JP3511128B2 - Method for producing metal fine particles and method for supporting fine particles on porous carrier - Google Patents

Method for producing metal fine particles and method for supporting fine particles on porous carrier

Info

Publication number
JP3511128B2
JP3511128B2 JP09383098A JP9383098A JP3511128B2 JP 3511128 B2 JP3511128 B2 JP 3511128B2 JP 09383098 A JP09383098 A JP 09383098A JP 9383098 A JP9383098 A JP 9383098A JP 3511128 B2 JP3511128 B2 JP 3511128B2
Authority
JP
Japan
Prior art keywords
fine particles
metal
polyhydric alcohol
solution
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09383098A
Other languages
Japanese (ja)
Other versions
JPH11246901A (en
Inventor
あかね 宮崎
健二 竹下
研一 秋鹿
義夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP09383098A priority Critical patent/JP3511128B2/en
Publication of JPH11246901A publication Critical patent/JPH11246901A/en
Application granted granted Critical
Publication of JP3511128B2 publication Critical patent/JP3511128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は各種金属イオンを多
価アルコール中で還元して高度に分散した金属微粒子を
得る方法に関するものである。
The present invention relates are those about the way of obtaining a highly dispersed metal particles by reducing the various metal ions in the polyvalent alcohol.

【0002】このように高度に分散した安定な金属微粒
子は、各種金属または金属酸化物の微粒子を多孔質担体
表面に分散状に担持させてなる触媒、吸着剤、吸収剤;
各種金属または金属酸化物の微粒子をガラス質に分散状
に担持させてなる機能性ガラス;各種金属または金属酸
化物の微粒子を油脂または樹脂に分散状に担持させてな
る塗料(特に機能性塗料);各種金属または金属酸化物
の微粒子をテープ状のプラスチックフィルムに付着させ
てなる機能性フィルム(特に磁気記憶媒体)などの原材
料として重要なものである。
Such highly dispersed and stable metal fine particles are catalysts, adsorbents and absorbents which are obtained by supporting fine particles of various metals or metal oxides on the surface of a porous carrier in a dispersed manner.
Functional glass obtained by supporting fine particles of various metals or metal oxides in a glassy state in a dispersed manner; paint obtained by supporting fine particles of various metals or metal oxides in a fat or resin in a dispersed manner (particularly functional paint) It is important as a raw material for a functional film (particularly a magnetic storage medium) obtained by adhering fine particles of various metals or metal oxides to a tape-shaped plastic film.

【0003】[0003]

【従来技術および解決すべき課題】金属または金属酸化
物の微粒子を製造するには、比較的蒸気圧の高い金属化
合物を加熱蒸散させ、気相で若しくは固体表面へ蒸気が
吸着した状態で蒸気圧の低い化合物に変性する手法(エ
アロゾル法、CVD法、ALE法など)が知られてい
る。
2. Description of the Related Art In order to produce fine particles of metal or metal oxide, a metal compound having a relatively high vapor pressure is vaporized by heating and vapor pressure is vaporized in a vapor phase or in a state where vapor is adsorbed on a solid surface. There are known methods (aerosol method, CVD method, ALE method, etc.) for denaturing a compound having a low chemical composition.

【0004】しかしながら、これらの手法は、適用する
金属種に制限があり、また実製造には特殊な設備が必要
であるため製造コストの点で工業的大量生産に適してい
ない。
However, these methods are not suitable for industrial mass production in terms of production cost because the metal species to be applied are limited and special equipment is required for actual production.

【0005】さらに、これらの手法を使用しても粒径1
0nm以下の微粒子を得ることは困難である。
Further, even if these techniques are used, the particle size is 1
It is difficult to obtain fine particles of 0 nm or less.

【0006】金属微粒子製造の他の方法として、金属ア
ルコラートの加水分解を利用するゾル・ゲル法も知られ
ているが、これも同様に製造コストが高く、また粒径数
nmの安定した微粒子を得ることは困難である。
As another method for producing metal fine particles, a sol-gel method utilizing the hydrolysis of metal alcoholate is also known, but this is also high in production cost, and stable fine particles having a particle diameter of several nm can be obtained. Hard to get.

