JP3773664B2 - 駆動制御装置、モジュール、および、複合モジュール - Google Patents

駆動制御装置、モジュール、および、複合モジュール Download PDF

Info

Publication number
JP3773664B2
JP3773664B2 JP25794498A JP25794498A JP3773664B2 JP 3773664 B2 JP3773664 B2 JP 3773664B2 JP 25794498 A JP25794498 A JP 25794498A JP 25794498 A JP25794498 A JP 25794498A JP 3773664 B2 JP3773664 B2 JP 3773664B2
Authority
JP
Japan
Prior art keywords
current
drive control
unit
switching elements
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25794498A
Other languages
English (en)
Other versions
JP2000092820A (ja
Inventor
マジュムダール ゴーラブ
ハッサン フッセイン ハリッド
光孝 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25794498A priority Critical patent/JP3773664B2/ja
Priority to US09/244,175 priority patent/US6208041B1/en
Publication of JP2000092820A publication Critical patent/JP2000092820A/ja
Application granted granted Critical
Publication of JP3773664B2 publication Critical patent/JP3773664B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/127Modifications for increasing the maximum permissible switched current in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/122Modifications for increasing the maximum permissible switched current in field-effect transistor switches

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、インバータ等の電力変換機器への応用に最適な並列接続されたスイッチング素子における主電流の不均一を解消するための駆動制御装置、並びに、この駆動制御装置が組み込まれたモジュールおよび複合モジュールに関し、特に、主電流の不均一を解消する制御を高い精度で実現するための改良に関する。
【0002】
【従来の技術】
インバータ、チョッパ、あるいは、コンバータ等の電力変換機器の構成要素として、パワーIGBT、パワートランジスタ、あるいは、パワーMOSトランジスタ等のパワースイッチング素子が、広く使用されている。これらの電力変換機器に代表される応用機器において、特に高い定格電流が要求される場合には、同一に設計された複数のパワースイッチング素子が、互いに並列に接続して使用されるのが、通例である。
【0003】
このように並列に接続された複数のパワースイッチング素子の間では、主電流の大きさが均一に保たれる必要がある。なぜなら、主電流の均一性が損なわれると、特定のパワースイッチング素子に、負担が集中するために、応用機器の信頼性が低下するからである。しかしながら、複数のパワースイッチング素子の間では、それらが同一に設計された素子であっても、電気的特性上の不均一が存在するのが通例である。この不均一は、素子の製造工程の中で不可避的に発生する寄生的な誤差に由来する。
【0004】
並列接続される複数のパワースイッチング素子の間では、様々な特性上の不均一の中で、主電極間の飽和電圧(例えば、IGBTおよびバイポーラトランジスタでは、コレクタ・エミッタ間飽和電圧VCE(sat))における不均一が、最も重要である。なぜなら、並列接続された素子の主電極間の電圧が、最も高い飽和電圧を有する素子によって規定されるので、より低い飽和電圧を有する素子が、飽和電圧を高めようとして、より大きな電流を負担するからである。
【0005】
このように、並列接続された複数のパワースイッチング素子は、通常において、不均一に配分された電流を負担するので、より高い電流を流す素子ほど、より高い電流ストレスを被ることとなる。その結果、並列接続された素子の全体の信頼性、あるいは、応用機器の信頼性が、弱められることになる。
【0006】
主電流の不均一(すなわち、電流不均衡)の問題は、負の温度係数を有するパワースイッチング素子に対しては、より重要である。なぜなら、負の温度係数を有する素子では、より大きな主電流が流れることによって素子の温度が上昇すると、それにともなって、素子の飽和電圧が減少するからである。飽和電圧が減少すると、さらに大きな主電流が流れることとなる。この循環が繰り返されることによって、特定の素子へ過大な負担が加わり、応用機器の信頼性が低められることになる。
【0007】
並列に接続されたパワースイッチング素子のそれぞれを流れる主電流の間の不均一性(アンバランス)を解消することを目的とした従来の技術として、二つのアプローチが知られる。第1は、受動的なアプローチである。この従来技術では、同一ないし非常に似通った電気的特性を有するパワースイッチング素子が、並列接続すべき素子として選択される。すなわち、特性上のばらつきが最小となるように、パワースイッチング素子が取捨選択(screening:スクリーニング)される。
【0008】
第2は、能動的なアプローチである。この従来技術は、特開平8-213890号公報に開示されるように、主電流の不均一を抑えるように、主電流がフィードバック制御される。すなわち、各パワースイッチング素子を流れる主電流の大きさが、電流検出回路によって検出され、検出された主電流の不均一を減殺するように、制御信号が各パワースイッチング素子の制御電極へと送られる。このフィードバック制御は、アナログ回路素子で構成される制御回路によって実行される。
【0009】
【発明が解決しようとする課題】
第1のアプローチでは、使用対象とされるパワースイッチング素子に、制限が加えられる。すなわち、取捨選択の結果、使用に供されない素子が出現する。このため、素子の製造において、無駄が発生するという問題点があった。しかも、取捨選択を行っても、なお、電流不均衡の問題は、完全には解消されないという問題点があった。なぜなら、通例において、同一の電気的特性を有するパワースイッチング素子を見出すことは、容易ではないからである。
【0010】
一方、第2のアプローチでは、主電流を均一化するためのフィードバック制御が行われるので、電気的特性が揃うようにパワースイッチング素子を取捨選択する必要はない。しかしながら、フィードバック制御を行う制御回路が、アナログ回路として構成されているために、電流不均衡を高い精度で解消することが困難であるという問題点があった。特に、様々な特性上の不均一に対して、これらの影響を排除して電流不均衡を解消する上で、柔軟性ある対応が困難であるという問題点があった。
【0011】
例えば、複数のパワースイッチング素子にそれぞれ接続される複数の電流検出回路の間においても、これらの電流検出回路を構成する回路要素の特性には、製造工程の中で、不可避的な不均一が生み出されるのが通例である。この不均一は、並列に接続されたパワースイッチング素子の間で、主電流の不均一の度合いを誤って検出する源となり得る。アナログ回路では、主電流に関する誤った検出の影響を回避することは困難である。このため、第2のアプローチでは、主電流の不均一の問題を解決するよりも、むしろ、問題を生み出すという、誤ったフィードバック制御が行われる場合も起こり得た。
【0012】
また、電流検出回路だけでなく、パワースイッチング素子そのものの入出力特性(例えば、IGBTでは、ゲート電圧VGE対コレクタ電流ICの間の関係)、パワースイッチング素子の駆動回路の特性、並列接続される複数のパワースイッチング素子と制御回路とを接続する配線のレイアウト、および、制御回路自身を構成する回路素子の特性などにも、同様に、一般に、不均一が存在している。そして、アナログ回路として構成される制御回路では、これらの不均一をも考慮して電流不均衡の解消を図るという、柔軟で精度の高い制御を実現することが困難であるという問題点があった。
【0013】
この発明は、従来の技術における上記した問題点を解消するためになされたもので、並列接続されたスイッチング素子の電流不均衡を精度良く解消し、特に、電流検出回路等をも含む様々な特性上の不均一をも考慮した柔軟性の高い制御を行い得る駆動制御装置を得ることを目的としており、さらに、この駆動制御装置が組み込まれたモジュールおよび複合モジュールを提供することを目的とする。
【0014】
【課題を解決するための手段】
第1の発明の装置は、並列接続されたn(≧2)個のスイッチング素子に接続して使用され、前記n個のスイッチング素子のn個の主電流の検出値であるn個の電流検出信号にもとづいて、前記n個の主電流の大きさをそれぞれ制御するn個の制御信号を反復的に更新して、前記n個のスイッチング素子へと供給する駆動制御装置において、前記n個の電流検出信号を、アナログ形式からデジタル形式へと変換するA/D変換部と、デジタル形式の前記n個の電流検出信号にもとづいて、デジタル演算処理を実行することにより、前記n個の制御信号を算出する演算部と、前記演算部で換算された前記n個の制御信号を、デジタル形式からアナログ形式へと変換するD/A変換部と、を備えている。
そして、前記演算部は、デジタル形式の前記n個の電流検出信号を前記n個の主電流へと、それぞれ換算する電流算出部と、前記電流算出部で算出された前記n個の主電流の平均値を算出し、前記n個の主電流の前記平均値からの差であるn個の電流偏差を算出する電流偏差算出部と、前記n個の電流偏差の各々が縮小する方向に前記n個の制御信号を更新する制御信号算出部と、を有している。
そして、前記n個の電流検出信号と前記n個の主電流とのそれぞれの間の関係を、前記n個のスイッチング素子の各々ごとに個別に規定する較正データを、格納可能な較正データ記憶部を、さらに備え、前記電流算出部が、前記較正データ記憶部に格納される前記較正データにもとづいて、前記n個の電流検出信号を前記n個の主電流へと換算する。
【0016】
第2の発明の装置は、第1の発明の駆動制御装置において、前記演算部が、前記n個のスイッチング素子の各々に対して、与えられたk(≧1)個の主電流に対するk個の電流検出信号にもとづいて、前記較正データを作成し、前記較正データ記憶部へと格納する電流較正部を、さらに備えている。
【0017】
第3の発明の装置は、第1または第2の発明の駆動制御装置において、前記制御信号算出部は、前記n個の電流偏差に、それぞれ比例した量だけ変化するように、前記n個の制御信号を更新する。
【0018】
第4の発明の装置は、第3の発明の駆動制御装置において、前記n個の電流偏差と前記n個の制御信号の変化量とのそれぞれの間の比例関係を、前記n個のスイッチング素子の各々ごとに個別に規定する変換データを、格納可能な変換データ記憶部を、さらに備え、前記制御信号算出部が、前記変換データ記憶部に格納される前記変換データにもとづいて、前記n個の電流偏差に、それぞれ比例した量だけ変化するように、前記n個の制御信号を更新する。
【0019】
第5の発明の装置は、第4の発明の駆動制御装置において、前記演算部が、前記n個のスイッチング素子に共通に付与される飽和電圧の下で、前記n個のスイッチング素子の各々について、m(≧2)個の制御信号を出力し、その結果前記電流算出部によって得られたm個の主電流と、出力した前記m個の制御信号とにもとづいて、主電流と制御信号の間の変化率として、前記変換データを作成し、前記変換データ記憶部へと格納する変換データ算出部を、さらに備えている。
【0020】
第6の発明の装置は、第5の発明の駆動制御装置において、前記変換データ記憶部が、前記n個のスイッチング素子が動作中に取り得る最大の飽和電圧の下で、前記変換データ算出部によって作成された前記変換データを格納している。
【0021】
第7の発明の装置は、第1ないし第6のいずれかの発明の駆動制御装置において、前記演算部が、プログラムにもとづいて動作するCPUと、前記プログラムを格納するメモリとを備え、前記演算部に含まれる各部は、前記CPUと前記メモリとによって、等価的に構成されている。
【0022】
第8の発明の装置は、モジュールであって、第1ないし第7のいずれかの発明の駆動制御装置と、前記n個のスイッチング素子の一つとしての主素子と、当該主素子の主電流を検出し電流検出信号を出力する電流検出部と、を備えており、前記駆動制御装置には、前記n個の電流検出信号の一つとして、前記電流検出部が出力する前記電流検出信号が入力され、前記駆動制御装置が、前記n個の制御信号の一つを、前記主素子へ供給する。
【0023】
第9の発明の装置は、複合モジュールであって、第1ないし第7のいずれかの発明の駆動制御装置と、前記n個のスイッチング素子と、これらn個のスイッチング素子のn個の主電流を、それぞれ検出することにより、前記n個の電流検出信号を得て、前記駆動制御装置へと供給するn個の電流検出部と、を備えており、前記駆動制御装置が、前記n個の制御信号を、前記n個のスイッチング素子へ、それぞれ供給する。
【0024】
第10の発明の装置は、第9の発明の複合モジュールにおいて、前記n個のスイッチング素子と、前記n個の電流検出部とが、n個のケースの中に、それぞれ、個別に組み込まれており、前記n個の電流検出部の各々が、前記n個のスイッチング素子の中で、同一のケースに組み込まれたスイッチング素子の主電流を検出する。
【0025】
第11の発明の装置は、第10の発明の複合モジュールにおいて、前記n個のケースの中の一つに、前記駆動制御装置が、さらに組み込まれている。
【0026】
【発明の実施の形態】
<1.実施の形態1>
はじめに、実施の形態1の駆動制御装置、モジュール、および、複合モジュールについて説明する。
【0027】
<1-1.概略構成>
図1は、実施の形態1の複合モジュールの全体構成を示すブロック図である。この複合モジュール250は、モジュール601〜60n(n≧2)を備えている。モジュール601〜60nには、それぞれ、スイッチング素子801〜80n、電流検出部901〜90n、駆動部701〜70n、および、電流検出信号増幅部911〜91nが備わっている。
【0028】
また、モジュール601〜60nには、単一の主モジュール601と、少なくとも1個の副モジュール602〜60nとが含まれている。主モジュール601には、駆動制御装置50が、さらに備わっている。このように、この明細書における「モジュール」とは、主電流をスイッチングするスイッチング素子と、この素子に接続された周辺回路とを含む複数の要素が、単一の装置として取り扱いが可能なように、組み込まれて成る装置を意味する。そして、「複合モジュール」とは、複数のモジュールが互いに接続されることによって、形作られる装置を意味する。
【0029】
図示を略するが、モジュール601〜60nの各々では、好ましくは、スイッチング素子を含む複数の回路素子が、回路基板に搭載され、この回路基板が単一のケースに収納され、さらに、回路基板には複数の外部端子が接続され、ケースの外部にこれらの外部端子の端部が露出している。それによって、モジュール601〜60nの各々は、単一の装置としての取り扱いが可能となっている。
【0030】
モジュール601〜60nの各々のケースから露出する外部端子に、配線を接続することによって、モジュール601〜60nの間の接続、および、モジュール601〜60nと外部の装置との接続が実現される。図1では、モジュール601〜60nをそれぞれ表現する枠に沿って並んでいる「白丸」符号が、これらの外部端子を表現している。
【0031】
スイッチング素子801〜80nの各々は、一般には、制御電極へ入力される信号に応答して、一対の主電極を通じて流れる主電流の大きさを制御する半導体素子であるが、好ましくは、パワーIGBT、パワーバイポーラトランジスタ、および、パワーMOSFETなどのパワー(電力用)スイッチング素子である。中でも、パワーIGBTは、導通(オン)状態での一対の主電極間の電圧である飽和電圧VCE(sat)が低く、しかも、制御が容易な電圧制御型であるという利点を有している。このため、以下の説明では、スイッチング素子801〜80nの各々が、パワーIGBTである例を取り上げる。
【0032】
パワーIGBTであるスイッチング素子801〜80nの間で、一対の主電極(すなわち、コレクタ電極とエミッタ電極)は、互いに接続されている。すなわち、n個のコレクタ電極は、モジュール601〜60nに備わる負荷端子V+を通じて、互いに共通に接続されている。また、n個のエミッタ電極は、モジュール601〜60nに備わる負荷端子V-を通じて、互いに共通に接続されている。負荷端子V+および負荷端子V-は、外部の電源および負荷を接続するための端子である。このようにして、スイッチング素子801〜80nは、互いに並列に接続されている。
【0033】
モジュール601〜60nには共通に、電圧信号としての入力信号VINが、外部から入力される。スイッチング素子801〜80nは、この入力信号VINに応答して、互いに同時に、オン(導通)およびオフ(遮断)する。すなわち、スイッチング素子801〜80nは全体として、あたかも単一のパワーIGBTであるかのように動作する。
【0034】
スイッチング素子801〜80nの制御電極(すなわち、ゲート電極)は、それぞれ、駆動部701〜70nを通じて、互いに接続されている。したがって、入力信号VINは、駆動部701〜70nを通じて、ある種の変換を受けた上で、それぞれ、スイッチング素子801〜80nのゲート電極へ入力される。駆動部701〜70nは、入力信号VINを変換する際に、スイッチング素子801〜80nをオンさせるためのゲート電圧(エミッタ電極を基準としたゲート電極の電位)の高さを、駆動制御装置50から送られる駆動制御電圧(制御信号)VD1〜VDnにもとづいて、調節する。
【0035】
駆動制御装置50は、スイッチング素子801〜80nのそれぞれの主電流(すなわち、コレクタ電流)の大きさを表現する電流センス電圧(電流検出信号)VCS1〜VCSnにもとづいて、これらのコレクタ電流の間の不均一を減殺するように、駆動制御電圧VD1〜VDnを算出する。すなわち、駆動制御装置50は、並列接続されたスイッチング素子801〜80nの間での電流不均衡を解消するように、スイッチング素子801〜80nの主電流を、フィードバック制御する装置である。後述するように、駆動制御装置50は、デジタル信号処理を通じて、フィードバック制御を実行する。
【0036】
スイッチング素子801〜80nのエミッタ電極へ、それぞれ、接続された電流検出部901〜90nによって、スイッチング素子801〜80nのコレクタ電流が、それぞれ、検出される。その結果、電流検出部901〜90nから、コレクタ電流の検出値としての電流センス電圧VCS1〜VCSnが生成される。電流センス電圧VCS1〜VCSnは、電流検出信号増幅部911〜91nで増幅された後に、駆動制御装置50へと伝送される。
【0037】
モジュール601〜60nの各々に備わる複数の外部端子の中には、電源電圧の供給を受けるための正極電源端子VDDおよび負極電源端子COMが含まれる。駆動制御装置50および電流検出信号増幅部911〜91nには、これらの電源端子を通じて電源電圧が供給される。また、モジュール601〜60nには、各要素を互いに接続するための配線が配設されている。
【0038】
例えば、配線741〜74nは、それぞれ、駆動部701〜70nと、スイッチング素子801〜80nのゲート電極とを接続する。配線751〜75nは、それぞれ、駆動部701〜70nと、スイッチング素子801〜80nのエミッタ電極とを接続する。また、配線991〜99nは、それぞれ、電流検出部901〜90nと、電流検出信号増幅部911〜91nとを接続する。
【0039】
<1-2.各要素の構成>
図2は、駆動制御装置50の内部構成を示すブロック図である。駆動制御装置50には、信号処理部51、記憶部56、および、出力増幅部55が備わっている。また、信号処理部51には、A/D変換部52、演算部53、および、D/A変換部54が備わっている。さらに、出力増幅部55には、バッファ551〜55nが備わっている。
【0040】
記憶部56は、電源なしで記憶内容を保持できる半導体メモリ、例えば、ROM、および、電池でバックアップされたスタティックRAMで構成されるのが望ましい。特に望ましくは、書き込みが容易で、バックアップ電池が不要な、EPROMが用いられる。A/D変換部52およびD/A変換部54には、周知のA/DコンバータおよびD/Aコンバータが、それぞれ、利用可能である。
【0041】
信号処理部51は、電流センス電圧VCS1〜VCSnを受信し、これに処理を施すことによって、駆動制御電圧VD1〜VDnを算出する。信号処理部51へ入力されたアナログ形式の電流センス電圧VCS1〜VCSnは、A/D変換部52で、デジタル形式の信号へと変換される。演算部53は、デジタル形式の電流センス電圧VCS1〜VCSnに対して、所定のデジタル演算処理を実行することによって、デジタル形式の駆動制御電圧VD1〜VDnを、算出する。演算部53は、演算処理を実行する際に、記憶部56をアクセスする。デジタル形式の駆動制御電圧VD1〜VDnは、D/A変換部54によって、アナログ形式の信号へと変換される。
【0042】
出力増幅部55は、信号処理部51で算出された駆動制御電圧VD1〜VDnを増幅する。すなわち、出力増幅部55へ入力されるアナログ形式の駆動制御電圧VD1〜VDnは、バッファ551〜55nによって、それぞれ増幅される。増幅された駆動制御電圧VD1〜VDnは、それぞれ、駆動部701〜70nへと伝送される。
【0043】
図3は、駆動部701〜70nを代表して、駆動部701の内部構成を示す回路図である。他の駆動部702〜70nも、この駆動部701と同一に構成される。駆動部701には、直列に接続されたpチャネル型のMOSFET71とnチャネル型のMOSFET72で構成されるインバータが備わる。MOSFET72のソース電極は配線751へと接続され、MOSFET71のソース電極には駆動制御電圧VD1が入力される。インバータの入力、すなわち、互いに共通に接続されたMOSFET71,72のゲート電極には、入力信号VINが入力される。インバータの出力、すなわち、互いに接続されたMOSFET71,72のドレイン電極には、抵抗素子Rgを通じて、配線741へと接続されている。
【0044】
したがって、駆動部701へ入力された入力信号VINは、信号レベル(ハイレベルまたはローレベル)が反転された上で、配線741へと出力される。しかも、駆動制御電圧VD1が、インバータの電源電圧として、駆動部701へ供給されているので、配線741へ出力されるハイレベルの信号の電圧の高さは、駆動制御電圧VD1に一致する。
【0045】
配線741へ出力される信号は、スイッチング素子801のゲート電圧(制御信号)VGEとなる。ハイレベルの信号が出力されると、スイッチング素子801はオンし、ローレベルの信号が出力されると、スイッチング素子801はオフする。したがって、スイッチング素子801をオンするためのゲート電圧VGEは、駆動制御電圧VD1に一致する。
【0046】
したがって、スイッチング素子801がオンしたときにスイッチング素子801を流れるコレクタ電流の大きさが、駆動制御電圧VD1の高さによって調節される。駆動制御電圧VD1が高いほど、コレクタ電流は大きくなる。このように、駆動制御装置50は、駆動部701〜70nを通じて、スイッチング素子801〜80nのゲート電圧を調整し、それによって、スイッチング素子801〜80nのコレクタ電流の大きさを制御する。
【0047】
図4〜図6は、電流検出部901〜90nの3通りの好ましい内部構成を示す回路図である。これらの図は、いずれも、電流検出部901〜90nを代表して、電流検出部901を示している。他の電流検出部902〜90nも、電流検出部901と同一に構成される。
【0048】
図4に示す例では、電流検出部901は、抵抗素子Rshを備えている。この抵抗素子Rshは、スイッチング素子801のエミッタ電極と負荷端子V-との間に介挿されている。このため、抵抗素子Rshには、スイッチング素子801のコレクタ電流が流れる。したがって、抵抗素子Rshには、コレクタ電流に比例した電圧降下が発生する。この電圧降下の高さが、エミッタ電極と抵抗素子Rshとの接続点に接続されている配線991を通じて、電流センス電圧VCS1として伝送される。
【0049】
図5に示す例でも、電流検出部901は、抵抗素子Rshを備えている。ただし、スイッチング素子801は、マルチエミッタ型の素子であり、コレクタ電流の大部分が流れるエミッタ電極と、微小部分が流れるセンス電極とを備えている。センス電極を流れるセンス電流は、コレクタ電流に比例する。エミッタ電極は、負荷端子V-へ接続されている。
【0050】
抵抗素子Rshは、センス電極と、負極電源端子COMへ接続される配線との間に介挿されている。このため、抵抗素子Rshには、スイッチング素子801のセンス電流が流れる。したがって、抵抗素子Rshには、スイッチング素子801のコレクタ電流に比例した電圧降下が発生する。この電圧降下の高さが、センス電極と抵抗素子Rshとの接続点に接続されている配線991を通じて、電流センス電圧VCS1として伝送される。
【0051】
図6に示す例では、電流検出部901は、ホール素子94を備えている。ホール素子94は、スイッチング素子801のエミッタ電極と負荷端子V-とを接続する配線を流れる電流を検出し、電流に比例した電圧信号を、電流センス電圧VCS1として出力する。電流センス電圧VCS1は、ホール素子94に接続された配線991を通じて伝送される。
【0052】
図6の例では、ホール素子94が用いられるので、電流検出の精度が高いという利点がある。これに対して、図4および図5の例では、電流検出部901の製造に要するコストが低廉であり、しかも、サイズを小さくすることができるという利点がある。特に、図5の例では、抵抗素子Rshを流れる電流が微小であるために、電力損失が低く、しかも、抵抗素子Rshを低電力の素子として構成し得るという利点がある。
【0053】
図7は、電流検出信号増幅部911〜91nを代表して、電流検出信号増幅部911の内部構成を示す回路図である。他の電流検出信号増幅部912〜91nも、電流検出信号増幅部911と同一に構成される。電流検出信号増幅部911には、演算増幅器95、および、抵抗素子R1,R2が備わっている。抵抗素子R1は、演算増幅器95の出力と反転入力との間に介挿されることにより、負帰還ループを形成している。抵抗素子R2は、反転入力と、負極電源端子COMに接続される配線との間に介挿されている。
【0054】
このように、電流検出信号増幅部911は、演算増幅器を用いた周知の非反転増幅器として構成されている。電流検出部901から出力された電流センス電圧VCS1は、配線991を通じて、演算増幅器95の非反転入力へと伝送される。その結果、演算増幅器95の出力から、増幅された電流センス電圧VCS1が出力される。増幅された電流センス電圧VCS1は、駆動制御装置50へと伝送される。
【0055】
<1-3.演算部の処理の概略>
つぎに、演算部53で実行される演算処理の概略を説明する。図8は、スイッチング素子801〜80nに用いられるIGBTの出力特性を示すグラフである。すなわち、図8には、様々なゲート電圧VGE(i)(ここで、i=1〜6であり、VGE(i+1)>VGE(i)である)に対するコレクタ電流ICと飽和電圧VCE(sat)との間の関係が示されている。
【0056】
図8が示すように、飽和電圧VCE(sat)は、コレクタ電流ICとゲート電圧VGEとに、おおよそ比例して変化する。このため、不均一な飽和電圧VCE(sat)を有し、並列接続されたスイッチング素子801〜80nに対して、演算部53は、低い飽和電圧VCE(sat)を有するスイッチング素子(大きなコレクタ電流ICが流れる素子)に対しては、駆動制御電圧を低くし、逆に、高い飽和電圧VCE(sat)を有するスイッチング素子(小さいコレクタ電流ICが流れる素子)に対しては、駆動制御電圧を高くすることによって、並列接続されたスイッチング素子の間での電流不均衡を解消する。
【0057】
このことは、図9および図10を用いて、さらに説明することができる。図9は、飽和電圧VCE(sat)が不均一な3個のIGBTの試料#1,#2,#3の出力特性を示している。また、図10は、一定のコレクタ電流ICの下での3個の試料#1,#2,#3の入出力特性、すなわち、飽和電圧VCE(sat)対ゲート電圧VGEの関係を示している。
【0058】
3個の試料#1,#2,#3が並列に接続されたときには、それらは、図9および図10において、直線V−V’で描かれるように、同一のVCE(sat)の下で動作する。したがって、もしも、3個の試料#1,#2,#3へ同一のゲート電圧VGEが供給されるならば、それらには、図9において動作点a1,b1,および,c1で規定される異なる大きさのコレクタ電流ICが流れることとなる。
【0059】
すなわち、一定のゲート電圧VGEの下では、試料#1にはIC(#1)が流れ、試料#2にはIC(#2)が流れ、そして、試料#3にはIC(#3)が流れる。このように、コレクタ電流ICが不均一な状態、すなわち、電流不均衡の状態が出現する。その結果、最も大きなコレクタ電流ICが流れる試料#3は、高い電流ストレスを被ることとなる。
【0060】
一方、図10は、3個の試料#1,#2,#3が、動作点a2,b2,c2で規定される異なる高さのゲート電圧VGE、すなわち、VGE(#1),VGE(#2),VGE(#3)で駆動されるときに、同一の飽和電圧VCE(sat)の下で、同一のコレクタ電流ICが流れ、望ましい電流平衡の状態が達成されることを例示している。演算部53は、このように、適切なVGE(#1),VGE(#2),VGE(#3)を算出することによって、電流平衡を実現する。演算部53で算出され、D/A変換され、さらに出力増幅部55で増幅された後に、駆動制御装置50から出力される駆動制御電圧VD1〜VDnは、スイッチング素子801〜80nのゲート電圧VGEに相当する。
【0061】
<1-4.演算部の処理の詳細>
つぎに、演算部53の演算処理について、詳細に説明する。演算部53は、マイクロプロセッサに代表されるCPUと、このCPUの動作を規定するプログラムが格納されたメモリとを、内部に含んでいる。それによって、演算部53は、特徴ある演算処理を実行する。しかしながら、プログラムにもとづいて動作する演算部53の代わりに、プログラムを搭載しないハードウェアで、演算部53を構成することも可能である。
【0062】
図11は、演算部53がハードウェアで構成された場合に、その内部構成の特徴部分の望ましい例を示すブロック図である。すなわち、図11は、演算部53の特徴的な機能を等価的に表現する機能図として位置づけられる。図11が示すように、演算部53には、等価的に、電流算出部501、電流偏差算出部502、制御信号算出部503、反復制御部504、電流較正部505、および、変換データ算出部506が備わる。
【0063】
電流算出部501は、電流センス電圧VCS1〜VCSnにもとづいて、スイッチング素子801〜80nのコレクタ電流I1〜Inを算出する。このとき、電流算出部501は、記憶部56に含まれる較正データ記憶部507に格納される較正データを参照する。電流センス電圧VCS1〜VCSnを、コレクタ電流I1〜Inへと換算するための較正データは、複合モジュール250の使用に先だって、電流較正部505によって作成され、較正データ記憶部507へと格納される。
【0064】
電流偏差算出部502は、電流算出部501で得られたコレクタ電流I1〜Inにもとづいて、電流偏差ΔI1〜ΔInを算出する。電流偏差ΔI1〜ΔInは、コレクタ電流I1〜Inの平均値からの、コレクタ電流I1〜Inの偏差に、それぞれ、相当する。
【0065】
制御信号算出部503は、電流偏差算出部502が出力する電流偏差ΔI1〜ΔInにもとづいて、これらの電流偏差ΔI1〜ΔInを減殺するように、駆動制御電圧VD1〜VDnを算出する。このとき、制御信号算出部503は、記憶部56に含まれる変換データ記憶部508に格納される変換データを参照する。電流偏差ΔI1〜ΔInと、駆動制御電圧VD1〜VDnの変化量との間の関係を規定する変換データは、複合モジュール250の使用に先だって、変換データ算出部506によって作成され、変換データ記憶部508へと格納される。
【0066】
電流算出部501、電流偏差算出部502、および、制御信号算出部503は、複合モジュール250が使用される際に、演算処理を反復して実行する。反復制御部504は、この反復動作を制御する。
【0067】
図12は、演算部53における処理の手順を示すフローチャートである。処理が開始される(ステップ100)と、まず、ステップ101において、駆動制御電圧VD1〜VDnが、共通のデフォルト値(初期値)に設定される。この処理は、制御信号算出部503によって実行される。デフォルト値は、例えば、15Vである。したがって、この段階では、スイッチング素子801〜80nのゲート電圧VGEは、すべて、例えば15Vの値に設定される。
【0068】
つぎに、ステップ102において、電流センス電圧VCS1〜VCSnが入力される。この電流センス電圧VCS1〜VCSnは、n個のゲート電圧VGEが、デフォルト値で与えられたときのコレクタ電流I1〜Inの検出値に相当する。つづいて、ステップ103において、入力された電流センス電圧VCS1〜VCSnにもとづいて、コレクタ電流I1〜Inが算出される。
【0069】
このとき、較正データ記憶部507に記憶される較正データが用いられる。各スイッチング素子80iに対して、コレクタ電流Iiと電流センス電圧VCSiの関係が、図13に示されるように、一次関数(直線関係)で表現されるときには、二つの定数、例えば、オフセット電圧VOFFSETiと、直線の傾きであるスケーリング係数Giとが、較正データとして選ばれる。後述するように、較正データは、スイッチング素子801〜80nの各々に対して、個別に求められている。
【0070】
較正データとして、オフセット電圧VOFFSETiとスケーリング係数Giとが選ばれるときには、コレクタ電流Iiは、
i=Gi×(VCSi−VOFFSETi) ・・・・(数式1)
で与えられる。以上のステップ102および103の演算処理は、電流算出部501によって実行される。
【0071】
つぎに、ステップ104において、コレクタ電流I1〜Inの平均値である平均電流IAVGが算出される。平均電流IAVGは、単純平均処理、すなわち、
AVG=(I1+I2+・・+In)/n ・・・・(数式2)
にもとづく演算を通じて算出される。その後、ステップ105において、電流偏差ΔI1〜ΔInが算出される。電流偏差ΔIiは、
ΔIi=IAVG−Ii ・・・・(数式3)
にもとづいて算出される。以上のステップ104および105の演算処理は、電流偏差算出部502によって実行される。
【0072】
つぎに、ステップ106において、電流偏差ΔI1〜ΔInにもとづいて、現在値としての駆動制御電圧VD1〜VDnに付加すべき駆動制御電圧偏差ΔVD1〜ΔVDnが算出される。駆動制御電圧偏差ΔVDiは、駆動制御電圧VDiの更新すべき値と現在値との差、すなわち、更新量に相当する。駆動制御電圧偏差ΔVDiの値は、電流偏差ΔIiを減殺するような大きさに算出される。
【0073】
このとき、変換データ記憶部508に記憶される変換データが用いられる。変換データとして、例えば、コレクタ電流Iiと駆動制御電圧VDiの間の関係を規定する曲線の変化率に相当する乗算係数Kijが選ばれる。後述するように、乗算係数Kijは、スイッチング素子80i(i=1〜n)の各々に対して、個別に求められる。同時に、乗算係数Kijは、駆動制御電圧VDiの複数の値VDijの各々に対しても、個別に求められる。
【0074】
したがって、変換データとして乗算係数Kijが選ばれるときには、駆動制御電圧偏差ΔVDiは、駆動制御電圧VDiの現在値に最も近い値VDijに対応する乗算係数Kijを用いて、
ΔVDi=Kij×ΔIi ・・・・(数式4)
にもとづいて算出される。つづいて、ステップ107において、駆動制御電圧VDiの更新値、すなわち、新たな値が、算出される。駆動制御電圧VDiの更新値は、
Di(更新値)=VDi(現在値)+ΔVDi ・・・・(数式5)
にもとづいて算出される。
【0075】
つぎに、ステップ108〜111によって、更新値としての駆動制御電圧VDiに対して、所定の下限値VDminから所定の上限値VDmaxまでの範囲を超えないように、制限が加えられる。すなわち、ステップ107で算出された駆動制御電圧VDiが下限値VDminを超えて小さいときには、駆動制御電圧VDiは下限値VDminへと再設定される。また、ステップ107で算出された駆動制御電圧VDiが上限値VDmaxを超えて大きいときには、駆動制御電圧VDiは上限値VDmaxへと再設定される。
【0076】
つぎに、ステップ112において、最終的に確定された更新値としての駆動制御電圧VD1〜VDnが出力される。以上のステップ106〜111の演算処理は、制御信号算出部503によって実行される。ステップ112が終了すると、演算処理は、ステップ102へと戻る。このようにして、ステップ102〜112の処理が、反復的に実行される。それにともなって、電流算出部501、電流偏差算出部502、および、制御信号算出部503は、それぞれの演算処理を、反復的に実行する。これらの装置部における反復的な演算処理のタイミングは、反復制御部504によって制御される。
【0077】
以上に示したように、演算部53は、デジタル信号を処理対象とするので、電流不平衡、特に、並列接続されるスイッチング素子の飽和電圧VCE(sat)の不均一に由来する電流不平衡を解消する制御が、高い精度で行われ得る。しかも、NPT-IGBT(非パンチスルー型のIGBT)などの正の温度係数を持ったスイッチング素子、すなわち、温度が高いほど飽和電圧VCE(sat)が高くなりコレクタ電流ICが抑えられるという自己制御性を持ったスイッチング素子だけでなく、PT-IGBT(パンチスルー型のIGBT)などの負の温度係数を持ったスイッチング素子、すなわち、温度が高いほど飽和電圧VCE(sat)が低くなりコレクタ電流ICが増加するという特性を持ったスイッチング素子に対しても、電流不平衡を解消し、特定の素子への過大な負担の集中を回避することができる。
【0078】
特に、後述するように、較正データおよび変換データが、各スイッチング素子801〜80nごとに個別に準備され、しかも、電流検出部901〜90nおよび駆動部701〜70nの特性上の不均一、並びに、各モジュール601〜60nに接続される配線の特性上の不均一をも考慮した値として準備される。このため、電流不平衡を解消するための制御が、さらに高精度で実現する。
【0079】
<1-5.較正データの作成>
つぎに、複合モジュール250の使用(すなわち、通常動作)に先だって行われる較正データの作成の手順について説明する。較正データを作成する際には、図14の回路図に示すように、較正用の外部装置が、モジュール601〜60nの各々に、順に接続される。図14では、電源251、抵抗素子252、および、電流計253が直列に接続された直列回路が、較正用の外部装置として、モジュール60iの負荷端子V+と負荷端子V-との間に接続されている。
【0080】
アクティブレベルの入力信号VINが入力されると、スイッチング素子80iはオンする。このとき、スイッチング素子80iのゲート電圧VGE(i)は、駆動制御電圧VDiに一致する。スイッチング素子80iには、駆動制御電圧VDiに応じたコレクタ電流Iiが流れる。このコレクタ電流Iiの大きさは、電源251が供給する電源電圧VCCの高さにも依存する。
【0081】
電源電圧VCCを調節することによって、電流計253が表示するコレクタ電流Iiの大きさが、(一個ないし複数個の)所定の参照電流IREFの値に設定される。そのときに得られる電流センス電圧VCSiにもとづいて、モジュール60iに関する較正データが、演算部53によって作成され、さらに較正データ記憶部507へと記憶される。同様の手順が、モジュール601〜60nのすべてに対して実行される。
【0082】
較正データを作成する手順は、図15のフローチャートに、より詳細に示される。ステップ200において、処理が開始されると、較正の対象としてのモジュール60iが、モジュール601に設定される。すなわち、変数iが、i=1に設定される。このとき、図14に示した較正用の外部装置は、操作員(通常は、複合モジュール250の製造者側ではなく利用者側に属する操作員)によって、モジュール60iへと接続される。
【0083】
つぎに、ステップ201において、電源251が操作員によって操作されることにより、電源電圧VCCが0Vに設定される。つづいて、電流センス電圧VCSiが、演算部53へと入力される(ステップ202)。この電流センス電圧VCSiは、図13に示したオフセット電圧VOFFSETiに相当する。その後、演算部53へ力された電流センス電圧VCSiは、オフセット電圧VOFFSETiとして、較正データ記憶部507へ格納される(ステップ203)。この処理は、電流較正部505によって実行される。
【0084】
つぎに、ステップ204において、電源251が操作員によって操作されることにより、コレクタ電流Iiが、あらかじめ定められた参照電流IREFに一致するように、電源電圧VCCが調節される。つづいて、電流センス電圧VCSiが、演算部53へと入力される(ステップ205)。この電流センス電圧VCSiは、図13に示した参照電圧VREFiに相当する。その後、演算部53へ力された電流センス電圧VCSiは、参照電圧VREFiとして、較正データ記憶部507へ格納される(ステップ206)。この処理も、電流較正部505によって実行される。
【0085】
つぎに、電流較正部505は、較正データ記憶部507へ格納されているオフセット電圧VOFFSETiと参照電圧VREFiと、あらかじめ定められている参照電流IREFとにもとづいて、スケーリング係数Giを算出する(ステップ207)。スケーリング係数Giは、
i=IREF/(VREFi−VOFFSETi) ・・・・(数式6)
にもとづいて算出される。算出されたスケーリング係数Giは、電流較正部505によって、較正データ記憶部507へと格納される(ステップ208)。このようにして、較正データ記憶部507には、モジュール601に関する較正データとして、オフセット電圧VOFFSETiと参照電圧VREFiとが格納される。
【0086】
つぎに、ステップ209において、変数iがモジュール601〜60nの個数nへ一致しているか否かが判定される。変数iが個数nに満たないとき、すなわち、モジュール601〜60nのすべてに対して、較正データが得られるには至っていないときには、処理はステップ211へと移行し、変数iが1だけインクリメントされる。すなわち、つぎの新たなモジュール60iが、較正の対象とされる。その後、処理は、ステップ201へと戻る。逆に、変数iが個数nに一致しているとき、すなわち、モジュール601〜60nのすべてに対して、較正データが得られているときには、処理は完了する(ステップ210)。
【0087】
以上のように、モジュール601〜60nの各々に対して、個別に較正データが得られる。しかも、抵抗素子Rshの抵抗値の不均一など、電流検出部901〜90nにおける特性上の不均一だけでなく、モジュール601〜60nに接続される配線のレイアウト等に由来する、これらの配線における特性上の不均一も、較正データの値に反映されている。
【0088】
A/D変換部52などの駆動制御装置50の内部の装置部分における誤差も、較正データに反映されている。したがって、このような幅広い不均一や誤差をも考慮して、電流不均衡の解消を図る制御を、高い精度で実行することが可能となる。また、図15のフローチャートに示した例では、2点較正法が用いられている。したがって、オフセット電圧VOFFSETiをも考慮した制御が可能となる。このことも、高い精度での制御に寄与する。
【0089】
演算部53が、デジタル信号を処理対象としており、特に、演算部53が、プログラムを格納したメモリと、このプログラムにもとづいて動作するCPUとを備えるために、以上に述べた多種類の不均一や誤差を考慮した制御、および、2点較正法をも用いた複雑な制御が、容易に実現される。すなわち、簡単な構成で、様々な誤差要因に対応した柔軟な制御が、容易に達成される。
【0090】
なお、図15のフローチャートには、参照電流IREFの個数kが、k=2である2点較正法を用いた例を示したが、3点以上(k≧3)の較正法を用いることも可能である。また、オフセット電圧VOFFSETiが無視できるほどに低い場合には、1点(k=1)較正法を用いることも可能である。1点較正法では、例えば、オフセット電圧VOFFSETiは算出されず、スケーリング係数Giのみが較正データとして算出され、較正データ記憶部507へ格納される。
【0091】
<1-6.変換データの作成>
つぎに、複合モジュール250の使用に先だって、較正データの作成と並んで行われる変換データの作成の手順について説明する。変換データを作成する際には、図16の回路図に示すように、測定用の外部装置が、モジュール601〜60nの各々に、順に接続される。図16では、電源351が、測定用の外部装置として、モジュール60iの負荷端子V+と負荷端子V-との間に接続されている。
【0092】
アクティブレベルの入力信号VINが入力されると、スイッチング素子80iはオンする。このとき、スイッチング素子80iのゲート電圧VGE(i)は、駆動制御電圧VDiに一致するので、スイッチング素子80iには、駆動制御電圧VDiに応じたコレクタ電流Iiが流れる。このコレクタ電流Iiの大きさは、電源351が供給する電源電圧VPULSEの高さにも依存する。なお、電源351は、負荷としての抵抗素子等を介することなく、負荷端子V+,V-へ直接に接続されるので、スイッチング素子80iへ損傷を与えることのないように、電源電圧VPULSEをパルス状に発生する。
【0093】
電源351が、負荷端子V+,V-へ直接に接続されているので、スイッチング素子80iがオンしているときには、電源電圧VPULSEは、飽和電圧VCE(sat)に一致する。抵抗素子Rshにおける電圧降下は、電源電圧VPULSEに比べると無視できる。電源351を操作することによって、電源電圧VPULSEが所定の値に設定される。そのときに、様々な駆動制御電圧VDiの値に対して得られる電流センス電圧VCSiにもとづいて、モジュール60iに関する変換データが、演算部53の内部で作成され、変換データ記憶部508へと記憶される。同様の手順が、モジュール601〜60nのすべてに対して実行される。
【0094】
図17は、スイッチング素子801〜80nの一つにおける入出力特性、すなわち、飽和電圧VCE(sat)を様々に変えたときのゲート電圧VGEとコレクタ電流ICとの間の関係を示すグラフである。飽和電圧VCE(sat)が一定の下では、コレクタ電流ICはゲート電圧VGEとともに増加する。また、同一のゲート電圧VGEの下では、飽和電圧VCE(sat)が高いほど、コレクタ電流ICは大きくなる。
【0095】
コレクタ電流IC対ゲート電圧VGEの曲線の傾き、すなわち、変化率は、飽和電圧VCE(sat)が高いほど大きくなる。この変化率の逆数を、乗算係数Kと定義する。したがって、乗算係数Kは、飽和電圧VCE(sat)が高いほど、小さくなる。図12に示したように、この乗算係数Kが、変換データとして利用される。
【0096】
しかしながら、演算部53は、複合モジュール250が使用されているときに、使用条件に応じて時々刻々変化し得る飽和電圧VCE(sat)の実際値を認識することはできない。すなわち、飽和電圧VCE(sat)はフィードバックされない。したがって、演算部53は、単一のステップで、すなわち、駆動制御電圧VDiを一回算出しただけで、電流不均衡を解消することは、一般には不可能である。このため、乗算係数Kとして、あらかじめ求められた一定の値が利用され、図12に示したループが幾度も反復されることによって、電流不均衡の解消が達成される。
【0097】
モジュール60iに対する乗算係数Kiが大きいと、算出された電流偏差ΔIiの値に対して、駆動制御電圧偏差ΔVDiの値が大きく算出される。その結果、電流偏差ΔIiが正および負の方向に、大きく変動する恐れが生じる。このため、乗算係数Kiの値は、電流偏差ΔIiが、符号を逆転することなくゼロへと収束する程度に、小さく抑えられることが望ましい。
【0098】
図17のグラフから明らかなように、モジュール60iが動作可能な範囲で最も高い飽和電圧VCE(sat)HIの下、例えば、飽和電圧VCE(sat)の最大定格値の下での乗算係数Kiを、変換データとして利用するならば、電流偏差ΔIiが大きく変動する恐れはなく、しかも、不必要に乗算係数Kiを小さく設定する恐れもない。すなわち、電流偏差ΔIiを滑らかに、かつ、速やかにゼロへと収束させることが可能となる。
【0099】
さらに、モジュール601〜60nの間で、飽和電圧VCE(sat)の値が共通であっても、乗算係数Kiは、必ずしも同一にはならない。したがって、モジュール601〜60nの各々について、個別に乗算係数Kiを算出するのが、さらに望ましい。演算部53は、変換データを、このような最も望ましい方法で算出する。
【0100】
変換データを作成する手順は、図18のフローチャートに、より詳細に示される。ステップ300において、処理が開始されると、計算の対象としてのモジュール60iが、モジュール601に設定される。すなわち、変数iが、i=1に設定される。このとき、図16に示した電源351は、操作員によって、モジュール60iへと接続される。さらに、複数の駆動制御電圧VDiの値を識別する変数jが初期値"1"へ設定される。
【0101】
つぎに、ステップ301において、電源351が操作員によって操作されることにより、電源電圧VPULSEが、あらかじめ定められた飽和電圧VCE(sat)HIへと設定される。所定の飽和電圧VCE(sat)HIは、例えば、スイッチング素子801〜80nの飽和電圧VCE(sat)の最低の定格値に相当する。つづいて、駆動制御電圧VDiの値が、所定の駆動制御電圧VDijの値に設定され(ステップ302)、さらに、D/A変換部54を通じて出力される(ステップ303)。その結果、モジュール60iのゲート電極には、ゲート電圧VGE(i)として、駆動制御電圧VDijと同一の値が入力される。
【0102】
つぎに、駆動制御電圧VDijに対応したコレクタ電流Iiの検出値である電流センス電圧VCSijが、演算部53へと入力される(ステップ304)。その後、演算部53へ力された電流センス電圧VCSijは、電流算出部501によって、コレクタ電流Iijへと換算される(ステップ305)。このように、電流算出部501は、複合モジュール250の使用の際だけでなく、使用に先だって行われる変換データの作成の際にも、較正データ記憶部507に格納された較正データを用いて、コレクタ電流Iiの算出を行う。
【0103】
つぎに、駆動制御電圧VDijとコレクタ電流Iijの値が、変換データ記憶部508へと格納される(ステップ306)。この処理は、変換データ算出部506によって実行される。その後、ステップ307において、変数jが1よりも大きいか否かが判定される。変数jが1であるとき、すなわち、変換データ記憶部508に、モジュール60iに対する駆動制御電圧VDijとコレクタ電流Iijの組が、1組しか格納されていないときには、処理は、ステップ310へ移行する。
【0104】
逆に、変数jが1より大きいとき、すなわち、変換データ記憶部508に、モジュール60iに対する駆動制御電圧VDijとコレクタ電流Iijの組が、2組以上格納されているときには、処理は、ステップ308へ移行する。ステップ308では、モジュール60iに関する最も新しい変換データと、その次に新しい変換データとにもとづいて、乗算係数Ki,j-1が算出される。すなわち、
i,jー1=(VDij−VDi,jー1)/(Iij−Ii,jー1)・・・・(数式7)
が、算出される。その後、算出された乗算係数Ki,j-1が、変換データ記憶部508へと格納される(ステップ309)。ステップ308および309の演算処理は、変換データ算出部506によって実行される。
【0105】
つぎに、ステップ310において、変数jが所定の定数m(≧2)に一致しているか否かが判定される。変数jが定数mに満たないとき、すなわち、モジュール60iに対するすべての変換データの算出が完了していないときには、処理はステップ311へと移行し、変数jが1だけインクリメントされる。すなわち、つぎの新たな駆動制御電圧VDijが、変換データの算出の対象とされる。そして、処理は、ステップ302へと戻る。逆に、変数jが定数mに一致しているとき、すなわち、モジュール60iに対して、すべての変換データが得られているときには、処理はステップ312へ移行する。
【0106】
ステップ312では、変数iがモジュール601〜60nの個数nへ一致しているか否かが判定される。変数iが個数nに満たないとき、すなわち、モジュール601〜60nのすべてに対して、変換データが得られるには至っていないときには、処理はステップ313へと移行し、変数iが1だけインクリメントされる。すなわち、つぎの新たなモジュール60iが、変換データの算出の対象とされる。その後、処理は、ステップ301へと戻る。逆に、変数iが個数nに一致しているとき、すなわち、モジュール601〜60nのすべてに対して、変換データが得られているときには、処理は完了する(ステップ314)。
【0107】
以上のように、各モジュール60iについて、動作範囲内で最も高い飽和電圧VCE(sat)HIに対する乗算係数Kiが得られる。このため、電流偏差ΔIiの変動を小さく抑え、しかも、速やかにゼロへと収束させる制御が実現する。さらに加えて、モジュール601〜60nの各々に対して、個別に乗算係数Kiが得られる。
【0108】
しかも、スイッチング素子801〜80nの入出力特性における不均一だけでなく、駆動部701〜70nの特性上の不均一、および、モジュール601〜60nに接続される配線のレイアウト等に由来する、これらの配線における特性上の不均一も、乗算係数Kiの値に反映されている。さらに、D/A変換部54などの駆動制御装置50の内部の装置部分における誤差も、乗算係数Kiに反映されている。
【0109】
したがって、電流不均衡の解消を図る制御が、このような幅広い不均一や誤差をも考慮した適切な変換データにもとづいて、実行することが可能となる。演算部53が、デジタル信号を処理対象としており、特に、演算部53が、プログラムを格納したメモリと、このプログラムにもとづいて動作するCPUとを備えるために、以上に述べた多種類の不均一や誤差を考慮した複雑な制御が、容易に実現される。すなわち、簡単な構成で、様々な誤差要因を吸収した柔軟な制御が、容易に達成される。
【0110】
なお、図18における定数mは、その下限値である"2"に設定されると、乗算係数Kiとして、駆動制御電圧VDiに依存しない値が得られる。これに対して、定数mを、より大きい値に設定するほど、乗算係数Kijが、より多く得られ、それによって、図17に示したグラフの非線形性を、より高い精度で反映した制御が行われ得る。
【0111】
また、図18は、乗算係数Kijの値そのものが、変換データ記憶部508へと格納され、格納された乗算係数Kijが、図12のステップ106の演算処理に利用される例を示している。これに対して、定数mをm≧3に設定した上で、図18のステップ302〜311のループをm回反復して得られた乗算係数Kij(j=1〜m)にもとづいて、周知の内挿法、あるいは、多項式近似等を用いて、ゲート電圧VGEとともに滑らかに変化する関数としての乗算係数Ki(VGE)が算出され、この乗算係数Ki(VGE)が変換データ記憶部508へと格納されてもよい。図12のステップ106の演算処理では、乗算係数Ki(VGE)が用いられる。それによって、図17に示したグラフの非線形性を、さらに高い精度で反映した制御が行われ得る。
【0112】
<1-7.実証試験>
つぎに、複合モジュール250の性能を実証するために行われたコンピュータシミュレーションについて説明する。図19は、シミュレーションの対象とされた複合モジュールを示すブロック図である。この複合モジュール260は、図1に示した複合モジュール250において、個数nを3に設定したものと同等である。3個のモジュール601〜603の負荷端子V+,V-には、負荷電源261および負荷262が直列に接続されて成る直列回路が、接続されている。
【0113】
モジュール601〜603に、それぞれ備わるスイッチング素子は、同一定格のIGBTであり、ここでは、試料Q1,Q2,Q3と称する。試料Q1,Q2,Q3のコレクタ電流ICの定格値、すなわち定格電流は、いずれも、100Aに設定されている。したがって、複合モジュール260の定格電流は、300Aとなっている。また、試料Q1,Q2,Q3のゲート電圧VGEの定格値、すなわち、定格ゲート電圧は、いずれも、15Vに設定されている。
【0114】
さらに、図20が試料Q1,Q2,Q3の出力特性を示すように、15Vの定格ゲート電圧が印加されたときに、飽和電圧VCE(sat)における代表値3.0Vからの偏差が、±10%であると設定されている。すなわち、飽和電圧VCE(sat)における偏差は、試料Q1では、+10%、試料Q2では、0%、そして、試料Q3では、-10%に設定されている。
【0115】
図21は、シミュレーションの結果を示すグラフである。入力信号VINは、100μsecの周期で、アクティブレベルとノーマルレベルとの間を反復する。したがって、試料Q1,Q2,Q3は、10kHzの周波数で、オンおよびオフを反復する。さらに、駆動制御装置50に備わる演算部53(図2)は、図12に示したループを、10μsecの周期で反復する。
【0116】
図21に示すように、動作が開始された時点では、3個の試料Q1,Q2,Q3には、いずれも、ゲート電圧VGEとして、デフォルト値である15Vが入力される(図12のステップ101)。その結果、動作が開始された時点では、複合モジュール260の定格電流300Aが、試料Q1,Q2,Q3の間で、約±8%の電流不平衡をもって分担される。このことは、図20のグラフからも、明らかである。すなわち、試料Q1,Q2,Q3のコレクタ電流ICは、それぞれ、IC(Q1)=108A、IC(Q2)=100A、および、IC(Q3)=92Aとなる。
【0117】
演算部53は、図12に示した演算処理を反復して実行することによって、コレクタ電流ICが、平均値である100Aよりも小さい試料Q1に対しては、IC(Q1)を増加させるように、ゲート電圧VGE(駆動制御電圧VDに一致する)を上昇させ、コレクタ電流ICが、100Aよりも大きい試料Q3に対しては、IC(Q3)を減少させるように、ゲート電圧VGEを下降させ、さらに、コレクタ電流ICが、100Aと一致する試料Q2に対しては、IC(Q2)をそのまま維持するように、ゲート電圧VGEには変化を与えない。
【0118】
その結果、図21が示すように、動作開始時に存在した約±8%の電流不均衡は、わずか、1msecの後には解消され、3個の試料Q1,Q2,Q3のいずれも、定格値の100Aを、互いに等しく負担するようになる。しかも、電流不均衡が、解消されるまでの期間(0〜1msecの期間)において、コレクタ電流IC(Q1)、IC(Q2)、および、IC(Q3)のいずれも、符号が反転するほどの大きな変動を被らない。すなわち、3個の試料Q1,Q2,Q3のコレクタ電流は、滑らかに、かつ、速やかに、互いに等しい大きさへと収束する。このように、複合モジュール260を対象としたシミュレーションを、コンピュータを用いて実行した結果、期待通りの性能が実証された。
【0119】
<1-8.応用例>
つぎに、複合モジュール250の応用例について説明する。複合モジュール250は、例えば、コンバータ、チョッパ、インバータなどへの利用に、好適である。図22は、複合モジュール250の代表的な利用形態であるインバータにおける複合モジュール250と負荷との関係を示す回路図である。このインバータ270では、2個の複合モジュール250が直列に接続されて成る直列回路が、直流母線P,Nの間に並列に3個介挿されている。そして、2個の直列の複合モジュール250の間の接続部が、負荷271へと接続されている。
【0120】
6個の複合モジュール250の各々には、図示しない外部装置が接続され、この外部装置から、入力信号VINが入力される。この入力信号VINは、各直列回路を構成する2個の複合モジュール250が交互にオンおよびオフするように、しかも、3個の直列回路の間で、動作の位相が120゜ずつずれるように入力される。その結果、負荷271が適切に駆動される。
【0121】
なお、図22に示される6個の複合モジュール250の各々には、3個のスイッチング素子にそれぞれ接続された3個のダイオードが備わっている。これらのダイオードは、スイッチング素子が、オンおよびオフ動作を行う際に、逆電流による影響を受けないように設けられている。
【0122】
<2.実施の形態2>
図1では、駆動制御装置50が、並列接続されたモジュール601〜60nの中の一つである主モジュール601の中に組み込まれている例を示した。しかしながら、駆動制御装置50と並列接続された複数のモジュールとの間の関係は、図1に示された形態に限られるものではない。図23は、駆動制御装置50とモジュールとの関係において、図1とは異なる形態の一例を示すブロック図である。
【0123】
この複合モジュール280では、駆動制御装置50は、モジュール281〜28nのいずれとも独立した装置として構成されている。モジュール281〜28nの各々は、図1に示した副モジュール602〜60nの各々と同一に構成されていいる。複合モジュール280においても、駆動制御装置50は、複合モジュール250と同様に動作する。したがって、複合モジュール250と同様の効果が得られる。
【0124】
複合モジュール250では、駆動制御装置50がモジュールの一つに一体化されているために、利用に際して、取り扱いが容易であるという利点が得られる。一方、複合モジュール280では、モジュールとして、主モジュールと副モジュールの二種類を製造する必要がなく、同一に構成されたモジュールのみで、複合モジュールを構築することができ、製造コストが節減されるという利点が得られる。
【0125】
<3.変形例>
以上の実施の形態では、駆動制御装置50は、並列に接続されるモジュールの各々に対して、個別に、較正データおよび変換データが作成できるように構成されていた。しかしながら、精度は劣るが、並列に接続されるモジュールの間で共通する代表値(例えば、設計値)を、較正データおよび変換データとして利用するように、駆動制御装置50を構成することも可能である。
【0126】
この形態では、演算部53は、電流較正部505および変換データ算出部506を備えなくていなくてもよい。較正データ記憶部507および変換データ記憶部508には、駆動制御装置50が接続されることが予定されているモジュールの定格に応じた設計値が、較正データおよび変換データとして、製造者の側で、あらかじめ書き込まれるとよい。
【0127】
このような形態においても、演算部53がデジタル信号を処理対象とするので、従来のアナログ回路で行われる制御に比べると、電流不均衡の解消のための制御が、より高い精度で達成される。また、負の温度特性を有するスイッチング素子に対しても、電流不均衡の解消を図ることができる。
【0128】
【発明の効果】
第1の発明の装置では、デジタル信号処理にもとづいて、並列接続された複数個(n個)のスイッチング素子の電流偏差を縮小するように、制御信号が反復的に更新される。このため、複数のスイッチング素子の間の電流不均衡、特に、飽和電圧の不均一に由来する電流不均衡の解消が、容易かつ精度良く行われ得る。このため、正の温度係数を有するスイッチング素子だけでなく負の温度係数を有するスイッチング素子に対しても、電流不均一を解消し、特定のスイッチング素子への過大な負担の集中を防止することができる。
そして、並列接続される複数個のスイッチング素子の各々ごとに、主電流と電流検出信号との関係を、個別に規定する較正データにもとづいて、主電流への換算が行われるので、主電流検出における検出特性上の不均一、スイッチング素子と駆動制御装置とを接続する配線の特性上の不均一などに由来する誤差を解消して、さらに精度の高い制御が達成される。
【0130】
第2の発明の装置では、電流較正部が備わるので、較正データの作成が容易に行い得る。特に、ユーザが接続して利用しようとするスイッチング素子ごとに、ユーザの側で、較正データを作成することが可能である。
【0131】
第3の発明の装置では、制御信号が、電流偏差に比例する量だけ変化するように、更新されるので、電流偏差の解消、すなわち、電流不平衡の解消が、簡単な演算によって実現される。
【0132】
第4の発明の装置では、電流偏差と制御信号の変化量との間の比例関係を、並列接続される複数のスイッチング素子ごとに規定する変換データを用いて、制御信号の更新が行われる。このため、複数のスイッチング素子の間での入出力特性の不均一、スイッチング素子と駆動制御装置とを接続する配線の特性上の不均一などに由来する誤差を解消して、さらに精度の高い制御が達成される。
【0133】
第5の発明の装置では、変換データ算出部が備わるので、変換データの作成が容易に行い得る。特に、ユーザが接続して利用しようとするスイッチング素子ごとに、ユーザの側で、変換データを作成することが可能である。
【0134】
第6の発明の装置では、n個のスイッチング素子が動作中に取り得る最大の飽和電圧の下で、変換データ算出部によって作成された変換データにもとづいて、制御信号の更新が行われる。このため、電流偏差の変動を小さく抑え、しかも、速やかにゼロへと収束させる制御が実現する。
【0135】
第7の発明の装置では、演算部がCPUとプログラムを格納するメモリとで、等価的に構成されるので、複雑な回路を用いることなく、様々な誤差要因に対応した柔軟な制御が、容易に達成される。
【0136】
第8の発明のモジュールでは、この発明の駆動制御装置が、スイッチング素子と電流検出部とともに、備わっている。このため、このモジュールと、駆動制御装置が備わらない従来周知のモジュールとを、並列に接続することによって、複合モジュールを容易に構築することができる。すなわち、利用に際して、取り扱いが容易であるという効果が得られる。
【0137】
第9の発明の複合モジュールでは、この発明の駆動制御装置が、複数のスイッチング素子と複数の電流検出部とともに、備わっている。このため、複数のスイッチング素子の間の電流不均衡が、精度良く解消され、特定のスイッチング素子に負担が偏らない複合モジュールが実現する。
【0138】
第10の発明の複合モジュールでは、複数のスイッチング素子と複数の電流検出部とが、1個ずつ、個別のケースの中に組み込まれて、モジュールを構成している。したがって、同一ないし少品種のモジュールを用いて、それらの間を配線などで接続するだけで、個数nの異なる様々な複合モジュールを、自在に構築することができる。すなわち、製造コストが節減できるという効果が得られる。
【0139】
第11の発明の複合モジュールでは、複数のケースの中の一つに、駆動制御装置が、さらに組み込まれることによって、駆動制御装置を備えるモジュールが構成されている。このため、駆動制御装置を備えるモジュールと、駆動制御装置を備えないモジュールとを、並列に接続することによって、複合モジュールを容易に構築することができる。すなわち、駆動制御装置をモジュールとは別体のものとして扱う必要がないので、組立て作業が容易であるという効果が得られる。
【図面の簡単な説明】
【図1】 実施の形態1の複合モジュールのブロック図である。
【図2】 実施の形態1の駆動制御装置のブロック図である。
【図3】 実施の形態1の駆動部のブロック図である。
【図4】 実施の形態1の電流検出部の一例のブロック図である。
【図5】 実施の形態1の電流検出部の他の例のブロック図である。
【図6】 実施の形態1の電流検出部のさらに別の例のブロック図である。
【図7】 実施の形態1の電流検出信号増幅部のブロック図である。
【図8】 IGBTの出力特性の一例を示すグラフである。
【図9】 3個のIGBTの出力特性の不均一を例示するグラフである。
【図10】 3個のIGBTの入出力特性の不均一を例示するグラフである。
【図11】 実施の形態1の演算部のブロック図である。
【図12】 実施の形態1の演算部の動作の手順を示す流れ図である。
【図13】 実施の形態1のコレクタ電流Iiと電流センス電圧VCSiとの関係を示すグラフである。
【図14】 較正データを作成するための外部装置を示す回路図である。
【図15】 実施の形態1の電流較正部の動作の手順を示す流れ図である。
【図16】 変換データを作成するための外部装置を示す回路図である。
【図17】 IGBTの入出力特性を例示するグラフである。
【図18】 実施の形態1の変換データ算出部の動作の手順を示す流れ図である。
【図19】 シミュレーションの対象とされた複合モジュールのブロック図である。
【図20】 シミュレーションの対象とされた複合モジュールに備わるIGBTの出力特性を示すグラフである。
【図21】 シミュレーションの結果を示すグラフである。
【図22】 複合モジュールの利用形態を例示する回路図である。
【図23】 実施の形態2の複合モジュールのブロック図である。
【符号の説明】
50 駆動制御装置、52 A/D変換部、53 演算部、54 D/A変換部、801〜80n スイッチング素子、901〜90n 電流検出部、281〜28n,601〜60n モジュール、250,260 複合モジュール、501 電流算出部、502 電流偏差算出部、503 制御信号算出部、505 電流較正部、506 変換データ算出部、507 較正データ記憶部、508 変換データ記憶部、IC,I1〜In コレクタ電流(主電流)、ΔI1〜ΔIn 電流偏差、VCE(sat) 飽和電圧、VCS1〜VCSn 電流センス電圧(電流検出信号)、VD1〜VDn 駆動制御電圧(制御信号)、VGE ゲート電圧(制御信号)。

Claims (11)

  1. 並列接続されたn(≧2)個のスイッチング素子に接続して使用され、前記n個のスイッチング素子のn個の主電流の検出値であるn個の電流検出信号にもとづいて、前記n個の主電流の大きさをそれぞれ制御するn個の制御信号を反復的に更新して、前記n個のスイッチング素子へと供給する駆動制御装置において、
    前記n個の電流検出信号を、アナログ形式からデジタル形式へと変換するA/D変換部と、
    デジタル形式の前記n個の電流検出信号にもとづいて、デジタル演算処理を実行することにより、前記n個の制御信号を算出する演算部と、
    前記演算部で算出された前記n個の制御信号を、デジタル形式からアナログ形式へと変換するD/A変換部と、を備え、
    前記演算部は、
    デジタル形式の前記n個の電流検出信号を前記n個の主電流へと、それぞれ換算する電流算出部と、
    前記電流算出部で換算された前記n個の主電流の平均値を算出し、前記n個の主電流の前記平均値からの差であるn個の電流偏差を算出する電流偏差算出部と、
    前記n個の電流偏差の各々が縮小する方向に前記n個の制御信号を更新する制御信号算出部と、を有し、
    前記n個の電流検出信号と前記n個の主電流とのそれぞれの間の関係を、前記n個のスイッチング素子の各々ごとに個別に規定する較正データを、格納可能な較正データ記憶部を、さらに備え、
    前記電流算出部は、前記較正データ記憶部に格納される前記較正データにもとづいて、前記n個の電流検出信号を前記n個の主電流へと換算する駆動制御装置。
  2. 請求項1に記載の駆動制御装置において、
    前記演算部は、
    前記n個のスイッチング素子の各々に対して、与えられたk(≧1)個の主電流に対するk個の電流検出信号にもとづいて、前記較正データを作成し、前記較正データ記憶部へと格納する電流較正部を、さらに備える駆動制御装置。
  3. 請求項1または請求項2に記載の駆動制御装置において、
    前記制御信号算出部は、前記n個の電流偏差に、それぞれ比例した量だけ変化するように、前記n個の制御信号を更新する駆動制御装置。
  4. 請求項3に記載の駆動制御装置において、
    前記n個の電流偏差と前記n個の制御信号の変化量とのそれぞれの間の比例関係を、前記n個のスイッチング素子の各々ごとに個別に規定する変換データを、格納可能な変換データ記憶部を、さらに備え、
    前記制御信号算出部は、前記変換データ記憶部に格納される前記変換データにもとづいて、前記n個の電流偏差に、それぞれ比例した量だけ変化するように、前記n個の制御信号を更新する駆動制御装置。
  5. 請求項4に記載の駆動制御装置において、
    前記演算部は、
    前記n個のスイッチング素子に共通に付与される飽和電圧の下で、前記n個のスイッチング素子の各々について、m(≧2)個の制御信号を出力し、その結果前記電流算出部によって得られたm個の主電流と、出力した前記m個の制御信号とにもとづいて、主電流と制御信号の間の変化率として、前記変換データを作成し、前記変換データ記憶部へと格納する変換データ算出部を、さらに備える駆動制御装置。
  6. 請求項5に記載の駆動制御装置において、
    前記変換データ記憶部は、前記n個のスイッチング素子が動作中に取り得る最大の飽和電圧の下で、前記変換データ算出部によって作成された前記変換データを格納している駆動制御装置。
  7. 請求項1ないし請求項6のいずれかに記載の駆動制御装置において、
    前記演算部が、プログラムにもとづいて動作するCPUと、前記プログラムを格納するメモリとを備え、前記演算部に含まれる各部は、前記CPUと前記メモリとによって、等価的に構成される駆動制御装置。
  8. 請求項1ないし請求項7のいずれかに記載の駆動制御装置と、
    前記n個のスイッチング素子の一つとしての主素子と、
    当該主素子の主電流を検出し電流検出信号を出力する電流検出部と、を備え、
    前記駆動制御装置には、前記n個の電流検出信号の一つとして、前記電流検出部が出力する前記電流検出信号が入力され、
    前記駆動制御装置は、前記n個の制御信号の一つを、前記主素子へ供給するモジュール。
  9. 請求項1ないし請求項7のいずれかに記載の駆動制御装置と、
    前記n個のスイッチング素子と、
    これらn個のスイッチング素子のn個の主電流を、それぞれ検出することにより、前記n個の電流検出信号を得て、前記駆動制御装置へと供給するn個の電流検出部と、を備え、
    前記駆動制御装置は、前記n個の制御信号を、前記n個のスイッチング素子へ、それぞれ供給する複合モジュール。
  10. 請求項9に記載の複合モジュールにおいて、
    前記n個のスイッチング素子と、前記n個の電流検出部とが、n個のケースの中に、それぞれ、個別に組み込まれており、
    前記n個の電流検出部の各々は、前記n個のスイッチング素子の中で、同一のケースに組み込まれたスイッチング素子の主電流を検出する複合モジュール。
  11. 請求項10に記載の複合モジュールにおいて、
    前記n個のケースの中の一つに、前記駆動制御装置が、さらに組み込まれている複合モジュール。
JP25794498A 1998-09-11 1998-09-11 駆動制御装置、モジュール、および、複合モジュール Expired - Lifetime JP3773664B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25794498A JP3773664B2 (ja) 1998-09-11 1998-09-11 駆動制御装置、モジュール、および、複合モジュール
US09/244,175 US6208041B1 (en) 1998-09-11 1999-02-04 Drive control device, module and combined module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25794498A JP3773664B2 (ja) 1998-09-11 1998-09-11 駆動制御装置、モジュール、および、複合モジュール

Publications (2)

Publication Number Publication Date
JP2000092820A JP2000092820A (ja) 2000-03-31
JP3773664B2 true JP3773664B2 (ja) 2006-05-10

Family

ID=17313389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25794498A Expired - Lifetime JP3773664B2 (ja) 1998-09-11 1998-09-11 駆動制御装置、モジュール、および、複合モジュール

Country Status (2)

Country Link
US (1) US6208041B1 (ja)
JP (1) JP3773664B2 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3696833B2 (ja) * 2000-05-18 2005-09-21 三菱電機株式会社 電力用半導体装置
JP4770064B2 (ja) * 2001-06-05 2011-09-07 富士電機株式会社 Ipm回路
JP4770063B2 (ja) * 2001-06-05 2011-09-07 富士電機株式会社 Ipm回路
US7132868B2 (en) * 2001-06-27 2006-11-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JP2003169465A (ja) * 2001-11-30 2003-06-13 Toshiba Corp ゲート駆動回路、および電力変換装置
US6882212B2 (en) * 2003-05-16 2005-04-19 Power Integrations, Inc. Method and apparatus for extending the size of a transistor beyond one integrated circuit
US6841980B2 (en) * 2003-06-10 2005-01-11 Bae Systems, Information And Electronic Systems Integration, Inc. Apparatus for controlling voltage sequencing for a power supply having multiple switching regulators
JP4069022B2 (ja) * 2003-06-12 2008-03-26 三菱電機株式会社 電力用半導体装置
US8901268B2 (en) * 2004-08-03 2014-12-02 Ahila Krishnamoorthy Compositions, layers and films for optoelectronic devices, methods of production and uses thereof
JP4681911B2 (ja) * 2005-02-25 2011-05-11 三菱電機株式会社 電力用半導体装置
US7812647B2 (en) * 2007-05-21 2010-10-12 Advanced Analogic Technologies, Inc. MOSFET gate drive with reduced power loss
US20090111925A1 (en) * 2007-10-31 2009-04-30 Burnham Kikue S Thermal interface materials, methods of production and uses thereof
US7923974B2 (en) * 2008-01-04 2011-04-12 Chil Semiconductor Corporation Modification of switch activation order in a power supply
JP4333802B1 (ja) * 2008-03-18 2009-09-16 トヨタ自動車株式会社 インバータの駆動装置
FR2936646B1 (fr) 2008-10-01 2011-07-22 Jean Jacques Carrillo Disjoncteur electronique en tranche et installation le comportant.
US8557877B2 (en) 2009-06-10 2013-10-15 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
EP2343804B1 (de) * 2010-01-05 2020-07-29 Semikron Elektronik GmbH & Co. KG Patentabteilung Schaltungsanordnung für Leistungshalbleiterbauelemente
JP5854895B2 (ja) * 2011-05-02 2016-02-09 三菱電機株式会社 電力用半導体装置
US8864898B2 (en) 2011-05-31 2014-10-21 Honeywell International Inc. Coating formulations for optical elements
JP5619687B2 (ja) * 2011-07-05 2014-11-05 本田技研工業株式会社 半導体素子駆動装置及び方法
US20130173077A1 (en) * 2011-12-29 2013-07-04 Lsi Corporation Power switch having series-connected switching stages
TW201350869A (zh) * 2012-06-07 2013-12-16 Askey Computer Corp 電流量測系統
CN102723855B (zh) * 2012-06-25 2014-06-25 矽力杰半导体技术(杭州)有限公司 一种功率开关管的驱动电路以及应用其的功率变换电路
JP6217248B2 (ja) * 2013-08-30 2017-10-25 株式会社オートネットワーク技術研究所 半導体装置
EP3213971B1 (en) * 2014-12-16 2022-02-02 BYD Company Limited Electric vehicle, and active safety control system for electric vehicle and control method therefor
DE102014227025A1 (de) * 2014-12-30 2016-06-30 Robert Bosch Gmbh Parametrierbares Leistungsbauteil und Verfahren zu dessen Betrieb
EP3194502A4 (en) 2015-04-13 2018-05-16 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications
JP2018093684A (ja) * 2016-12-07 2018-06-14 ルネサスエレクトロニクス株式会社 半導体装置および電力変換装置
DE112017007206T5 (de) * 2017-03-08 2019-11-21 Mitsubishi Electric Corporation Hauptumwandlungsschaltung, Leistungsumwandlungsvorrichtung und sich bewegender Körper
US10985745B1 (en) * 2020-02-07 2021-04-20 Eaton Intelligent Power Limited Drivers for power semiconductor switches using device feedback

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3633046A (en) * 1970-04-28 1972-01-04 Gen Electric Parallel thyristors switching matrices
US4194147A (en) * 1977-12-05 1980-03-18 Burr-Brown Research Corporation Parallel connected switching regulator system
JPH0626473B2 (ja) * 1988-02-27 1994-04-06 富士通電装株式会社 電流バランス型スイッチングレギュレータ
US5338994A (en) * 1989-07-20 1994-08-16 General Electric Company Method and apparatus for achieving current balance in parallel connected switching devices
US5319295A (en) * 1991-11-26 1994-06-07 Unico, Inc. Digital current regulator
JPH0678549A (ja) 1992-08-28 1994-03-18 Meidensha Corp インバータの回路方式
JPH07163137A (ja) 1993-12-01 1995-06-23 Fuji Electric Co Ltd 並列接続igbtのゲート駆動回路
JPH07177727A (ja) 1993-12-22 1995-07-14 Toshiba Corp 電圧駆動型スイッチング素子のゲート駆動回路および電圧駆動型スイッチング素子のゲート駆動方法
JPH0819246A (ja) 1994-07-04 1996-01-19 Fuji Electric Co Ltd 半導体スイッチ素子の並列接続回路
JP3362537B2 (ja) * 1994-12-27 2003-01-07 日産自動車株式会社 電気自動車用駆動モータのフェールセーフ制御
JPH08213890A (ja) 1995-02-01 1996-08-20 Toshiba Corp 電圧駆動形トランジスタの駆動回路
JP3469373B2 (ja) 1995-10-31 2003-11-25 三菱電機株式会社 半導体パワーモジュールおよび複合パワーモジュール

Also Published As

Publication number Publication date
US6208041B1 (en) 2001-03-27
JP2000092820A (ja) 2000-03-31

Similar Documents

Publication Publication Date Title
JP3773664B2 (ja) 駆動制御装置、モジュール、および、複合モジュール
US7279954B2 (en) On-chip temperature detection device
US8644038B2 (en) Current detection circuit for a power semiconductor device
KR930007482B1 (ko) 전류검출회로
US20100052656A1 (en) Voltage sensing device
US8653754B2 (en) Current driving circuit
KR20070076547A (ko) 전압 컨버터용 전류 감지 증폭기
JP4022208B2 (ja) 線形および飽和領域で動作可能なパワーmosfet用電流センス
US20170122987A1 (en) Highly Accurate Current Measurement
JP4290768B2 (ja) リーケージ電流補正回路
JPH1141040A (ja) 差動増幅回路および負荷駆動回路
JPH06180332A (ja) 電流検出回路
US20040061556A1 (en) Operational amplifier with self control circuit for realizing high slew rate throughout full operating range
CN113358919B (zh) 具有自我校准功能的电流感测电路
JP3959924B2 (ja) 負荷駆動回路
US5617056A (en) Base current compensation circuit
US6998827B2 (en) Switching voltage regulator with negative temperature compensation
JP3136788B2 (ja) 電流検出機能付電界効果トランジスタのドライブ回路
JP2833012B2 (ja) 電流検出機能付トランジスタ
JPH1096675A (ja) 温度補償回路及び温度補償方法
JPH10145965A (ja) 電流制限回路
JP2001053232A (ja) 半導体集積回路及びそのテスト方法
JP2022141181A (ja) ゲート駆動装置
JPH01309518A (ja) D/a変換器
JP2002156944A (ja) 発光素子駆動回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term