JP3572419B2 - Carrier for sustained release - Google Patents

Carrier for sustained release Download PDF

Info

Publication number
JP3572419B2
JP3572419B2 JP17473593A JP17473593A JP3572419B2 JP 3572419 B2 JP3572419 B2 JP 3572419B2 JP 17473593 A JP17473593 A JP 17473593A JP 17473593 A JP17473593 A JP 17473593A JP 3572419 B2 JP3572419 B2 JP 3572419B2
Authority
JP
Japan
Prior art keywords
carrier
release agent
layered
sustained release
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17473593A
Other languages
Japanese (ja)
Other versions
JPH0711233A (en
Inventor
伸二 稲垣
喜章 福嶋
清 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP17473593A priority Critical patent/JP3572419B2/en
Publication of JPH0711233A publication Critical patent/JPH0711233A/en
Application granted granted Critical
Publication of JP3572419B2 publication Critical patent/JP3572419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は徐放剤用担体に関し、更に詳しくは、高分子材料用の老化防止剤や硬化剤、農薬、肥料、殺菌剤、消毒剤、抗菌剤、防虫剤、殺虫剤、除草剤、芳香剤、害虫忌避剤、各種の医薬や生理活性物質等、種々の機能や作用を有する化学物質(本明細書においては、以下、これらの化学物質を「薬剤等」と言い、かつ、その分子を「機能性分子」という。)を貯留するとともに、これらの薬剤等を経時的に徐々に放出させるための徐放剤用担体に関する。
【0002】
【従来の技術】
広範囲の産業分野にわたり、薬剤等を徐放性の担体に担持させ、徐放剤として使用したいという要求がある。
【0003】
かかる目的から、従来、例えば次のような技術が開示されている。
▲1▼粒子状の薬剤等をセルロース等の分子で被覆して徐放性のマイクロカプセルとする(特開平3−145404号公報)。
【0004】
▲2▼大環状の化学構造を有する化合物を合成し、これに機能性分子を包接させて、徐放性の包接化合物とする(特開平4−297429号公報)。
【0005】
▲3▼既知の雲母、カオリン、スメクタイト系粘土鉱物、シリカゲルやコロイダルシリカ、ゼオライト、セピオライト等を徐放剤用担体とし、これに薬剤等を含浸させる(特開昭62−57486号公報、特開昭62−209161号公報、特開昭63−1442号公報、特開平2−202575号公報、特開平2−239176号公報、特開平3−229634号公報、特開平4−91023号公報、特開平4−224511号公報、特開平4−300801号公報)。
【0006】
▲4▼上記の多孔性物質に薬剤等を含浸させた後、更に多孔性物質の表面を適当な材料で被覆してマイクロカプセル化する(特開平2−30038号公報)。
【0007】
【発明が解決しようとする課題】
しかし、上記の従来技術にはそれぞれ問題があった。
【0008】
例えば、上記▲1▼,▲4▼のマイクロカプセル化技術については、薬剤等の適当な放出量と放出速度とを実現するために、薬剤等の粒子の粒径、被覆層の厚さや被覆層の成分等を微妙に調製する必要があり、生産工程が複雑になる。また、被覆層の材料は高価なものが多い。
【0009】
次に、上記▲2▼の包接化合物については、ホストとゲストとの分子サイズの適合性が厳しく要求されるため、ゲストとして用い得る薬剤等の選択の幅が極めて狭い。しかもホストである大環状の化学構造を有する化合物の合成プロセスも煩雑であるため、コスト高となる。
【0010】
更に、上記▲3▼,▲4▼で用いられる多孔性物質についても、それぞれ次のような不具合がある。
雲母やカオリン等の層状粘土鉱物は、うまく乾燥させると団粒構造を形成し、団粒の一次粒子間や二次粒子間の隙間に薬剤等を吸着させることができる。しかし、その吸着量は微小なものであり、しかも吸着力が弱いため薬剤等の大部分は早期に放出されてしまう。
【0011】
スメクタイト系の粘土鉱物(例えばモンモリロナイト,ヘクトライト)はその層間に機能性分子をとり込んだ層間化合物を形成し得るので、上記の雲母やカオリン等よりも薬剤等の吸着可能量が多いが、それでもせいぜい5〜7重量%に過ぎない。しかも層間化合物が形成されるのは、薬剤等が極性分子である場合に限られる。
【0012】
シリカゲルやコロイダルシリカは、その一次粒子間の隙間による薬剤等の吸着を利用できるが、やはり吸着量が不十分で、薬剤等の放出速度も制御し難い。
【0013】
ゼオライトやセピオライトは数Åの直径の多数の細孔を有するため、現在までのところ、徐放剤用担体として最も広範囲に利用されているが、細孔容量が小さいことから薬剤等の吸着量が不十分であり、細孔直径が小さいことから吸着可能な薬剤等の種類が限定されるとともに一旦吸着した機能性分子を放出し難く、一方、放出可能な小さな機能性分子を吸着した場合には細孔の奥行きが少ないことから機能性分子を簡単に放出してしまい、長期間にわたる徐放効果を期待することが難しい。
【0014】
そこで本発明は、薬剤等の種類や機能性分子の大きさに対する選択の幅が広く、これらを多量に含浸させることができ、しかも長期間にわたる徐放効果を期待できる徐放剤用担体を提供することを、その解決すべき課題とする。
【0015】
【課題を解決するための手段】
(第一発明の構成)上記の課題を解決するための本願第一発明(請求項1に記載の発明)の構成は、珪素四面体SiO4の層状結晶が波形に湾曲した状態で積層することによりハニカム状の多孔構造を形成するとともに、この積層した層状結晶の層間には珪酸の脱水縮合によるSiO2の層間架橋が形成されることにより、多孔性の担体が構成されており、孔径が1〜10nmの範囲にあり、かつ奥行きが孔径の10倍〜100,000倍の範囲にある多孔性の担体であって、その細孔容量が0.1cc/g以上であることを特徴とする徐放剤用担体である。
【0016】
(第二発明の構成)上記の課題を解決するための本願第二発明(請求項2に記載の発明)の構成は、珪素四面体SiO4の層状結晶が波形に湾曲した状態で積層することによりハニカム状の多孔構造を形成するとともに、この積層した層状結晶の層間には珪酸の脱水縮合によるSiO2の層間架橋が形成されることにより、多孔性の担体が構成されており、孔径が1〜10nmの範囲にあり、かつ奥行きが孔径の10倍〜100,000倍の範囲にある多孔性の担体であって、その細孔容量が0.1cc/g以上である徐放剤用担体と、前記徐放剤用担体に含浸された薬剤とからなることを特徴とする徐放剤である。
【0017】
【作用】
本願第一発明、第二発明の徐放剤用担体における多数の細孔の孔径は1〜10nmの範囲にある。これは、薬剤等の機能性分子のほとんどのものを細孔内にとり込むことができる孔径であり、しかもゼオライトの場合のように吸着力過剰とならず、機能性分子を容易に放出し得る孔径でもある。
【0018】
次に、細孔の奥行きが孔径の10倍〜100,000倍もあるので、吸着された機能性分子の大部分が細孔の奥の方に存在する。従って機能性分子が外部環境へ放出(空気中への気化あるいは環境水中への溶解など)されるに当たり、細孔の開口部付近にある機能性分子は容易に放出されるが、細孔の奥の方に存在する大部分の機能性分子は時間をかけて細孔の開口部付近へ移動し、徐々に放出される。即ち、これらの機能性分子が制約のない環境下で自然に空気中へ気化したり環境水中への溶解して拡散するのに要する時間に比し、極めて長い時間をかけて、徐々に放出されるのである。
なお、このような細孔の奥行きの深さは、徐放剤用担体において、珪素四面体SiOの層状結晶が波形に湾曲した状態で積層することによりハニカム状の多孔構造を形成している点に起因する。
【0019】
また、従来の雲母、カオリン、スメクタイト系粘土鉱物、シリカゲルやコロイダルシリカ、ゼオライト、セピオライト等に比し、細孔容量が0.1cc/g以上と極めて大きいので、多量の薬剤等を含浸させることができる。
なお、このような細孔容量の大きさは、徐放剤用担体が薄い層状結晶により構成され、この層状結晶がそのまま細孔の壁部となっている点に起因する。即ち、細孔の多さ、大きさに比して細孔の壁部を構成する成分が少ないため、極めて大きい細孔容量が得られるのである。
【0020】
ちなみに、本発明の徐放剤用担体は、その成分の殆どが環境や生物体に対して無害なSiOである。またその粒子形状も顆粒状であって、人体への有害性が云々されている繊維状や板状ではない。また、本発明の徐放剤用担体はSiOを主体とするため700°C以上の耐熱性を有しているが、特に、含水率が10wt%以上である結晶性層状珪酸塩を原料とした場合は、800〜1000°Cの高温に耐える担体が得られる。
【0021】
【発明の効果】
本発明の徐放剤用担体は、薬剤等の種類や機能性分子の大きさに対する選択の幅が広く、これらを多量に含浸させることができ、しかも長期間にわたる徐放効果を期待できる。
【0022】
【実施態様】
次に本願第一発明、第二発明の実施態様について説明する。
【0023】
(徐放剤用担体の構成)
本発明の徐放剤用担体は、後述する製造プロセスにおいて、例えば細孔形成用の有機物の分子サイズを選択することにより、その細孔の孔径を種々にコントロールできる。そこで、孔径が1〜10nmの範囲にあるようにコントロールしたものが良い。なぜなら、徐放剤用担体の細孔の孔径は、機能性分子に対する最適の吸着機能を持たせるために、機能性分子のサイズの約10倍〜約100倍程度であることが望まれ、かかる孔径が具体的には1〜10nmの範囲に相当するからである。
【0024】
上記細孔の孔径が1nm未満の場合は、孔径の不足から、機能性分子の吸着が難しくなったり、吸着しても放出され難くなったりする。細孔の孔径が100nmを超える場合は、孔径が過大であるために機能性分子に対する吸着力が不足しがちになる。
【0025】
本発明の徐放剤用担体の細孔容量は、後述する製造プロセスにおいて、例えば細孔形成用の有機物の使用量を選択することにより、種々にコントロールできる。そこで、細孔容量が0.1cc/g以上であるようにコントロールしたものが良い。細孔容量がこれ以下では、薬剤等の吸着量が必ずしも満足できないからである。
【0026】
本発明の徐放剤用担体における細孔の奥行きは、後述する製造プロセスにおいて、例えば徐放剤用担体の粒径を調製することにより、種々にコントロールできる。そこで、細孔の奥行きが孔径の10倍〜100,000倍であるようにコントロールしたものが良い。これを具体的なサイズで言えば、奥行きが10nm〜100μmであるものが良い。奥行きが10nm未満であると、機能性分子の長期間にわたる徐放効果を期待し難く、奥行きが100μmを超える場合は、100μmを超える奥行き部分について徐放用細孔としての実質的な機能を期待し難い。
【0027】
本発明の徐放剤用担体の代表的な具体例として、層状シリカ多孔体、あるいは、層状シリカ金属酸化物多孔体を挙げることができる。
【0028】
図1、図2に示すように、層状シリカ多孔体1は、珪素四面体SiOの層状結晶2が波形に湾曲した状態で積層することにより、多数の細孔3を有するハニカム状の多孔構造を形成するとともに、この積層した層状結晶の層間における接合部4には珪酸の脱水縮合によるSiOの層間架橋を形成したものである。即ち、層状シリカ多孔体は、骨格の組成がSiOである(図3参照)。
【0029】
一方、層状シリカ金属酸化物多孔体は、前記層状シリカ多孔体1における珪素四面体SiOの層状結晶2を構成する珪素のうちの一部の珪素に、珪素以外の金属原子(M)が結合したものである。即ち、層状シリカ金属酸化物多孔体は、骨格の組成がSiO金属複合酸化物である。
【0030】
上記金属原子(M)としては、アルミニウム(Al)、ジルコニウム(Zr)、ガリウム(Ga)、ベリリウム(Be)、マグネシウム(Mg)、イットリウム(Y)、ランタン(La)、スズ(Sn)、鉛(Pb)等が用いられる。
【0031】
(層状シリカ多孔体の製造方法)
次に、徐放剤用担体の代表的な製造方法について説明する。この方法は、層間拡張工程と、焼成工程とからなるものである。但し、本発明の徐放剤用担体の範囲が、これらの製造方法によって製造されたものに限定されることを意味するものではない。
【0032】
層間拡張工程においては、カネマイト等の結晶性層状珪酸塩を交換性有機物イオンの水溶液中で加熱攪拌処理することにより層状結晶の層間に有機物陽イオンを導入するとともに、SiOの層間架橋を形成させる。
【0033】
上記有機物陽イオンは、珪素四面体層の層間に含まれるナトリウムイオン等のアルカリ金属イオンとの交換によって導入されるが、有機物陽イオンはアルカリ金属イオンよりも嵩高であるため、結晶性層状珪酸塩の層間は拡幅される。一方、有機物陽イオンが導入された部分を除く、隣合うシート層中のシラノール(Si−OH)同士が脱水縮合され、シロキサン結合(Si−O−Si)が形成される。このようなSiOの層間架橋が形成されている部分では層間は拡幅されない。この結果、図1、図2に示すようなハニカム状の多孔構造が形成されるのである。なお、結晶性層状珪酸塩は粘土と異なり水に対する膨潤性がないため、一般的な水膨潤の手法ではかかる層間拡張は困難である。
【0034】
上記の結晶性層状珪酸塩としては、珪素四面体層の層間にナトリウムイオンを含んだ結晶性層状珪酸ナトリウム、例えばカネマイトNaHSi・3HO、ジ珪酸ナトリウムNa、マカタイトNaSi・5HO、アイラアイトNaSi17・xHO、マガディアイトNaSi1423・xHO、ケニヤアイトNaSi2041・xHO等が代表的であるが、これらに限定されない。
【0035】
層状シリカ多孔体の細孔の奥行きは、原料である結晶性層状珪酸塩の平面芳香のサイズに一致するので、上記の結晶性層状珪酸塩のサイズを選択することにより、細孔の奥行きを調整できる。そのサイズの選択は、結晶性層状珪酸塩自体を結晶化処理により合成するときは結晶化の処理時間の長短により可能であり、既存の結晶性層状珪酸塩を用いるときは適宜な手段による粉砕処理により可能である。
【0036】
上記の結晶性層状珪酸塩のうち、特にカネマイトのように層状結晶が単一の珪素四面体層からなるものは単位重量当たりの表面積が大きいので、これを用いて製造した層状シリカ多孔体も比表面積が大きくなる。
カネマイトを用いて製造される層状シリカ多孔体の場合、単一層構造が保持されたままで上下のシート層が部分的に接合するので、典型的なハニカム状の多孔構造となる。
【0037】
上記の結晶性層状珪酸塩における含水率は10wt%以上であることが望ましい。この場合、層間拡張工程において結晶性層状珪酸塩が水に良く分散し、層間のアルカリ金属イオンと有機物陽イオンとのイオン交換が短時間で十分に行われる。含水率が10wt%未満では、結晶性層状珪酸塩が凝集し易くなり、上記のイオン交換が起こり難くなる。
【0038】
含水率が10wt%以上である結晶性層状珪酸塩を原料に用いると、層状シリカ多孔体の比表面積が1000m/g以上と特に大きくなり、またアルカリ金属イオンの残存量が0.2wt%以下になる。このため、800°C〜1000°Cの高温下でも結晶化し難く、細孔も安定な優れた耐熱性の担体になる。
【0039】
上記の有機物陽イオンの種類は限定されないが、好ましくは有機オニウムイオン、特にアルキルアンモニウムイオン等が、試料調製の容易さやイオン交換能力の高さ等の点から優れている。
他の好ましい有機物陽イオンとして、アルキルトリメチルアンモニウムイオン、ヘキサデシルトリメチルアンモニウムイオン、テトラデシルトリメチルアンモニウムイオン、ジメチルジアルキルアンモニウムイオン、ベンジルトリメチルアンモニウムイオン等を挙げることができる。
【0040】
一例としてセチルトリメチルアンモニウムイオンを用いた場合、細孔径は約3nm、細孔容量は約1cc/gのものが得られる。
【0041】
有機物陽イオンの分子サイズは層状シリカ多孔体における細孔径を直接に規定するので、有機物陽イオンの選択により細孔径を任意に設計することができる。そして、単一種類の有機物陽イオンを用いれば細孔径の分布を狭い範囲でほぼ均一に設計でき、分子サイズの異なる複数種類の有機物陽イオンを用いれば細孔の径を幅広く分布させることができる。
【0042】
次いで、焼成工程においては、層間拡張工程によって得られた固形分を濾過、乾燥し、次いでこれを焼成する。かかる操作によって、層間拡張工程で導入された有機物陽イオンが層間から除去され、層状シリカ多い孔体が完成する。
【0043】
上記の焼成は、通常は500〜1000°C位の温度で数時間行うのが良い。焼成温度が高すぎると多孔体構造が崩壊する恐れがあり、逆に焼成温度が低すぎると細孔の形成が不十分となる恐れがある。
【0044】
(層状シリカ金属酸化物多孔体の製造方法)
層状シリカ金属酸化物多孔体の製造に当たっては、上記の層間拡張工程によって得られた固形分を濾過したところで、これを珪素と異なる金属の塩と接触させる金属付加工程を設定し、その後焼成する。
【0045】
この金属付加工程において、金属塩の種類や使用態様は限定されず、例えば金属塩の溶液を用いたり、上記固形分を乾燥させた粉末を金属塩の粉末と混合して接触させても良い。
【0046】
(徐放剤用担体の使用)
徐放剤用担体に含浸させる薬剤等は、用途に応じて自由に選択できる。それらの一例を挙げれば、農薬用殺虫剤としてのサリチオン、マラソン、ジメトエート、ダイアジノン、ジエチルアミド、2−エチルチオメチルフェニル=メチルカルバメート、チオリン酸、2−メチル−3−シクロヘキセン−1−カルボン酸等があり、殺菌剤としてはノニルフェノールスルホン酸銅、ジネブ、アンゼブ、チウラム、ポリオキシン、シクロヘキシミド等があり、除草剤ではクロメトキシニル、ニトラリン、3−(3,3−ジメチルウレイド)フェニル=ターシャリーブチルカルバマート等があり、抗菌剤としてはヒノキオール、害虫忌避剤としてはフェノール系化合物、プラスチック用酸化防止剤としては2,2−ビス(4−ヒドロキシフェニル)プロパン等のビスフェノール、シクロヘキサンの縮合物、ジサリチルレゾルシン、亜リン酸エステル等があり、老化防止剤としてはフェニル−β−ナフチルアミン等のアミン化合物、スチレン化フェノール等のフェノール化合物、チオ尿素誘導体、ベンゾイミダゾール類があり、肥料としては尿素、硫安、硝安等のアンモニア系化合物、過リン酸石灰、重過リン酸石灰等のリン化合物、カリを含む化合物等がある。
【0047】
これらの薬剤等は、目的に応じ、適当な割合で任意に組み合わせて徐放剤用担体に含浸させても良い。
【0048】
徐放剤用担体に薬剤等を含浸させる方法は限定がなく、任意の方法を用いることができる。そのような方法の例として、次のようなものがある。これらの方法例は、単独に用いても良く、適宜に組み合わせて用いても良い。
【0049】
▲1▼徐放剤用担体と薬剤等を容器に密封し、加熱して機能性分子をガス化させ、徐放剤用担体をこのガス中に晒して、徐放剤用担体の細孔中に機能性分子を吸着させる方法。
【0050】
▲2▼薬剤等を加熱して溶融させ、その溶融液中に徐放剤用担体を浸漬して薬剤等を含浸させる方法。
【0051】
▲3▼薬剤等を溶媒に溶解してその溶媒を蒸発させ、この蒸気中に徐放剤用担体を晒して、徐放剤用担体に薬剤等を含浸させる方法。
【0052】
▲4▼その他、徐放剤用担体と薬剤等を適当な量比で混合した後にその混合物を薬剤等の融点以上に加熱する方法、薬剤等の原料物質を徐放剤用担体の細孔中に含浸させた後に加熱等により細孔中で薬剤等を合成する方法。
【0053】
以上のような含浸処理の後、更に、徐放剤用担体の表面を高分子膜やデキストリン等で覆うことにより、薬剤等の放出速度が一層遅くなるように調節することもできる。一方、以上のプロセスにより製造した徐放剤の濃度が高すぎる場合には、これを粘土やシリカゲル等の安価な粉体やバインダで増量しても良い。
【0054】
本発明の徐放剤用担体を用いた徐放剤は、そのまま使用され、あるいは他の徐放剤の使用方法にならい適宜な形状に成形したり、通気、通水性の容器に封入されたりして、使用される。
【0055】
【実施例】
(実施例1)
非晶質水和珪酸ナトリウムを700°Cで6時間空気中で焼成し、1000mlの水に分散させ、3時間攪拌することにより、結晶性層状珪酸塩としてのカネマイトを合成した。
【0056】
次いで、0.1mol/dmセチルトリメチルアンモニウムクロライド水溶液1リットルに上記カネマイト50gを分散させ、70°Cで3時間攪拌して、カネマイトをセチルトリメチルアンモニウムイオンでイオン交換した。
【0057】
その後、室温に冷却した後、2N−HCl水溶液を加え、pHを8.5に調整し、ろ過、水洗を行った。次いでこれを乾燥し、空気中700°Cで6時間焼成して層状シリカ多孔体の粉末を得た。
【0058】
(実施例2)
ジチオリン酸−O,O−ジメチル−S−(1,2−ジエトキシカルボニルエチル)(いわゆるマラソン剤)をアセトンに30wt%の濃度で溶解し、この溶液50ccに実施例1の層状シリカ多孔体10gを添加して攪拌した後、ろ過してアセトンを乾燥除去した。このもののマラソン剤分子の含浸量を熱重量分析で測定したところ、20wt%であった。
【0059】
(比較例1)
実施例2と同じ条件で合成ゼオライト(東ソー(株)製、規格No. A−3)10gにマラソン剤を含浸させたところ、その含浸量は3wt%であった。
【0060】
(実施例3)
実施例2で得られたマラソン剤含浸層状シリカ多孔体10gをカオリン(ジョージアカオリン社製 Hydnite−PXS )50gと乳鉢中で混合し、内径10mmφ、長さ20mmのガラス管中に入れてこのガラス管の下端にろ紙を当て、室温下、送液ポンプにより蒸留水を1cc/分の割合で上から流した。そしてガラス管通過液中のTOC(Total Organic Carbon)をBeckman 社製 Model 915B Total Organic Carbon Analyzer により分析し、これに基づいてマラソン剤の水への溶解量(層状シリカ多孔体からの放出量)を推定した。その結果、溶解量は10ppmであった。
【0061】
(比較例2)
実施例3で用いたのと同一のカオリン50gにマラソン剤2gを乳鉢中で混合し、実施例3と同じ試験方法でマラソン剤の水への溶解量を推定した。その結果、溶解量は200ppmであった。
【0062】
(実施例4)
実施例1で得た層状シリカ多孔体10gを大内新興化学(株)製のゴム用老化防止剤ノクラック810−NA(N−フェニレン−N’−イソプロピル−P−フェニレンジアミン)5gとアルミナ製乳鉢中で十分に混合した後、ガラス製容器に密封して、85°Cで20分間加熱し、ノクラック810−NAの層状シリカ多孔体への溶融、含浸を行わせた。
【0063】
その後、ノクラック810−NA含浸層状シリカ多孔体をガラス製容器から取り出して、その15重量部に対し、天然ゴムRSS#1を100重量部、酸化亜鉛を5重量部、ステアリン酸を1重量部、硫黄を2.5重量部、加硫促進剤(ノクセラ−MSA−F)を1重量部を配合し、140°C×25分の加硫処理を行った。
【0064】
そして上記の加硫処理を行ったものについて、所定日数経過後のノクラック810−NAの揮発量をギヤー式老化試験機を用い、JIS63−1の空気加熱老化試験法に準じて80°Cで処理した後の加熱減量率(%)により調べた。その結果、層状シリカ多孔体に含浸されたノクラック810−NAの減量率は、5日経過後で20%、10日経過後で25%、20日経過後で30%であった。
【0065】
(比較例3)
ノクラック810−NAの5重量部に対し、天然ゴムRSS#1を100重量部、酸化亜鉛を5重量部、ステアリン酸を1重量部、硫黄を2.5重量部、加硫促進剤(ノクセラ−MSA−F)を1重量部を配合し、140°C×25分の加硫処理を行い、実施例4と同じ方法でノクラック810−NAの減量率を調べたところ、5日経過後で60%、10日経過後で73%、20日経過後で78%であった。
【0066】
(実施例5)
実施例4で得た加硫ゴムをオゾン劣化試験(JIS−K−6301)に供した。即ち、前記加硫ゴムを10%伸長した状態で50pphmのオゾンに40°Cで5時間晒し、ゴムの亀裂の有無を観測したが、亀裂は観測されなかった。一方、比較例3で得た加硫ゴムを同じオゾン劣化試験に供したところ、細かい亀裂が僅かに観測された。
【0067】
(実施例6)
実施例4で得た加硫ゴムと、比較例3で得た加硫ゴムとを、それぞれ室温でアセトン抽出(14日間、その間アセトンを3回交換)した後、いずれも実施例5と同じ条件でオゾン劣化試験に供した。その結果、実施例4で得た加硫ゴムには亀裂が観測されず、比較例3で得た加硫ゴムには多数の亀裂が発生した。
【0068】
(実施例5,6の評価)
実施例5,6のオゾン劣化試験は促進試験の性格があり、これらの試験結果より、ノクラック810−NA含浸層状シリカ多孔体はノクラック810−NAを長期間にわたり徐々に放出することが確認された。
【図面の簡単な説明】
【図1】本発明の徐放剤用担体の多孔構造を示す図である。
【図2】本発明の徐放剤用担体の多孔構造の要部を示す図である。
【図3】本発明の徐放剤用担体の骨格構造を示す図である。
[0001]
[Industrial applications]
The present invention relates to a carrier for a sustained release agent, and more particularly, an anti-aging agent and a curing agent for a polymer material, an agricultural chemical, a fertilizer, a bactericide, a disinfectant, an antibacterial agent, an insecticide, an insecticide, a herbicide, and a fragrance. , Chemical substances having various functions and actions such as pest repellents, various medicines and physiologically active substances (hereinafter, in the present specification, these chemical substances are referred to as “drugs, etc.” The present invention relates to a carrier for a sustained release agent for storing a functional molecule) and releasing these drugs and the like gradually over time.
[0002]
[Prior art]
There is a demand over a wide range of industrial fields that a drug or the like is supported on a sustained-release carrier and that it is desired to use the drug as a sustained-release agent.
[0003]
For this purpose, for example, the following techniques have been conventionally disclosed.
{Circle around (1)} A particulate drug or the like is coated with a molecule such as cellulose to obtain a sustained-release microcapsule (JP-A-3-145404).
[0004]
{Circle around (2)} A compound having a macrocyclic chemical structure is synthesized, and a functional molecule is included therein to obtain a sustained-release clathrate compound (JP-A-4-297429).
[0005]
(3) Known mica, kaolin, smectite clay mineral, silica gel, colloidal silica, zeolite, sepiolite, etc. are used as carriers for sustained-release agents, and the carriers are impregnated with the agents (Japanese Patent Application Laid-Open No. 62-57486; JP-A-62-209161, JP-A-63-1442, JP-A-2-202575, JP-A-2-239176, JP-A-3-229634, JP-A-4-91023, JP-A-4-91023 JP-A-4-224511, JP-A-4-300801).
[0006]
{Circle around (4)} After the porous substance is impregnated with a drug or the like, the surface of the porous substance is further covered with a suitable material to be microencapsulated (Japanese Patent Laid-Open No. 2-30038).
[0007]
[Problems to be solved by the invention]
However, each of the above prior arts has a problem.
[0008]
For example, in the microencapsulation techniques (1) and (4) described above, in order to realize an appropriate release amount and release rate of a drug or the like, the particle size of the drug or the like, the thickness of the coating layer, the coating layer, or the like. Need to be delicately prepared, which complicates the production process. Further, the material of the coating layer is often expensive.
[0009]
Next, regarding the clathrate compound of the above item (2), the compatibility of the molecular size between the host and the guest is strictly required, so that the range of selection of drugs and the like usable as the guest is extremely narrow. In addition, the process of synthesizing a compound having a macrocyclic chemical structure, which is a host, is complicated, resulting in high cost.
[0010]
Further, the porous materials used in the above (3) and (4) also have the following disadvantages.
Layered clay minerals such as mica and kaolin, when properly dried, form an aggregated structure, and can adsorb drugs and the like in the gaps between the primary particles and the secondary particles of the aggregates. However, the amount of adsorption is very small, and most of the chemicals and the like are released early because the adsorption power is weak.
[0011]
Smectite-based clay minerals (eg, montmorillonite, hectorite) can form intercalation compounds incorporating functional molecules between their layers, and therefore have a larger adsorbable amount of drugs and the like than the above-mentioned mica, kaolin, etc. At most, only 5-7% by weight. Moreover, the formation of the intercalation compound is limited only when the drug or the like is a polar molecule.
[0012]
Silica gel and colloidal silica can utilize the adsorption of a drug or the like by the gap between the primary particles, but the amount of adsorption is also insufficient, and the release rate of the drug or the like is also difficult to control.
[0013]
Since zeolite and sepiolite have a large number of pores with a diameter of several square meters, they have been most widely used as carriers for sustained-release agents to date. Insufficient, because the pore diameter is small, the types of drugs that can be adsorbed are limited, and it is difficult to release the functional molecules once adsorbed. Since the depth of the pore is small, the functional molecule is easily released, and it is difficult to expect a long-term sustained release effect.
[0014]
Therefore, the present invention provides a carrier for a sustained-release agent that has a wide range of choices for the type of drug and the like and the size of the functional molecule, can impregnate these in a large amount, and can expect a sustained-release effect over a long period of time. Is the task to be solved.
[0015]
[Means for Solving the Problems]
(Structure of the First Invention) The structure of the first invention (the invention described in claim 1) for solving the above-mentioned problem is that the silicon tetrahedral SiO 4 layered crystal is laminated in a wave-like curved state. To form a honeycomb-like porous structure, and between the layers of the laminated layered crystals, an interlayer cross-link of SiO 2 is formed by dehydration condensation of silicic acid to form a porous carrier. A porous carrier having a depth in the range of 10 to 100,000 times the pore diameter and a pore volume of 0.1 cc / g or more. It is a carrier for release.
[0016]
(Structure of the second invention) In order to solve the above-mentioned problem, the structure of the second invention (the invention according to claim 2) is that the silicon tetrahedral SiO 4 layered crystal is laminated in a wave-like curved state. To form a honeycomb-like porous structure, and between the layers of the laminated layered crystals, an interlayer cross-link of SiO 2 is formed by dehydration condensation of silicic acid to form a porous carrier. A porous carrier having a depth in the range of 10 to 100,000 times the pore diameter and a pore volume of 0.1 cc / g or more; And a drug impregnated in the carrier for a sustained release agent.
[0017]
[Action]
The pore diameter of many pores in the carrier for sustained release agent of the first invention and the second invention of the present application is in the range of 1 to 10 nm. This is a pore size that allows most of the functional molecules such as drugs to be taken into the pores, and does not result in excess adsorption force as in the case of zeolite, and can easily release the functional molecules. But also.
[0018]
Next, since the depth of the pore is 10 to 100,000 times as large as the pore diameter, most of the functional molecules adsorbed exist in the depth of the pore. Therefore, when the functional molecules are released to the external environment (e.g., vaporization into the air or dissolution in environmental water), the functional molecules near the opening of the pores are easily released, but the depth of the pores is reduced. Most of the functional molecules present on the side move to the vicinity of the opening of the pore over time and are gradually released. That is, these functional molecules are gradually released over an extremely long time compared to the time required for natural vaporization into air or dissolution and diffusion into environmental water in an unrestricted environment. Because
The depth of the pores is such that the honeycomb-shaped porous structure is formed by laminating silicon tetrahedral SiO 4 layered crystals in a wave-like curved state on the carrier for sustained release agent. Due to the point.
[0019]
Further, compared with conventional mica, kaolin, smectite clay mineral, silica gel, colloidal silica, zeolite, sepiolite, etc., the pore volume is extremely large at 0.1 cc / g or more. it can.
The size of the pore volume is attributable to the fact that the carrier for a sustained release agent is composed of thin layered crystals, and the layered crystals are directly used as the walls of the pores. That is, an extremely large pore volume can be obtained because the number of components constituting the wall of the pores is small compared to the number and size of the pores.
[0020]
By the way, most of the components of the carrier for sustained release agent of the present invention are SiO 2 harmless to the environment and living organisms. Also, the particle shape is granular, not fibrous or plate-like, which is harmful to the human body. Further, since the carrier for sustained release agent of the present invention is mainly composed of SiO 2 , it has a heat resistance of 700 ° C. or more, but in particular, a crystalline layered silicate having a water content of 10 wt% or more is used as a raw material. In this case, a carrier that can withstand a high temperature of 800 to 1000 ° C. is obtained.
[0021]
【The invention's effect】
The carrier for a sustained release agent of the present invention has a wide range of choices with respect to the type of drug and the like and the size of the functional molecule, and can be impregnated in a large amount, and can be expected to have a sustained release effect over a long period of time.
[0022]
Embodiment
Next, embodiments of the first invention and the second invention of the present application will be described.
[0023]
(Structure of carrier for sustained release agent)
In the carrier for sustained release agent of the present invention, the pore size of the pores can be variously controlled by, for example, selecting the molecular size of the organic substance for forming pores in the production process described below. Therefore, it is preferable to control the pore diameter so as to be in the range of 1 to 10 nm. This is because the pore size of the pores of the carrier for sustained release agent is desired to be about 10 to about 100 times the size of the functional molecule in order to have an optimal adsorption function for the functional molecule. This is because the pore diameter specifically corresponds to a range of 1 to 10 nm.
[0024]
When the pore diameter of the pores is less than 1 nm, it is difficult to adsorb the functional molecule or it is difficult to release the adsorbed molecule due to the insufficient pore diameter. When the pore size exceeds 100 nm, the pore size is too large, and the adsorption force for the functional molecule tends to be insufficient.
[0025]
The pore volume of the carrier for sustained release agent of the present invention can be variously controlled in the production process described later, for example, by selecting the amount of the organic substance used for pore formation. Therefore, it is preferable to control the pore volume so as to be 0.1 cc / g or more. If the pore volume is less than this, the adsorption amount of the drug or the like cannot always be satisfied.
[0026]
The depth of the pores in the carrier for sustained release agent of the present invention can be variously controlled by, for example, adjusting the particle size of the carrier for sustained release agent in the production process described below. Therefore, it is preferable to control the depth of the pores so that the depth is 10 to 100,000 times the pore diameter. In terms of a specific size, it is preferable that the depth is 10 nm to 100 μm. When the depth is less than 10 nm, it is difficult to expect a long-term sustained release effect of the functional molecule. When the depth exceeds 100 μm, a substantial part as a pore for sustained release is expected for a depth portion exceeding 100 μm. Difficult to do.
[0027]
Typical specific examples of the carrier for sustained release agent of the present invention include a layered silica porous body and a layered silica metal oxide porous body.
[0028]
As shown in FIGS. 1 and 2, the layered porous silica 1 is a honeycomb-shaped porous structure having a large number of pores 3 by laminating a layered crystal 2 of silicon tetrahedron SiO 4 in a state of being curved in a waveform. Is formed, and an interlayer cross-link of SiO 2 is formed by dehydration condensation of silicic acid at the joint 4 between the layers of the layered crystals. That is, the layered porous silica has a skeleton composition of SiO 2 (see FIG. 3).
[0029]
On the other hand, in the layered silica metal oxide porous body, a metal atom (M) other than silicon is bonded to a part of silicon constituting the layered crystal 2 of the silicon tetrahedral SiO 4 in the layered silica porous body 1. It was done. That is, the layered silica metal oxide porous body has a skeleton composition of a SiO 2 metal composite oxide.
[0030]
Examples of the metal atom (M) include aluminum (Al), zirconium (Zr), gallium (Ga), beryllium (Be), magnesium (Mg), yttrium (Y), lanthanum (La), tin (Sn), and lead. (Pb) or the like is used.
[0031]
(Method for producing layered porous silica)
Next, a typical method for producing a carrier for a sustained release agent will be described. This method includes an interlayer expansion step and a firing step. However, it does not mean that the range of the carrier for sustained release agent of the present invention is limited to those produced by these production methods.
[0032]
In the interlayer expansion step, a crystalline layered silicate such as kanemite is heated and stirred in an aqueous solution of exchangeable organic ions to introduce organic cations between layers of the layered crystal and to form an SiO 2 interlayer bridge. .
[0033]
The organic cation is introduced by exchanging with an alkali metal ion such as sodium ion contained between the layers of the silicon tetrahedron layer. However, since the organic cation is bulkier than the alkali metal ion, the crystalline phyllosilicate is used. Is widened between the layers. On the other hand, silanols (Si-OH) in the adjacent sheet layers are dehydrated and condensed with each other, except for the portion where the organic cations are introduced, to form siloxane bonds (Si-O-Si). In such a portion where the SiO 2 interlayer bridge is formed, the interlayer is not widened. As a result, a honeycomb porous structure as shown in FIGS. 1 and 2 is formed. Note that, unlike a clay, a crystalline layered silicate has no swelling property with respect to water, and therefore, it is difficult to expand the interlayer by a general water swelling method.
[0034]
The crystalline layered silicates of the silicon four crystalline layered sodium silicate containing sodium ions between layers of tetrahedral layer, for example, kanemite NaHSi 2 O 5 · 3H 2 O , di sodium silicate Na 2 O 5, makatite Na 2 Si 4 O 5 · 5H 2 O , Airaaito Na 2 Si 8 O 17 · xH 2 O, magadiite Na 2 Si 14 O 23 · xH 2 O, kenyaite Na 2 Si 20 O 41 · xH 2 O or the like representative and But not limited to them.
[0035]
Since the depth of the pores of the layered silica porous material matches the size of the plane aroma of the crystalline layered silicate as a raw material, the depth of the pores is adjusted by selecting the size of the crystalline layered silicate described above. it can. The size can be selected depending on the length of the crystallization treatment time when the crystalline layered silicate itself is synthesized by the crystallization treatment, and when the existing crystalline layered silicate is used, the pulverizing treatment is performed by appropriate means. Is possible.
[0036]
Among the crystalline layered silicates described above, those having layered crystals composed of a single silicon tetrahedral layer, such as kanemite, have a large surface area per unit weight. The surface area increases.
In the case of a layered porous silica produced using kanemite, the upper and lower sheet layers are partially joined while maintaining a single-layer structure, so that a typical honeycomb-shaped porous structure is obtained.
[0037]
The water content of the crystalline layered silicate is desirably 10% by weight or more. In this case, the crystalline layered silicate is well dispersed in water in the interlayer expansion step, and the ion exchange between the alkali metal ion and the organic cation between the layers is sufficiently performed in a short time. When the water content is less than 10% by weight, the crystalline layered silicate tends to aggregate, and the above-mentioned ion exchange hardly occurs.
[0038]
When a crystalline layered silicate having a water content of 10 wt% or more is used as a raw material, the specific surface area of the porous layered silica becomes particularly large at 1000 m 2 / g or more, and the residual amount of alkali metal ions is 0.2 wt% or less. become. For this reason, it is difficult to crystallize even at a high temperature of 800 ° C. to 1000 ° C., and the carrier becomes an excellent heat resistant carrier with stable pores.
[0039]
The type of the organic cation is not limited, but preferably, an organic onium ion, particularly an alkylammonium ion, is excellent in terms of ease of sample preparation and high ion exchange capacity.
Other preferred organic cations include alkyltrimethylammonium ion, hexadecyltrimethylammonium ion, tetradecyltrimethylammonium ion, dimethyldialkylammonium ion, and benzyltrimethylammonium ion.
[0040]
When cetyltrimethylammonium ion is used as an example, a pore having a pore diameter of about 3 nm and a pore volume of about 1 cc / g can be obtained.
[0041]
Since the molecular size of the organic cation directly determines the pore size in the layered porous silica, the pore size can be arbitrarily designed by selecting the organic cation. When a single type of organic cation is used, the pore size distribution can be designed almost uniformly in a narrow range, and when a plurality of types of organic cations having different molecular sizes are used, the pore size can be widely distributed. .
[0042]
Next, in the firing step, the solid content obtained in the interlayer expansion step is filtered and dried, and then fired. By such an operation, the organic cations introduced in the interlayer expansion step are removed from the interlayer, and a layered silica-rich pore is completed.
[0043]
The above calcination is usually preferably performed at a temperature of about 500 to 1000 ° C. for several hours. If the firing temperature is too high, the porous structure may collapse, while if the firing temperature is too low, the formation of pores may be insufficient.
[0044]
(Production method of layered silica metal oxide porous body)
In the production of the layered porous silica metal oxide, after the solid content obtained in the above-mentioned interlayer expansion step is filtered, a metal addition step of bringing the solid into contact with a salt of a metal different from silicon is set, followed by firing.
[0045]
In the metal addition step, the type and use mode of the metal salt are not limited. For example, a solution of the metal salt may be used, or the powder obtained by drying the solid content may be mixed with the metal salt powder and brought into contact.
[0046]
(Use of carrier for sustained release)
The drug or the like to be impregnated into the sustained release carrier can be freely selected depending on the application. Examples thereof include salicion, marathon, dimethoate, diazinon, diethylamide, 2-ethylthiomethylphenyl methylcarbamate, thiophosphoric acid, 2-methyl-3-cyclohexene-1-carboxylic acid and the like as pesticides for pesticides. There are fungicides such as copper nonylphenolsulfonate, zineb, anzeb, thiuram, polyoxin, cycloheximide and the like, and herbicides such as clomethoxynil, nitralin, 3- (3,3-dimethylureido) phenyl = tert-butylcarbamate and the like. There are hinokiol as an antibacterial agent, a phenolic compound as an insect repellent, a condensate of bisphenol and cyclohexane such as 2,2-bis (4-hydroxyphenyl) propane as an antioxidant for plastics, and a disalicylresor. Phosphites, etc .; anti-aging agents include amine compounds such as phenyl-β-naphthylamine; phenol compounds such as styrenated phenol; thiourea derivatives; benzimidazoles; and fertilizers such as urea, ammonium sulfate, There are ammonia compounds such as ammonium nitrate, phosphorus compounds such as lime superphosphate and lime heavy phosphate, and compounds containing potassium.
[0047]
These agents and the like may be impregnated into the sustained-release agent carrier in any combination at an appropriate ratio according to the purpose.
[0048]
The method for impregnating the sustained release agent carrier with the drug or the like is not limited, and any method can be used. The following is an example of such a method. These method examples may be used alone or in an appropriate combination.
[0049]
{Circle around (1)} The carrier for a sustained release agent and a drug are sealed in a container, heated to gasify the functional molecules, and the carrier for a sustained release agent is exposed to this gas, so that A method of adsorbing functional molecules on a surface.
[0050]
(2) A method in which a drug or the like is heated and melted, and a carrier for a sustained release agent is immersed in the melt to impregnate the drug or the like.
[0051]
(3) A method in which a drug or the like is dissolved in a solvent, the solvent is evaporated, the carrier for a sustained release agent is exposed to the vapor, and the drug or the like is impregnated in the carrier for a sustained release agent.
[0052]
(4) In addition, a method of mixing the carrier for sustained-release agent and the drug at an appropriate amount ratio and then heating the mixture to a temperature equal to or higher than the melting point of the drug, etc .; A method of synthesizing a drug or the like in pores by heating or the like after impregnating the polymer.
[0053]
After the impregnation treatment as described above, by further covering the surface of the carrier for a sustained release agent with a polymer film, dextrin, or the like, the release rate of the drug or the like can be adjusted to be further reduced. On the other hand, when the concentration of the sustained-release agent produced by the above process is too high, the amount may be increased with an inexpensive powder such as clay or silica gel or a binder.
[0054]
The sustained-release agent using the carrier for sustained-release agent of the present invention may be used as it is, or may be molded into an appropriate shape according to the method of using other sustained-release agents, or may be enclosed in a ventilated or water-permeable container. Used.
[0055]
【Example】
(Example 1)
Amorphous hydrated sodium silicate was calcined in air at 700 ° C. for 6 hours, dispersed in 1000 ml of water, and stirred for 3 hours to synthesize kanemite as a crystalline layered silicate.
[0056]
Next, 50 g of the above kanemite was dispersed in 1 liter of a 0.1 mol / dm 3 cetyltrimethylammonium chloride aqueous solution, and the mixture was stirred at 70 ° C. for 3 hours, and kanemite was ion-exchanged with cetyltrimethylammonium ions.
[0057]
Then, after cooling to room temperature, a 2N-HCl aqueous solution was added to adjust the pH to 8.5, followed by filtration and washing with water. Next, this was dried and calcined at 700 ° C. for 6 hours in the air to obtain a powder of a layered porous silica.
[0058]
(Example 2)
Dithiophosphoric acid-O, O-dimethyl-S- (1,2-diethoxycarbonylethyl) (a so-called marathon agent) was dissolved in acetone at a concentration of 30% by weight, and 10 g of the layered porous silica of Example 1 was dissolved in 50 cc of this solution. Was added and stirred, and then filtered to remove acetone by drying. The impregnation amount of the marathon agent molecule was measured by thermogravimetric analysis and found to be 20 wt%.
[0059]
(Comparative Example 1)
When 10 g of synthetic zeolite (manufactured by Tosoh Corporation, standard No. A-3) was impregnated with a marathon agent under the same conditions as in Example 2, the impregnation amount was 3 wt%.
[0060]
(Example 3)
10 g of the layered silica porous material impregnated with the marathon agent obtained in Example 2 was mixed with 50 g of kaolin (Hydnite-PXS manufactured by Georgia Kaolin Co., Ltd.) in a mortar, placed in a glass tube having an inner diameter of 10 mmφ and a length of 20 mm, and placed in a glass tube. A filter paper was applied to the lower end of, and distilled water was flown from above at a rate of 1 cc / min by a liquid sending pump at room temperature. The TOC (Total Organic Carbon) in the liquid passing through the glass tube was analyzed using a Model 915B Total Organic Carbon Analyzer manufactured by Beckman, and based on this, the amount of the marathon agent dissolved in water (the amount released from the layered porous silica) was determined. Estimated. As a result, the dissolved amount was 10 ppm.
[0061]
(Comparative Example 2)
2 g of a marathon agent was mixed in a mortar with 50 g of the same kaolin used in Example 3, and the amount of the marathon agent dissolved in water was estimated by the same test method as in Example 3. As a result, the dissolved amount was 200 ppm.
[0062]
(Example 4)
10 g of the layered porous silica obtained in Example 1 was combined with 5 g of Nocrack 810-NA (N-phenylene-N'-isopropyl-P-phenylenediamine), an antioxidant for rubber manufactured by Ouchi Shinko Chemical Co., Ltd., and an alumina mortar. After sufficiently mixing the mixture, the mixture was sealed in a glass container and heated at 85 ° C. for 20 minutes to melt and impregnate Nocrack 810-NA into the layered porous silica material.
[0063]
Thereafter, the Nocrack 810-NA impregnated layered porous silica material was taken out of the glass container, and 100 parts by weight of natural rubber RSS # 1, 5 parts by weight of zinc oxide, and 1 part by weight of stearic acid were added to 15 parts by weight of the porous body. 2.5 parts by weight of sulfur and 1 part by weight of a vulcanization accelerator (Noxera-MSA-F) were blended and vulcanized at 140 ° C. for 25 minutes.
[0064]
After the above vulcanization treatment, the amount of volatilization of Nocrack 810-NA after a predetermined number of days was treated at 80 ° C. using a gear type aging tester according to JIS 63-1 air heating aging test method. After the heating, the weight loss rate (%) was examined. As a result, the loss rate of Nocrack 810-NA impregnated in the layered porous silica was 20% after 5 days, 25% after 10 days, and 30% after 20 days.
[0065]
(Comparative Example 3)
With respect to 5 parts by weight of Nocrack 810-NA, 100 parts by weight of natural rubber RSS # 1, 5 parts by weight of zinc oxide, 1 part by weight of stearic acid, 2.5 parts by weight of sulfur, and a vulcanization accelerator (Noxcela MSA-F) was mixed with 1 part by weight, and vulcanization treatment was performed at 140 ° C. × 25 minutes. The weight loss of Nocrack 810-NA was examined in the same manner as in Example 4. 73% after 10 days and 78% after 20 days.
[0066]
(Example 5)
The vulcanized rubber obtained in Example 4 was subjected to an ozone deterioration test (JIS-K-6301). That is, the vulcanized rubber was exposed to 50 pphm of ozone at 40 ° C. for 5 hours in a state where the vulcanized rubber was extended by 10%, and the presence or absence of cracks in the rubber was observed, but no crack was observed. On the other hand, when the vulcanized rubber obtained in Comparative Example 3 was subjected to the same ozone deterioration test, small cracks were slightly observed.
[0067]
(Example 6)
After the vulcanized rubber obtained in Example 4 and the vulcanized rubber obtained in Comparative Example 3 were each extracted with acetone at room temperature (for 14 days, the acetone was exchanged three times), the same conditions as in Example 5 were used. For an ozone degradation test. As a result, no crack was observed in the vulcanized rubber obtained in Example 4, and a number of cracks occurred in the vulcanized rubber obtained in Comparative Example 3.
[0068]
(Evaluation of Examples 5 and 6)
The ozone deterioration tests of Examples 5 and 6 have characteristics of an accelerated test. From these test results, it was confirmed that the Nocrack 810-NA-impregnated layered silica porous material gradually released Nocrack 810-NA over a long period of time. .
[Brief description of the drawings]
FIG. 1 is a view showing a porous structure of a carrier for sustained release agent of the present invention.
FIG. 2 is a view showing a main part of a porous structure of the carrier for sustained release agent of the present invention.
FIG. 3 is a view showing a skeletal structure of the carrier for sustained release agent of the present invention.

Claims (2)

珪素四面体SiO4の層状結晶が波形に湾曲した状態で積層することによりハニカム状の多孔構造を形成するとともに、この積層した層状結晶の層間には珪酸の脱水縮合によるSiO2の層間架橋が形成されることにより、多孔性の担体が構成されており、孔径が1〜10nmの範囲にあり、かつ奥行きが孔径の10倍〜100,000倍の範囲にある多孔性の担体であって、その細孔容量が0.1cc/g以上であることを特徴とする徐放剤用担体。Layered crystals of silicon tetrahedral SiO 4 are laminated in a wave-like curved state to form a honeycomb-like porous structure, and between the layers of the laminated layered crystals, interlayer crosslinking of SiO 2 is formed by dehydration condensation of silicic acid. Thereby forming a porous carrier, the porous carrier having a pore size in the range of 1 to 10 nm, and a depth in the range of 10 to 100,000 times the pore size. A carrier for a sustained release agent, which has a pore volume of 0.1 cc / g or more. 珪素四面体SiO4の層状結晶が波形に湾曲した状態で積層することによりハニカム状の多孔構造を形成するとともに、この積層した層状結晶の層間には珪酸の脱水縮合によるSiO2の層間架橋が形成されることにより、多孔性の担体が構成されており、孔径が1〜10nmの範囲にあり、かつ奥行きが孔径の10倍〜100,000倍の範囲にある多孔性の担体であって、その細孔容量が0.1cc/g以上である徐放剤用担体と、前記徐放剤用担体に含浸された薬剤とからなることを特徴とする徐放剤。Layered crystals of silicon tetrahedral SiO 4 are laminated in a wave-like curved state to form a honeycomb-like porous structure, and between the layers of the laminated layered crystals, interlayer crosslinking of SiO 2 is formed by dehydration condensation of silicic acid. Thereby forming a porous carrier, the porous carrier having a pore size in the range of 1 to 10 nm, and a depth in the range of 10 to 100,000 times the pore size. A sustained-release agent comprising: a carrier for a sustained-release agent having a pore volume of 0.1 cc / g or more; and a drug impregnated in the carrier for a sustained-release agent.
JP17473593A 1993-06-21 1993-06-21 Carrier for sustained release Expired - Lifetime JP3572419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17473593A JP3572419B2 (en) 1993-06-21 1993-06-21 Carrier for sustained release

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17473593A JP3572419B2 (en) 1993-06-21 1993-06-21 Carrier for sustained release

Publications (2)

Publication Number Publication Date
JPH0711233A JPH0711233A (en) 1995-01-13
JP3572419B2 true JP3572419B2 (en) 2004-10-06

Family

ID=15983756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17473593A Expired - Lifetime JP3572419B2 (en) 1993-06-21 1993-06-21 Carrier for sustained release

Country Status (1)

Country Link
JP (1) JP3572419B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07901B2 (en) * 1991-10-18 1995-01-11 信 高橋 Non-removing earth construction device for foundation piles and non-removing earth construction method for foundation piles
JP2001026504A (en) * 1999-07-13 2001-01-30 Mizusawa Ind Chem Ltd Sustained release antibacterial agent
GB0420016D0 (en) 2004-09-09 2004-10-13 Leuven K U Res & Dev Controlled release oral delivery system
MX2012011104A (en) * 2010-03-30 2012-11-29 Univ Central Florida Res Found Multifunctional silica-based compositions and gels, methods of making them, and methods of using them.

Also Published As

Publication number Publication date
JPH0711233A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
TW422725B (en) An air filter, the manufacturing method, and a high efficiency air cleaning apparatus
Alvarez Sepiolite: properties and uses
US4959268A (en) Polymer containing amorphous aluminosilicate particles and process for producing the same
AU610159B2 (en) Method for enhancing water retention in soil
JP3572419B2 (en) Carrier for sustained release
TW201526984A (en) Chemical filter
Wang et al. Vermiculite nanomaterials: Structure, properties, and potential applications
JP2001070741A (en) Humidity control agent
KR100831348B1 (en) Nanoporous Bioactive Glass With 3-D Pore Structure and Preparation Method Thereof
Mathew et al. A sustained release anchored biocide system utilizing the honeycomb cellular structure of expanded perlite
KR20170013603A (en) A composite for forming the eco-board and the method therefor
JP2645483B2 (en) Deodorant
KR101168010B1 (en) The multi-functional eco-friendly interior panel for living space, based on aqueous silicate binder with variety of mineral fine powders that possess high anti-microbacteral with execllent mildew-resistant effect and should be able to produce hign ecological functionality, the composition and eco-friendly interior panel and making method thereof
DE19954769A1 (en) Microcapsules with a silicone wall containing a solid adsorbent loaded with an adsorptive substance used as a latent heat storage medium e.g. in fireproof linings or thermal insulation for buildings
JP4316189B2 (en) Copper compound-containing functional material and method for producing the same
US5439866A (en) Silver-containing tobermorite
JP2002263479A (en) Adsorbent, air purification filter and method for manufacturing the same
JP2000302436A (en) Smectite composite, its production and use
JP3436470B2 (en) Deodorant
JP2583151B2 (en) Method for producing deodorant composite material
KR20010103389A (en) Organic and Inorganic Complex Porous Products
JPH11164877A (en) Harmful material removing agent and photocatalyst carrier
WO2022249909A1 (en) Antiviral composition and antiviral member
CN108993403A (en) A kind of adsorbent for building and its manufacturing method
JPH07330527A (en) Antimicrobial ceramic

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

EXPY Cancellation because of completion of term