JP3796966B2 - 内燃機関の過給制御装置 - Google Patents

内燃機関の過給制御装置 Download PDF

Info

Publication number
JP3796966B2
JP3796966B2 JP16793398A JP16793398A JP3796966B2 JP 3796966 B2 JP3796966 B2 JP 3796966B2 JP 16793398 A JP16793398 A JP 16793398A JP 16793398 A JP16793398 A JP 16793398A JP 3796966 B2 JP3796966 B2 JP 3796966B2
Authority
JP
Japan
Prior art keywords
supercharging
water temperature
amount
control amount
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16793398A
Other languages
English (en)
Other versions
JP2000002121A (ja
Inventor
順一郎 吉田
裕紀 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP16793398A priority Critical patent/JP3796966B2/ja
Publication of JP2000002121A publication Critical patent/JP2000002121A/ja
Application granted granted Critical
Publication of JP3796966B2 publication Critical patent/JP3796966B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、容量を可変に制御する可変容量ターボ過給機を搭載した内燃機関において、機関冷却水温度に関連した過給機の制御技術に関する。
【0002】
【従来の技術】
排気の流動エネルギによりタービン及び該タービンに連結したコンプレッサを駆動し、吸気圧力を加圧して過給する内燃機関のターボ過給機において、タービンの入口面積を可変に制御できる可変容量ターボ過給機が知られ、このものでは、機関の運転条件に応じてタービン入口面積の絞り量を制御することにより適切な過給状態に制御できる(特開昭58−176417号公報等参照) 。
【0003】
【発明が解決しようとする課題】
ディーゼル機関で前記可変容量ターボ過給機を備える場合、吸気温度上昇時に空気密度低下による吸入空気量の減少を抑制するため、過給圧を上昇する制御を行うと、高回転高負荷域等で機関冷却水温度(以下適宜水温と略す) が過度に上昇してしまうことがあった。即ち、過給圧を上昇させるために過給機の絞り量を大きくすると排圧の上昇によってポンピングロスが増大するため燃費が悪化し、そのため燃料が増量補正されると共に該燃料の増量に応じて吸入空気量も増量されるため、燃焼温度が上昇し、水温を上昇させるものである。
【0004】
本発明は、このような従来の課題に着目してなされたもので、水温状態に応じて可変容量ターボ過給機を制御することにより、水温の過度の上昇を抑制しつつ適切な過給性能が得られるようにした内燃機関の過給制御装置を提供することを目的する。
【0005】
【課題を解決するための手段】
このため請求項1に係る発明は、図1に示すように、
過給状態を可変に制御する可変容量ターボ過給機を搭載した内燃機関の過給制御装置において、
機関の冷却水温度を検出する水温検出手段と、
検出された機関冷却水温度に基づいて前記過給機の制御量を補正する過給制御量補正手段と、を備え、
前記過給制御量補正手段は、過給機の制御量を機関冷却水温度の増大に応じて過給圧減少方向に補正している間に、機関冷却水温度の上昇速度が所定値以下に低下したときに、該制御量を所定期間クランプすることを特徴とする。
【0007】
また、請求項2に係る発明は、
過給状態を可変に制御する可変容量ターボ過給機を搭載した内燃機関の過給制御装置において、
機関の冷却水温度を検出する水温検出手段と、
検出された機関冷却水温度に基づいて前記過給機の制御量を補正する過給制御量補正手段と、を備え、
前記過給制御量補正手段は、過給機の制御量を機関冷却水温度の増大に応じて過給圧減少方向に補正している間に、機関冷却水温度が上限設定温度以上となったときに、該制御量を所定期間クランプすることを特徴とする。
また、請求項3に係る発明は、
機関冷却水温度が下限設定温度以下に低下したとき、前記制御量のクランプを終了することを特徴とする。
【0008】
また、請求項4に係る発明は、
前記下限設定温度は、外気温度によって可変に設定されることを特徴とする。
また、請求項5に係る発明は、
前記制御量のクランプは、予め設定された時間行われることを特徴とする。
また、請求項6に係る発明は、
前記制御量のクランプ終了後、該制御量を機関冷却水温度に対する補正無しの値に徐々に近づけるランプ制御を行うことを特徴とする。