【0007】このように安定した微粒子の取得が困難で
ある理由は、微粒子の表面が化学的にアクティブであ
り、微粒子同士が容易に凝集してしまうためであると考
えられる。
It is considered that the reason why it is difficult to stably obtain fine particles is that the surfaces of the fine particles are chemically active and the fine particles easily aggregate.

【0008】また、固体表面に粒径数nmの微粒子を安
定的に高密度に保持させる技術は知られていない。
Further, there is no known technique for stably holding fine particles having a particle size of several nm on a solid surface at a high density.

【0009】このような現状より、安定した金属または
金属酸化物の微粒子を得、またこれを固体表面に安定的
に高密度に保持させるには、以下の課題を解決する必要
がある。
Under these circumstances, the following problems must be solved in order to obtain stable metal or metal oxide fine particles and to stably hold them on a solid surface at a high density.

【0010】・微細な一次粒子を簡便な方法で得るこ
と、 ・生成した一次粒子の凝集を防止すること、 ・得られた微粒子を多孔質担体の細孔内に保持させるこ
と。
To obtain fine primary particles by a simple method, to prevent agglomeration of the generated primary particles, and to keep the obtained fine particles in the pores of the porous carrier.

【0011】本発明は上記課題を解決することを企図し
たもので、その目的は種々の金属種について低コストで
安定した金属または金属酸化物の微粒子を製造すること
ができる方法を提供することにある。
The present invention is intended to solve the above problems, and an object thereof is to provide a method capable of producing stable metal or metal oxide fine particles at low cost for various metal species. Oh Ru.

【0012】[0012]

【課題を解決するための手段】本発明による金属微粒子
の製造方法は、ルテニウム塩を多価アルコールに溶解さ
せ、得られた溶液を100〜250℃の温度で加熱して
多価アルコール中に金属微粒子を生成させた後で該溶液
を急冷し、次いで、pH調整剤を添加して液のpHを2
以下または7以上に調整するにより金属微粒子の凝集を
防止することを特徴とする。この方法によれば、金属塩
すなわちルテニウム塩の多価アルコール溶液を上記温度
で加熱することにより、溶解した金属を溶媒である多価
アルコールと反応させ、多価アルコールに不溶な還元金
属微粒子を生成させることができる。
[ MEANS FOR SOLVING THE PROBLEMS] Metal fine particles according to the present invention
The manufacturing method of is that ruthenium salt is dissolved in polyhydric alcohol.
And heat the resulting solution at a temperature of 100-250 ° C.
After forming the metal fine particles in the polyhydric alcohol, the solution
And then add a pH adjuster to adjust the pH of the solution to 2
By adjusting below or 7 or more
It is characterized by preventing. According to this method, metal salts
That is , by heating the polyhydric alcohol solution of the ruthenium salt at the above temperature, the dissolved metal can be reacted with the polyhydric alcohol that is a solvent to form reduced metal fine particles insoluble in the polyhydric alcohol.

【0013】本発明による金属微粒子の製造方法におい
て用いる多価アルコールは、炭素鎖中に複数のアルコー
ル性水酸基(−OH)を有する有機化合物であって、具
体例としてはエチレングリコール、プロピレングリコー
ル、ポリエチレングリコール、ポリプロピレングリコー
ルが挙げられる。これらは単独で用いても2種以上の混
合物で用いてもよい。本発明方法では、金属の溶解能を
持つものであれば如何なる多価アルコールでも使用可能
である。
The polyhydric alcohol used in the method for producing metal fine particles according to the present invention is an organic compound having a plurality of alcoholic hydroxyl groups (--OH) in the carbon chain, and specific examples are ethylene glycol, propylene glycol and polyethylene. Examples thereof include glycol and polypropylene glycol. These may be used alone or in a mixture of two or more. In the method of the present invention, any polyhydric alcohol can be used as long as it has a metal-dissolving ability.

【0014】多価アルコールは生成した金属微粒子と一
種の水素結合を起こし易く、その保護皮膜作用で生成し
た一次粒子の会合を防止し、直径10nm以下の比較的
安定な微粒子を得ることができる。また、多価アルコー
ルは室温付近で比較的粘性が高く、これによっても粒子
の会合を防止する物質である。
The polyhydric alcohol easily forms a kind of hydrogen bond with the produced metal fine particles, prevents the association of the primary particles produced by the protective film action, and can obtain relatively stable fine particles having a diameter of 10 nm or less. Further, the polyhydric alcohol is a substance having a relatively high viscosity near room temperature, which also prevents the association of particles.

【0015】多価アルコールによる金属の還元作用は、
触媒などを必要とせず、温度100〜250℃の加熱の
みで容易に生起される。これは、生成した金属微粒子に
目的外の物質が混入する可能性が無いことを意味する。
The reducing action of a metal with a polyhydric alcohol is
It does not require a catalyst and is easily generated only by heating at a temperature of 100 to 250 ° C. This means that there is no possibility that an unintended substance will be mixed into the generated metal fine particles.

【0016】ルテニウム塩の形態としては、金属のハロ
ゲン化物、酸化物、硝酸塩、有機酸塩、錯化合物例えば
アンモニウム錯体などが例示される。
Examples of the form of the ruthenium salt include metal halides, oxides, nitrates, organic acid salts and complex compounds such as ammonium complexes.

【0017】多価アルコール中の溶解金属塩の濃度は、
金属塩の種類、多価アルコールの種類などによって定ま
る。一般に、この濃度が高いと反応器容積当たりの金属
微粒子の収量は向上するが、微粒子が凝集する可能性が
高く、粒径5nm以下の金属微粒子ならびにそれを含む
安定なコロイド溶液は得にくい。金属塩の濃度が20ミ
リモル/リットル以下であれば著しい凝集は起こらず、
粒径5nm以下の金属微粒子が得られ易い。したがっ
て、多価アルコール中の金属塩の濃度は好ましくは0.
1〜20ミリモル/リットル、より好ましくは0.5〜
10ミリモル/リットルである。
The concentration of the dissolved metal salt in the polyhydric alcohol is
It depends on the type of metal salt and the type of polyhydric alcohol. Generally, when the concentration is high, the yield of metal fine particles per reactor volume is improved, but the fine particles are likely to aggregate, and it is difficult to obtain metal fine particles having a particle size of 5 nm or less and a stable colloidal solution containing the same. If the concentration of the metal salt is 20 mmol / liter or less, no remarkable aggregation occurs,
It is easy to obtain fine metal particles having a particle size of 5 nm or less. Therefore, the concentration of the metal salt in the polyhydric alcohol is preferably 0.
1 to 20 mmol / liter, more preferably 0.5 to
It is 10 mmol / liter.

【0018】本発明による金属微粒子の製造方法におい
て、複数種の金属塩を同時に多価アルコールに溶解させ
ることにより、多価アルコール中で、複数種の金属塩の
組成に応じた複合金属ないしは合金の微粒子を生成させ
ることができる。この現象は、多価アルコール還元によ
り生成した原子状金属は非常に活性であり、周辺の金属
微粒子と衝突すれば、無作為的に結合する(これは原子
の結合であるので反応と同意義である)ことを示す。生
成した合金粒子は金相学的な制約(溶融金属の相互溶解
度など)を受けず、混合溶液の組成と還元条件によって
一義的に定まる組成となる。この混合微粒子を適正な条
件で酸化すれば、フェイズダイアグラムに拘束されない
で複合酸化物微粒子が得られる。
In the method for producing fine metal particles according to the present invention, a plurality of kinds of metal salts are simultaneously dissolved in a polyhydric alcohol to form a composite metal or alloy according to the composition of the plurality of kinds of metal salts in the polyhydric alcohol. Fine particles can be generated. This phenomenon is because the atomic metal produced by the reduction of the polyhydric alcohol is very active, and if it collides with the surrounding metal particles, it will bond randomly (this is a bond of atoms, so it has the same meaning as the reaction). Yes). The produced alloy particles are not subject to metallurgical restrictions (such as mutual solubility of molten metals) and have a composition that is uniquely determined by the composition of the mixed solution and the reducing conditions. If the mixed fine particles are oxidized under appropriate conditions, composite oxide fine particles can be obtained without being restricted by the phase diagram.

【0019】金属微粒子を生成させた後、金属微粒子を
含む多価アルコールにpH調整剤を添加して溶液のpH
を好ましくは2以下または7以上、より好ましくは9以
上に調整することにより、金属微粒子の凝集を防止し安
定なコロイド溶液を製造することもできる。pH調整剤
としては、酸、アルカリ、塩類水溶液などが適宜用いら
れる。このように、金属微粒子を生成させた後、金属微
粒子を含む多価アルコールのpHを2以下または7以上
に調整すると、金属微粒子表面が強く帯電し、その結果
粒子間に反発力が生じて、凝集などを起こすことがなく
なる。よってこの金属微粒子含有多価アルコールを安定
なコロイド溶液として長期間保存することができる。こ
うして得られたコロイド溶液は、取り扱いが簡便であ
り、また、油性コロイドとすれば、各種の油脂、樹脂に
コロイド溶液をそのまま混入することができるので、各
種金属または金属酸化物の微粒子を油脂または樹脂に分
散状に担持させてなる塗料(特に機能性塗料)や;各種
金属または金属酸化物の微粒子をテープ状のプラスチッ
クフィルムに付着させてなる機能性フィルム(特に磁気
記憶媒体)などの製造に好適に使用できる。
After the metal fine particles are formed, a pH adjusting agent is added to the polyhydric alcohol containing the metal fine particles to adjust the pH of the solution.
Is preferably adjusted to 2 or less, or 7 or more, more preferably 9 or more to prevent aggregation of the metal fine particles and to produce a stable colloidal solution. As the pH adjuster, acid, alkali, aqueous salt solution, etc. are appropriately used. Thus, when the pH of the polyhydric alcohol containing the metal fine particles is adjusted to 2 or less or 7 or more after the metal fine particles are generated, the surfaces of the metal fine particles are strongly charged, and as a result, a repulsive force is generated between the particles, No aggregation will occur. Therefore, this polyhydric alcohol containing fine metal particles can be stored as a stable colloidal solution for a long period of time. The colloidal solution thus obtained is easy to handle, and if it is an oily colloid, it is possible to mix the colloidal solution as it is into various fats and oils and resins, and therefore fine particles of various metals or metal oxides are For the production of paints (particularly functional paints) that are dispersed and supported on resins; and functional films (particularly magnetic storage media) that are made by adhering fine particles of various metals or metal oxides to tape-shaped plastic films. It can be preferably used.

【0020】本発明による金属微粒子の製造後の多価ア
ルコール溶液には、溶解した金属化合物に付随する陰イ
オンや、反応によって生成した微量の水、アルデヒド、
有機酸などが存在する。これらは、蒸留などにより容易
に多価アルコールと分離除去できるので、多価アルコー
ルの回収、再利用は簡単に行える。
In the polyhydric alcohol solution after the production of the metal fine particles according to the present invention, anions associated with the dissolved metal compound, a trace amount of water produced by the reaction, aldehyde,
Organic acids etc. are present. Since these can be easily separated and removed from the polyhydric alcohol by distillation or the like, the polyhydric alcohol can be easily recovered and reused.

【0021】[0021]

【発明の実施の形態】つぎに、本発明を実施例によって
具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be specifically described with reference to Examples.

【0022】実施例1 (1) エチレングリコールによるRu3+の還元 塩化ルテニウム(III )3水和物78.5mgをエチレ
ングリコール1リットルに溶解し、0.3ミリモル/リ
ットルの溶液を調製した。これを還流器付きのガラス反
応器に入れ、Nガスを通じながら180℃のオイル
バス中で0.5時間攪拌下に加熱した。
Example 1 (1) Reduction of Ru 3+ with ethylene glycol 78.5 mg of ruthenium (III) chloride trihydrate was dissolved in 1 liter of ethylene glycol to prepare a 0.3 mmol / liter solution. This was placed in a glass reactor equipped with a reflux condenser, and heated with stirring in an oil bath at 180 ° C. for 0.5 hours while passing N 2 gas.

【0023】ついで、反応器を氷冷ウオーターバスで急
冷し、固形分(微粒子)を含む“A液”を得た。A液を
濾過し、微粒子を得た。
Then, the reactor was rapidly cooled in an ice-cooled water bath to obtain "A liquid" containing solid content (fine particles). The solution A was filtered to obtain fine particles.

【0024】得られた微粒子を乾燥後X線回折(XR
D)で同定した。図1にX線回折パターンを示す。得ら
れた微粒子は完全なヘキサゴナル結晶のRu金属である
と同定することができた。
The obtained fine particles were dried and then subjected to X-ray diffraction (XR
It was identified in D). The X-ray diffraction pattern is shown in FIG. The obtained fine particles could be identified as Ru metal of a perfect hexagonal crystal.

【0025】さらに、微粒子を透過型電子顕微鏡(TE
M)で観察した。その結果、微粒子は粒径5nm以下の
一次微粒子が50nm程度まで凝集したものであること
がわかった。図2にこの電子顕微鏡写真を示す。
Further, the fine particles are examined by a transmission electron microscope (TE
M). As a result, it was found that the fine particles were primary fine particles having a particle diameter of 5 nm or less aggregated to about 50 nm. This electron micrograph is shown in FIG.

【0026】微粒子を除いた後の濾液をアルゴンプラズ
マ発光分析機(ICP)で分析した。その結果、Ruの
残留は認められなかった。
The filtrate after removing fine particles was analyzed by an argon plasma emission spectrometer (ICP). As a result, Ru did not remain.

【0027】(2) 凝集の防止 実施例1と同様の操作で得たA液のpHを測定したとこ
ろ、3前後であった。レーザードップラー電気泳動装置
でA液中の微粒子のゼータ電位を測定したところ、+2
5mVの値を得た。
(2) Prevention of aggregation The pH of solution A obtained in the same manner as in Example 1 was measured and found to be around 3. When the zeta potential of the fine particles in solution A was measured with a laser Doppler electrophoresis device, it was +2
A value of 5 mV was obtained.

【0028】A液に0.1Nの塩酸またはアンモニアの
水溶液を滴下し、pHを1〜10の範囲で変動させて、
ゼータ電位の変化を計測した。この結果を図3に示す。
An aqueous solution of 0.1N hydrochloric acid or ammonia was added dropwise to the liquid A, and the pH was changed within the range of 1 to 10,
The change in zeta potential was measured. The result is shown in FIG.

【0029】pH2以下または7以上、特に9以上では
ゼータ電位の絶対値が急激に上昇することがわかる。こ
のことからpHを2以下または7以上、特に9以上に調
整すれば金属一次微粒子の帯電量が増加し、靜電斥力に
より一次微粒子の凝集が防止できることがわかる。
It can be seen that the absolute value of the zeta potential sharply rises when the pH is 2 or less or 7 or more, particularly 9 or more. From this, it is understood that when the pH is adjusted to 2 or less, or 7 or more, and particularly 9 or more, the charge amount of the metal primary fine particles increases and the aggregation of the primary fine particles can be prevented by the repulsive force of the metal.

【0030】(3) 金属コロイドの調製 A液に0.1Nのアンモニア水を滴下し、pHを10に
調整した後、液を激しく攪拌しながら10時間室温で放
置した。得られた金属コロイド溶液を“B液”とする。
(3) Preparation of Metal Colloid After 0.1N ammonia water was added dropwise to solution A to adjust the pH to 10, the solution was left for 10 hours at room temperature with vigorous stirring. The obtained metal colloid solution is referred to as "B liquid".

【0031】B液は、攪拌を止め1週間静置しても沈殿
を生ずることがなかった。ガラス板上で溶媒を低温で蒸
発させ、得られた微粒子をTEM観察したところ、粒径
10〜20nmの二次微粒子の形成が認められた。
The solution B did not precipitate even if the stirring was stopped and the solution was allowed to stand for 1 week. When the solvent was evaporated at a low temperature on the glass plate and the obtained fine particles were observed by TEM, formation of secondary fine particles having a particle size of 10 to 20 nm was confirmed .

【0032】[0032]

【発明の効果】本発明の金属微粒子の製造方法によれ
ば、低コストで安定したルテニウム金属または金属酸化
物の微粒子を製造することができる。
According to the method for producing metal fine particles of the present invention, it is possible to produce stable ruthenium metal or metal oxide fine particles at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 微粒子のX線回折パターンを示すグラフであ
る。グラフ中の縦線は金属ルテニウムの回折パターン位
置を示す。
FIG. 1 is a graph showing an X-ray diffraction pattern of fine particles. The vertical line in the graph indicates the position of the diffraction pattern of metallic ruthenium.

【図2】 微粒子の透過型電子顕微鏡写真である。FIG. 2 is a transmission electron micrograph of fine particles.

【図3】 pHとゼータ電位の関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between pH and zeta potential.
It

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−222413(JP,A) 特開 平6−39293(JP,A) 特開 平7−224306(JP,A) 特開 平7−284666(JP,A) 特開 平9−256079(JP,A) 特開 昭59−173206(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 9/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-5-222413 (JP, A) JP-A-6-39293 (JP, A) JP-A-7-224306 (JP, A) JP-A-7- 284666 (JP, A) JP 9-256079 (JP, A) JP 59-173206 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B22F 9/24

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ルテニウム塩を多価アルコールに溶解さ
せ、得られた溶液を100〜250℃の温度で加熱して
多価アルコール中に金属微粒子を生成させた後で該溶液
を急冷し、次いで、pH調整剤を添加して液のpHを2
以下または7以上に調整するにより金属微粒子の凝集を
防止することを特徴とする、金属微粒子の製造方法。
1. A ruthenium salt is dissolved in a polyhydric alcohol.
And heat the resulting solution at a temperature of 100-250 ° C.
After forming the metal fine particles in the polyhydric alcohol, the solution
And then add a pH adjuster to adjust the pH of the solution to 2
By adjusting below or 7 or more
A method for producing fine metal particles, which comprises preventing the fine particles.
【請求項2】 多価アルコール中のルテニウム塩の濃度
を0.1〜20ミリモル/リットルとする、請求項1記
載の金属微粒子の製造方法。
2. The method for producing fine metal particles according to claim 1, wherein the concentration of the ruthenium salt in the polyhydric alcohol is 0.1 to 20 mmol / liter.
【請求項3】 多価アルコールとしてエチレングリコー
ル、プロピレングリコール、ポリエチレングリコール、
ポリプロピレングリコールまたはそれらの2種以上の混
合物を用いる、請求項1または2記載の金属微粒子の製
造方法。
3. Ethylene glycol as polyhydric alcohol
, Propylene glycol, polyethylene glycol,
Polypropylene glycol or a mixture of two or more thereof
The method for producing metal fine particles according to claim 1, wherein the compound is used .
【請求項4】 ルテニウム塩としてハロゲン化物、酸化
物、硝酸塩、有機酸塩、アンモニウム錯体またはそれら
の2種以上の混合物を用いる、請求項1〜3のうち1項
記載の金属微粒子の製造方法。
4. A ruthenium salt as a halide or an oxide.
Compounds, nitrates, organic acid salts, ammonium complexes or those
The method for producing metal fine particles according to claim 1, wherein a mixture of two or more of the above is used .
JP09383098A 1998-03-02 1998-03-02 Method for producing metal fine particles and method for supporting fine particles on porous carrier Expired - Fee Related JP3511128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09383098A JP3511128B2 (en) 1998-03-02 1998-03-02 Method for producing metal fine particles and method for supporting fine particles on porous carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09383098A JP3511128B2 (en) 1998-03-02 1998-03-02 Method for producing metal fine particles and method for supporting fine particles on porous carrier

Publications (2)

Publication Number Publication Date
JPH11246901A JPH11246901A (en) 1999-09-14
JP3511128B2 true JP3511128B2 (en) 2004-03-29

Family

ID=14093320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09383098A Expired - Fee Related JP3511128B2 (en) 1998-03-02 1998-03-02 Method for producing metal fine particles and method for supporting fine particles on porous carrier

Country Status (1)

Country Link
JP (1) JP3511128B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865940B2 (en) * 1999-09-29 2012-02-01 一般財団法人石油エネルギー技術センター Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst
WO2002013999A1 (en) * 2000-08-11 2002-02-21 Ishihara Sangyo Kaisha, Ltd. Colloidal metal solution, process for producing the same, and coating material containing the same
JP4509347B2 (en) * 2000-10-13 2010-07-21 新日本無線株式会社 Method for producing solder alloy ultrafine particles and method for producing solder paste
AU2002366309A1 (en) * 2001-12-18 2003-06-30 Asahi Kasei Kabushiki Kaisha Metal oxide dispersion
US6974493B2 (en) 2002-11-26 2005-12-13 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
US7214361B2 (en) 2002-11-26 2007-05-08 Honda Giken Kogyo Kabushiki Kaisha Method for synthesis of carbon nanotubes
US6974492B2 (en) * 2002-11-26 2005-12-13 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
US7981396B2 (en) 2003-12-03 2011-07-19 Honda Motor Co., Ltd. Methods for production of carbon nanostructures
FR2877015B1 (en) * 2004-10-21 2007-10-26 Commissariat Energie Atomique NANOSTRUCTURE COATING AND COATING PROCESS.
US7713910B2 (en) 2004-10-29 2010-05-11 Umicore Ag & Co Kg Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
TWI285568B (en) * 2005-02-02 2007-08-21 Dowa Mining Co Powder of silver particles and process
JP4284283B2 (en) 2005-02-02 2009-06-24 Dowaエレクトロニクス株式会社 Silver particle powder manufacturing method
JP4903457B2 (en) * 2005-09-06 2012-03-28 財団法人電力中央研究所 Metal-porous substrate composite material and method for producing the same
JP2009530214A (en) 2006-01-30 2009-08-27 本田技研工業株式会社 Catalyst for the growth of carbon single-walled nanotubes
FI120231B (en) * 2006-06-14 2009-08-14 Omg Finland Oy Method and apparatus for producing metal nanoparticles
KR101334052B1 (en) * 2007-01-09 2013-11-29 도와 일렉트로닉스 가부시키가이샤 Silver particle dispersion and process for producing the same
US20120003397A1 (en) * 2007-08-14 2012-01-05 Universite Libre De Bruxelles Method for depositing nanoparticles on a support

Also Published As

Publication number Publication date
JPH11246901A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
JP3511128B2 (en) Method for producing metal fine particles and method for supporting fine particles on porous carrier
US6875253B2 (en) Metal alloy fine particles and method for producing thereof
Rioux et al. Monodisperse platinum nanoparticles of well-defined shape: synthesis, characterization, catalytic properties and future prospects
US7422620B2 (en) Process for producing copper nanoparticles
US6645444B2 (en) Metal nanocrystals and synthesis thereof
US7527875B2 (en) Group of metal magnetic nanoparticles and method for producing the same
Jun et al. Demonstration of a magnetic and catalytic Co@ Pt nanoparticle as a dual-function nanoplatform
CN1243775A (en) Method for producing nano-size particles from transition metals
Fereshteh et al. Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds
US20080105085A1 (en) Method Of Production Of High Purity Silver Particles
US20040055419A1 (en) Method for making metal coated powders
US9126192B2 (en) Platinum group metal oxide sols
Lu et al. Fabrication, characterization, and formation mechanism of hollow spindle-like hematite via a solvothermal process
JP2011508070A (en) Method for producing silica-coated metal nanoparticles
JP4452792B2 (en) Method for producing oxide fine particles using ultrasonic waves and oxide fine particles
JP2004232012A (en) Method for producing high-concentration metal microparticle dispersion
Leslie-Pelecky et al. Structural properties of chemically synthesized nanostructured Ni and Ni: Ni3C nanocomposites
US20110233480A1 (en) Producing method of metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
WO2006090151A1 (en) Process of forming a nanocrystalline metal alloy
Singh et al. Glycerol mediated low temperature synthesis of nickel nanoparticles by solution reduction method
EP0591353A1 (en) Process for coating silica spheres.
JP2016160531A (en) Production of assembly of fine particles dispersed in organic compound and production method thereof
Kim et al. Chemical and thermal stability of Pt nanocubes synthesized with various surface-capping agents
JP2006104572A (en) Metal ultramicroparticle organosol, method for producing the same, metal ultramicroparticle, and method for producing the same
Lartigue et al. Iron carbide nanoparticles growth in room temperature ionic liquids [C n-MIM][BF 4](n= 12, 16)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees