JP4509347B2 - Method for producing solder alloy ultrafine particles and method for producing solder paste - Google Patents

Method for producing solder alloy ultrafine particles and method for producing solder paste Download PDF

Info

Publication number
JP4509347B2
JP4509347B2 JP2000313634A JP2000313634A JP4509347B2 JP 4509347 B2 JP4509347 B2 JP 4509347B2 JP 2000313634 A JP2000313634 A JP 2000313634A JP 2000313634 A JP2000313634 A JP 2000313634A JP 4509347 B2 JP4509347 B2 JP 4509347B2
Authority
JP
Japan
Prior art keywords
solder alloy
ultrafine particles
insulating heat
resistant belt
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000313634A
Other languages
Japanese (ja)
Other versions
JP2002120091A (en
Inventor
親夫 木村
隆 長手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2000313634A priority Critical patent/JP4509347B2/en
Publication of JP2002120091A publication Critical patent/JP2002120091A/en
Application granted granted Critical
Publication of JP4509347B2 publication Critical patent/JP4509347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、融点を下げることが可能な鉛フリー(無鉛)のハンダ合金超微粒子の製造方法及びハンダペーストの製造方法に関するものである。
【0002】
【従来の技術】
ハンダ付けにはいわゆるリフロー方式とフロー式がある。リフロー方式は、一般にハンダ合金粒子とフラックスを混合したペースト状のものを塗布加熱してハンダ接合するものである。フロー方式は、ハンダ溶融槽で溶解したハンダを噴流させるなどして利用するものである。これらのハンダ付け方式に応じて、またハンダ付けを行う電子部品の種類や要求される製品の信頼性等に応じて、使用されるハンダ合金は種々異なっている。
【0003】
一般的に用いられているハンダ合金は、融点が低く、ハンダ付け時の加熱温度が低く、実装基板や電子部品等に熱的悪影響を与えないものが主流である。その金属成分は例えばSn60/Pb40やSn70/Pb30などで、融点は183℃〜193℃前後であり、比較的低い温度でのハンダ付けが可能である。
【0004】
ところで、最近では、環境対策の観点から、産業界に対し鉛を用いない鉛フリーのハンダ合金が要求され、実用化が図られている。例えば、Sn96.5/Ag3.5などのように融点が221℃前後のSn、Agなどを主成分とした合金がある。
【0005】
ところが、この鉛フリーのハンダ合金は、上記したSn/Pb系ハンダ合金と比較して融点が40℃前後も高く、その分ハンダ付け温度を高くする必要があり、実装基板や電子部品に与える熱的悪影響が懸念される場合があった。また、ハンダ付け温度が高くなると、ハンダ付け時の電子部品や実装基板配線の酸化防止の観点から、雰囲気ガスの制御がより厳格になる。
【0006】
そこで、ハンダ合金の融点を下げる一手法として、ハンダ合金の成分は変えないで、ハンダ合金を超微粒子化して融点を下げるという工夫が考えられた。一般的にハンダペースト中に混合されペースト状で実装基板の接合部に塗布されるタイプのハンダ合金の粒子径は数μm〜数10μm程度であるが、超微粒子化して融点を下げる場合にはこれより更に微細化される。
【0007】
固体を分割して小さくしていくと、原子、分子にいたる前にもとの固体とは異なる性質を示すことが判明しており、粒径が2nm〜800nm程度の超微粒子になると、固体としての性質と異なる性質になることが判明している。すなわち、表面積が体積に比べて大きくなり、材料の表面状態がその性質に大きな影響を与えることとなって、その性質は表面積の小さな従来の粒径の大きな材料と著しく異なってくる(表面効果)。また、小さな材料内にある電子は、そこから出られなくなるため3次元方向の空間を自由に動き回れなくなり、電子のエネルギーが連続ではなくなって、そのエネルギーが領域のサイズとともに変化することが知られている(量子サイズ効果)。
【0008】
このように固体が超微粒子化すると、より充填密度が高くよりコンパクトになるように原子の配列が変化して結晶構造に変化が生じ、材料の性質も固体とは異なることになる。そして、金属の超微粒子では、バルクな物質よりもその融点が低下し、しかもその融点はサイズが小さくなるほど低下することが多くの金属で確認されている。
【0009】
この金属の超微粒子を生成する方法としては、従来では、金属塩溶液の加水分解による方法、金属アルコキシドをアルコール中で加水分解する方法、金属塩溶液の酸化還元による方法、金属化合物の分解反応を利用する方法などのように反応相を液相として合成する方法や、エアロゾル法などのように反応相を気相として合成する方法が知られている。
【0010】
【発明が解決しようとする課題】
しかしながら、このような相反応を液相として合成したり、気相として合成する手法はその処理が複雑であるばかりか、連続的な製造方法とすることができず、量産性に欠けていた。
【0011】
本発明は、上記の問題を解決するためになされたもので、その目的は、容易かつ連続的に所望の組成の超微粒子を製造することができ、量産性を実現できるようにした鉛フリーのハンダ合金超微粒子の製造方法及びこれを利用したハンダペーストの製造方法を提供することである。
【0012】
【課題を解決するための手段】
上記課題を解決するために、本発明のハンダ合金超微粒子の製造方法は、間欠的に一定方向に搬送される絶縁耐熱性ベルト上に第1搬送位置でハンダ合金成分を構成するAg,Sn,Cu,Bi,In,Sbのうちから選択される少なくとも2種類の金属の薄層を1つの島状に積層する第1工程と、上記絶縁耐熱性ベルトの第2搬送位置で上記積層した上記薄層及び上記絶縁耐熱性ベルトの上記積層部分を帯電させる第2工程と、上記絶縁耐熱性ベルトの第3搬送位置で上記積層した上記薄層を加熱溶融して溶融ハンダ合金超微粒子を生成する第3工程と、上記絶縁耐熱性ベルトの第4搬送位置で上記溶融ハンダ合金超微粒子の静電気を除去し上記絶縁耐熱性ベルトから剥離してハンダ合金超微粒子を形成する第4工程と、上記絶縁耐熱性ベルトの第5搬送位置で上記ハンダ合金超微粒子を回収する第5工程と、有するよう構成した。
【0014】
の発明は、第1の発明において、上記絶縁耐熱性ベルトに代えて絶縁耐熱性平板を使用し、該絶縁耐熱性平板を前記第1搬送位置に搬送して前記第1工程を、前記第2搬送位置に搬送して前記第2工程を、前記第3搬送位置に搬送して前記第3工程を、前記第4搬送位置に搬送して前記第4工程を、前記第5搬送位置に搬送して前記第5工程を順次処理するよう構成した。
【0015】
の発明のハンダペーストの製造方法は、請求項1又は2記載の上記第5工程で回収したハンダ合金超微粒子をハンダフラックス中に混合させる第6工程を有するよう構成した。
【0016】
【発明の実施の形態】
鉛フリーのハンダ合金としては、Sn−Ag−Cu系、Sn−Ag−Bi−Cu系、Sn−Ag系、Sn−Cu系、Sn−Bi系、Sn−In系、Sn−Sb系、Bi−In系、Cu−Bi系などが使用されているが、そのハンダ合金粒子径は、通常10μm前後以上の50μmや80μmの大きさであり、前記したように融点が高かった。本発明では、リフロー方式のハンダ用として、粒径が0.5μm以下のハンダ合金超微粒子を製造する。本発明の製造方法によれば、容易にかつ連続的にハンダ合金超微粒子を生成できるので、量産性に向く。また、このような粒径のハンダ合金超微粒子は従来の鉛フリーのハンダ合金の融点の1/3程度と低融点の性質を呈するので、ハンダ付け時の加熱温度を低下させ、基板や電子部品等の被加熱物に対する熱的悪影響が排除できる。以下、詳しく説明する。