【0009】
また、請求項7に係る発明は、
前記過給機は、所定の条件で吸入空気量又は過給圧を目標値に近づけるようにフィードバック制御され、前記過給制御量補正手段は、前記フィードバック制御時に前記目標値を補正することを特徴とする。
【0010】
【発明の効果】
請求項1に係る発明によると、
【発明の効果】
請求項1に係る発明によると、
過給機の制御量の水温に応じた過給圧減少方向への補正を継続すると水温の上昇速度が徐々に減少する。このまま補正を継続すると水温はピークに達した後下がり始めるが、補正により水温の低下に応じて過給機の制御量を増大させると、水温の減少が鈍り高水温状態に維持される期間が延びてしまう。そこで、水温の上昇速度が所定値以下に低下したときに、十分に過給圧減少方向に補正された制御量で所定期間クランプすることにより、水温の減少を促進し、高水温状態から短時間で脱却して低水温状態にある時間割合を増大することができる。
【0012】
請求項2に係る発明によると、
水温に応じた過給機制御量の補正後、水温が上限設定温度以上となったときに、過給圧減少方向に補正された制御量で所定期間クランプすることにより、水温の減少を促進し、高水温状態から短時間で脱却して低水温状態にある時間割合を増大することができる。なお、吸気温度条件等によって過給機制御量の補正後の水温のピーク値は異なるため、ピーク値が低い場合でもクランプ制御がなされるためには、上限設定温度を低めに設定する必要があるが、外気温度等に基づいて上限設定温度を十分ピーク値に近づけるように可変に設定するようにしてもよい。
【0013】
請求項3に係る発明によると、
過給圧減少方向に補正された制御量でクランプすることにより、水温を減少させ、下限設定温度以下に低下するまでクランプを継続することにより、十分な期間低水温状態に維持することができ、また、必要以上の期間クランプすることなく運転状態に応じた通常制御へ復帰させることができる。
【0014】
請求項4に係る発明によると、
前記下限設定温度を、外気温度によって可変に設定することにより、より適切なクランプ期間に制御することができる。
請求項5に係る発明によると、
クランプ期間を時間で設定することにより、簡易な制御となる。
【0015】
請求項6に係る発明によると、
前記制御量のクランプ終了後は、水温に対する補正無しの値として運転状態に応じた通常制御に復帰させる必要があるが、急激に復帰させると吸入空気量の急変によって運転性が悪化する。そこで、ランプ制御によって運転性の悪化を抑制しつつ徐々に通常制御に復帰させることができる。
【0016】
請求項7に係る発明によると、
過給機の制御量に対して水温に応じた補正を行っても、直ぐに吸入空気量又は過給圧が反応するわけではなく、また、過給機の制御量のオープン制御値を直接補正することは、通常制御に影響を与えるので、吸入空気量又は過給圧の目標値を水温で補正することでフィードバック制御によって過給機の制御量を補正する。
【0017】
【発明の実施の形態】
以下に本発明の実施の形態を図に基づいて説明する。図2は、可変容量ターボ過給機を搭載した本発明に係るディーゼル機関の概略構成を示す。図において、機関1の排気通路2にタービン部4Aを介在させ、吸気通路3にコンプレッサ部4Bを介在させた可変容量ターボ過給機4が搭載されている。該可変容量ターボ過給機4は、タービン部4Aのタービン入口面積を可変に絞る可動ベーンを備えており、該可動ベーンの絞り量をアクチュエータ5によって制御することにより、過給圧を増減制御できるようになっている。即ち、前記アクチュエータ5は、ダイアフラム式の負圧アクチュエータによって構成され、真空ポンプ6によって発生し、一方向弁7を介してリザーバタンク8内に蓄圧された負圧を、吸気通路3に装着されたエアクリーナ9からの大気圧によって希釈する割合をデューティ制御弁10でデューティ制御することにより、前記アクチュエータ5に供給される負圧を制御する。そして、前記デューティ制御弁10の制御デューティ値を増加すると、大気圧の導入割合が減少してアクチュエータ5への供給負圧が増大し、過給機4の可動ベーンの絞り量が増大(タービン入口面積が減少) して排気流速が増大し過給圧が増大するようになっている。また、前記制御デューティ値を減少すると、前記とは逆に大気圧の導入割合が増大してアクチュエータ5への供給負圧が減少し、可動ベーンの絞り量が減少して排気流速が減少し過給圧が減少するようになっている。前記コンプレッサ4Bで過給された吸気は、インタークーラ11を介して冷却されて機関1に吸入される。
【0018】
また、前記排気通路2と吸気通路3とが、EGR通路12を介して接続されており、該EGR通路12の途中にEGR弁13が設けられている。該EGR弁13は、ステップモータ等で構成される図示しないアクチュエータにより全閉位置から全開位置まで略連続的に開度が制御される。
前記過給機4制御用のデューティ制御弁10及びEGR弁13を制御するコントロールユニット14は、入出力回路及びメモリを備えたマイクロコンピュータによって構成され、本発明に係る各種演算手段の機能を有している。コントロールユニット14には、燃料噴射量や燃料噴射時期を決定するための基本的な運転状態パラメータとして、機関回転速度N及び負荷代表値としての燃料噴射量Tpが入力されるが、これらはデューティ制御弁10の制御デューティ値つまり過給機4の絞り制御量や目標EGR率の決定及びその補正などにも用いられる。また、前記絞り制御量の補正のため大気圧センサ15からの大気圧Pa、目標EGR率の補正のため水温センサ16からの冷却水温度Twがそれぞれ入力され、さらに、吸入空気量(過給状態を含む) のフィードバック制御のためにエアフロメータ17からの吸入空気量QACが入力される。
【0019】
図3は、前記可変容量ターボ過給機4の制御ブロック図を示す。概要を説明すると、デューティ制御弁10のフィードフォワード制御量を算出する一方、目標吸入空気量の算出と実際の吸入空気量の検出を行い、フィードバック制御禁止領域では、前記フィードフォワード制御量に基づいてデューティ制御弁10をデューティ制御することにより、過給機4の絞り制御をオープン制御とする。また、フィードバック制御領域では、前記目標吸入空気量と実際の吸入空気量とを比較してフィードバック補正量を算出し、フィードフォワード制御量とフィードバック補正量とに基づいてデューティ制御弁10をデューティ制御することにより、過給機4の絞り制御をフィードバック制御とする。ここで、大気圧補正,過渡補正,目標EGR率補正に対応した補正を併用すると共に、本発明に係る構成として、水温に基づいて目標吸入空気量の補正(高水温時目標吸入空気量補正演算) を行い、フィードバック制御時に水温に応じて過給機の制御量を補正し、水温の上昇を抑制する構成としている。
【0020】
次に、各ブロックの動作を、図4以下に示すフローチャートに従って説明する。
図4,図5は、目標吸入空気量演算ルーチンのフローを示す。
ステップ(図ではSと記す。以下同様) 1では、機関回転速度Nと負荷代表値としての燃料噴射量Tpに基づいて、マップからの検索等により目標吸入空気量QCSSP1を演算する。ここで、該吸入空気量QCSSP1は、同一の運転状態で後述するように設定される目標EGR率でEGR率を行うことを考慮して設定される。
【0021】
ステップ2では、前記大気圧センサ13によって検出された大気圧Paと燃料噴射量Tpとに基づいて、マップからの検索等により大気圧補正係数ADF1を演算する。該大気圧補正係数ADF1は、高地等では大気圧の低下により空気密度が減少するため、同一の目標吸入空気量では高負荷域での過給圧が増大し過ぎるのでその補正のために設定される。
【0022】
ステップ3では、機関回転速度Nと基本燃料噴射量Tpとに基づいてマップからの検索等により、目標EGR率MEGRMを演算する。
ステップ4では、前記水温センサ14によって検出される冷却水温Twに基づいて、前記目標EGR率MEGRMに対する第1補正量KEGR1を演算する。
該第1補正量KEGR1は、一般に機関の低温条件ほどNOxが発生しにくく、また、EGRにより発生量が増大するカーボンによりシリンダ壁が摩耗しやすくなることを考慮してEGR量を減少させる特性を持たせて設定される。この第1補正量KEGR1としては、他に燃料噴射時期、大気圧による補正などを算入するようにしてもよい。
【0023】
ステップ5では、前記第1補正量KEGR1によるEGR率の変化に伴う吸入空気量の変化に対する補正を行うため、まず、シリンダへの総吸入ガス量(吸入空気量+EGRガス量) を一定とした条件で、吸入空気量の変化率としての基本補正量Aを、前記目標EGR率MEGRMと第1補正量KEGR1とに基づいて次式により算出する。但し、EGR率の設定の相違に応じて2通りに算出される。
【0024】
▲1▼ EGR率がEGRガス量/吸入空気量として設定される場合は、
A=(1+MEGRM) /(KEGR1×MEGRM+1)
▲2▼EGR率がEGRガス量/(EGRガス量+吸入空気量) として設定される場合は、
A=(1−KEGR1×MEGRM) /(1−MEGRM)
実際には、EGR率が変化すると、シリンダへの総吸入ガス量自体が変化するが少なくとも燃焼悪化等の無い範囲でEGRを用いている運転範囲では、EGR率の変化割合に対して一定の傾向を持つ。
【0025】
このため、ステップ6では、前記第1補正量KEGR1に基づいて、EGR率の変化に伴う体積効率変化に応じた吸入空気量の補正係数(体積効率補正係数) CQACCを、マップからの検索等により演算する。
ステップ7では、前記基本補正量Aと体積効率補正係数CQACCとに基づいて、吸入空気量の補正量Zを次式により演算する。
【0026】
Z=A×CQACC
ステップ8では、目標吸入空気量補正係数VNEGR2を、前記Zの関数f(Z) として演算する。
ステップ9では、前記目標吸入空気量QCSSP1を、ステップ8で算出した目標吸入空気量補正係数VNEGR2に基づいて、次式のように補正し、補正後の吸入空気量QCSSP1Aを算出する。
【0027】
QCSSP1A=QCSSP1×ADF1×VNEGR2
ステップ10では、前記大気圧センサ13によって検出された大気圧Paと機関回転速度Nとに基づいて、マップからの検索等により目標吸入空気量制限値QCSMAXを演算する。該目標吸入空気量制限値QCSMAXは、高地等で大気圧の低下によりタービンの入口圧力と出口圧力の差圧の減少によって過給機の回転が過剰に増大することを制限するため設定される。
【0028】
ステップ11では、前記ステップ9で演算した補正後吸入空気量QCSSP1Aを、前記目標吸入空気量制限値QCSMAXで制限した制限後目標吸入空気量QCSSPMXを、補正後吸入空気量QCSSP1Aと目標吸入空気量制限値QCSMAXとの小さい方を選択することにより求める。
次いで、本発明に係る高水温補正制御に移行する。以下、図10を参照して説明する。
【0029】
ステップ12では、水温Twが補正開始水温である第1の設定値Tw1を超えているかを判定し、第1の設定値Tw1以下の場合は、水温による補正を行わないようにするため、ステップ16へ進んで、最終高水温補正係数HIWQ2を1にセットし、ステップ17で該最終高水温補正係数HIWQ2(=1) を前記制限後目標吸入空気量QCSSPMXに乗じた値、つまり制限後目標吸入空気量QCSSPMXを、そのまま補正後最終目標吸入空気量QCSSP2として算出する。
【0030】
同様に、ステップ13で機関回転速度Nが第1の設定値N1を超えているか、ステップ14で燃料噴射量Tpが第1の設定値Tp1を超えているか、ステップ15で水温の変化速度ΔTwが第1の設定値Dtw1を超えているかを順次判定し、これら判定のいずれかが不成立(NO) である場合もステップ16,ステップ17へ進んで、水温による補正を行うことなく、前記制限後目標吸入空気量QCSSPMXを、そのまま補正後最終目標吸入空気量QCSSP2として設定する。
【0031】
そして、これらステップ12〜ステップ15の全ての条件が成立したとき、即ち、高水温,高回転高負荷時であって、かつ、水温の上昇速度が大きい場合は、水温が過度に上昇しやすい条件であるので、ステップ18へ進み、水温による過給機制御量の補正を行う。
ステップ18では、水温Twに基づいて高水温補正係数HIWQ1をマップからの検索等により算出する。該高水温補正係数HIWQ1は、水温が高いときほど、小さい値に設定されている。
【0032】
ステップ19では、水温Twの上昇変化率ΔTwが第2の設定値Dtw2(≪Dtw1) 以下に減少したかを判定する。
上昇変化率ΔTwが第2の設定値Dtw2を超えているときは、ステップ20へ進み、最終高水温補正係数HIWQ2を前記HIWQ1にセットした後、ステップ17へ進み、最終高水温補正係数HIWQ2(=HIWQ1) を前記制限後目標吸入空気量QCSSPMXに乗じた値を、補正後最終目標吸入空気量QCSSP2として算出する。
【0033】
このようにして、水温補正係数により目標吸入空気量を減少補正することにより、実際の吸入空気量を減少させるように過給機4の制御量が過給圧減少方向にフィードバック補正される結果、図10に示すように、水温の上昇変化率ΔTwが減少し始める。
そして、前記のように水温の上昇変化率ΔTwが減少していって、水温Twが略ピークとなる状態でΔTwが前記第2の設定値Dtw2以下となってステップ19の判定が成立し、ステップ21へ進む。
【0034】
ステップ21では、最終高水温補正係数HIWQ2を前回設定された値HIWQ2(n−1) と等しい値に維持し、ステップ22へ進んで、該最終高水温補正係数HIWQ2を、前記制限後目標吸入空気量QCSSPMXに乗じた値を補正後最終目標吸入空気量QCSSP2として算出する。このように、最終高水温補正係数HIWQ2をクランプすることにより、補正後最終目標吸入空気量QCSSP2が実質的にクランプされる。
【0035】
このようにして目標吸入空気量が十分減少補正されたところでクランプすることにより、実際の吸入空気量及び過給圧(吸気圧) も十分減少した値に略一定にクランプされるので、水温は減少し続ける(図10参照) 。
そして、ステップ23で水温Twが第2の設定値Tw2(<Tw1) 以下に減少したかを判定し、第2の設定値Tw2を超えている間は、前記クランプ状態を継続する。
【0036】
前記クランプによる水温の減少により、ステップ23で水温が第2の設定値Tw2以下に減少したと判定されると、十分水温Twが減少して一応水温補正が必要な耐熱条件を脱したと判断し、図10に示すように、徐々に水温補正を解除していくランプ処理を行う。
即ち、ステップ24では、水温補正係数の修正量であるランプ値Lを、単位時間当たりの修正量Lhにステップ24の判定成立後の経過時間tを乗じることによって演算する。
【0037】
次いでステップ25へ進み、最高水温補正係数HIWQ2を、HIWQ1に前記ランプ値Lを加算した値で修正する。
ステップ26では、前記修正された最高水温補正係数HIWQ2に前記制限後目標吸入空気量QCSSPMXを乗じることにより、補正後最終目標吸入空気量QCSSP2を算出する。
【0038】
ステップ27では、前記最高水温補正係数HIWQ2が水温補正無しの値である1になったかを判定し、1になるまでの間はステップ24に戻ってランプ処理を継続し、1になった後は、ランプ処理を停止して水温補正無しの補正後最終目標吸入空気量QCSSP2に維持する。
次に、過給機4の過給制御用のデューティ制御弁8の基本デューティ値を演算するルーチンを、図6,図7のフローチャートに従って説明する。
【0039】
ステップ31で機関回転速度Nの増大変化量ΔN[=(Nnew −Nold ) ]が設定値DN1以上かを判定し、ステップ32で吸入空気量の増大変化量ΔQAVNT[=(QAVNTnew −QAVNTold ) ]が設定値DQ1以上かを判定し、いずれかが不成立(NO) の場合は、ステップ33を経てステップ34へ進み、機関回転速度Nと燃料噴射量Tpとに基づいてマップからの検索等により、可変容量ターボ過給機(VNT) 4の可動ベーンの基本VNT開度DUTB1(=デューティ制御弁8の基本デューティ値) をf1(N,Tp) として演算する。
【0040】
また、ステップ31及びステップ32の判定がいずれも成立(YES) した場合、つまり機関回転速度N,吸入空気量QAVNT共に大きく増大中で過給機4の回転が過度に増大して過給圧が過度に増大しやすい条件のときは、ステップ35へ進んで機関回転速度N,燃料噴射量Tpに基づいてマップからの検索等により、基本VNT開度DUTB1をf2(N,Tp) として演算する。ここで、該f2(N,Tp) は、同一の(N,Tp) 条件での前記f1(N,Tp) の値より小さい値に設定され、これにより、過給圧機4の可動ベーン開度を大きくして回転上昇を抑制し、過給圧の上昇を抑制する。
【0041】
この状態から、ステップ31又はステップ32の判定のいずれかが不成立に転じると、ステップ33で前回基本VNT開度DUTB1がf2(N,Tp) として演算されたか否かの判定によりステップ36へ進み、不成立に転じてからの経過時間Tdが設定されたディレイ時間T1に達するまでは、ステップ35へ進んで基本VNT開度DUTB1が2がf2(N,Tp) として演算され続ける。
【0042】
前記経過時間Tdがディレイ時間T1に達すると、ステップ37へ進み、T1に達してからの経過時間TLが設定されたランプ時間T2に達するまでは、ステップ38へ進んで基本VNT開度DUTB1が次式により演算される。
DUTB1=f2(N,Tp) +Ld×TL
ここで、Ldは経過時間TLに乗じられるランプ係数であり、これにより、基本VNT開度DUTB1は経過時間TLの増大と共に所定の傾きで徐々に変化して同一(N,Tp) 条件でのf1(N,Tp) に近づけられる。
【0043】
前記経過時間TLがランプ時間T2に達した後は、ステップ34へ進み、基本VNT開度DUTB1がf1(N,Tp) として演算される。
即ち、基本VNT開度DUTB1を、定常的な運転条件ではf1(N,Tp) で設定し、過給圧が上昇しやすい過渡的な条件になったときにf2(N,Tp) に切り換えて増大補正して設定し、該過渡的な条件から外れた後も所定のディレイ時間Tdはf2(N,Tp) による設定を継続し、その後徐々に所定量Ldずつ増加して設定しながら(Ldは正の値) 、f1(N,Tp) での設定に戻すようにするものであり、過渡条件での回転上昇防止操作は応答性良く速やかに行うが、戻し操作は徐々に行うことによりハンチングを防止する。
【0044】
このようにして基本VNT開度DUTB1を演算した後、ステップ39では、大気圧Paに基づいて、デューティ値の大気圧補正量ADF2を演算する。これは、前記大気圧補正係数ADF1と同様の理由で高地等で空気密度低下により過給圧が増大するのを抑制するため、過給機4のフィードフォワード制御量である基本VNT開度DUTB1を補正するものである。
【0045】
ステップ41以降では、目標EGR率の変化に対する補正を行う。該補正も前記大気圧補正と同様、フィードフォワード制御量である基本開度DUTB1を補正するものである。
ステップ41〜ステップ45は、前記目標吸入空気量演算ルーチンにおけるステップ4〜ステップ7と同様にして、目標EGR率MEGR,第1補正量KEGR1,基本補正量A,体積効率補正係数CQACC,吸入空気量補正量Zが順次演算される。
【0046】
そして、ステップ46で、前記吸入空気量補正量Zに応じた過給機4の制御補正量としてデューティ値補正量VEGR[=f2(Z) ]を演算する。
ステップ47では、前記基本VNT開度DUTB1を、前記大気圧補正量ADF2及びデューティ値補正量VEGRによって次式のように補正して、補正後デューティ値DUTB2を演算する。
【0047】
DUTB2=DUTB1×ADF2×VEGR
次に、最終出力デューティ値の演算ルーチンを、図8,図9のフローチャートに従って説明する。
ステップ51では、P(比例) 分、I(積分) 分を用いた過給機4のフィードバック制御におけるデューティ補正量DUTSを、前記最終目標吸入空気量QCSSP2と、エアフロメータ15により検出された実際の吸入空気量QAVNTとの偏差(=QCSSP2−QAVNT) に基づいて演算する。
【0048】
ステップ52では、吸入空気量の増大変化量ΔQAVNTに基づいてDT1制御デューティ補正量DUTDTを演算する。これは、吸入空気量の増大変化が大きいと過給圧が目標値より過度に上昇してしまうので、過給機4のベーン開度を増大補正するためのデューティ値補正量として設定される。
ステップ53では、機関回転速度Nの増大変化量ΔNが設定値DN2以上かを判定し、ステップ54で吸入空気量の増大変化量ΔQAVNTが設定値DQ2以上かを判定し、両判定共に成立(YES) した場合は、過給機が過度に回転上昇しやすい急加速運転状態であるため、ステップ55へ進んで前記DT1制御デューティ補正量DUTDTを用いて、最終的に出力されるデューティ値LADUTYを次式にように演算する。
【0049】
LADUTY=DUTB2−DUTDT
即ち、DT1制御デューティ補正量DUTDTで過給機4の開度を増大補正することより、過給機4の過度の回転上昇を早めに抑制できる。
この状態から、吸入空気量の増大変化量ΔQAVNTについては設定値DQ2未満になった場合は、ステップ53からステップ56へ進み、吸入空気量QAVNTが目標吸入空気量QCSSP2に対して所定レベルQCSSPA未満の偏差となるまで接近したかを判定し、接近した場合は、ステップ57へ進んで吸入空気量の増大変化量ΔQAVNTが設定値DQ3(<DQ2) 以上あるかを判定し、設定値DQ3以上あると判定された場合は、ステップ55へ進んでDT1制御デューティ補正量DUTDTによって過給機のベーン開度を増大する補正を行い、オーバーシュートを抑制しつつ速やかに目標吸入空気量QCSSP2に近づけるようにする。
【0050】
ステップ53で機関回転速度Nの増大変化量ΔN[=(Nnew −Nold ) ]が設定値DN2未満になったと判定された場合、又は、ステップ56,ステップ57のいずれかが不成立の場合は、ステップ58へ進み過給制御の吸入空気量検出に基づくフィードバックを禁止する領域を判定するため、該禁止領域境界における燃料噴射量Tmを機関回転速度Nの関数f(N) として演算する。
【0051】
ステップ59で、燃料噴射量Tpが前記燃料噴射量Tm以下であるフィードバック禁止領域であるかを判定する。
そして、ステップ59でフィードバック禁止領域であると判定された場合は、ステップ60へ進み、前記基本デューティ値演算ルーチンで求めた補正後デューティ値DUTB2を、そのまま最終出力デューティ値LADUTYとして出力する。
【0052】
また、ステップ59でフィードバック禁止領域でないと判定された場合は、ステップ61へ進み、前記補正後デューティ値DUTB2にステップ61で求めたフィードバック補正量としてのPI制御デューティ補正量DUTSを加算した値を、最終出力デューティ値LADUTYとして出力する。
このようにすれば、水温が上昇しやすい条件で、水温に応じて目標吸入空気量を補正することにより、吸入空気量,過給圧の上昇を抑制して水温の過度の上昇を抑制できる。
【0053】
また、水温の上昇速度が所定値以下に低下したときに、十分に過給圧減少方向に補正された制御量で所定期間クランプすることにより、水温の減少を促進し、高水温状態から短時間で脱却して低水温状態にある時間割合を増大することができ、再度水温が上昇する耐熱条件に移行しにくくすることができる。
なお、クランプの開始を水温の上昇速度で判定する代わりに、上限設定温度を設定し、該上限設定温度以上となったときに、クランプを開始する構成とすることもできる。但し、この場合は、吸気温度条件等によって過給機制御量の補正後の水温のピーク値は異なるため、ピーク値が低い場合でもクランプ制御がなされるためには、上限設定温度を低めに設定する必要がある。したがって、外気温度等に基づいて上限設定温度を十分ピーク値に近づけるように可変に設定するのがよい。
【0054】
また、クランプを終了させる水温(下限設定温度) を外気温度によって可変に設定する構成として、より適切なクランプ期間に制御することもできる。
但し、簡易的には、クランプを予め設定した時間行うようにしてもよい。
また、前記クランプの終了後は、前記ランプ処理を行って徐々に水温に対する補正無しの制御量に近づけて運転状態に応じた通常制御に復帰させるようにしたため、吸入空気量,過給圧を徐々に変化させて運転性の悪化を抑制しつつ徐々に通常制御に復帰させることができる。
【図面の簡単な説明】
【図1】本発明の構成・機能を示すブロック図。
【図2】本発明の一実施の形態のシステム構成を示す図。
【図3】同上の実施の形態の過給機の制御ブロック図。
【図4】同上の過給機制御における目標吸入空気量演算ルーチンの前段を示すフローチャート。
【図5】同じく目標吸入空気量演算ルーチンの後段を示すフローチャート。
【図6】基本デューティ値演算ルーチンの前段を示すフローチャート。
【図7】同じく基本デューティ値演算ルーチンの後段を示すフローチャート。
【図8】同じく最終出力デューティ値の演算ルーチンの前段を示すフローチャート。
【図9】同じく最終出力デューティ値の演算ルーチンの後段を示すフローチャート。
【図10】本発明に係る制御時の各種状態量の変化を示すタイムチャート。
【符号の説明】
1 ディーゼル機関
4 可変容量ターボ過給機
5 アクチュエータ
10 デューティ制御弁
14 コントロールユニット
16 水温センサ
17 エアフロメータ

Claims (7)

  1. 過給状態を可変に制御する可変容量ターボ過給機を搭載した内燃機関の過給制御装置において、
    機関の冷却水温度を検出する水温検出手段と、
    検出された機関冷却水温度に基づいて前記過給機の制御量を補正する過給制御量補正手段と、を備え、
    前記過給制御量補正手段は、過給機の制御量を機関冷却水温度の増大に応じて過給圧減少方向に補正している間に、機関冷却水温度の上昇速度が所定値以下に低下したときに、該制御量を所定期間クランプすることを特徴とする内燃機関の過給制御装置。
  2. 過給状態を可変に制御する可変容量ターボ過給機を搭載した内燃機関の過給制御装置において、
    機関の冷却水温度を検出する水温検出手段と、
    検出された機関冷却水温度に基づいて前記過給機の制御量を補正する過給制御量補正手段と、を備え、
    前記過給制御量補正手段は、過給機の制御量を機関冷却水温度の増大に応じて過給圧減少方向に補正している間に、機関冷却水温度が上限設定温度以上となったときに、該制御量を所定期間クランプすることを特徴とする内燃機関の過給制御装置。
  3. 機関冷却水温度が下限設定温度以下に低下したとき、前記制御量のクランプを終了することを特徴とする請求項1又は請求項2に記載の内燃機関の過給制御装置。
  4. 前記下限設定温度は、外気温度によって可変に設定されることを特徴とする請求項3に記載の内燃機関の過給制御装置。
  5. 前記制御量のクランプは、予め設定された時間行われることを特徴とする請求項1又は請求項2に記載の内燃機関の過給制御装置。
  6. 前記制御量のクランプ終了後、該制御量を機関冷却水温度に対する補正無しの値に徐々に近づけるランプ制御を行うことを特徴とする請求項1〜請求項5のいずれか1つに記載の内燃機関の過給制御装置。
  7. 前記過給機は、所定の条件で吸入空気量又は過給圧を目標値に近づけるようにフィードバック制御され、前記過給制御量補正手段は、前記フィードバック制御時に前記目標値を補正することを特徴とする請求項1〜請求項6のいずれか1つに記載の内燃機関の過給制御装置。
JP16793398A 1998-06-16 1998-06-16 内燃機関の過給制御装置 Expired - Fee Related JP3796966B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16793398A JP3796966B2 (ja) 1998-06-16 1998-06-16 内燃機関の過給制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16793398A JP3796966B2 (ja) 1998-06-16 1998-06-16 内燃機関の過給制御装置

Publications (2)

Publication Number Publication Date
JP2000002121A JP2000002121A (ja) 2000-01-07
JP3796966B2 true JP3796966B2 (ja) 2006-07-12

Family

ID=15858758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16793398A Expired - Fee Related JP3796966B2 (ja) 1998-06-16 1998-06-16 内燃機関の過給制御装置

Country Status (1)

Country Link
JP (1) JP3796966B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418610A (zh) * 2010-09-27 2012-04-18 马涅蒂-马瑞利公司 用于控制通过涡轮增压器增压的内燃机的速度的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661016B2 (ja) * 2001-09-28 2011-03-30 トヨタ自動車株式会社 可変容量過給機付内燃機関の制御装置
JP2006112272A (ja) * 2004-10-13 2006-04-27 Toyota Motor Corp 内燃機関の吸気温度制御システム
JP6589906B2 (ja) * 2017-02-16 2019-10-16 トヨタ自動車株式会社 内燃機関の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418610A (zh) * 2010-09-27 2012-04-18 马涅蒂-马瑞利公司 用于控制通过涡轮增压器增压的内燃机的速度的方法
CN102418610B (zh) * 2010-09-27 2015-06-17 马涅蒂-马瑞利公司 用于控制通过涡轮增压器增压的内燃机的速度的方法

Also Published As

Publication number Publication date
JP2000002121A (ja) 2000-01-07

Similar Documents

Publication Publication Date Title
JP3430923B2 (ja) 内燃機関の過給制御装置
US9181861B2 (en) Internal combustion engine control apparatus
JP4583038B2 (ja) 過給機付き内燃機関の過給圧推定装置
JP4320859B2 (ja) ターボ過給機付エンジンの制御装置
JP4534514B2 (ja) ディーゼル機関の制御装置
US8096123B2 (en) System and method for mode transition for a two-stage series sequential turbocharger
US20060248889A1 (en) Apparatus and method of abnormality diagnosis for supercharging pressure control system
US8903633B2 (en) Control system for internal combustion engine
JP4631598B2 (ja) 過給圧制御装置
JP2003201849A (ja) 可変容量ターボチャージャの制御装置
JP4492377B2 (ja) エンジンの過給装置
JP4258910B2 (ja) 過給機付エンジンの制御装置
JP3796966B2 (ja) 内燃機関の過給制御装置
JP4250824B2 (ja) ターボ過給機付エンジンの制御装置
JP2589214B2 (ja) 過給機付内燃機関の燃料供給制御装置
JP4061742B2 (ja) エンジンの排気ガス還流装置
JP2005061243A (ja) 内燃機関の過給装置
JP3680537B2 (ja) ディーゼルエンジン
JP3988691B2 (ja) 内燃機関の過給装置
JP4877272B2 (ja) Egr流量制御装置及びegr流量制御システム
JP2001140652A (ja) 内燃機関の過給制御装置
CN111794869A (zh) 用于控制内燃发动机的燃烧的方法
JPH10196381A (ja) 可変ノズル型ターボチャージャを搭載する内燃機関の制御装置
JP4228577B2 (ja) エンジンの空燃比制御装置
JP6784325B2 (ja) 内燃機関の制御方法及び内燃機関の制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees