JP3603769B2 - レベルシフト回路及びそれを用いた半導体装置 - Google Patents

レベルシフト回路及びそれを用いた半導体装置 Download PDF

Info

Publication number
JP3603769B2
JP3603769B2 JP2000270442A JP2000270442A JP3603769B2 JP 3603769 B2 JP3603769 B2 JP 3603769B2 JP 2000270442 A JP2000270442 A JP 2000270442A JP 2000270442 A JP2000270442 A JP 2000270442A JP 3603769 B2 JP3603769 B2 JP 3603769B2
Authority
JP
Japan
Prior art keywords
circuit
conductivity type
potential
type transistor
level shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000270442A
Other languages
English (en)
Other versions
JP2002084184A (ja
Inventor
雅彦 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000270442A priority Critical patent/JP3603769B2/ja
Priority to US09/930,884 priority patent/US6633192B2/en
Publication of JP2002084184A publication Critical patent/JP2002084184A/ja
Application granted granted Critical
Publication of JP3603769B2 publication Critical patent/JP3603769B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356113Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/102Modifications for increasing the maximum permissible switched voltage in field-effect transistor switches
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0289Details of voltage level shifters arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes

Landscapes

  • Logic Circuits (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レベルシフト回路及びそれを用いた例えば液晶ドライバIC等の半導体装置に関する。
【0002】
【背景技術及び発明が解決しようとする課題】
レベルシフト回路では、P型MOSトランジスタがオンしている間に、これと直列に接続されたN型MOSトランジスタのゲートに入力される入力信号をLOWからHIGHに切り換えて、レベルシフト回路の出力を高速スイッチングしている。
【0003】
従って、このレベルシフト回路では、直列接続されたP型MOSトランジスタとN型MOSトランジスタとが、過渡的に同時にオンすることになる。
【0004】
シフトレジスタ回路にて高速スイッチングするためには、上記の状況でN型MOSトランジスタのドレインに接続された出力端子の論理を、HIGHからLOWに高速に切り換える必要がある。
【0005】
このために、P型MOSトランジスタの電流駆動能力を小さくし、逆にN型MOSトランジスタの電流駆動能力を大きくしている。
【0006】
MOSトランジスタのソース−ドレイン間を流れる電流iは、i=β(VGS−Vth)/2である。係数βはトランジスタのゲート長に反比例しゲート幅に比例する。よって、P型MOSトランジスタの電流駆動能力を小さくするにはゲート長を長くし、N型MOSトランジスタの電流駆動能力を大きくするにはゲート幅を広げるのが通常であり、レベルシフト回路の占有面積が増大してしまう。
【0007】
この種のレベルシフト回路の数は、例えば液晶ドライバICであれば、液晶駆動電位を生成するだけでも少なくとも信号電極の数だけ必要となり、半導体装置内に配置される個数が多いため、その占有面積を縮小することが望まれていた。
【0008】
そこで、本発明の目的とするところは、高速スイッチング動作を確保しながら占有面積を縮小することのできるレベルシフト回路を提供することである。
【0009】
本発明の他の目的は、占有面積の小さいレベルシフト回路を内蔵することで、液晶駆動などの表示ドライバICに最適な高集積化された半導体装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明の一態様に係るレベルシフト回路は、
第1電位を供給する第1供給ラインと、前記第1電位よりも絶対値が低い第2電位を供給する第2供給ラインとの間に、第1,第2の回路が並列接続され、
前記第1,第2の回路の各々は、前記第1,第2供給ライン間に、前記第1供給ライン側から順に直列接続された第1,第2の第1導電型トランジスタと第2導電型トランジスタとを有し、
前記第1の回路の前記第1の第1導電型トランジスタのゲートは、前記第2の回路の前記第2導電型トランジスタのドレインに接続され、
前記第2の回路の前記第1の第1導電型トランジスタのゲートは、前記第1の回路の前記第2導電型トランジスタのドレインに接続され、
前記第1,第2の回路の各々の前記第2導電型トランジスタのゲートに相反する入力電位が印加され、前記第1,第2の回路の各々の前記第2導電型トランジスタのドレインよりレベルシフトされた出力電位が出力され、
前記第1,第2の回路の各々の前記第2の第1導電型トランジスタのゲートに、前記第1,第2電位間の第3電位を供給する第3供給ラインを接続したことを特徴とする(図1,図7,図9参照)。
【0011】
本発明の一態様によれば、第1,第2の回路のいずれか一方において、第1の第1導電型トランジスタと第2導電型トランジスタとが過渡的に同時にオンされても、出力信号の電位を第2導電型トランジスタのオン動作により高速に切り換えできる。
【0012】
なぜなら、第2の第1導電型トランジスタのゲートには第1,第2電位の中間電位が供給されるので、第2の第1導電型トランジスタを流れる電流が絞られ、結果としてその上流の第1の第1導電型トランジスタを流れる電流も絞られるからである。
【0013】
従って、第1の第1導電型トランジスタの電流駆動能力を小さくし、第2導電型トランジスタの電流駆動能力を大きくする必要はない。
【0014】
本発明の他の形態に係るレベルシフト回路は、上述の本発明の一態様に係るレベルシフト回路において、前記第1,第2の回路の各々の前記第2の第1導電型トランジスタを共にデプレッション型とし、かつ各々の前記第2の第1導電型トランジスタのゲートを前記第1供給線に接続したことを特徴とする(図5,図8,図11参照)。
【0015】
本発明の他の態様によれば、第1,第2の回路のいずれか一方において、第1の第1導電型トランジスタと第2導電型トランジスタとが過渡的に同時にオンされても、出力信号の電位を第2導電型トランジスタのオン動作により高速に切り換えできる。
【0016】
なぜなら、第2の第1導電型トランジスタはデプレッション型とされ、そのゲートには第1電位が供給されるので、第2の第1導電型トランジスタを流れる電流が絞られ(図6参照)、結果としてその上流の第1の第1導電型トランジスタを流れる電流も絞られるからである。
【0017】
従って、第1の第1導電型トランジスタの電流駆動能力を小さくし、第2導電型トランジスタの電流駆動能力を大きくする必要はない。
【0018】
いずれの態様においても、第1,第2の回路の各々では、第1の第1導電型トランジスタの電流駆動能力を第2導電型トランジスタと実質的に等しくすることができる。また、第1,第2の回路の各々は、実質的に同一サイズの前記第1,第2の第1導電型トランジスタを有することができる。従って、従来よりもレベルシフト回路の面積を縮小できる。
【0019】
第1,第2の回路の各々は、第2の第1導電型トランジスタと第2導電型トランジスタとの間に接続された第3の第1導電型トランジスタをさらに有し、第3の第1導電型トランジスタと第2導電型トランジスタのゲート同士を接続することができる(図7,図8参照)。
【0020】
第3の第1導電型トランジスタと第2導電型トランジスタは、その一方がオンすれば他方はオフするため、第1,第2供給線間を流れる消費電流を低減することができる。
【0021】
本発明のさらに他の態様は、少なくとも一つの上述のレベルシフト回路を内蔵した半導体装置である。この半導体装置がP型半導体基板を用いて形成される場合には、P型半導体基板上に形成される前記第1導電型トランジスタはP型となり、前記第2導電型トランジスタがN型となる(図1,図5参照)。
【0022】
逆に、この半導体装置がN型半導体基板に形成される場合には、N型半導体基板上に形成される前記第1導電型トランジスタはN型となり、前記第2導電型トランジスタがP型となる(図9,図11参照)。
【0023】
この半導体装置は、前記少なくとも一つのレベルシフト回路からの前記出力電位に基づいて、電位選択信号を生成する信号生成回路と、前記信号生成回路からの前記電位選択信号に基づいて、複数の表示用駆動電位の中から一つを選択して出力する駆動回路とをさらに有することができる。
【0024】
本発明の半導体装置を、上述した構成を有する表示用駆動IC例えば液晶駆動ICなどに適用すれば、多数のレベルシフト回路が搭載されるその表示用駆動ICの小型化もしくは高集積化を図ることができる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。
【0026】
<第1の実施形態>
(レベルシフト回路の構成)
図1は、第1の実施形態に係るレベルシフタ回路の回路図である。このレベルシフト回路10は、第1電位HVを供給する第1供給線12と第2電位VSSを供給する第2供給線14との間に並列接続された第1,第2の回路20,30を有する。
【0027】
第1電位HVは、このレベルシフト回路10が搭載される半導体装置の電源電位VDD(例えばVDD=3V)を昇圧して形成され、例えば=9〜10Vである。第2電位VSSは半導体装置の電源電位VSSであり、VSS=0Vである。なお、この半導体装置はP型半導体基板上に形成される。
【0028】
第1の回路20では、第1供給線12と第2供給線14との間に、第1のP型MOSトランジスタ22、第2のP型MOSトランジスタ24及びN型MOSトランジスタ26が直列に接続されている。
【0029】
第2の回路30でも同様に、第1供給線12と第2供給線14との間に、第1のP型MOSトランジスタ32、第2のP型MOSトランジスタ34及びN型MOSトランジスタ36が直列に接続されている。
【0030】
ここで、第1の回路20のN型MOSトランジスタ26のドレイン端子の電位をレベルシフト回路10の出力信号XOとし、第2の回路30のN型MOSトランジスタ36のドレイン端子の電位をレベルシフト回路10の出力信号Oとする。反転出力信号XOは第2の回路30の第1のP型MOSトランジスタ32のゲートに供給され、出力信号Oは第1の回路20の第1のP型MOSトランジスタ22のゲートに供給される。
【0031】
また、レベルシフト回路10への入力信号Iは、第1の回路20のN型MOSトランジスタ26のゲートに供給され、他の入力信号XIは第2の回路30のN型MOSトランジスタ36のゲートに供給される。
【0032】
入力信号I,XIは、電源電位VDD,VSSに変化する相反する電位であり、図示しないロジック回路にて生成される。
【0033】
第1,第2の回路20,30の各々の第2のP型MOSトランジスタ24,34のゲートには、第3供給線16が共通接続されている。
【0034】
この第3供給線16は、第1,第2供給線12,14間に接続された抵抗18の途中に接続されている。従って、この第3供給線16は、高電位HVと電源電位VSSとの間の電圧を抵抗18で分圧した中間電位MV(VSS<MV<HV)を供給することになる。
【0035】
このため、第2のP型トランジスタ24,34は、そのソースに第1電位HVが供給されている間はオン、オフの中間の状態にあり、ソース、ドレイン間に微小電流を流すことができる。
【0036】
(レベルシフト回路の動作)
図2は、図1に示すレベルシフタ回路の入出力特性を示す波形図である。図2に示すように、時刻t0の初期状態にて、I=LOW(VSS),XI=HIGH(VDD),O=LOW(VSS),XO=HIGH(HV)とする。この初期状態では、MOSトランジスタ22,36がオンし、MOSトランジスタ26,32がオフしている。
【0037】
この初期状態から、入力信号IがLOWからHIGHに立ち上がると第1の回路20のN型MOSトランジスタ26がオンし、入力信号XIがHIGHからLOWに立ち下がると第2の回路30のN型MOSトランジスタ36がオフする。
【0038】
このとき、第1の回路20では、高電位HV側の第1のP型MOSトランジスタ22と低電位VSS側のN型MOSトランジスタ26が共にオンする。
【0039】
しかし、N型MOSトランジスタ26よりも高電位HV側に位置する第2のP型MOSトランジスタ24が上述の通り微小電流しか流さないので、出力信号XOの電位は速やかにグランド電位VSSとなり、高速スイッチングが可能となる。
【0040】
上述の動作は、第1の回路20中の第1のP型MOSトランジスタ22とN型MOSトランジスタ26とが共に等しい電流駆動能力であっても成立する。従って、従来のように両者間に能力差をつける必要はない。つまり、第1のP型MOSトランジスタ22のゲート長を長くしてその電流駆動能力を小さくする必要はない。同様に、N型MOSトランジスタ26のゲート幅を広くして、その電流駆動能力を高くする必要もない。従って、本実施の形態によれば、レベルシフト回路10の第1の回路20の専有面積を縮小することができる。
【0041】
出力信号XOがグランド電位VSSになると、この出力信号XOがゲートに供給される第1のP型MOSトランジスタ32がオンする。
【0042】
このとき、第2の回路30では、高電位HV側に接続された第1のP型MOSトランジスタ32がオンする一方で、低電位VSS側に接続されたN型MOSトランジスタ26はオフしている。従って、出力信号Oは速やかに高電位HVになる。また、この出力信号Oがゲートに供給される第1のP型MOSトランジスタ22がオフする。よって、図2の時刻t1では、I=HIGH(VDD),XI=LOW(VSS),O=HIGH(HV),XO=LOW(VSS)で安定する。
【0043】
次に、入力信号IがHIGHからLOWに立ち下がり、入力信号XIがLOWからHIGHに立ち上がると、第1の回路20にて実施された上述の動作が第2の回路30にて実施され、第2の回路30にて実施された動作が第1の回路20にて実施される。これにより、図2の時刻t2の安定状態に速やかに移行できる。
【0044】
この動作についても、第2の回路30中の第1のP型MOSトランジスタ32とN型MOSトランジスタ36とが共に等しい電流駆動能力であっても成立する。従って、従来のように両者間に能力差をつける必要はない。よって、第1の回路20と同様の理由で第2の回路30の専有面積を縮小でき、もってレベルシフト回路10の専有面積を縮小することができる。
【0045】
また、図1に示すレベルシフト回路10では、電流制限用の第2のP型MOSトランジスタ24,34のサイズを大きくする必要はなく、例えば第1のP型MOSトランジスタ22,32と同一サイズに形成できる。
【0046】
(比較例の説明)
図3は、図1の第2のP型MOSトランジスタ24,26のような電流制限用トランジスタがない従来のレベルシフト回路100を示している。図3では、第1,第2の回路110,120のP型MOSトランジスタ112,122は、その各ゲート長を長くして電流駆動能力を小さくしなければならない。また、第1,第2の回路110,120のN型MOSトランジスタ114,124は、その各ゲート幅を広くして電流駆動力を大きくしなければならない。
【0047】
なぜなら、例えば第1の回路110にてP型及びN型MOSトランジスタ112,114が共にオンしたときに、N型MOSトランジスタ114側にて多くの電流を流して、出力信号XOの電位を速やかに降下させる必要があるからである。第2の回路120でも同様である。
【0048】
従って、図3に示すレベルシフト回路100は、図1に示すレベルシフト回路10よりも専有面積が広くなってしまう欠点がある。
【0049】
図4は、図3とは異なり、電流制限用トランジスタを具備した比較例を示している。図4に示すレベルシフト回路200では、第1の回路210が第1,第2のP型MOSトランジスタ212,214とN型MOSトランジスタ216とを直列接続している点で、図1のレベルシフト回路10と共通している。第2の回路220でも同様に、第1,第2のP型MOSトランジスタ222,224とN型MOSトランジスタ226とを有している。
【0050】
図4のレベルシフト回路200が図1のレベルシフト回路10と相違する点は、第1,第2の回路210,220の電流制限用の第2のP型MOSトランジスタ214,224のゲートが、電位VSSを供給する第2供給線14に接続していることである。このため、第2のP型MOSトランジスタ214,224は共にフルオン状態となる。
【0051】
従って、この第2のP型MOSトランジスタ214,224にて電流を制限するためには、そのゲート長を長くする必要がありサイズが大きくなる。このようにすると、図1に示す本実施形態と同様に、例えば第1の回路210の第1のP型MOSトランジスタ212とN型MOSトランジスタ216との電流駆動能力を実質的に同一にできる。
【0052】
しかし、第2のP型MOSトランジスタ214のサイズを大きくする分だけ専有面積が増大する問題は依然残る。この問題は第2の回路220でも同様に生じている。
【0053】
<第2の実施形態>
図5は、本発明の第2の実施形態に係るレベルシフト回路40を示している。このレベルシフト回路40は図1のレベルシフト回路10と下記の点のみが相違している。
【0054】
第1の相違点は、図1のレベルシフト回路10の第2のP型MOSトランジスタ14,24を、図5のレベルシフト回路40ではデプレッション型MOSトランジスタ(P型)42,44に変更したことである。なお、他のトランジスタ22,26,32,36は、図1の場合と同様にエンハンスメント型である。
【0055】
第2の相違点は、図1に示す第3供給線16及び抵抗18を使用せず、デプレッション型MOSトランジスタ42,44のゲートを第1供給線12に接続して、そのゲートに高電位HVを供給したことである。
【0056】
図6は、デプレッション型MOSトランジスタ42,44のゲート−ソース間電圧VGSと、ソース−ドレイン間を流れる電流ISDとの関係を示す特性図である。
【0057】
ここで、第1の回路20のP型MOSトランジスタ22がオンしている時には、デプレッション型MOSトランジスタ42のソース及びゲート電位は共に高電位HVとなるので、ゲート−ソース間電圧VGS=0Vとなる。
【0058】
ゲート−ソース間電圧VGSが0Vのとき、エンハンスメント型MOSトランジスタ(P型)では図6の一点鎖線で示すように完全にオンしてしまうが、デプレッション型MOSトランジスタ42は図6の実線で示すようにオン−オフの中間状態となり、電流を絞ることができる。
【0059】
よって、この第2の実施形態においても、第1の実施形態と同様に、P型MOSトランジスタ22とN型MOSトランジスタ24の電流駆動能力を同一にしながらも、高速スイッチングが可能となる。しかも、図4に示す比較例と比較して、デプレッション型MOSトランジスタ42のサイズを大きくする必要がなく、例えばP型MOSトランジスタ22と同一サイズで形成できるため、専有面積が縮小する。なお、図5に示す第2の回路30でも同様である。
【0060】
<レベルシフト回路の変形例>
図7は、図1に示すレベルシフト回路10のN型MOSトランジスタ26を、CMOSトランジスタ52,54に置き換えたレベルシフト回路50を示している
CMOSトランジスタ52は、直列接続されたP型MOSトランジスタ52AとN型MOSトランジスタ52Bとを有し、両ゲートに入力信号Iが供給される。CMOSトランジスタ54も同様に、直列接続されたP型MOSトランジスタ54AとN型MOSトランジスタ42Bとを有し、両ゲートに入力信号XIが供給される。
【0061】
CMOSトランジスタ52,54は共に、一方のトランジスタがオンすれば他方がオフするので、電位HV,VSS間で流れる消費電流を少なくできる利点がある。
【0062】
図8は、図4に示すレベルシフト回路40のN型MOSトランジスタ26を、CMOSトランジスタ52,54に置き換えたレベルシフト回路60を示している。CMOSトランジスタ52,54の構成及び動作は図7と同じとなる。
【0063】
図9は、N型半導体基板上に形成されたレベルシフト回路70Aを示している。このレベルシフタ回路70Aは、第1電位LVを供給する第1供給線72と第2電位VDDを供給する第2供給線74との間に並列接続された第1,第2の回路80,90を有する。
【0064】
第1電位LVは、このレベルシフト回路10が搭載される半導体装置の電源電位VSS(例えばVSS=−3V)を昇圧して形成され、例えばLV=−9〜−10Vである。第2電位VDDは半導体装置の電源電位VDDであり,VDD=0Vである。なお、第2の電位VDDの絶対値は第1の電位LVの絶対値より小さい。
【0065】
第1の回路80では、第1供給線72と第2供給線74との間に、第1のN型MOSトランジスタ82、第2のN型MOSトランジスタ84及びP型MOSトランジスタ86が直列に接続されている。
【0066】
第2の回路90でも同様に、第1供給線72と第2供給線74との間に、第1のN型MOSトランジスタ92、第2のN型MOSトランジスタ94及びP型MOSトランジスタ96が直列に接続されている。
【0067】
第1の回路80のP型MOSトランジスタ86のドレイン端子の電位がレベルシフト回路70の出力信号XOとなり、第2の回路90のP型MOSトランジスタ96のドレイン端子の電位がレベルシフト回路70の出力信号Oとなる。反転出力信号XOは第2の回路90の第1のN型MOSトランジスタ92のゲートに供給され、出力信号Oは第1の回路80の第1のN型MOSトランジスタ82のゲートに供給される。
【0068】
また、レベルシフト回路90への入力信号Iは、第1の回路80のP型MOSトランジスタ86のゲートに供給され、他の入力信号XIは第2の回路90のP型MOSトランジスタ96のゲートに供給される。
【0069】
第1,第2の回路80,90の各々の第2のN型MOSトランジスタ84,94のゲートには、第3供給線76が共通接続されている。
【0070】
この第3供給線76は、第1,第2供給線72,74間に接続された抵抗78の途中に接続されている。従って、この第3供給線76は、低電位LVと電源電位VDDとの間の電圧を抵抗78で分圧した中間電位MV(VDD<MV<LV)を供給することになる。
【0071】
このため、第2のN型トランジスタ84,94はオン、オフの中間の状態にあり、ソース、ドレイン間に微小電流を流すことができる。従って、図9に示すレベルシフト回路70Aでも、図1のレベルシフト回路10と同様に機能させることができる。
【0072】
図10では、図9のレベルシフト回路70Aの第2のN型MOSトランジスタ84,94を、デプレッション型MOSトランジスタ(N型)98A,98Bに変更したレベルシフト回路70Bが示されている。なお、他のトランジスタ82,86,92,96は、図9の場合と同様にエンハンスメント型である。
【0073】
図10ではさらに、図9に示す第3供給線76及び抵抗78を使用せず、P型MOSトランジスタ98A,98Bのゲートを第1供給線72に接続して、そのゲートに低電位LVを供給した。
【0074】
図11は、デプレッション型MOSトランジスタ98A,98Bのゲート−ソース間電圧VGSと、ソース−ドレイン間を流れる電流ISDとの関係を示す特性図である。
【0075】
ここで、第1の回路80のN型MOSトランジスタ22がオンしている時には、デプレッション型MOSトランジスタ98Aのソース及びゲート電位は共に低電位LVとなるので、ゲート−ソース間電圧VGS=0Vとなる。
【0076】
ゲート−ソース間電圧VGSが0Vのとき、エンハンスメント型MOSトランジスタ(N型)では図11の一点鎖線で示すように完全にオフしてしまうが、デプレッション型MOSトランジスタ98Aは図11の実線で示すようにオン−オフの中間状態となり、電流を絞った状態で流すことができる。なお、第2の回路90でも、デプレッション型MOSトランジスタ98Bによって同様に動作させることができる。
【0077】
さらに、図9及び図10に示すP型MOSトランジスタ84,94を、図7と同様にCMOSトランジスタに変更することができる。
【0078】
(レベルシフト回路を搭載した半導体装置)
上述のレベルシフト回路を内蔵した半導体装置として、表示用ドライバICの一例である液晶ドライバICについて説明する。
【0079】
液晶ドライバICは、例えば単純マトリックス型の液晶パネルのコモン電極に駆動電位を供給するコモンドライバICと、セグメント電極に駆動電位を供給するセグメントドライバICとに分けられる。図12に、各ドライバICより各電極に供給される駆動波形が示されている。
【0080】
図12において、太線はコモンドライバICよりコモン電極供給される駆動波形であり、細線はセグメントドライバICより各セグメント電極に供給される駆動波形を示している。
【0081】
図12において、液晶に印加される電圧の極性は、極性反転化信号FRに基づいて正、負に反転される。このため、駆動電位としては例えばV0〜V5の6レベルが用いられる。
【0082】
図12に示すように、コモンドライバICから供給される駆動波形は、電位V0,V1,V4,V5の間で変化する。一方、セグメントドライバICから供給される駆動波形は、電位V0,V2,V3,V5の間で変化する。
【0083】
図13は、セグメント電極に電圧を供給するセグメントドライバIC内の構成を示し、図14はコモン電極に電圧を供給するコモンドライバIC内の構成を示している。
【0084】
図13において、セグメントドライバIC300には、セグメント電極S0〜Smに電位を供給するために、セグメント電極S0〜Smの一つに対応して設けられたレベルシフト回路310と、全てのセグメント電極S0〜Smに共用されるレベルシフト回路312と、電位選択信号生成回路320と、電位選択回路330とが設けられている。
【0085】
電位選択回路330は、電位選択信号生成回路320からの電位選択信号に基づいて、電位V0,V2,V3,V5の中から一つの電位を選択するスイッチSW1,SW4〜SW6が設けられている。
【0086】
電位選択信号生成回路320には、第1〜第4の論理ゲート320A〜320Dが設けられ、レベルシフト回路310,312の出力信号O,XOに基づいて、スイッチSW1,SW4〜SW6をオン/オフ制御する。
【0087】
コモンドライバIC400も同様に、図14に示すように、コモン電極C0〜Cnに電位を供給する供給系として、レベルシフト回路410,412と、電位選択信号生成回路420と、電位選択回路430とを有する。
【0088】
ここで、レベルシフト回路310の入力端子Iに入力される信号をIAとし、レベルシフト回路312の入力端子Iに入力される信号をIBとすると、入力信号IA,IBの論理と、セグメント電極に供給される電圧との関係を、下記の表1に示す。
【0089】
【表1】
Figure 0003603769
【0090】
同様に、レベルシフト回路410の入力端子Iに入力される信号をICとし、レベルシフト回路412の入力端子Iに入力される信号をIDとすると、入力信号IC,IDの論理と、コモン電極に供給される電圧との関係を、下記の表2に示す。
【0091】
【表2】
Figure 0003603769
【0092】
ここで、図13及び図14に示すレベルシフト回路310,312,410,412は、図1、図5、図7〜図10のいずれかの構成を有する。従って、各レベルシフト回路310,312,410,412は、電源電位VDD,VSSの供給を受けて駆動されるロジック回路(図示せず)からの上述のロジック信号IA,IB,IC,IDに基づいて、高速スイッチングしながら、レベルシフトされた電位(HV−VSS)を出力することができる。
【0093】
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るレベルシフタ回路の回路図である。
【図2】図1に示すレベルシフタ回路の入出力特性を示す波形図である。
【図3】レベルシフト回路の比較例を示す回路図である。
【図4】レベルシフト回路の他の比較例を示す回路図である。
【図5】本発明の第2の実施形態に係るレベルシフト回路の回路図である。
【図6】図5に示すレベルシフト回路に用いられるデプレッション型MOSトランジスタ(P型)の電圧−電流特性図である。
【図7】図1に示すレベルシフト回路中のN型MOSトランジスタをCMOSトランジスタに置き換えた変形例の回路図である。
【図8】図6に示すレベルシフト回路のN型MOSトランジスタをCMOSトランジスタに置き換えた変形例の回路図である。
【図9】図1に示すレベルシフト回路と同一機能を有し、N型半導体基板に形成されたレベルシフト回路の回路図である。
【図10】図6に示すレベルシフト回路と同一機能を有し、N型半導体基板に形成されたレベルシフト回路の回路図である。
【図11】図10に示すレベルシフト回路に用いられるデプレッション型MOSトランジスタ(N型)の電圧−電流特性図である。
【図12】レベルシフト回路が内蔵された液晶ドライバICより出力される液晶駆動波形の一例を示す波形図である。
【図13】セグメント電極に駆動電位を供給するセグメントドライバICの回路図である。
【図14】コモン電極に駆動電位を供給するコモンドライバICの回路図である。
【符号の説明】
10,40,50,60,70A,70B レベルシフト回路
12,72 第1供給線
14,74 第2供給線
16,76 第3供給線
18,78 抵抗
20 第1の回路
22 第1のP型MOSトランジスタ
24 第2のP型MOSトランジスタ
26 N型MOSトランジスタ
30 第2の回路
32 第1のP型MOSトランジスタ
34 第2のP型MOSトランジスタ
36 N型MOSトランジスタ
42,44 デプレッション型MOSトランジスタ(P型)
52,54 CMOSトランジスタ
80 第1の回路
82 第1のN型MOSトランジスタ
84 第2のN型MOSトランジスタ
86 P型MOSトランジスタ
90 第2の回路
92 第1のN型MOSトランジスタ
94 第2のN型MOSトランジスタ
96 P型MOSトランジスタ
98A,98B デプレッション型MOSトランジスタ(N型)
300 セグメントドライバIC
310,312 レベルシフト回路
320 電位選択信号生成回路
330 電位選択回路
400 コモンドライバIC
410,412 レベルシフト回路
420 電位選択信号生成回路
430 電位選択回路

Claims (9)

  1. 第1電位を供給する第1供給ラインと、前記第1電位よりも絶対値が低い第2電位を供給する第2供給ラインとの間に、第1,第2の回路が並列接続され、
    前記第1,第2の回路の各々は、前記第1,第2供給ライン間に、前記第1供給ライン側から順に直列接続された第1,第2の第1導電型トランジスタと第2導電型トランジスタとを有し、
    前記第1の回路の前記第1の第1導電型トランジスタのゲートは、前記第2の回路の前記第2導電型トランジスタのドレインに接続され、
    前記第2の回路の前記第1の第1導電型トランジスタのゲートは、前記第1の回路の前記第2導電型トランジスタのドレインに接続され、
    前記第1,第2の回路の各々の前記第2導電型トランジスタのゲートに相反する入力電位が印加され、前記第1,第2の回路の各々の前記第2導電型トランジスタのドレインよりレベルシフトされた出力電位が出力され、
    前記第1,第2の回路の各々の前記第2の第1導電型トランジスタのゲートに、前記第1,第2電位間の第3電位を供給する第3供給ラインを接続したことを特徴とするレベルシフト回路。
  2. 第1電位を供給する第1供給ラインと、前記第1電位より絶対値が低い第2電位を供給する第2供給ラインとの間に、第1,第2の回路が並列接続され、
    前記第1,第2の回路の各々は、前記第1,第2供給ライン間に、前記第1供給ライン側から順に直列接続された第1,第2の第1導電型トランジスタと第2導電型トランジスタとを有し、
    前記第1の回路の前記第1の第1導電型トランジスタのゲートは、前記第2の回路の前記第2導電型トランジスタのドレインに接続され、
    前記第2の回路の前記第1の第1導電型トランジスタのゲートは、前記第1の回路の前記第2導電型トランジスタのドレインに接続され、
    前記第1,第2の回路の各々の前記第2導電型トランジスタのゲートに相反する入力電位が印加され、前記第1,第2の回路の各々の前記第2導電型トランジスタのドレインよりレベルシフトされた出力電位が出力され、
    前記第1,第2の回路の各々の前記第2の第1導電型トランジスタは共にデプレッション型で構成され、かつ各々の前記第2の第1導電型トランジスタのゲートが前記第1供給線に接続されていることを特徴とするレベルシフト回路。
  3. 請求項1または2において、
    前記第1,第2の回路の各々では、前記第1の第1導電型トランジスタの電流駆動能力が、前記第2導電型トランジスタと実質的に等しいことを特徴とするレベルシフト回路。
  4. 請求項1乃至3のいずれかにおいて、
    前記第1,第2の回路の各々は、実質的に同一サイズの前記第1,第2の第1導電型トランジスタを有することを特徴とするレベルシフト回路。
  5. 請求項1乃至4のいずれかにおいて、
    前記第1,第2の回路の各々は、前記第2の第1導電型トランジスタと前記第2導電型トランジスタとの間に接続された第3の第1導電型トランジスタをさらに有し、前記第3の第1導電型トランジスタと前記第2導電型トランジスタのゲート同士が接続されていることを特徴とするレベルシフト回路。
  6. 請求項1乃至5のいずれかに記載の少なくとも一つのレベルシフト回路を内蔵したことを特徴とする半導体装置。
  7. 請求項6において、
    P型半導体基板を有し、前記P型半導体基板上に形成される前記第1導電型トランジスタはP型であり、前記第2導電型トランジスタがN型であることを特徴とする半導体装置。
  8. 請求項6において、
    N型半導体基板を有し、前記N型半導体基板上に形成される前記第1導電型トランジスタはN型であり、前記第2導電型トランジスタがP型であることを特徴とする半導体装置。
  9. 請求項6乃至8のいずれかにおいて、
    前記少なくとも一つのレベルシフト回路からの前記出力電位に基づいて、電位選択信号を生成する信号生成回路と、
    前記信号生成回路からの前記電位選択信号に基づいて、複数の表示用駆動電位の中から一つを選択して出力する駆動回路と、
    をさらに有することを特徴とする半導体装置。
JP2000270442A 2000-09-06 2000-09-06 レベルシフト回路及びそれを用いた半導体装置 Expired - Lifetime JP3603769B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000270442A JP3603769B2 (ja) 2000-09-06 2000-09-06 レベルシフト回路及びそれを用いた半導体装置
US09/930,884 US6633192B2 (en) 2000-09-06 2001-08-14 Level shift circuit and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000270442A JP3603769B2 (ja) 2000-09-06 2000-09-06 レベルシフト回路及びそれを用いた半導体装置

Publications (2)

Publication Number Publication Date
JP2002084184A JP2002084184A (ja) 2002-03-22
JP3603769B2 true JP3603769B2 (ja) 2004-12-22

Family

ID=18756879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000270442A Expired - Lifetime JP3603769B2 (ja) 2000-09-06 2000-09-06 レベルシフト回路及びそれを用いた半導体装置

Country Status (2)

Country Link
US (1) US6633192B2 (ja)
JP (1) JP3603769B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101809352B1 (ko) * 2015-11-16 2017-12-14 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 레벨 변환 디바이스 및 방법

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075617B2 (ja) * 2003-01-14 2008-04-16 凸版印刷株式会社 レベルシフト回路
US6853234B2 (en) * 2003-06-09 2005-02-08 International Business Machines Corporation Level shift circuitry having delay boost
JP4175193B2 (ja) * 2003-06-24 2008-11-05 富士電機デバイステクノロジー株式会社 Mos型半導体集積回路
JP4239907B2 (ja) 2004-06-21 2009-03-18 沖電気工業株式会社 レベルシフタ回路、表示装置の駆動回路、表示装置、及び階調選択回路のストレステスト方法
US7259610B1 (en) * 2004-09-24 2007-08-21 National Semiconductor Corporation Static CMOS logic level shift circuit with a low logic input count high switching speed and low power dissipation
TWI278183B (en) * 2005-07-01 2007-04-01 Au Optronics Corp Shift register and level shifter thereof
TWI313968B (en) * 2006-07-04 2009-08-21 Au Optronics Corp Vevel shifter circuit
JP2008199153A (ja) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd レベルシフタ
TWI349438B (en) * 2008-05-09 2011-09-21 Au Optronics Corp Level shifter
JP5308721B2 (ja) * 2008-06-06 2013-10-09 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー レベルシフト回路
TWI376097B (en) * 2008-09-18 2012-11-01 Ili Technology Corp Level shift circuit
CN101686047B (zh) * 2008-09-24 2012-03-14 奕力科技股份有限公司 电平转换电路
JP4565043B1 (ja) * 2009-06-01 2010-10-20 シャープ株式会社 レベルシフタ回路、走査線駆動装置、および表示装置
TWI486943B (zh) * 2013-03-13 2015-06-01 Raydium Semiconductor Corp 電壓準位移位器
US9647645B1 (en) * 2016-05-11 2017-05-09 Xcelsem, Llc Low voltage to high voltage level translator that is independent of the high supply voltage

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039862A (en) * 1976-01-19 1977-08-02 Rca Corporation Level shift circuit
JPS58204617A (ja) * 1982-05-24 1983-11-29 Toshiba Corp 信号レベル変換回路
JPH02301323A (ja) 1989-05-16 1990-12-13 Seiko Epson Corp レベルシフト回路
US4978870A (en) * 1989-07-19 1990-12-18 Industrial Technology Research Institute CMOS digital level shifter circuit
JPH04284021A (ja) * 1991-03-13 1992-10-08 Sharp Corp 出力回路
JP2771375B2 (ja) * 1992-01-22 1998-07-02 日本電気アイシーマイコンシステム株式会社 レベルシフト回路
JPH05308274A (ja) 1992-04-30 1993-11-19 Matsushita Electric Ind Co Ltd Cmosレベルシフト回路
JPH0846508A (ja) * 1994-07-27 1996-02-16 Matsushita Electric Ind Co Ltd Cmosレベルシフト回路
JPH0879053A (ja) * 1994-09-06 1996-03-22 Toshiba Corp レベルシフト回路
US6437627B1 (en) * 1995-08-25 2002-08-20 Winbond Electronics Corporation High voltage level shifter for switching high voltage in non-volatile memory intergrated circuits
JP2001319490A (ja) * 2000-05-12 2001-11-16 Mitsubishi Electric Corp 高電圧スイッチ回路および当該高電圧スイッチ回路を備える半導体記憶装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101809352B1 (ko) * 2015-11-16 2017-12-14 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 레벨 변환 디바이스 및 방법
US9866205B2 (en) 2015-11-16 2018-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. Level conversion device and method
US10164615B2 (en) 2015-11-16 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Level conversion device and method
US10291210B2 (en) 2015-11-16 2019-05-14 Taiwan Semiconductor Manufacturing Co., Ltd. Level conversion device and method
US10483950B2 (en) 2015-11-16 2019-11-19 Taiwan Semiconductor Manufacturing Co., Ltd. Level conversion device and method
US10778197B2 (en) 2015-11-16 2020-09-15 Taiwan Semiconductor Manufacturing Co., Ltd. Level conversion device and method
US11063578B2 (en) 2015-11-16 2021-07-13 Taiwan Semiconductor Manufacturing Co., Ltd. Level conversion device and method
US11387818B2 (en) 2015-11-16 2022-07-12 Taiwan Semiconductor Manufacturing Co., Ltd. Level conversion device and method

Also Published As

Publication number Publication date
JP2002084184A (ja) 2002-03-22
US6633192B2 (en) 2003-10-14
US20020113769A1 (en) 2002-08-22

Similar Documents

Publication Publication Date Title
JP3603769B2 (ja) レベルシフト回路及びそれを用いた半導体装置
US5510731A (en) Level translator with a voltage shifting element
KR100432652B1 (ko) 레벨 시프터 및 평판 표시 장치
JP3851302B2 (ja) バッファー回路及びこれを利用したアクティブマトリックス表示装置
US7304458B2 (en) Regulator circuit
JP2000040924A (ja) 定電流駆動回路
KR100405647B1 (ko) 레벨 시프트 회로 및 화상 표시 장치
US10284201B1 (en) High range positive voltage level shifter using low voltage devices
JP4171703B2 (ja) 有機電界効果トランジスタを含む論理構成要素
KR100327636B1 (ko) 중간전위생성회로
JPH0693615B2 (ja) ドライバ回路
JP3987536B2 (ja) レベルシフタ及びこれを利用した平板表示装置
JP2006295322A (ja) レベルシフタ回路
JP2003338745A (ja) アナログスイッチ回路及び階調セレクタ回路
JP4116003B2 (ja) 電流駆動回路
JP3602028B2 (ja) 半導体集積回路
JP2006279883A (ja) ドライバ回路
JP2001102915A (ja) レベルシフト回路及びそれを用いた信号線駆動回路
JP3538558B2 (ja) アナログスイッチ回路
JP3174027B2 (ja) 信号レベル変換回路
CN117595859B (zh) 一种基于忆阻器的逻辑电路、输出方法及电子设备
US20220337158A1 (en) Voltage conversion circuit having self-adaptive mechanism
JP2003338740A (ja) 高耐圧スイッチング回路
KR100384833B1 (ko) 면적 소모가 적은 레벨 쉬프터
KR100256225B1 (ko) 엘씨디 신호 생성 장치

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

R150 Certificate of patent or registration of utility model

Ref document number: 3603769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term