【0017】
図1は本発明のハンダ合金超微粒子の製造方法の説明図である。図1において、1はポリイミド樹脂等より形成されたエンドレスの絶縁耐熱性ベルト、2は図示しない真空チャンバー部を有する金属蒸着機構部、3はコロナ放電機構部、4は加熱プレート部、5は静電気除去機構を備えた超音波振動機構部、6はベルト送り機構部、7は生成したハンダ合金超微粒子を回収する回収部である。
【0018】
これらの金属蒸着機構部2、コロナ放電機構部3、加熱プレート部4、超音波振動機構部5は、絶縁性耐熱ベルト1の矢印Aで示す移動方向の上流から下流にかけて所定の間隔Dで順次配置され、その絶縁性耐熱ベルト1はその間隔Dだけ移動して一旦停止するよう間欠的に駆動制御される。
【0019】
さて、その絶縁耐熱性ベルト1が停止しているとき(第1搬送位置)に、まず、金属蒸着機構部2において、絶縁耐熱性ベルト1上にハンダ合金成分を構成する数種類の金属薄層からなる独立した島状の積層を蒸着により形成する(第1工程)。このときの積層は、共晶合金となる所定の割合に設定して行う。例えばSnを500オングストローム、Agを10オングストロームを各々積層する。
【0020】
次に、絶縁耐熱性ベルト1を距離DだけA方向に移動させる(第2搬送位置)と、金属蒸着機構部2で形成した島状の積層がコロナ放電機構部3に送り込まれるので、そこで絶縁耐熱性ベルト1を一旦停止させて、その絶縁耐熱製ベルト1及び積層の部分にコロナ放電により静電気を帯電させる(第2工程)。コロナ帯電の方法は、帯電させるべき表面(積層の表面と絶縁耐熱性ベルト1の裏面)に対して所定の間隙をおいてステンレス細線やタングステン細線などを対置し、その細線に所要の極性で4〜8kVの直流高電庄を加えてコロナ放電を行い、表面に電荷密度10-4〜10-3C/m2程度の電荷を帯電させる。
【0021】
次に、同様に絶縁耐熱性ベルト1を距離DだけA方向に移動させる(第3搬送位置)と、静電気を帯電した積層が加熱プレート部4に送り込まれるので、そこで絶縁耐熱性ベルト1を一旦停止させて、当該帯電した積層をバルクでの共晶溶融温度よりやや高い230℃程度の温度で加熱溶融させる。このとき、積層は共晶合金となる所定の割合に設定して形成されているので、容易に溶融し、かつ、帯電した静電気の作用で相互に反発し合い、溶融状態のハンダ合金の超微粒子となる(第3工程)。このようにハンダ合金超微粒子8が溶融状態で互いに反発している状態を図2に示した。
【0022】
更に、同様に絶縁耐熱性ベルト1を距離DだけA方向に移動させる(第4搬送位置)と、溶融状態態になったハンダ合金超微粒子が次の超音波振動機構部5に送り込まれるので、そこで絶縁耐熱性ベルト1を一旦停止させ、自然又は強制冷却により固体状化させるとともに、静電気除去機構を作動させて各超微粒子及び絶縁耐熱性ベルト1に帯電した静電気を除去する。静電気を除去されたハンダ合金超微粒子は、超音波振動が印加されることにより絶縁耐熱性ベルト1より容易に剥離する(第4工程)。
【0023】
更に、同様に絶縁耐熱性ベルト1を距離DだけA方向に移動させる(第5搬送位置)と、そのハンダ合金超微粒子は、回収部7に設けたブラシ(図示せず)により剥離されて落下し、そこに回収される(第5工程)。
【0024】
以上のように、エンドレスの絶縁耐熱性ベルト1を間欠駆動し、距離Dだけ移動して一旦停止させる毎に、金属蒸着機構部2、コロナ放電機構部3、加熱プレート部4、超音波振動機構部5の各処理部分での同時処理を繰り返すことによって、ハンダ合金超微粒子が連続的に形成されて回収されることになる。
【0025】
回収部7に回収されたハンダ合金超微粒子は、そのままでは互いにくっつき合うが、液体中に懸濁させて遠心分離器(図示せず)に投入することにより、非常に小さい超微粒子と比較的粒径の大きい微粒子とに分離することができ、超微粒子を選別できる。また、そのハンダ合金超微粒子はそのままでは酸化しやすいが、液状フラックス中に混合懸濁して遠心分離することにより、超微粒子がフラックスで表面をコーティングされたハンダペーストを作ることができる(第6工程)。
【0026】
以上において、金属蒸着薄層の積層厚さとコロナ放電による静電気帯電量とを制御することにより、ハンダ合金超微粒子のサイズを制御することが可能である。上述のハンダ合金の蒸着薄層では、0.5μm以下程度の超微粒子の生成が可能である。
【0027】
なお、上記の説明では、金属薄層の積層を形成する基体としてエンドレスの絶縁耐熱性ベルト1を使用したが、例えばポリイミド樹脂等より形成された所定サイズの絶縁耐熱性平板を間欠送りできる搬送装置に組み込み、上記の絶縁耐熱性ベルト1と同様に、絶縁耐熱性平板上にて金属蒸着、コロナ放電による帯電、加熱溶融、静電気除去/超音波振動を順次行ってハンダ合金超微粒子を生成/剥離/回収することでも可能であることはいうまでもない。また、Ag、Sn、Cu、Bi、In、Sbの内から選択した2以上の蒸着する金属の組成、蒸着層の厚さ、加熱温度などを変更することで、所望の組成のハンダ合金超微粒子を得ることができる。
【0028】
【発明の効果】
以上から本発明によれば、容易に連続的に所望の組成のハンダ合金超微粒子を生成することができ、融点の低い超微粒子ハンダ合金を量産することが可能となる。これにより、いわゆる鉛フリーハンダにおいても容易に低融点のものを得ることができ、ハンダ付け温度の上昇が不要になり、被加熱物への熱的悪影響を低減することが可能となる。更に、信頼性を要求される装置に適用が要求される鉛フリーハンダの実用化が容易になるという利点もある。
【図面の簡単な説明】
【図1】本発明のハンダ合金超微粒子の製造方法の説明図である。
【図2】本発明のハンダ合金超微粒子の反発状態の説明図である。
【符号の説明】
1:絶縁耐熱性ベルト、2:金属蒸着機構部、3:コロナ放電機構部、4:加熱プレート部、5:超音波振動機構部、6:ベルト送り機構部、7:超微粒子回収部、8:ハンダ合金超微粒子。
[0001]
[Industrial application fields]
The present invention relates to a method for producing lead-free (lead-free) solder alloy ultrafine particles capable of lowering the melting point and a method for producing solder paste.
[0002]
[Prior art]
There are so-called reflow and flow types for soldering. The reflow method is generally a method in which a paste-like material in which solder alloy particles and a flux are mixed is applied and heated for solder bonding. The flow method is used by jetting solder melted in a solder melting tank. Depending on the soldering method and the type of electronic component to be soldered, the required product reliability, etc., the solder alloys used are different.
[0003]
Generally used solder alloys have a low melting point, a low heating temperature at the time of soldering, and do not have a thermal adverse effect on a mounting board, an electronic component or the like. The metal component is, for example, Sn60 / Pb40 or Sn70 / Pb30, and the melting point is around 183 ° C. to 193 ° C., and soldering at a relatively low temperature is possible.
[0004]
By the way, recently, from the viewpoint of environmental measures, a lead-free solder alloy that does not use lead is required for the industry, and is being put to practical use. For example, there is an alloy such as Sn96.5 / Ag3.5 whose main component is Sn, Ag having a melting point of around 221 ° C.
[0005]
However, this lead-free solder alloy has a melting point as high as about 40 ° C. compared to the Sn / Pb solder alloy described above, and it is necessary to increase the soldering temperature accordingly. There were cases where there was concern about adverse effects. Further, when the soldering temperature is increased, the control of the atmospheric gas becomes more strict from the viewpoint of preventing oxidation of electronic components and mounting board wiring during soldering.
[0006]
Therefore, as a technique for lowering the melting point of the solder alloy, an idea has been considered in which the melting point is lowered by making the solder alloy ultrafine particles without changing the components of the solder alloy. Generally, the particle size of a solder alloy of a type mixed in a solder paste and applied to the joint of a mounting board in the form of a paste is about several μm to several tens of μm. It is further refined.
[0007]
When the solid is divided and made smaller, it has been found that it has different properties from the original solid before reaching the atoms and molecules. When the particle size becomes ultrafine particles of about 2 nm to 800 nm, It has been found to be different from the nature of. That is, the surface area becomes larger than the volume, and the surface condition of the material has a great influence on its properties, and the properties are significantly different from those of conventional materials having a small surface area and large particle sizes (surface effect). . It is also known that electrons in a small material can not move out of space in a three-dimensional direction because they cannot get out of it, and the energy of electrons is not continuous, and the energy changes with the size of the region. Yes (quantum size effect).
[0008]
When the solid is made into ultrafine particles in this way, the arrangement of atoms changes so that the packing density becomes higher and the size becomes more compact, and the crystal structure changes, and the properties of the material also differ from those of the solid. In addition, it has been confirmed for many metals that the melting point of metal ultrafine particles is lower than that of a bulk material, and that the melting point decreases as the size decreases.
[0009]
Conventionally, as a method for producing the ultrafine metal particles, a method of hydrolysis of a metal salt solution, a method of hydrolyzing a metal alkoxide in an alcohol, a method of oxidation / reduction of a metal salt solution, and a decomposition reaction of a metal compound are conventionally used. There are known a method of synthesizing a reaction phase as a liquid phase, such as a method of use, and a method of synthesizing a reaction phase as a gas phase, such as an aerosol method.
[0010]
[Problems to be solved by the invention]
However, the method of synthesizing such a phase reaction as a liquid phase or synthesizing as a gas phase is not only complicated in processing but also cannot be a continuous production method and lacks mass productivity.
[0011]
The present invention has been made to solve the above-mentioned problems, and its purpose is to easily and continuously produce ultrafine particles having a desired composition, and to achieve mass productivity. It is providing the manufacturing method of a solder alloy ultrafine particle, and the manufacturing method of a solder paste using the same.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the method for producing solder alloy ultrafine particles according to the present invention comprises Ag, Sn, and the like constituting a solder alloy component at a first transport position on an insulating heat-resistant belt that is intermittently transported in a certain direction . Cu, Bi, an in, a first step of laminating a thin layer of at least two metals selected from among Sb into one island, the thin as described above laminated on the second transfer position of the insulating heat-resistant belt A second step of charging the layer and the laminated portion of the insulating heat resistant belt; and a step of heating and melting the laminated thin layer at a third transport position of the insulating heat resistant belt to produce molten solder alloy ultrafine particles. 3 steps, a 4th step of removing the static electricity of the molten solder alloy ultrafine particles at the fourth conveying position of the insulating heat resistant belt and peeling the molten solder alloy ultrafine particles from the insulating heat resistant belt to form solder alloy ultrafine particles; Sex A fifth step of recovering the solder alloy ultra-fine particles in the fifth transport position of the bets, and configured to have.
[0014]
According to a second invention, in the first invention, an insulating heat resistant flat plate is used instead of the insulating heat resistant belt, the insulating heat resistant flat plate is conveyed to the first conveying position, and the first step is performed. Transfer to the second transfer position and transfer the second step, transfer to the third transfer position and transfer the third step to the fourth transfer position and transfer the fourth step to the fifth transfer position. The fifth process was sequentially processed after being conveyed.
[0015]
Method for producing a solder paste of the third invention were configured to have a sixth step of mixing the solder alloy ultra-fine particles recovered in Motomeko 1 or 2, wherein the fifth step in the solder flux.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Lead-free solder alloys include Sn-Ag-Cu, Sn-Ag-Bi-Cu, Sn-Ag, Sn-Cu, Sn-Bi, Sn-In, Sn-Sb, Bi Although -In system, Cu-Bi system, etc. are used, the solder alloy particle diameter is usually about 10 μm or more and 50 μm or 80 μm, and the melting point was high as described above. In the present invention, solder alloy ultrafine particles having a particle size of 0.5 μm or less are produced for reflow soldering. According to the production method of the present invention, solder alloy ultrafine particles can be generated easily and continuously, which is suitable for mass production. In addition, since the solder alloy ultrafine particles having such a particle size have a low melting point property of about 1/3 of the melting point of the conventional lead-free solder alloy, the heating temperature at the time of soldering is lowered, and the substrate or electronic component is reduced. It is possible to eliminate the adverse thermal effects on the object to be heated. This will be described in detail below.
[0017]
FIG. 1 is an explanatory view of a method for producing solder alloy ultrafine particles of the present invention. In FIG. 1, 1 is an endless insulating heat-resistant belt made of polyimide resin or the like, 2 is a metal deposition mechanism having a vacuum chamber (not shown), 3 is a corona discharge mechanism, 4 is a heating plate, and 5 is static electricity. An ultrasonic vibration mechanism unit having a removal mechanism, 6 is a belt feeding mechanism unit, and 7 is a recovery unit that recovers the generated solder alloy ultrafine particles.
[0018]
The metal vapor deposition mechanism 2, the corona discharge mechanism 3, the heating plate 4, and the ultrasonic vibration mechanism 5 are sequentially arranged at a predetermined interval D from the upstream to the downstream in the moving direction indicated by the arrow A of the insulating heat-resistant belt 1. The insulating heat-resistant belt 1 is intermittently driven and controlled so as to move by the distance D and temporarily stop.
[0019]
Now, when the insulating heat resistant belt 1 is stopped (first transport position), first, in the metal vapor deposition mechanism section 2, from several kinds of thin metal layers constituting the solder alloy component on the insulating heat resistant belt 1. An independent island-shaped stack is formed by vapor deposition (first step). The lamination at this time is performed by setting to a predetermined ratio to be a eutectic alloy. For example, Sn is stacked at 500 Å and Ag is stacked at 10 Å.
[0020]
Next, when the insulating heat-resistant belt 1 is moved in the direction A by the distance D (second transport position), the island-shaped stack formed by the metal vapor deposition mechanism unit 2 is fed into the corona discharge mechanism unit 3, so that insulation is performed there. The heat resistant belt 1 is temporarily stopped, and static electricity is charged to the insulating heat resistant belt 1 and the laminated portion by corona discharge (second step). In the corona charging method, a stainless fine wire or a tungsten fine wire is placed at a predetermined gap with respect to the surface to be charged (the surface of the laminate and the back surface of the insulating heat-resistant belt 1), and the desired polarity is 4 on the fine wire. Corona discharge is performed by applying a DC high voltage of ˜8 kV to charge the surface with a charge density of about 10 −4 to 10 −3 C / m 2 .
[0021]
Next, similarly, when the insulating heat resistant belt 1 is moved in the direction A by the distance D (third transport position), the laminated layer charged with static electricity is fed into the heating plate portion 4. The charged laminate is heated and melted at a temperature of about 230 ° C., which is slightly higher than the eutectic melting temperature in bulk. At this time, since the stack is formed at a predetermined ratio to become a eutectic alloy, it melts easily and repels each other by the action of charged static electricity, and the solder alloy ultrafine particles in the molten state (Third step). The state in which the solder alloy ultrafine particles 8 are repelling each other in the molten state is shown in FIG.
[0022]
Furthermore, similarly, when the insulation heat resistant belt 1 is moved in the direction A by the distance D (fourth transport position), the solder alloy ultrafine particles in a molten state are fed into the next ultrasonic vibration mechanism unit 5. Therefore, the insulating heat resistant belt 1 is temporarily stopped and solidified by natural or forced cooling, and the static electricity removing mechanism is operated to remove the static electricity charged in the ultrafine particles and the insulating heat resistant belt 1. The solder alloy ultrafine particles from which static electricity has been removed is easily peeled off from the insulating heat-resistant belt 1 by applying ultrasonic vibration (fourth step).
[0023]
Similarly, when the insulation heat-resistant belt 1 is moved in the direction A by the distance D (fifth transport position), the solder alloy ultrafine particles are peeled off by a brush (not shown) provided in the recovery unit 7 and dropped. And is collected there (fifth step).
[0024]
As described above, every time the endless insulating heat-resistant belt 1 is intermittently driven, moved by the distance D, and temporarily stopped, the metal deposition mechanism unit 2, the corona discharge mechanism unit 3, the heating plate unit 4, the ultrasonic vibration mechanism By repeating the simultaneous processing in each processing part of the part 5, the solder alloy ultrafine particles are continuously formed and recovered.
[0025]
The solder alloy ultrafine particles collected in the collecting unit 7 stick to each other as they are, but by suspending them in a liquid and throwing them into a centrifuge (not shown), very small ultrafine particles and relatively small particles are collected. It can be separated into fine particles having a large diameter, and ultrafine particles can be selected. Further, the solder alloy ultrafine particles are easily oxidized as they are, but by mixing and suspending in a liquid flux and centrifuging, a solder paste whose surface is coated with the flux can be made (step 6). ).
[0026]
In the above, it is possible to control the size of the solder alloy ultrafine particles by controlling the lamination thickness of the metal vapor deposition thin layer and the electrostatic charge amount by corona discharge. In the above-described vapor deposited thin layer of solder alloy, it is possible to generate ultrafine particles of about 0.5 μm or less.
[0027]
In the above description, the endless insulating heat-resistant belt 1 is used as a base for forming a stack of thin metal layers. However, for example, a conveying device capable of intermittently feeding a predetermined size insulating heat-resistant flat plate formed of polyimide resin or the like. In the same way as the insulation heat-resistant belt 1 described above, metal vapor deposition, corona discharge charging, heat melting, static electricity removal / ultrasonic vibration are sequentially performed on the insulation heat-resistant flat plate 1 to produce / peel solder alloy ultrafine particles. Needless to say, it can also be recovered. Also, by changing the composition of two or more metals to be deposited selected from Ag, Sn, Cu, Bi, In, and Sb, the thickness of the deposited layer, the heating temperature, etc., the solder alloy ultrafine particles having a desired composition Can be obtained.
[0028]
【The invention's effect】
As described above, according to the present invention, it is possible to easily and continuously produce ultrafine particles of a solder alloy having a desired composition, and to mass-produce ultrafine solder alloys having a low melting point. As a result, a so-called lead-free solder having a low melting point can be easily obtained, and it is not necessary to increase the soldering temperature, and it is possible to reduce the thermal adverse effect on the object to be heated. Furthermore, there is also an advantage that lead-free solder that is required to be applied to an apparatus that requires reliability can be easily put into practical use.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a method for producing solder alloy ultrafine particles of the present invention.
FIG. 2 is an explanatory view of a repulsion state of the solder alloy ultrafine particles of the present invention.
[Explanation of symbols]
1: Insulation heat resistant belt, 2: Metal deposition mechanism, 3: Corona discharge mechanism, 4: Heating plate, 5: Ultrasonic vibration mechanism, 6: Belt feed mechanism, 7: Ultrafine particle recovery unit, 8 : Solder alloy ultrafine particles.

Claims (3)

間欠的に一定方向に搬送される絶縁耐熱性ベルト上に第1搬送位置でハンダ合金成分を構成するAg,Sn,Cu,Bi,In,Sbのうちから選択される少なくとも2種類の金属の薄層を1つの島状に積層する第1工程と、 上記絶縁耐熱性ベルトの第2搬送位置で上記積層した上記薄層及び上記絶縁耐熱性ベルトの上記積層部分を帯電させる第2工程と、
上記絶縁耐熱性ベルトの第3搬送位置で上記積層した上記薄層を加熱溶融して溶融ハンダ合金超微粒子を生成する第3工程と、
上記絶縁耐熱性ベルトの第4搬送位置で上記溶融ハンダ合金超微粒子の静電気を除去し上記絶縁耐熱性ベルトから剥離してハンダ合金超微粒子を形成する第4工程と、
上記絶縁耐熱性ベルトの第5搬送位置で上記ハンダ合金超微粒子を回収する第5工程と、
を有することを特徴とするハンダ合金超微粒子の製造方法。
A thin film of at least two kinds of metals selected from Ag, Sn, Cu, Bi, In, and Sb constituting a solder alloy component at a first transport position on an insulating heat resistant belt that is intermittently transported in a certain direction. a first step of laminating the layers into a single island, and a second step of charging the laminated portion of the thin layer and the insulating heat-resistant belt described above laminated with a second transport position of the insulating heat-resistant belt,
A third step of heating and melting the laminated thin layer at a third transport position of the insulating heat resistant belt to produce molten solder alloy ultrafine particles;
A fourth step of removing static electricity of the molten solder alloy ultrafine particles at the fourth transport position of the insulating heat resistant belt and peeling the static solder heat ultrafine particles to form solder alloy ultrafine particles;
A fifth step of collecting the solder alloy ultrafine particles at a fifth transport position of the insulating heat resistant belt;
A method for producing solder alloy ultrafine particles, comprising:
上記絶縁耐熱性ベルトに代えて絶縁耐熱性平板を使用し、該絶縁耐熱性平板を前記第1搬送位置に搬送して前記第1工程を、前記第2搬送位置に搬送して前記第2工程を、前記第3搬送位置に搬送して前記第3工程を、前記第4搬送位置に搬送して前記第4工程を、前記第5搬送位置に搬送して前記第5工程を順次処理することを特徴とする請求項1記載のハンダ合金超微粒子の製造方法。 Instead of the insulating heat-resistant belt, an insulating heat-resistant flat plate is used, the insulating heat-resistant flat plate is conveyed to the first conveying position, the first step is conveyed to the second conveying position, and the second step is performed. Are transferred to the third transfer position to transfer the third step, to the fourth transfer position to transfer the fourth step to the fifth transfer position, and sequentially process the fifth step. The method for producing ultrafine solder alloy particles according to claim 1. 請求項1又は2記載の上記第5工程で回収したハンダ合金超微粒子をハンダフラックス中に混合させる第6工程を有することを特徴とするハンダペーストの製造方法。 3. A solder paste manufacturing method comprising a sixth step of mixing the solder alloy ultrafine particles recovered in the fifth step according to claim 1 or 2 in a solder flux .
JP2000313634A 2000-10-13 2000-10-13 Method for producing solder alloy ultrafine particles and method for producing solder paste Expired - Fee Related JP4509347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313634A JP4509347B2 (en) 2000-10-13 2000-10-13 Method for producing solder alloy ultrafine particles and method for producing solder paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313634A JP4509347B2 (en) 2000-10-13 2000-10-13 Method for producing solder alloy ultrafine particles and method for producing solder paste

Publications (2)

Publication Number Publication Date
JP2002120091A JP2002120091A (en) 2002-04-23
JP4509347B2 true JP4509347B2 (en) 2010-07-21

Family

ID=18793024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313634A Expired - Fee Related JP4509347B2 (en) 2000-10-13 2000-10-13 Method for producing solder alloy ultrafine particles and method for producing solder paste

Country Status (1)

Country Link
JP (1) JP4509347B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797968B2 (en) * 2006-12-20 2011-10-19 三菱マテリアル株式会社 Solder powder and solder paste using this powder
JP6118235B2 (en) * 2013-11-15 2017-04-19 尾池工業株式会社 Method for producing scaly fine powder and apparatus for producing scaly fine powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466603A (en) * 1990-07-06 1992-03-03 Nippon Steel Corp Production of fine metal ball
JPH0754007A (en) * 1993-08-12 1995-02-28 Agency Of Ind Science & Technol Coated metal particle, metal-based sintered compact and production thereof
JPH07268409A (en) * 1994-03-30 1995-10-17 Ibiden Co Ltd Production of solder ball
JPH09150296A (en) * 1995-11-27 1997-06-10 Nec Corp Formation of metallic ball
JPH11246901A (en) * 1998-03-02 1999-09-14 Hitachi Zosen Corp Production of metallic particulate and method for depositing the particular on porous carrier
JP2000094184A (en) * 1998-09-17 2000-04-04 Senju Metal Ind Co Ltd Flux for soldering

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466603A (en) * 1990-07-06 1992-03-03 Nippon Steel Corp Production of fine metal ball
JPH0754007A (en) * 1993-08-12 1995-02-28 Agency Of Ind Science & Technol Coated metal particle, metal-based sintered compact and production thereof
JPH07268409A (en) * 1994-03-30 1995-10-17 Ibiden Co Ltd Production of solder ball
JPH09150296A (en) * 1995-11-27 1997-06-10 Nec Corp Formation of metallic ball
JPH11246901A (en) * 1998-03-02 1999-09-14 Hitachi Zosen Corp Production of metallic particulate and method for depositing the particular on porous carrier
JP2000094184A (en) * 1998-09-17 2000-04-04 Senju Metal Ind Co Ltd Flux for soldering

Also Published As

Publication number Publication date
JP2002120091A (en) 2002-04-23

Similar Documents

Publication Publication Date Title
EP0856376B1 (en) Article comprising fine-grained solder compositions with dispersoid particles
TWI292355B (en)
EP2484795A2 (en) Material and method of manufacture of a solder joint with high thermal conductivity and high electrical conductivity
WO2015149580A1 (en) Method for manufacturing flexible copper clad laminate with metalized through-hole
JPH10303518A (en) Board for mounting electronic component, electronic component mounting board and method of bonding tin/zinc alloy
TWI325293B (en) Production method of solder circuit board
JP4509347B2 (en) Method for producing solder alloy ultrafine particles and method for producing solder paste
KR20160121771A (en) Metal material for 3-dimension printing, method for fabricating the same, and method for printing using the same
EP0365807B1 (en) Bonding of metallic surfaces
RU2716176C2 (en) Soldering connection structure and film forming method
CN101356866B (en) Method and apparatus for mounting solder ball
US3172385A (en) Flux-coated soldering body and method of making the same
JP5001655B2 (en) Solder composition and solder layer forming method using the same
JP2015172159A (en) Self-propagating heat-generating grain and method of producing the same, and solder joint method and solder paste
WO2017022991A1 (en) Method for joining superhard materials using metal plating film having amorphous and heating characteristics
JP2006205198A (en) Solder material and its manufacturing method
JPH05337679A (en) Solder powder for cream solder and its production
WO2021131620A1 (en) Connection structure and manufucturing method therefor
EP0089604B1 (en) Method for selectively coating metallurgical patterns on dielectric substrates
JP2012125791A (en) Filler metal and lead-free solder comprising the same
JP4152506B2 (en) Sputtering target assembly
JP2008041867A (en) Manufacturing method of soldered circuit board
WO2016152942A1 (en) Method for producing conductive particles
JP3572997B2 (en) Manufacturing method of thermoelectric module
CN212476854U (en) Copper line scaling powder recycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4509347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160514

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees