特
開平4−222228号公報参照)。
2. Description of the Related Art Carbon fiber obtained by subjecting a conventional organic precursor fiber to a process such as infusibilization, carbonization, or graphitization, such as PAN-based carbon obtained from polyacrylonitrile fiber, is used as the carbon fiber. In addition to fibers, pitch-based carbon fibers obtained from pitch-based fibers, and the like, there is a recently developed vapor-grown carbon fiber obtained by vapor-phase pyrolysis of hydrocarbons. The vapor-grown carbon fiber has a graphite network wound concentrically, has high strength, has a wide range of properties from metallic to semiconductive, and is expected to be applied as a functional material. As a method for producing a vapor-grown carbon fiber, first, a mixed gas of a hydrocarbon such as benzene and a carrier gas is kept at a temperature of 1000 ° C. or higher and is loaded with a metal powder catalyst in a reaction tube, and then 100 to 1500 cm / min. The nucleus of fiber growth is formed at the flow rate,
A method of growing fibers at 30 cm / min is disclosed (see Japanese Patent Publication No. 51-33210). In addition,
Various catalyst metal powders and various production methods have been proposed for producing vapor grown carbon fibers. However, these methods do not produce coiled carbon fibers at all. As a method for producing a coiled carbon fiber, the present inventors have previously conducted a study on the use of a hydrocarbon-based gas or a gas containing carbon monoxide in a system in which a transition metal and a Group V or Group VI compound are present.
A method of performing gas phase pyrolysis at 0 to 1000 ° C. has been proposed (see JP-A-4-222228).

【0003】遷移金属を触媒として用いた場合、金属の
メーカー、貯蔵条件、前処理条件などによりコイル収率
が著しく変化し、コイルが全く得られないこともある。
金属表面は通常薄い酸化膜で覆われており、この酸化膜
がコイル成長に大きな影響を及ぼす可能性がある。一
方、金属触媒は、反応中イオウ(又は燐)及び炭素種を
含む高温の反応性ガス中に晒されている。したがって、
金属触媒はイオウ(又は燐)及び炭素、あるいはイオウ
と炭素との化合物あるいはそれらとの固溶体となってい
る可能性があり、これらが実際の触媒作用を示すものと
考えられる。一方、上記の実験室規模の方法で得られる
コイル状炭素繊維の量は極めて少なく100mgオーダ
ーである。しかし、コイル状炭素繊維の特性を評価し、
実用化するためには、さらに有効な触媒の探索と共に、
大量合成のための合成装置の開発やそのスケールアップ
が必要である。
When a transition metal is used as a catalyst, the coil yield varies significantly depending on the metal manufacturer, storage conditions, pretreatment conditions, and the like, and a coil may not be obtained at all.
The metal surface is usually covered with a thin oxide film, which can have a significant effect on coil growth. On the other hand, the metal catalyst is exposed to a high-temperature reactive gas containing sulfur (or phosphorus) and carbon species during the reaction. Therefore,
The metal catalyst may be sulfur (or phosphorus) and carbon, or a compound of sulfur and carbon or a solid solution thereof, and these are considered to exhibit actual catalytic action. On the other hand, the amount of coiled carbon fiber obtained by the above-mentioned laboratory scale method is extremely small, on the order of 100 mg. However, evaluating the properties of coiled carbon fiber,
In order to put it to practical use, along with searching for more effective catalysts,
It is necessary to develop a synthesizer for mass synthesis and to scale it up.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明者ら
は、コイル状炭素繊維の新しい合成用触媒の探索及び大
量合成のための新しい装置の開発やスケールアップにつ
いて検討した結果、本発明を完成させたものある。本発
明の目的は、コイル状炭素繊維の大量合成に有効な触媒
及び合成装置を提供することである。
Accordingly, the present inventors have searched for a new catalyst for synthesizing coiled carbon fiber, and have studied the development and scale-up of a new apparatus for mass synthesis, and as a result, have completed the present invention. Some have done it. An object of the present invention is to provide a catalyst and a synthesis device that are effective for mass synthesis of coiled carbon fibers.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、遷移金
属の酸化物、炭化物、硫化物、リン化物、炭酸化物、炭
硫化物よりなる群から選ばれた1種又は複数の触媒の存
在下、微量のチオフェンなどの硫黄系化合物あるいは三
塩化リンなどのリン系化合物を含有するアセチレンガス
を600〜850℃の温度範囲で気相熱分解させること
を特徴とするコイル状炭素繊維の製造方法である。ま
た、その装置として、原料ガス導入口と、これに対向す
る位置に廃ガス排出口とを有する反応容器内に、無端ベ
ルトを設け、該無端ベルト上に触媒を塗布した基板ある
いは金属板(触媒兼基板)を設置し、原料ガス導入口よ
り導入された原料ガス流と基板とがほぼ直交するように
し、且つ、原料ガス導入口と基板との距離を1〜20m
mに保つようにしたことを特徴とするコイル状炭素繊維
製造装置である。即ち、本発明はコイル状炭素繊維の製
造方法における、触媒、不純物ガス、熱分解条件、装置
の形状などの製造条件を検討した結果、遷移金属の酸化
物、炭化物、硫化物、リン化物、炭酸化物、炭硫化物よ
りなる群から選ばれた一種又は複数の混合物が触媒とし
て有効であり、さらに原料ガス中に微量のチオフエンな
どの硫黄系化合物あるいは三塩化リンなどのリン系化合
物が含まれている場合、特に高いコイル収率が得られる
のである。また、製造装置としては、原料ガス導入口
と、これに対向する位置に廃ガス排出口とを有する反応
器内に、無端ベルトを設け、該無端ベルト上に触媒を塗
布した基板或いは金属板(触媒兼基板)を設置し、原料
ガス導入口より導入された原料ガス流と基板とがほぼ直
交するようにし、両者の距離を1〜20mmに保つこと
により、コイルの大量合成を可能とした。
SUMMARY OF THE INVENTION The gist of the present invention resides in the existence of one or more catalysts selected from the group consisting of transition metal oxides, carbides, sulfides, phosphides, carbonates, and carbosulfides. A method for producing coiled carbon fiber, comprising subjecting a small amount of an acetylene gas containing a trace amount of a sulfur-based compound such as thiophene or a phosphorus-based compound such as phosphorus trichloride to a gas phase pyrolysis in a temperature range of 600 to 850 ° C. It is. Further, as the apparatus, an endless belt is provided in a reaction vessel having a source gas inlet and a waste gas outlet at a position opposite to the inlet, and a substrate or a metal plate (catalyst coated with a catalyst on the endless belt) is provided on the endless belt. And the substrate is set so that the flow of the source gas introduced from the source gas inlet is substantially orthogonal to the substrate, and the distance between the source gas inlet and the substrate is 1 to 20 m.
m, which is a coiled carbon fiber production apparatus characterized in that it is maintained at m. That is, as a result of examining the production conditions such as catalyst, impurity gas, pyrolysis conditions, and the shape of the device in the production method of the coiled carbon fiber, the present invention shows that transition metal oxides, carbides, sulfides, phosphides, carbonates, etc. One or more mixtures selected from the group consisting of chlorides and carbosulfides are effective as catalysts, and the raw material gas further contains trace amounts of sulfur-based compounds such as thiophene or phosphorus-based compounds such as phosphorus trichloride. , A particularly high coil yield is obtained. Further, as a manufacturing apparatus, an endless belt is provided in a reactor having a raw material gas inlet and a waste gas outlet at a position opposed thereto, and a substrate or a metal plate coated with a catalyst on the endless belt ( (Catalyst / substrate) was installed, the source gas flow introduced from the source gas inlet was substantially perpendicular to the substrate, and the distance between the two was maintained at 1 to 20 mm, thereby enabling large-scale synthesis of coils.

【0006】[0006]

【発明の実施の形態】本発明で使用する原料ガスとして
は、アセチレンに不純物として微量のチオフェンなどの
硫黄系化合物あるいは三塩化リンなどのリン系化合物が
含まれているものであって、好ましい不純物はチオフェ
ンである。原料ガス中にはキャリアガスとしてアルゴン
ガス、水素ガスが存在してもよく、反応器内へ導入する
原料ガスの好ましい流量比は、水素:アルゴン:アセチ
レン:チオフェン=7:4:3:0.05である。
BEST MODE FOR CARRYING OUT THE INVENTION The source gas used in the present invention is acetylene containing a trace amount of a sulfur compound such as thiophene or a phosphorus compound such as phosphorus trichloride as an impurity. Is thiophene. Argon gas and hydrogen gas may be present as carrier gases in the source gas, and a preferable flow ratio of the source gas introduced into the reactor is hydrogen: argon: acetylene: thiophene = 7: 4: 3: 0. 05.

【0007】本発明で使用しうる触媒としては、遷移金
属の酸化物、炭化物、硫化物、リン化物、炭酸化物、炭
硫化物よりなる群から選ばれた一種又は複数の混合物で
あり、好ましい触媒は、ニッケル、チタンおよびタング
ステンの酸素との固溶体または酸化物、炭化物、硫化
物、リン化物、炭酸化物、炭硫化物である。これらの触
媒は、あらかじめ固溶体或いは化合物となったものの
他、金属粉末或いは板を反応器内で反応前に所定条件で
酸化、炭化、硫化、リン化、炭酸化、炭硫化処理して得
たものでも使用できる。
The catalyst which can be used in the present invention is one or more mixtures selected from the group consisting of transition metal oxides, carbides, sulfides, phosphides, carbonates and carbosulfides. Are solid solutions or oxides of nickel, titanium and tungsten with oxygen, carbides, sulfides, phosphides, carbonates and carbosulfides. These catalysts may be obtained as solid solutions or compounds in advance, or obtained by subjecting metal powders or plates to oxidation, carbonization, sulfidation, phosphation, carbonation, carbonisulfurization treatment under predetermined conditions in a reactor before the reaction. But can be used.

【0008】本発明で使用しうる触媒としては、Niお
よびTi化合物の他、ほとんどあらゆる遷移金属の上記
化合物が利用できる。例えば、4族のZr、Hf、5族
のV、Nb、Ta、6族のCr、Mo、W、7族のM
n、8族のFe、9族のCo、10族のNiなどの化合
物はいずれもコイル成長に対して触媒効果を示す。特
に、化合物中の酸素、イオウ、リン、炭素などの含有量
が比較的少なく、また非化学量論性の強い化合物が優れ
た触媒作用を示す。例えば、Ti酸化物の場合の好まし
い酸素含有量は、40〜62at.%であり、またTi
炭化物の場合の好ましい炭素含有量は15〜45at.
%である。そのような好ましいTi化合物の例として
は、Ti2C、Ti23、Ti34、Ti2P、TiCx
1x(x<0.5)などがある。また、好ましいNi
化合物の例としては、Ni23、Ni32、NiSなど
がある。金属成分としては、単一成分のほか、2成分あ
るいはそれ以上の多元系合金も使用できる。
As the catalyst which can be used in the present invention, in addition to Ni and Ti compounds, almost all of the above compounds of transition metals can be used. For example, group 4 Zr, Hf, group 5 V, Nb, Ta, group 6 Cr, Mo, W, group 7 M
Compounds such as n, Group 8 Fe, Group 9 Co and Group 10 Ni all have a catalytic effect on coil growth. In particular, a compound having a relatively small content of oxygen, sulfur, phosphorus, carbon and the like in the compound and having a strong non-stoichiometry exhibits excellent catalytic action. For example, the preferable oxygen content in the case of Ti oxide is 40 to 62 at. % And Ti
The preferred carbon content for carbides is 15-45 at.
%. Examples of such preferred Ti compounds include Ti 2 C, Ti 2 O 3 , Ti 3 S 4 , Ti 2 P, TiCx
S 1 x (x <0.5). Also, preferred Ni
Examples of compounds, and the like Ni 2 O 3, Ni 3 S 2, NiS. As the metal component, not only a single component but also a two-component or higher multi-component alloy can be used.

【0009】本発明で使用しうる触媒のうち、金属の硫
化物、炭硫化物、リン化物等の場合には不純物としてイ
オウ系あるいはリン系不純物を原料ガス中に添加しなく
てもある程度のコイルを得ることが出来る。
[0009] Among the catalysts usable in the present invention, in the case of metal sulfides, carbosulfides, phosphides, etc., a certain amount of coils can be obtained without adding sulfur-based or phosphorus-based impurities as impurities to the raw material gas. Can be obtained.

【0010】本発明で使用しうる触媒の形態としては、
粉末状、金属板、粉末の焼結板などいずれでも良く、好
ましくは平均粒径が5ミクロン程度の微粉末状あるいは
これを焼結した焼結板である。粉末状触媒の場合、基板
上へ散布あるいは塗布しても良く、また原料ガス中に流
動状態で用いても良い。
The form of the catalyst that can be used in the present invention includes:
Any of a powder, a metal plate, and a powder sintered plate may be used, and preferably a fine powder having an average particle size of about 5 μm or a sintered plate obtained by sintering the powder. In the case of a powdery catalyst, it may be sprayed or coated on a substrate, or may be used in a flowing state in a raw material gas.

【0011】本発明で得られる炭素繊維は、本質的に炭
素のみからなり、繊維直径は0.01〜1μm、コイル
外径は0.1〜10μm、コイルピッチは0.01〜5
μm、コイル長さは1〜3,000μmの範囲のマイク
ロコイル状の繊維である。このマイクロコイル状繊維
は、ほとんどの場合、2本のコイルが互いに巻き合いな
がら成長した二重コイルであり、元の長さの3倍前後ま
で完全弾性的に伸び縮みする。また、ほぼ直線状まで伸
ばすことができるが、この場合、歪みが残り元の長さま
で戻らない。
The carbon fiber obtained in the present invention consists essentially of carbon only, has a fiber diameter of 0.01 to 1 μm, an outer coil diameter of 0.1 to 10 μm, and a coil pitch of 0.01 to 5 μm.
It is a microcoiled fiber having a length of 1 μm and a coil length of 1 to 3000 μm. In most cases, the microcoiled fiber is a double coil in which two coils grow while being wound around each other, and expands and contracts completely elastically to about three times the original length. In addition, it can be stretched to a substantially linear shape, but in this case, the distortion remains and does not return to the original length.

【0012】本発明のコイル状炭素繊維は、既存の炭素
繊維が用いられている種々の用途に応用できるが、特に
そのコイル状という特異的形態からもたらされる種々特
性を利用して、FRPやFRMなどの三次元強化用繊
維、電磁波吸収材、ミクロメカニカル素子、ミクロスイ
ッチング素子、ミクロセンサー、ミクロフィルター、吸
着剤などの機能性材料として有用である。
Although the coiled carbon fiber of the present invention can be applied to various uses in which existing carbon fibers are used, in particular, FRP and FRM are utilized by utilizing various characteristics brought about by the specific form of the coiled carbon fiber. It is useful as a functional material such as a three-dimensional reinforcing fiber, an electromagnetic wave absorbing material, a micromechanical element, a microswitching element, a microsensor, a microfilter, and an adsorbent.

【0013】次に、本発明にかかる製造装置を説明す
る。図1は本発明にかかる製造装置の概念図である。図
1において、反応器1は、原料ガス導入口2と廃ガス排
出口3とが対向する位置に存在する。反応器1には、無
端ベルト4を設け、この無端ベルト4に触媒5を設置す
る。原料ガス導入管は、原料アセチレンの好ましくない
分解を防ぐため原料ガス導入口2の反応器中央に内部ヒ
ーター6と外部ヒーター7とを設ける。原料ガス導入管
に水冷却器8を設ける。原料ガス導入口と無端ベルト上
の触媒を担持した基板との距離を1〜20mmとする。
このような装置において内部ヒーター6と外部ヒーター
7とによって反応器内を所定の温度に加熱し、原料ガス
を原料ガス導入口2を通して反応器内に導入し、排出口
3より排出させる。このようなガス流に対してほぼ直交
するように無端ベルト4を移動させると無端ベルトの基
板上の触媒と原料ガスとが接触して反応が進行する。
Next, a manufacturing apparatus according to the present invention will be described. FIG. 1 is a conceptual diagram of a manufacturing apparatus according to the present invention. In FIG. 1, a reactor 1 is located at a position where a raw material gas inlet 2 and a waste gas outlet 3 face each other. An endless belt 4 is provided in the reactor 1, and a catalyst 5 is installed on the endless belt 4. The source gas inlet pipe is provided with an internal heater 6 and an external heater 7 at the center of the reactor at the source gas inlet 2 to prevent undesired decomposition of the source acetylene. A water cooler 8 is provided in the source gas introduction pipe. The distance between the material gas inlet and the substrate carrying the catalyst on the endless belt is 1 to 20 mm.
In such an apparatus, the inside of the reactor is heated to a predetermined temperature by the internal heater 6 and the external heater 7, and the raw material gas is introduced into the reactor through the raw material gas inlet 2 and discharged from the outlet 3. When the endless belt 4 is moved so as to be substantially orthogonal to such a gas flow, the catalyst on the substrate of the endless belt comes into contact with the raw material gas, and the reaction proceeds.

【0014】本発明にかかる製造装置の形としては、断
面が円形状、楕円状、正方形、あるいは矩形などのいず
れでも良い。また反応器の材質としては、銅を含まず、
また高温で侵炭、侵硫、侵リン脆化あるいは腐食されな
い材料、たとえばステンレス、好ましくはインコネル製
が良い。反応器の大きさについては特に限定はなく、ま
た、反応器の大きさに関係なく原料ガス導入口と無端ベ
ルト上の触媒を担持した基板との距離を1〜20mm、
好ましくは、2〜7mmとする以外、特に限定はない。
The shape of the manufacturing apparatus according to the present invention may be any of circular, elliptical, square or rectangular in cross section. The material of the reactor does not contain copper,
Further, a material which is not carburized, sulfurized, phosphorous embrittled or corroded at a high temperature, for example, stainless steel, preferably made of Inconel is good. The size of the reactor is not particularly limited, and the distance between the raw material gas inlet and the substrate supporting the catalyst on the endless belt is 1 to 20 mm regardless of the size of the reactor,
Preferably, there is no particular limitation other than 2 to 7 mm.

【0015】アセチレンは高温では分解しやすく、アセ
チレンを触媒と接触するまでの間、長時間、400℃以
上に加熱すると分解反応が進行して粉末(アセチレンブ
ラック)あるいは直線状繊維が析出しやすく、コイル収
率は低下する。したがって、原料導入は外から冷却した
り、原料導入口の面積を小さくしてガスの線速度を上げ
たりすることにより、原料アセチレンの温度上昇を防
ぎ、できるだけ未分解の原料アセチレンを触媒と接触さ
せることが重要である。このような理由によって原料ガ
ス導入管を水冷却し、またガス導入口4と無端ベルト上
の触媒を担持した基板との距離を1〜20mmと限定す
る。
Acetylene is easily decomposed at a high temperature, and if it is heated to 400 ° C. or more for a long time until the acetylene comes into contact with the catalyst, the decomposition reaction proceeds and powder (acetylene black) or linear fibers are easily precipitated, Coil yield decreases. Therefore, the raw material introduction is cooled from the outside, or by increasing the linear velocity of the gas by reducing the area of the raw material introduction port, thereby preventing the temperature of the raw acetylene from rising, and bringing the raw acetylene undecomposed into contact with the catalyst as much as possible. This is very important. For this reason, the raw material gas inlet pipe is cooled with water, and the distance between the gas inlet 4 and the substrate carrying the catalyst on the endless belt is limited to 1 to 20 mm.

【0016】本発明に係る製造装置の一例を挙げると、
断面が200mm(高さ)×350mm(奥行き)の矩
形で、幅1500mmのインコネル製の箱型反応器内に
無端ベルトを装置し、これに30mm(幅)×300m
m(長さ)のグラファイト基板を10枚セットした。基
板と基板との距離は5mmとした。基板上には、酸化チ
タン(Ti23)粉末触媒を均一に散布した。原料ガス
導入口(上部)とガス排出口(下部)とは対向し、それ
ぞれ5mm(幅)×300mm(奥行き)の矩形とし
た。原料導入管は、外から水冷却した。
As an example of the manufacturing apparatus according to the present invention,
An endless belt was installed in an Inconel box-shaped reactor having a cross section of 200 mm (height) × 350 mm (depth) and a width of 1500 mm and made of 30 mm (width) × 300 m.
10 (m) length graphite substrates were set. The distance between the substrates was 5 mm. A titanium oxide (Ti 2 O 3 ) powder catalyst was uniformly dispersed on the substrate. The raw material gas inlet (upper) and the gas outlet (lower) face each other, and each has a rectangular shape of 5 mm (width) × 300 mm (depth). The raw material introduction pipe was water-cooled from outside.

【0017】[0017]

【実施例】以下、本発明を実施例により具体的に示す
が、本発明はかかる実施例により限定されるものではな
い。 実施例1 内径が約23mm、長さ500mmの不透明石英管から
なる小型の熱CVD装置の中央部に、酸化チタン(Ti
23)粉末触媒を散布したグラファイト基板をセット
し、アルゴン中で775℃まで加熱した。その後、チオ
フェン不純物を1.51mol%含むアセチレンを30
cc/分、水素を70cc/分、アルゴンを40cc/
分で流し、常圧下で、15分間反応を行った。この時の
全ガスに対するチオフェンの含有量は、0.323mo
l%となる。析出物は0.45g得られ、その中にコイ
ルが0.30g含まれていた。これは、導入した原料ア
セチレン中の炭素量の62モル%(コイル収率62モル
%)に相当する。アセチレン中のチオフェン含有量が上
記値より少しでも減少あるいは増加するとコイル収率は
急激に低下し、0.2モル%以下あるいは8モル%以上
ではコイルは全く析出しなかった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Example 1 Titanium oxide (Ti) was placed at the center of a small thermal CVD apparatus composed of an opaque quartz tube having an inner diameter of about 23 mm and a length of 500 mm.
A graphite substrate on which a 2 O 3 ) powder catalyst was sprayed was set, and heated to 775 ° C. in argon. Then, 30 acetylene containing 1.51 mol% of thiophene impurities was added.
cc / min, 70 cc / min of hydrogen, 40 cc / min of argon
The reaction was carried out for 15 minutes under normal pressure. At this time, the content of thiophene with respect to all gases was 0.323 mol.
1%. 0.45 g of the precipitate was obtained, and 0.30 g of the coil was contained therein. This corresponds to 62 mol% of the carbon amount in the introduced raw material acetylene (coil yield: 62 mol%). When the thiophene content in acetylene was slightly reduced or increased below the above value, the coil yield was sharply reduced, and when the thiophene content was 0.2 mol% or less or 8 mol% or more, no coil was precipitated.

【0018】実施例2 市販のチタン粉末を予め、空気中650℃で30分間表
面酸化したものを触媒とし、他の条件は実施例1と同じ
とした場合、コイル収率は57%であった。この触媒表
面中には、約57at.%の酸素が含有されていた。 実施例3 市販のチタン粉末を予め、空気中850℃で30分間表
面酸化したものを触媒とし、他の条件は実施例1と同じ
とした場合、コイル収率は60%であった。この触媒表
面には、約60at.%の酸素が含有されていた。
Example 2 When a commercially available titanium powder was previously oxidized in the air at 650 ° C. for 30 minutes as a catalyst, and the other conditions were the same as in Example 1, the coil yield was 57%. . About 57 at. % Oxygen. Example 3 A coil yield was 60% when commercially available titanium powder was previously oxidized in air at 850 ° C. for 30 minutes and the surface was oxidized as a catalyst, and other conditions were the same as in Example 1. About 60 at. % Oxygen.

【0019】実施例4 市販のチタン粉末をそのまま(未処理)触媒として用
い、他の条件は実施例1と同じとした場合、コイル収率
は40%であった。この触媒表面には、約40at.%
の酸素が含有されていた。 比較例1 市販のチタン金属板を予め#120のエメリー紙で研磨
し、その後50℃の濃塩酸中に60分浸して表面の酸化
物層を除去したものを触媒とし、他の条件は実施例1と
同じとした場合、コイルの成長はまったく認められなか
った。
Example 4 When a commercially available titanium powder was used as is (untreated) as a catalyst, and the other conditions were the same as in Example 1, the coil yield was 40%. About 40 at. %
Oxygen. Comparative Example 1 A commercially available titanium metal plate was polished in advance with # 120 emery paper, and then immersed in concentrated hydrochloric acid at 50 ° C. for 60 minutes to remove the oxide layer on the surface, and used as a catalyst. When the same as 1, no coil growth was observed.

【0020】実施例5 市販のニッケル粉末を予め、空気中850℃で30分間
表面酸化したものを触媒とし、他の条件は実施例1と同
じとした場合、コイル収率は65%であった。この触媒
表面には、約45at.%の酸素が含有されていた。 比較例2 市販のニッケル金属板を、予め#120のエメリー紙で
研磨し、その後50〜80℃の濃塩酸中に30〜60分
浸して表面の酸化物層を除去したものを触媒とし、他の
条件は実施例1と同じとした場合、コイルの成長はまっ
たく認められなかった。
Example 5 A commercially available nickel powder which had been previously surface-oxidized in air at 850 ° C. for 30 minutes was used as a catalyst, and the other conditions were the same as in Example 1. The coil yield was 65%. . About 45 at. % Oxygen. Comparative Example 2 A commercially available nickel metal plate was previously polished with # 120 emery paper, and then immersed in concentrated hydrochloric acid at 50 to 80 ° C. for 30 to 60 minutes to remove a surface oxide layer as a catalyst. When the conditions were the same as in Example 1, no coil growth was observed.

【0021】実施例6 硫化チタン(Ti34)粉末(平均粒径5μm)を触媒
とし、チオフェン不純物を1.67mol%含むアセチ
レンを30cc/分、水素を70cc/分、アルゴンを
40cc/分で流して15分間反応を行った。反応温度
とコイル収率との関係を図2に示す。750℃で最高収
率50%が得られ、この温度より低くあるいは高くなる
と、コイル収率は急激に低下した。また、アセチレン中
のチオフェン含有量が上記の値より低下あるいは上昇す
るとコイル収率は急激に低下した。例えば8%では、コ
イルは全く成長しなかった。不純物としてチオフェンを
添加しない場合のコイル収率は35%であった。
Example 6 Titanium sulfide (Ti 3 S 4 ) powder (average particle size: 5 μm) as a catalyst, 30 cc / min of acetylene containing 1.67 mol% of thiophene impurities, 70 cc / min of hydrogen, and 40 cc / min of argon And reacted for 15 minutes. FIG. 2 shows the relationship between the reaction temperature and the coil yield. At 750 ° C., a maximum yield of 50% was obtained, and below or above this temperature, the coil yield dropped sharply. Further, when the thiophene content in acetylene was reduced or increased from the above value, the coil yield sharply decreased. For example, at 8%, the coil did not grow at all. When no thiophene was added as an impurity, the coil yield was 35%.

【0022】実施例7 硫化ニッケル(Ni82)粉末を触媒とし、他の条件は
実施例1と同じとした場合、コイル収率は35%であっ
た。また、不純物としてチオフェンを添加しない場合の
コイル収率は25%であった。 実施例8 硫化モリブデン(Mo23)粉末を触媒とし、他の条件
は実施例1と同じとした場合、コイル収率は45%であ
った。また、不純物としてチオフェンを添加しない場合
のコイル収率は30%であった。
Example 7 When a nickel sulfide (Ni 8 S 2 ) powder was used as a catalyst and the other conditions were the same as in Example 1, the coil yield was 35%. The coil yield in the case where thiophene was not added as an impurity was 25%. Example 8 When molybdenum sulfide (Mo 2 S 3 ) powder was used as a catalyst and the other conditions were the same as in Example 1, the coil yield was 45%. When no thiophene was added as an impurity, the coil yield was 30%.

【0023】実施例9 リン化チタン(Ti2P)粉末を触媒とし、不純物とし
てチオフェンのかわりに三塩化リンを原料アセチレン中
に0.21モル%添加した以外は実施例1と同じとした
場合、コイル収率は45%であった。不純物として三塩
化リンを添加しない場合のコイル収率は30%であっ
た。 実施例10 図1に示した反応器上部の原料ガス導入口から、少量の
チオフェンを含んだアセチレン水素およびアルゴンの混
合ガスを導入し、導入口直下約3mmの位置にセットし
た基板上の触媒と接触させて反応を行った。触媒として
実施例8の硫化モリブデン(Mo23)を使用した。基
板温度は750℃、一枚の基板当たりの反応時間は15
分、反応圧力は常圧とした。また、それぞれのガス流量
は、以下の通りとした。チオフェン;50cc/分、水
素1,000cc/分、アルゴン1,500cc/分、
一枚の基板上に2.1gのコイル状炭素繊維が析出し
た。これはコイル収率約50%に相当する。
Example 9 Example 9 was the same as Example 1 except that titanium phosphide (Ti 2 P) powder was used as a catalyst, and phosphorus trichloride was added as an impurity in the raw material acetylene in place of thiophene in an amount of 0.21 mol%. The coil yield was 45%. When phosphorus trichloride was not added as an impurity, the coil yield was 30%. Example 10 A mixed gas of acetylene hydrogen and argon containing a small amount of thiophene was introduced from a raw material gas inlet at the upper portion of the reactor shown in FIG. 1, and a catalyst on a substrate set at a position about 3 mm immediately below the inlet was introduced. The reaction was performed by contact. The molybdenum sulfide (Mo 2 S 3 ) of Example 8 was used as a catalyst. The substrate temperature is 750 ° C and the reaction time per substrate is 15
And the reaction pressure was normal pressure. Further, the respective gas flow rates were as follows. Thiophene: 50 cc / min, hydrogen 1,000 cc / min, argon 1,500 cc / min,
2.1 g of coiled carbon fibers were deposited on one substrate. This corresponds to a coil yield of about 50%.

【0024】実施例11 実施例10において一枚の基板について15分間反応を
行った後これを移動し、次の基板を原料ガス導入口直下
に移動して反応を15分間行った。この操作を10枚の
基板について繰り返した。10枚の基板上に析出したコ
イルの総量は、約21.0gであった。これはコイル収
率約50%に相当する。 実施例12 実施例10において原料導入口と基板との距離を5mm
とし、一枚の基板を用い、他の条件は実施例11と同じ
で反応を行った場合、コイル収率は60%であった。
Example 11 In Example 10, one substrate was reacted for 15 minutes and then moved, and the next substrate was moved immediately below the raw material gas inlet to carry out the reaction for 15 minutes. This operation was repeated for ten substrates. The total amount of the coil deposited on the ten substrates was about 21.0 g. This corresponds to a coil yield of about 50%. Example 12 In Example 10, the distance between the raw material introduction port and the substrate was 5 mm.
When a reaction was carried out under the same conditions as in Example 11 using one substrate, the coil yield was 60%.

【0025】実施例13 実施例10において原料導入口と基板との距離を20m
mとし、他の条件は実施例9と同じで反応を行った場
合、コイル収率は20%であった。 比較例3 実施例10において原料導入口と基板との距離を30m
mとし、一枚の基板を用い、他の条件は実施例11と同
じで反応を行った場合、コイルは全く得られなかった。
実施例13に於いて、原料導入口を水冷却しない場合、
コイル収率は20%に低下した。また原料導入口の幅を
実施例13の2倍(10mm)とした場合、コイル収率
は15%に低下した。
Example 13 In Example 10, the distance between the raw material inlet and the substrate was 20 m.
m and the other conditions were the same as in Example 9, and the reaction was carried out. As a result, the coil yield was 20%. Comparative Example 3 In Example 10, the distance between the raw material introduction port and the substrate was 30 m.
m, a single substrate was used, and the other conditions were the same as in Example 11. When the reaction was performed, no coil was obtained.
In Example 13, when the raw material inlet is not water-cooled,
The coil yield dropped to 20%. When the width of the raw material introduction port was twice (10 mm) that of Example 13, the coil yield was reduced to 15%.

【0026】[0026]

【発明の効果】以上述べたように、本発明の触媒を使用
することによってコイル状炭素繊維を高収率で得ること
ができ、特に本発明の製造装置を使用すると、容易にス
ケールアップすることができる等の効果を奏する。
As described above, the use of the catalyst of the present invention makes it possible to obtain coiled carbon fibers at a high yield. In particular, when the production apparatus of the present invention is used, the scale can be easily scaled up. And the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかる製造装置の概念図である。FIG. 1 is a conceptual diagram of a manufacturing apparatus according to the present invention.

【図2】 硫化チタン(Ti34)触媒を使用した場合
の反応温度に対するコイル収率を示す。
FIG. 2 shows a coil yield with respect to a reaction temperature when a titanium sulfide (Ti 3 S 4 ) catalyst is used.

【符号の説明】[Explanation of symbols]

1 反応器 2 原料ガス導入口 3 廃ガス
排出口 4 無端ベルト 5 触媒 6 内部ヒータ
ー 7 外部ヒーター 8 水冷部
Reference Signs List 1 reactor 2 raw material gas inlet 3 waste gas outlet 4 endless belt 5 catalyst 6 internal heater 7 external heater 8 water cooling unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属の酸化物、炭化物、硫化物、リ
ン化物、炭酸化物、炭硫化物よりなる群から選ばれた1
種又は複数の触媒の存在下、微量のチオフェンなどの硫
黄系化合物あるいは三塩化リンなどのリン系化合物を含
有するアセチレンガスを600〜850℃の温度範囲で
気相熱分解させることを特徴とするコイル状炭素繊維の
製造方法。
1. An oxide selected from the group consisting of transition metal oxides, carbides, sulfides, phosphides, carbonates, and carbosulfides.
Acetylene gas containing a trace amount of a sulfur-based compound such as thiophene or a phosphorus-based compound such as phosphorus trichloride in the presence of a seed or a plurality of catalysts in a gas phase pyrolysis at a temperature range of 600 to 850 ° C. A method for producing a coiled carbon fiber.
【請求項2】 原料ガス導入口と、これに対向する位置
に廃ガス排出口とを有する反応容器内に、無端ベルトを
設け、該無端ベルト上に触媒を塗布した基板あるいは金
属板(触媒兼基板)を設置し、原料ガス導入口より導入
された原料ガス流と基板とがほぼ直交するようにし、且
つ、原料ガス導入口と基板との距離を1〜20mmに保
つようにしたことを特徴とするコイル状炭素繊維製造装
置。
2. An endless belt is provided in a reaction vessel having a source gas inlet and a waste gas outlet at a position opposite to the inlet, and a substrate or a metal plate (catalyst / catalyst) coated with a catalyst on the endless belt is provided. Substrate), so that the flow of the source gas introduced from the source gas inlet and the substrate are substantially orthogonal to each other, and the distance between the source gas inlet and the substrate is maintained at 1 to 20 mm. And a coiled carbon fiber production apparatus.
JP18606496A 1996-07-16 1996-07-16 Method and apparatus for producing coiled carbon fiber Expired - Fee Related JP3817703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18606496A JP3817703B2 (en) 1996-07-16 1996-07-16 Method and apparatus for producing coiled carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18606496A JP3817703B2 (en) 1996-07-16 1996-07-16 Method and apparatus for producing coiled carbon fiber

Publications (2)

Publication Number Publication Date
JPH1037024A true JPH1037024A (en) 1998-02-10
JP3817703B2 JP3817703B2 (en) 2006-09-06

Family

ID=16181766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18606496A Expired - Fee Related JP3817703B2 (en) 1996-07-16 1996-07-16 Method and apparatus for producing coiled carbon fiber

Country Status (1)

Country Link
JP (1) JP3817703B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229240A (en) * 1998-02-19 1999-08-24 Seiji Motojima Vapor phase manufacturing of coiled carbon fiber and manufacturing equipment for the same
JP2001240403A (en) * 2000-02-25 2001-09-04 Futaba Corp Carbon material, method for manufacturing the same, and electron discharging element
JP2001310130A (en) * 2000-04-29 2001-11-06 Yoshikazu Nakayama Method for producing indium-tin-iron catalyst for forming carbon nanocoil
JP2003026410A (en) * 2001-07-11 2003-01-29 Yoshikazu Nakayama Method for mass-producing carbon nanocoil
JP2004182573A (en) * 2002-12-05 2004-07-02 Japan Science & Technology Agency Method and apparatus for manufacturing carbon nanostructure by raw material blasting system
WO2004105940A1 (en) * 2003-05-29 2004-12-09 Japan Science And Technology Agency Catalyst for preparing carbon nanocoil, method for preparation thereof, method for preparing carbon nanocoil and carbon nanocoil
TWI393809B (en) * 2006-12-21 2013-04-21 Showa Denko Kk Carbon fiber and catalyst for manufacture of carbon fiber
JP2015520717A (en) * 2012-04-16 2015-07-23 シーアストーン リミテッド ライアビリティ カンパニー Method for using a metal catalyst in a carbon oxide catalytic converter
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
US11951428B2 (en) 2016-07-28 2024-04-09 Seerstone, Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229240A (en) * 1998-02-19 1999-08-24 Seiji Motojima Vapor phase manufacturing of coiled carbon fiber and manufacturing equipment for the same
JP2001240403A (en) * 2000-02-25 2001-09-04 Futaba Corp Carbon material, method for manufacturing the same, and electron discharging element
JP2001310130A (en) * 2000-04-29 2001-11-06 Yoshikazu Nakayama Method for producing indium-tin-iron catalyst for forming carbon nanocoil
JP2003026410A (en) * 2001-07-11 2003-01-29 Yoshikazu Nakayama Method for mass-producing carbon nanocoil
JP2004182573A (en) * 2002-12-05 2004-07-02 Japan Science & Technology Agency Method and apparatus for manufacturing carbon nanostructure by raw material blasting system
WO2004105940A1 (en) * 2003-05-29 2004-12-09 Japan Science And Technology Agency Catalyst for preparing carbon nanocoil, method for preparation thereof, method for preparing carbon nanocoil and carbon nanocoil
US7829494B2 (en) 2003-05-29 2010-11-09 Japan Science And Technology Agency Catalyst for synthesizing carbon nanocoils, synthesizing method of the same, synthesizing method of carbon nanocoils, and carbon nanocoils
TWI393809B (en) * 2006-12-21 2013-04-21 Showa Denko Kk Carbon fiber and catalyst for manufacture of carbon fiber
JP2015520717A (en) * 2012-04-16 2015-07-23 シーアストーン リミテッド ライアビリティ カンパニー Method for using a metal catalyst in a carbon oxide catalytic converter
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
US11951428B2 (en) 2016-07-28 2024-04-09 Seerstone, Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Also Published As

Publication number Publication date
JP3817703B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
Qin CVD synthesis of carbon nanotubes
US20150078981A1 (en) Methods for using metal catalysts in carbon oxide catalytic converters
US20150064092A1 (en) Methods and reactors for producing solid carbon nanotubes, solid carbon clusters, and forests
JP2944246B2 (en) Method for producing coiled carbon fiber
Jablonski et al. Carbon deposition over Fe, Ni, and Co foils from CO-H2-CH4-CO2-H2O, CO-CO2, CH4-H2, and CO-H2-H2O gas mixtures: I. Morphology
JP3817703B2 (en) Method and apparatus for producing coiled carbon fiber
JP2001192204A (en) Method for manufacturing carbon nano-coil
CN112536055B (en) Nitrogen-doped carbon-coated cobaltosic oxide nanowire monolithic catalyst and preparation method thereof
CN103288072A (en) Preparation method of iron filled carbon nano tube and reaction device
McLean et al. Catalytic CVD synthesis of boron nitride and carbon nanomaterials–synergies between experiment and theory
US20070098622A1 (en) Catalyst for synthesizing carbon nanocoils, synthesizing method of the same, synthesizing method of carbon nanocoils, and carbon nanocoils
Baker et al. The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum
JP4020410B2 (en) Catalyst for carbon material production
Yang et al. Coiling-chirality changes in carbon microcoils obtained by catalyzed pyrolysis of acetylene and its mechanism
Toh et al. The role of cementite in the metal dusting of Fe–Cr and Fe–Ni–Cr Alloys
JPH02167898A (en) Production of graphite whisker
Shivanna et al. Fe-Ni nanoparticle-catalyzed controlled synthesis of multi-walled carbon nanotubes on CaCO3
Wulan et al. Synthesis Of Aligned Carbon Nanotube (ACNT) Through Catalytic Decomposition Of Methane By Water Assisted Chemical Vapor Deposition (WA-CVD)
JPS6021806A (en) Interlayer compound of nickel chloride and graphite
JPH11124740A (en) Carbon micro-coil and its production
JP4723228B2 (en) Mustache fiber
JP2001146643A (en) Method for producing carbon nanofiber
JPS61257000A (en) Production of silicon carbide whisker
JPH0477399A (en) Production of sic whisker
JPS60260497A (en) Preparation of silicon carbide whisker

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees