JP2004232012A - Method for producing high-concentration metal microparticle dispersion - Google Patents

Method for producing high-concentration metal microparticle dispersion Download PDF

Info

Publication number
JP2004232012A
JP2004232012A JP2003021010A JP2003021010A JP2004232012A JP 2004232012 A JP2004232012 A JP 2004232012A JP 2003021010 A JP2003021010 A JP 2003021010A JP 2003021010 A JP2003021010 A JP 2003021010A JP 2004232012 A JP2004232012 A JP 2004232012A
Authority
JP
Japan
Prior art keywords
organic
metal
metal fine
producing
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003021010A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hirai
博幸 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2003021010A priority Critical patent/JP2004232012A/en
Publication of JP2004232012A publication Critical patent/JP2004232012A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inexpensively mass-producing a high-concentration metal microparticle dispersion. <P>SOLUTION: The method for producing a high-concentration metal microparticle dispersion comprises dissolving an organometallic salt into a solvent containing a 10C or lower organic acid in an amount at least equimolar to the organometallic salt to prepare an organometallic salt solution with a concentration of at least 1 mass% in terms of metal and reducing the solution with at least one compound selected from the group consisting of organic reducing agents, hydrazines, and hydroxylamines. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プリント配線、高密度記録材料、金属触媒、造影剤等に使用することができる高濃度の金属微粒子分散液又は金属微粒子、もしくはこれらの製造方法に関する。
【0002】
【従来の技術】
金属微粒子を得る方法としては、原料固体をルツボに入れ、高周波誘導加熱方式や抵抗加熱方式等により加熱して金属蒸気を発生させ、He、Ar等のガス分子又は溶剤の蒸気との衝突により急冷させて微粒子化するガス中蒸発法(気相法)が挙げられる(例えば、特許第2561537号公報等)。このようにして得られた金属微粒子を適当な溶媒に分散することにより、コロイド分散液を調製することができる。また有機金属塩の溶液に、NaBH等の無機還元剤、ヒドラジン系、アミン系又はジオール系化合物等の有機還元剤、又は水素ガスを作用させたり、酸化還元電位がより卑な金属(例えばマグネシウム等)を前記有機金属塩に作用させたりすることにより、金属コロイド粒子を得る方法(溶液還元法)等により、前記コロイド分散液を調製することもできる。
【0003】
一般に溶液還元法(液相法)は、良好なコロイド分散液が簡易に製造できるので望ましい。しかしながら、報告されている合成法(例えば、J. Am. Chem. Soc. 1993, 115, 3887、J. Phys. Chem. 1995, 99, 5077、Colloids and Surfaces A:Physicochem. Eng. Aspects 2000, 168, 87等)はいずれも1質量%未満の低濃度の金属含有率であり、さらに不要な塩を含有しているので脱塩処理しなければ工業用には使用できない等の問題点を有していた。
【0004】
【特許文献1】
特許第2561537号公報
【非特許文献1】
「ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティ(Journal of the American Chemical Society)」, 1993年, 第115巻, p.3887
【非特許文献2】
「ジャーナル・オブ・フィジカル・ケミストリー(Journal of Physical Chemistry)」, 1995年, 第99巻, p.5077
【非特許文献3】
「コロイズ・アンド・サーファス・フィジコケミカル・アンド・エンジニアリング・アスペクツ(Colloids and Surfaces A: Physicochemical and Engineering Aspects)」, 2000年, 第168巻, p.87
【0005】
【発明が解決しようとする課題】
従って本発明の目的は、金属微粒子や高濃度の金属微粒子分散液を簡易に製造する方法を提供することである。
【0006】
本発明のもう一つの目的は、大量かつ安価な金属微粒子及び高濃度の金属微粒子分散液を提供することである。
【0007】
【課題を解決するための手段】
上記目的に鑑み鋭意研究の結果、有機金属塩を還元する際に有機酸を存在させておくことにより、高濃度の金属微粒子分散液が得られることを発見し、本発明に想到した。
【0008】
すなわち、本発明の金属微粒子分散液の製造方法は、有機金属塩を、炭素数10以下の有機酸を前記有機金属塩と等モル以上含有する溶媒に溶解することにより、金属換算濃度が少なくとも1質量%の有機金属塩溶液を調製し、有機還元剤、ヒドラジン及びヒドロキシルアミンからなる群から選ばれた少なくとも1種の化合物で還元することを特徴とする。
【0009】
本発明の金属微粒子分散液の製造方法において、以下の条件を満たすのが好ましい。
(1) 前記有機金属塩が炭素数10以下の有機酸の有機金属塩である。
(2) 前記有機金属塩が酢酸塩である。
(3) 前記有機金属塩の金属が少なくともCuを含有する。
(4) 前記有機還元剤がヒドラジン系化合物類、ヒドロキシルアミン系化合物類、ジオール類及び一般式:X−(A=B)−Y(ただし、A及びBはそれぞれ炭素原子又は窒素原子を表し、X及びYはそれぞれ非共有電子対を有する原子がA及びBに結合する原子団を表し、nは0〜3を表す。)により表される化合物類からなる群から選ばれた少なくとも1種の有機化合物である。
(5) 上記いずれかの方法により製造した分散液中の金属微粒子を沈降、洗浄した後、金属含有量に対して質量比で0.01〜2倍の量の吸着性化合物及び/又は界面活性剤の存在下で他の溶媒に再分散させる。
【0010】
本発明の金属微粒子の製造方法は、上記いずれかの方法により製造した分散液中の金属微粒子を沈降、洗浄及び乾燥することを特徴とする。
【0011】
本発明の金属微粒子は、1〜100 nm、望ましくは2〜50 nmの平均結晶子サイズを有する。結晶子サイズはX線回折(XRD)の測定や透過型電子顕微鏡の観察から求めることができる。
【0012】
【発明の実施の形態】
以下、本発明について詳細に説明する。
[1] 原料
(A) 有機金属塩
本発明に用いる金属塩としては、Au、Ag、Cu、Pt、Pd、In、Ga、Sn、Ge、Sb、Pb、Zn、Bi、Fe、Ni、Co、Mn、Tl、Cr、V、Ru、Rh、Ir、Al等の金属の有機酸塩、有機錯塩等が挙げられる。これらの中で、比較的還元されやすい炭素数10以下の有機酸塩が好ましい。特に安価で溶解性に優れた酢酸塩が好ましい。かかる有機酸としては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、2−エチル酪酸、ピバル酸、吉草酸、イソ吉草酸、プロピオール酸、乳酸、カプロン酸、カプリル酸、カプリン酸、安息香酸、フタル酸、サリチル酸、アセト酢酸等が挙げられる。これらの有機酸の中でも沸点又は分解点が220℃以下のものが望ましい。特に安価で溶解性に優れた酢酸塩が最も好ましい。
【0013】
金属イオンとしては、Au、Ag、Cu、Pt、Pd、In、Ga、Sn、Ge、Sb、Pb、Zn、Bi、Fe、Ni及びCoが還元されやすく、生成した金属が比較的安定であるので好ましい。上記有機金属塩は単独で用いても、複数を組合せて用いても良い。本発明は、特に金属イオンとしてCuを含む場合、溶解性及び還元性の観点から効果が大きく好ましい。
【0014】
(B) 有機酸
有機酸としては炭素数10以下のものを使用する。有機酸の好ましい具体例と
しては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、2−エチル酪酸、ピバル酸、吉草酸、イソ吉草酸、プロピオール酸、乳酸、カプロン酸、カプリル酸、カプリン酸、安息香酸、フタル酸、サリチル酸、アクリル酸、メタクリル酸、エチルメチル酢酸、アリル酢酸、アセト酢酸等が挙げられる。
【0015】
(C) 還元剤
本発明に用いる還元剤は、有機金属塩に対して還元作用を発揮する化合物であり、還元反応後に電気伝導度が小さい還元剤が望ましく、具体的には金属イオンが残留しない有機還元剤、ヒドラジン又はヒドロキシルアミンが好ましい。
【0016】
有機還元剤としては、▲1▼ ヒドラジン基を含有するヒドラジン系化合物類(例えばフェニルヒドラジン等)、▲2▼ p−フェニレンジアミン、エチレンジアミン、アルキルアミノアルコール、p−アミノフェノール等のアミン類、▲3▼ ヒドロキノン、カテコール、1,4−ブタンジオール、エチレングリコール等のジオール類、又は▲4▼ 一般式:X−(A=B)−Y(ただし、A及びBはそれぞれ炭素原子又は窒素原子を表し、X及びYはそれぞれ非共有電子対を有する原子がA及びBに結合する原子団を表し、nは0〜3を表す。)により表される有機還元剤又はその互変異性体、又は熱的にこれらを生成する化合物類等が挙げられる。これらの還元剤の還元作用は金属塩に対して選択性があるので、有機金属塩との組合せにより適宜選択する必要がある。またこれらの還元剤は単独で用いても、複数を組合せて用いても良い。
【0017】
一般式:X−(A=B)−Yにより表される▲4▼の化合物における非共有電子対を有する原子としては、酸素原子、窒素原子、イオウ原子、リン原子等が好ましく、酸素原子、窒素原子がより好ましい。これらの原子を含む原子団X及びYとしては、OR、NR、SR、及びPR(ただし、R及びRはそれぞれ水素原子又は置換基を表す。)が好ましい。前記置換基としては、置換されていても良い炭素数1〜10のアルキル基、又は置換されていてもよい炭素数1〜10のアシル基が好ましい。
【0018】
nは0〜3が好ましく、0〜2がより好ましく、0〜1が最も好ましい。nが2以上のときA及びBは繰り返し単位ごとに異なっていてもよい。またAとB、XとA、又はYとBは互いに結合して環構造を形成してもよい。環構造を形成する場合、5員環又は6員環が好ましく、さらにこれらの環は縮環していてもよい。縮環する場合、5〜6員環が好ましい。
【0019】
還元剤は、還元後に残渣が多く残ると金属微粒子の物性に悪影響を及ぼすため、残渣が少ないものが好ましく、還元後に揮発性(昇華性)又は分解して揮発性になる性質を有するものが好ましい。
【0020】
同様の観点、また溶解性の面から、少量で有機金属塩を還元可能なこと、すなわち低分子量であることが好ましい。従って、還元剤の分子量は500以下が好ましく、300以下がより好ましく、200以下が最も好ましい。
【0021】
以下、本発明に用いることができる還元剤の具体例を例示するが、本発明はこれらの例に限定されない。
【0022】
【化1】

Figure 2004232012
【0023】
【化2】
Figure 2004232012
【0024】
【化3】
Figure 2004232012
【0025】
【化4】
Figure 2004232012
【0026】
(D) 溶媒
有機金属塩及び還元剤の溶媒、洗浄溶媒、又は金属微粒子の分散溶媒としては以下のものが挙げられる。
(1) 水
(2) 酢酸ブチル、セロソルブアセテート等のエステル類
(3) メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン、アセチルアセトン等のケトン類
(4) ジクロルメタン、1,2−ジクロロエタン、クロロホルム等の塩素化炭化水素類
(5) ジメチルホルムアミド等のアミド類
(6) シクロヘキサン、ヘプタン、オクタン、イソオクタン、デカン等の脂肪族炭化水素類
(7) トルエン、キシレン等の芳香族炭化水素類。
(8) テトラヒドロフラン、エチルエーテル、ジオキサン等のエーテル類
(9) エタノール、n−プロパノール、イソプロパノール、n−ブタノール、ジアセトンアルコール、エチレングリコール、2,5−ヘキサンジオール、1,4−ブタンジオール、シクロヘキサノール、シクロペンタノール、シクロヘキセノール等のアルコール類
(10) 2,2,3,3−テトラフロロプロパノール等のフッ素系溶剤類
(11) エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類
(12) 2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、2−ジメチルアミノイソプロパノール、3−ジエチルアミノ−1−プロパノール、2−ジメチルアミノ−2−メチル−1−プロパノール、2−メチルアミノエタノール、4−ジメチルアミノ−1−ブタノール等のアルキルアミノアルコール類
(13) ジエチレントリアミン、エチレンジアミン等のアミン類等。
【0027】
(E) 吸着性化合物及び界面活性剤
得られた金属微粒子の分散液(コロイド分散液)の安定性を向上させるために、金属微粒子の表面に吸着性化合物、界面活性剤及び/又は親水性高分子を吸着させて、金属微粒子を表面修飾するのが好ましい。なおコロイドは親水性であっても疎水性であっても良い。吸着性化合物及び界面活性剤は、有機金属塩を還元する際にも存在するのが好ましい。
【0028】
(1) 吸着性化合物
吸着性化合物としては、−SH、−CN、−NH、−SOOH、−SOOH、−OPO(OH)、−COOH等の官能基を有する化合物が有効であり、特に−SH基を有する化合物(ドデカンチオール、L−システイン等)、又は−NH基を有する化合物(オクチルアミン、ドデシルアミン、オレイルアミン、オレイン酸アミド、ラウリン酸アミド等)が好ましい。親水性コロイドの場合、親水性基[例えば、−SOMや−COOM(Mは水素原子、アルカリ金属原子又はアンモニウム分子等を表わす)]を有する吸着性化合物を使用するのが好ましい。
【0029】
(2) 界面活性剤
界面活性剤としては、アニオン界面活性剤(例えば、ビス(2−エチルヘキシル)スルホコハク酸ナトリウムやドデシルベンゼンスルホン酸ナトリウム等)、ノニオン界面活性剤(例えばポリアルキルグリコールのアルキルエステルやアルキルフェニルエーテル等)、フッ素系界面活性剤等を使用することができる。
【0030】
(3) 親水性高分子
また親水性高分子として、例えば、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール等をコロイド分散液中に含有させても良い。
【0031】
[2] 金属微粒子分散液の調製
(A) 有機金属塩溶液の調製
まず炭素数10以下の有機酸を上記有機金属塩と等モル以上、好ましくは1.5倍モル以上含有する有機溶媒を用いる。有機溶媒は100%有機酸でも良いが、粘度調製のため有機酸以外の有機溶媒を適量含有するのが好ましい。ここで有機酸を含有する有機溶媒とは、有機酸と有機酸以外の有機溶媒との混合物に限らず、有機酸のみからなる有機溶媒をも含むものとする。従って、有機酸を有機金属塩と等モル以上含有するとは、有機酸100%の場合(有機酸のみからなる場合)をも含む。有機酸を含有する有機溶媒を用いることにより、有機金属塩を高濃度に溶解することができる。炭素数10以下とすることにより、金属微粒子分散液を塗布した際の乾燥負荷を軽減することができる。
【0032】
有機金属塩溶液の濃度は、金属換算で少なくとも1質量%、好ましくは5質量%以上とする。金属換算濃度を高めるために、複数種の有機酸を適量組合せるのが好ましい。有機酸を添加する有機溶媒は、有機金属塩及び還元剤の溶解性、還元剤の還元性、揮発性、溶液の粘度等を考慮して、単独又は二種以上を組合せて用いることができる。
【0033】
(B) 有機金属塩の還元
上記の通り調製した有機金属塩溶液に上記還元剤を添加する。還元作用の強い還元剤を添加する場合、加熱なしに有機金属塩を還元することができるが、還元作用がそれほど強くない還元剤を添加する場合や、還元反応を促進させる場合には、有機金属塩溶液に還元剤を添加した後に加熱するのが好ましい。加熱する場合、加熱温度は約100℃〜300℃が好ましい。反応後も高温に保持した状態では、生成した金属ナノ粒子が融着してそのサイズが増大することがあるので、速やかに冷却するのが望ましい。有機金属塩と還元剤との反応溶液そのものを金属微粒子分散液として用いることができる。
【0034】
(C) 金属微粒子の表面修飾
分散液中の金属微粒子を表面修飾して安定化するために、反応液及び/又は得られた分散液に吸着性化合物、界面活性剤及び/又は親水性高分子を添加するのが好ましい。吸着性化合物、界面活性剤及び/又は親水性高分子の添加量は、分散液中の金属含有量に対して質量比で0.01〜2倍であるのが好ましく、0.1〜1倍がさらに好ましい。吸着性化合物、界面活性剤及び/又は親水性高分子の添加量が質量比で0.01倍未満であると、分散液中の金属微粒子の安定性が不十分になる傾向があり、また2倍を超えると導電性等金属微粒子の物性に影響を及ぼす傾向がある。吸着性化合物、界面活性剤及び/又は親水性高分子は金属微粒子の表面を1〜10 nmの厚さに被覆するのが好ましい。なお被覆は一様である必要がなく、金属微粒子の表面の少なくとも一部が被覆されていれば良い。
【0035】
金属微粒子が吸着性化合物、界面活性剤及び/又は親水性高分子で表面修飾されていることは、FE−TEM等の高分解能TEMの観察において金属微粒子間隔が一定であること、及び化学分析により確認することができる。
【0036】
(D) 再分散
一般に有機酸は臭いが強いので、無臭の分散液とする場合には異なる分散溶媒に再分散するのが好ましい。この場合、還元反応後の金属微粒子分散液を吸着性化合物及び/又は界面活性剤の存在下で遠心分離等によって沈降させ、得られた金属微粒子を洗浄した後、別の分散溶媒で再分散する。
【0037】
(E) 金属微粒子分散液
本発明の目的とする金属微粒子分散液は、有機金属塩と還元剤とを反応させた溶液そのものでも、その中に吸着性化合物、界面活性剤及び/又は親水性高分子を含有させたものでも、あるいは再分散したものでも良い。いずれにしても、分散液中の金属微粒子の濃度は金属換算値で1〜80質量%が好ましく、5〜70質量%がより好ましい。なお分散液中の金属微粒子の粒径は通常コロイドを形成する程度であるが、限定的ではない。好ましい粒径は1〜100nm、より好ましくは1〜50nmである。
【0038】
なお有機金属塩の還元反応やその後の沈降、洗浄、他の溶媒への再分散等、全ての処理工程は不活性ガス中で行うのが望ましい。不活性ガスとしては、窒素、ヘリウム、ネオン、アルゴン等が挙げられる。
【0039】
以下に実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
【0040】
実施例1
91gの酢酸銅(II)に100 mlの2−エチル酪酸及び140 mlの2−エトキシエタノールを加え、窒素ガスを通しながら130℃で加熱溶解した。室温まで冷却した後、4mlのドデシルアミン及び30 mlのヒドラジン一水和物を添加し、酢酸銅を還元して、平均結晶子サイズが12 nmの銅コロイドの分散液(濃度:9.6質量%)を得た。
【0041】
比較例1
2−エチル酪酸の代わりに100 mlのエタノールを加えた以外実施例1と同様にして酢酸銅(II)の加熱溶解を試みたが、酢酸銅(II)はほとんど溶解しなかった。
【0042】
実施例2
2−エチル酪酸の代わりに、(a) 100 mlのイソ酪酸、(b) 100 mlの吉草酸、及び(c) 50 mlのプロピオン酸及び50 mlの2−エチル酪酸の混合物をそれぞれ添加した以外実施例1と同様にして、いずれも実施例1と同等の銅コロイド分散液を得た。
【0043】
実施例3
実施例1で調製した銅コロイド分散液に窒素雰囲気中で5倍容量のメタノールを添加し、銅ナノ粒子を沈降させた。デカンテーションにより上澄み液を除去し、再度メタノールを添加して銅ナノ粒子を洗浄した。この操作を3回繰り返した後、銅ナノ粒子を、2mlのドデシルアミンを含む50 mlの2−エトキシエタノールと50 mlの水との混合溶媒に再分散し、22質量%の銅コロイド分散液を得た。
【0044】
【発明の効果】
以上から明らかなように、有機金属塩、特に酢酸銅(II)を、炭素数10以下の有機酸を有機金属塩と等モル以上含有する溶媒に溶解させることにより、高濃度の有機金属塩溶液を得ることができ、さらに反応後無機塩が残留しない還元剤を有機金属塩溶液に添加して有機金属塩を還元することにより、高濃度で脱塩処理が不要な金属微粒子分散液を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-concentration metal fine particle dispersion or metal fine particles that can be used for printed wiring, high-density recording materials, metal catalysts, contrast agents, and the like, or a method for producing them.
[0002]
[Prior art]
As a method for obtaining metal fine particles, a raw material solid is put in a crucible, heated by a high frequency induction heating method or a resistance heating method to generate metal vapor, and rapidly cooled by collision with gas molecules such as He or Ar or a vapor of a solvent. Examples thereof include a gas evaporation method (gas phase method) in which fine particles are formed (for example, Japanese Patent No. 2561537). A colloidal dispersion can be prepared by dispersing the metal fine particles thus obtained in a suitable solvent. In addition, an inorganic reducing agent such as NaBH 4, an organic reducing agent such as a hydrazine-based, amine-based or diol-based compound, or hydrogen gas is allowed to act on the organic metal salt solution, or a metal having a lower oxidation-reduction potential (for example, magnesium). Etc.) can be made to act on the organometallic salt to prepare the colloidal dispersion by a method (solution reduction method) for obtaining metal colloidal particles.
[0003]
In general, the solution reduction method (liquid phase method) is desirable because a good colloidal dispersion can be easily produced. However, reported synthetic methods (eg, J. Am. Chem. Soc. 1993, 115, 3887, J. Phys. Chem. 1995, 99, 5077, Colloids and Surfaces A: Physicochem. Eng. , 87, etc.) all have a low metal content of less than 1% by mass, and further have problems such as being unusable for industrial use without desalting treatment because they contain unnecessary salts. It was.
[0004]
[Patent Document 1]
Japanese Patent No. 2561537 [Non-Patent Document 1]
“Journal of the American Chemical Society”, 1993, 115, p. 3887
[Non-Patent Document 2]
“Journal of Physical Chemistry”, 1995, Vol. 99, p. 5077
[Non-Patent Document 3]
“Colloids and Surfaces A: Physicochemical and Engineering Aspects”, 2000, 168, p. 87
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for easily producing metal fine particles and high-concentration metal fine particle dispersions.
[0006]
Another object of the present invention is to provide a large amount of inexpensive metal fine particles and a high concentration metal fine particle dispersion.
[0007]
[Means for Solving the Problems]
As a result of diligent research in view of the above object, the inventors have discovered that a high-concentration metal fine particle dispersion can be obtained by allowing an organic acid to be present when an organic metal salt is reduced.
[0008]
That is, in the method for producing a metal fine particle dispersion of the present invention, the metal equivalent concentration is at least 1 by dissolving an organic metal salt in a solvent containing an organic acid having 10 or less carbon atoms in an equimolar amount or more with the organic metal salt. A mass% organometallic salt solution is prepared and reduced with at least one compound selected from the group consisting of an organic reducing agent, hydrazine and hydroxylamine.
[0009]
In the method for producing a metal fine particle dispersion of the present invention, the following conditions are preferably satisfied.
(1) The organometallic salt is an organometallic salt of an organic acid having 10 or less carbon atoms.
(2) The organometallic salt is acetate.
(3) The metal of the organometallic salt contains at least Cu.
(4) The organic reducing agent is a hydrazine compound, a hydroxylamine compound, a diol, and a general formula: X- (A = B) n -Y (where A and B each represent a carbon atom or a nitrogen atom) , X and Y each represents an atomic group in which an atom having an unshared electron pair is bonded to A and B, and n represents 0 to 3, and at least one selected from the group consisting of compounds represented by: It is an organic compound.
(5) After precipitating and washing the metal fine particles in the dispersion produced by any of the above methods, the adsorbing compound and / or the surface activity in an amount of 0.01 to 2 times the metal content by mass ratio. Redispersed in another solvent in the presence of the agent.
[0010]
The method for producing metal fine particles of the present invention is characterized in that the metal fine particles in the dispersion produced by any one of the above methods are settled, washed and dried.
[0011]
The metal fine particles of the present invention have an average crystallite size of 1 to 100 nm, desirably 2 to 50 nm. The crystallite size can be determined from X-ray diffraction (XRD) measurement or observation with a transmission electron microscope.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[1] Raw material (A) Organometallic salt Metal salts used in the present invention include Au, Ag, Cu, Pt, Pd, In, Ga, Sn, Ge, Sb, Pb, Zn, Bi, Fe, Ni, Co , Mn, Tl, Cr, V, Ru, Rh, Ir, Al, and the like, and organic acid salts and organic complex salts of metals. Of these, organic acid salts having 10 or less carbon atoms that are relatively easily reduced are preferred. Particularly preferred is an acetate salt which is inexpensive and excellent in solubility. Such organic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, 2-ethylbutyric acid, pivalic acid, valeric acid, isovaleric acid, propiolic acid, lactic acid, caproic acid, caprylic acid, capric acid, benzoic acid, Examples include phthalic acid, salicylic acid, acetoacetic acid and the like. Among these organic acids, those having a boiling point or decomposition point of 220 ° C. or lower are desirable. Particularly preferred is an acetate salt that is inexpensive and excellent in solubility.
[0013]
As metal ions, Au, Ag, Cu, Pt, Pd, In, Ga, Sn, Ge, Sb, Pb, Zn, Bi, Fe, Ni, and Co are easily reduced, and the generated metal is relatively stable. Therefore, it is preferable. The above organic metal salts may be used alone or in combination. The present invention is particularly preferable when Cu is contained as a metal ion, because the effect is large from the viewpoint of solubility and reducibility.
[0014]
(B) Organic acid An organic acid having 10 or less carbon atoms is used. Specific examples of preferred organic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, 2-ethylbutyric acid, pivalic acid, valeric acid, isovaleric acid, propiolic acid, lactic acid, caproic acid, caprylic acid, capric acid, Examples include benzoic acid, phthalic acid, salicylic acid, acrylic acid, methacrylic acid, ethylmethylacetic acid, allylacetic acid, acetoacetic acid, and the like.
[0015]
(C) Reducing agent The reducing agent used in the present invention is a compound that exerts a reducing action on an organometallic salt, and is preferably a reducing agent having a low electrical conductivity after the reduction reaction, specifically, no metal ions remain. Organic reducing agents, hydrazine or hydroxylamine are preferred.
[0016]
Examples of the organic reducing agent include (1) hydrazine compounds containing a hydrazine group (for example, phenylhydrazine), (2) amines such as p-phenylenediamine, ethylenediamine, alkylamino alcohol, and p-aminophenol, (3) ▼ Hydroquinone, catechol, 1,4-butanediol, diols such as ethylene glycol, or (4) General formula: X- (A = B) n -Y (where A and B are carbon atoms or nitrogen atoms, respectively) X and Y each represents an atomic group in which an atom having an unshared electron pair is bonded to A and B, and n represents 0 to 3), or an tautomer thereof, or Examples thereof include compounds that generate these thermally. Since the reducing action of these reducing agents is selective with respect to the metal salt, it must be appropriately selected depending on the combination with the organometallic salt. These reducing agents may be used alone or in combination.
[0017]
In the compound represented by the general formula: X- (A = B) n -Y, the atom having an unshared electron pair is preferably an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or the like. A nitrogen atom is more preferable. As the atomic groups X and Y containing these atoms, OR 1 , NR 1 R 2 , SR 1 , and PR 1 R 2 (where R 1 and R 2 each represent a hydrogen atom or a substituent) are preferable. . The substituent is preferably an optionally substituted alkyl group having 1 to 10 carbon atoms or an optionally substituted acyl group having 1 to 10 carbon atoms.
[0018]
n is preferably 0 to 3, more preferably 0 to 2, and most preferably 0 to 1. When n is 2 or more, A and B may be different for each repeating unit. A and B, X and A, or Y and B may be bonded to each other to form a ring structure. When forming a ring structure, a 5-membered ring or a 6-membered ring is preferable, and these rings may be condensed. When condensed, a 5- to 6-membered ring is preferable.
[0019]
Since a reducing agent has a bad influence on the physical properties of the metal fine particles when a large amount of residue remains after reduction, a reducing agent is preferable, and a reducing agent is preferably volatile (sublimation) or reduced to be volatile after reduction. .
[0020]
From the same viewpoint and solubility, it is preferable that the organometallic salt can be reduced with a small amount, that is, has a low molecular weight. Therefore, the molecular weight of the reducing agent is preferably 500 or less, more preferably 300 or less, and most preferably 200 or less.
[0021]
Hereinafter, although the specific example of the reducing agent which can be used for this invention is illustrated, this invention is not limited to these examples.
[0022]
[Chemical 1]
Figure 2004232012
[0023]
[Chemical 2]
Figure 2004232012
[0024]
[Chemical 3]
Figure 2004232012
[0025]
[Formula 4]
Figure 2004232012
[0026]
(D) Solvent The organic metal salt and the solvent for the reducing agent, the washing solvent, or the dispersion solvent for the metal fine particles include the following.
(1) Water (2) Esters such as butyl acetate and cellosolve acetate (3) Ketones such as methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone and acetylacetone (4) Chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane and chloroform (5) Amides such as dimethylformamide (6) Aliphatic hydrocarbons such as cyclohexane, heptane, octane, isooctane and decane (7) Aromatic hydrocarbons such as toluene and xylene.
(8) Ethers such as tetrahydrofuran, ethyl ether and dioxane (9) Ethanol, n-propanol, isopropanol, n-butanol, diacetone alcohol, ethylene glycol, 2,5-hexanediol, 1,4-butanediol, cyclo Alcohols such as hexanol, cyclopentanol and cyclohexenol (10) Fluorinated solvents such as 2,2,3,3-tetrafluoropropanol (11) Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl Glycol ethers such as ether (12) 2-dimethylaminoethanol, 2-diethylaminoethanol, 2-dimethylaminoisopropanol, 3-diethylamino-1-propanol, 2-di Chiruamino-methyl-1-propanol, 2-methylamino ethanol, 4-dimethylamino-1-alkylamino alcohols such as butanol (13) diethylenetriamine, amines such as ethylenediamine and the like.
[0027]
(E) Adsorbent compound and surfactant In order to improve the stability of the obtained dispersion of metal fine particles (colloid dispersion), the surface of the metal fine particles has an adsorptive compound, surfactant and / or high hydrophilicity. It is preferable to modify the surface of the metal fine particles by adsorbing molecules. The colloid may be hydrophilic or hydrophobic. The adsorptive compound and the surfactant are preferably also present when reducing the organometallic salt.
[0028]
(1) Adsorbing compound As the adsorbing compound, a compound having a functional group such as —SH, —CN, —NH 2 , —SO 2 OH, —SOOH, —OPO (OH) 2 , —COOH is effective. In particular, a compound having a —SH group (dodecanethiol, L-cysteine, etc.) or a compound having a —NH 2 group (octylamine, dodecylamine, oleylamine, oleic acid amide, lauric acid amide, etc.) is preferable. In the case of a hydrophilic colloid, it is preferable to use an adsorptive compound having a hydrophilic group [for example, —SO 3 M or —COOM (M represents a hydrogen atom, an alkali metal atom, an ammonium molecule or the like)].
[0029]
(2) Surfactant As the surfactant, an anionic surfactant (for example, sodium bis (2-ethylhexyl) sulfosuccinate or sodium dodecylbenzenesulfonate), a nonionic surfactant (for example, an alkyl ester of polyalkyl glycol, Alkyl phenyl ether, etc.), fluorine-based surfactants and the like can be used.
[0030]
(3) As the hydrophilic polymer or hydrophilic polymer, for example, hydroxyethyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol or the like may be contained in the colloidal dispersion.
[0031]
[2] Preparation of Metal Fine Particle Dispersion (A) Preparation of Organic Metal Salt Solution First, an organic solvent containing an organic acid having 10 or less carbon atoms in an equimolar amount or more, preferably 1.5 times the molar amount or more, is used. . The organic solvent may be a 100% organic acid, but preferably contains an appropriate amount of an organic solvent other than the organic acid for viscosity adjustment. Here, the organic solvent containing an organic acid is not limited to a mixture of an organic acid and an organic solvent other than the organic acid, but also includes an organic solvent composed only of an organic acid. Therefore, the case where the organic acid is contained in an equimolar amount or more with the organic metal salt includes the case where the organic acid is 100% (when the organic acid is composed only of the organic acid). By using an organic solvent containing an organic acid, the organic metal salt can be dissolved at a high concentration. By setting it to 10 or less carbon atoms, it is possible to reduce the drying load when the metal fine particle dispersion is applied.
[0032]
The concentration of the organometallic salt solution is at least 1% by mass, preferably 5% by mass or more, in terms of metal. In order to increase the metal equivalent concentration, it is preferable to combine an appropriate amount of plural kinds of organic acids. The organic solvent to which the organic acid is added can be used alone or in combination of two or more in consideration of the solubility of the organic metal salt and the reducing agent, the reducing property of the reducing agent, the volatility, the viscosity of the solution, and the like.
[0033]
(B) Reduction of organometallic salt The reducing agent is added to the organometallic salt solution prepared as described above. When a reducing agent with a strong reducing action is added, the organometallic salt can be reduced without heating. However, when a reducing agent with a not so strong reducing action is added or when the reduction reaction is promoted, the organic metal salt is reduced. It is preferable to heat after adding a reducing agent to a salt solution. When heating, the heating temperature is preferably about 100 ° C to 300 ° C. In the state kept at a high temperature after the reaction, the generated metal nanoparticles may be fused and the size thereof may increase, so that it is desirable to cool quickly. The reaction solution itself of the organic metal salt and the reducing agent can be used as the metal fine particle dispersion.
[0034]
(C) In order to surface-modify and stabilize the metal fine particles in the surface-modified dispersion of metal fine particles, an adsorbent compound, a surfactant and / or a hydrophilic polymer are added to the reaction liquid and / or the obtained dispersion liquid. Is preferably added. The addition amount of the adsorptive compound, surfactant and / or hydrophilic polymer is preferably 0.01 to 2 times in mass ratio with respect to the metal content in the dispersion, and is preferably 0.1 to 1 time. Is more preferable. If the addition amount of the adsorptive compound, surfactant and / or hydrophilic polymer is less than 0.01 times by mass, the stability of the metal fine particles in the dispersion tends to be insufficient, and 2 If it exceeds twice, the physical properties of metal fine particles such as conductivity tend to be affected. The adsorbing compound, the surfactant and / or the hydrophilic polymer preferably coats the surface of the metal fine particle to a thickness of 1 to 10 nm. The coating need not be uniform, and it is sufficient that at least a part of the surface of the metal fine particles is coated.
[0035]
The fact that the metal fine particles are surface-modified with an adsorbent compound, a surfactant and / or a hydrophilic polymer means that the interval between the metal fine particles is constant in observation of a high-resolution TEM such as FE-TEM, and chemical analysis. Can be confirmed.
[0036]
(D) Redispersion In general, organic acids have a strong odor. Therefore, when making an odorless dispersion, it is preferable to redisperse in a different dispersion solvent. In this case, the metal fine particle dispersion after the reduction reaction is precipitated by centrifugation or the like in the presence of an adsorbing compound and / or a surfactant, and the resulting metal fine particles are washed and then redispersed with another dispersion solvent. .
[0037]
(E) Metal fine particle dispersion The metal fine particle dispersion targeted by the present invention is a solution obtained by reacting an organic metal salt with a reducing agent, and contains an adsorbing compound, a surfactant and / or a highly hydrophilic compound. It may be a molecule-containing one or a re-dispersed one. In any case, the concentration of the metal fine particles in the dispersion is preferably 1 to 80% by mass, more preferably 5 to 70% by mass in terms of metal. The particle size of the metal fine particles in the dispersion is usually enough to form a colloid, but is not limited. The preferred particle size is 1 to 100 nm, more preferably 1 to 50 nm.
[0038]
It should be noted that all treatment steps such as reduction reaction of organic metal salt, subsequent precipitation, washing, redispersion in other solvents, etc. are preferably carried out in an inert gas. Examples of the inert gas include nitrogen, helium, neon, and argon.
[0039]
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0040]
Example 1
To 91 g of copper (II) acetate, 100 ml of 2-ethylbutyric acid and 140 ml of 2-ethoxyethanol were added and dissolved by heating at 130 ° C. while passing nitrogen gas. After cooling to room temperature, 4 ml of dodecylamine and 30 ml of hydrazine monohydrate were added to reduce the copper acetate, and a dispersion of copper colloid having an average crystallite size of 12 nm (concentration: 9.6 mass) %).
[0041]
Comparative Example 1
Copper (II) acetate was heated and dissolved in the same manner as in Example 1 except that 100 ml of ethanol was added instead of 2-ethylbutyric acid, but copper (II) acetate was hardly dissolved.
[0042]
Example 2
Instead of 2-ethylbutyric acid, (a) 100 ml of isobutyric acid, (b) 100 ml of valeric acid, and (c) 50 ml of propionic acid and 50 ml of 2-ethylbutyric acid, respectively, were added. In the same manner as in Example 1, a copper colloid dispersion liquid equivalent to that in Example 1 was obtained.
[0043]
Example 3
Five times the volume of methanol was added to the copper colloid dispersion prepared in Example 1 in a nitrogen atmosphere to precipitate the copper nanoparticles. The supernatant was removed by decantation, and methanol was added again to wash the copper nanoparticles. After repeating this operation three times, the copper nanoparticles were redispersed in a mixed solvent of 50 ml of 2-ethoxyethanol containing 2 ml of dodecylamine and 50 ml of water. Obtained.
[0044]
【The invention's effect】
As is apparent from the above, a high concentration organometallic salt solution is obtained by dissolving an organometallic salt, particularly copper (II) acetate, in a solvent containing an organic acid having 10 or less carbon atoms in an equimolar amount or more with the organometallic salt. Further, by adding a reducing agent that does not leave inorganic salts after the reaction to the organometallic salt solution to reduce the organometallic salt, a metal fine particle dispersion that does not require desalting treatment at a high concentration can be obtained. Can do.

Claims (9)

有機金属塩を、炭素数10以下の有機酸を前記有機金属塩と等モル以上含有する溶媒に溶解することにより、金属換算濃度が少なくとも1質量%の有機金属塩溶液を調製し、有機還元剤、ヒドラジン及びヒドロキシルアミンからなる群から選ばれた少なくとも1種の化合物で還元することを特徴とする金属微粒子分散液の製造方法。An organic metal salt is dissolved in a solvent containing an organic acid having 10 or less carbon atoms in an equimolar amount or more with the organic metal salt to prepare an organic metal salt solution having a metal equivalent concentration of at least 1% by mass, and an organic reducing agent A method for producing a metal fine particle dispersion comprising reducing with at least one compound selected from the group consisting of hydrazine and hydroxylamine. 前記有機金属塩が炭素数10以下の有機酸の有機金属塩であることを特徴とする請求項1に記載の金属微粒子分散液の製造方法。The method for producing a metal fine particle dispersion according to claim 1, wherein the organic metal salt is an organic metal salt of an organic acid having 10 or less carbon atoms. 前記有機金属塩が酢酸塩であることを特徴とする請求項2に記載の金属微粒子分散液の製造方法。The method for producing a metal fine particle dispersion according to claim 2, wherein the organic metal salt is acetate. 前記有機金属塩の金属が少なくともCuを含有することを特徴とする請求項1〜3のいずれかに記載の金属微粒子分散液の製造方法。The method for producing a metal fine particle dispersion according to any one of claims 1 to 3, wherein the metal of the organometallic salt contains at least Cu. 前記有機還元剤がヒドラジン系化合物類、ヒドロキシルアミン系化合物類、ジオール類及び一般式:X−(A=B)−Y(ただし、A及びBはそれぞれ炭素原子又は窒素原子を表し、X及びYはそれぞれ非共有電子対を有する原子がA及びBに結合する原子団を表し、nは0〜3を表す。)により表される化合物類からなる群から選ばれた少なくとも1種の有機化合物であることを特徴とする請求項1〜4のいずれかに記載の金属微粒子分散液の製造方法。The organic reducing agent is a hydrazine compound, a hydroxylamine compound, a diol, and a general formula: X- (A = B) n -Y (where A and B each represent a carbon atom or a nitrogen atom, and X and Y represents an atomic group in which atoms each having an unshared electron pair are bonded to A and B, and n represents 0 to 3, and at least one organic compound selected from the group consisting of compounds represented by: The method for producing a metal fine particle dispersion according to claim 1, wherein: 請求項1〜5のいずれかの方法により製造した分散液中の金属微粒子を沈降、洗浄した後、金属含有量に対して質量比で0.01〜2倍の量の吸着性化合物及び/又は界面活性剤の存在下で他の溶媒に再分散させることを特徴とする金属微粒子分散液の製造方法。After the metal fine particles in the dispersion produced by the method according to any one of claims 1 to 5 are settled and washed, the adsorbing compound in an amount of 0.01 to 2 times the mass ratio with respect to the metal content and / or A method for producing a metal fine particle dispersion, wherein the dispersion is redispersed in another solvent in the presence of a surfactant. 請求項1〜5のいずれかの方法により製造した分散液中の金属微粒子を沈降、洗浄及び乾燥することを特徴とする金属微粒子の製造方法。A method for producing metal fine particles, comprising precipitating, washing and drying the metal fine particles in the dispersion produced by the method according to claim 1. 請求項1〜6のいずれかの方法により製造した1〜80質量%の濃度を有する金属微粒子分散液。A metal fine particle dispersion liquid having a concentration of 1 to 80% by mass produced by the method according to any one of claims 1 to 6. 請求項7の方法により製造した1〜100 nmの平均結晶子サイズを有する金属微粒子。Metal fine particles having an average crystallite size of 1 to 100 nm produced by the method of claim 7.
JP2003021010A 2003-01-29 2003-01-29 Method for producing high-concentration metal microparticle dispersion Pending JP2004232012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021010A JP2004232012A (en) 2003-01-29 2003-01-29 Method for producing high-concentration metal microparticle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021010A JP2004232012A (en) 2003-01-29 2003-01-29 Method for producing high-concentration metal microparticle dispersion

Publications (1)

Publication Number Publication Date
JP2004232012A true JP2004232012A (en) 2004-08-19

Family

ID=32950478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021010A Pending JP2004232012A (en) 2003-01-29 2003-01-29 Method for producing high-concentration metal microparticle dispersion

Country Status (1)

Country Link
JP (1) JP2004232012A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089786A (en) * 2004-09-22 2006-04-06 Mitsuboshi Belting Ltd Method for producing metallic nano-particle dispersed in polar solvent
JP2006104576A (en) * 2004-10-05 2006-04-20 Xerox Corp Stabilized silver nanoparticles and their use
WO2007034922A1 (en) * 2005-09-22 2007-03-29 Nippon Shokubai Co., Ltd. Metal nanoparticle, metal nanoparticle colloid, method for storing metal nanoparticle colloid, and metal coating film
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method
JP2008251522A (en) * 2007-03-05 2008-10-16 Hitachi Chem Co Ltd Coated conductive particle, manufacturing method of coated conductive particle, anisotropic conductive adhesive, and conductive adhesive
JP2009127062A (en) * 2007-11-20 2009-06-11 Noritake Co Ltd Metal particulate dispersion and method for producing the same
JP2009144241A (en) * 2007-12-05 2009-07-02 Xerox Corp Metal nanoparticle stabilized with carboxylic acid-organoamine complex
JP2009242824A (en) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The Manufacturing method of copper particulate dispersion liquid, and copper particulate dispersion liquid
JP2009299162A (en) * 2008-06-16 2009-12-24 Fujifilm Corp Silver nanowire, method for producing the same, water base dispersion product and transparent conductor
JP2010053409A (en) * 2008-08-28 2010-03-11 Sumitomo Electric Ind Ltd Method for producing metal powder, metal powder, electrically conductive paste, and multilayer ceramic capacitor
JP2010069465A (en) * 2008-09-22 2010-04-02 Noritake Co Ltd Platinum catalyst and its manufacturing method
JP2010168606A (en) * 2009-01-20 2010-08-05 Fuji Electric Holdings Co Ltd Method for producing particle, and reactor
JP2010174312A (en) * 2009-01-28 2010-08-12 Tosoh Corp Method for producing copper particulate dispersion
JP2010244724A (en) * 2009-04-01 2010-10-28 Mitsubishi Materials Corp Method of manufacturing particulate dispersion bodies, and particle dispersion manufactured using the method
JP2011518254A (en) * 2008-04-28 2011-06-23 タタ ケミカルズ リミテッド Method for preparing silver nanoparticles
US8083972B2 (en) 2005-07-25 2011-12-27 Sumitomo Metal Mining Co., Ltd. Copper particulate dispersions and method for producing the same
JP2013067865A (en) * 2012-11-12 2013-04-18 Sumitomo Electric Ind Ltd Metal powder, electroconductive paste and multilayer ceramic capacitor
JPWO2016031860A1 (en) * 2014-08-28 2017-06-15 石原産業株式会社 Metallic copper particles and method for producing the same
WO2020044983A1 (en) * 2018-08-31 2020-03-05 京セラ株式会社 Production method for copper particles, bonding paste, semiconductor device, and electrical and electronic components

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089786A (en) * 2004-09-22 2006-04-06 Mitsuboshi Belting Ltd Method for producing metallic nano-particle dispersed in polar solvent
JP2006104576A (en) * 2004-10-05 2006-04-20 Xerox Corp Stabilized silver nanoparticles and their use
US8083972B2 (en) 2005-07-25 2011-12-27 Sumitomo Metal Mining Co., Ltd. Copper particulate dispersions and method for producing the same
WO2007034922A1 (en) * 2005-09-22 2007-03-29 Nippon Shokubai Co., Ltd. Metal nanoparticle, metal nanoparticle colloid, method for storing metal nanoparticle colloid, and metal coating film
JP2007084879A (en) * 2005-09-22 2007-04-05 Nippon Shokubai Co Ltd Method for producing metallic nanoparticles, and colloid of particles obtained by the method
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method
JP2008251522A (en) * 2007-03-05 2008-10-16 Hitachi Chem Co Ltd Coated conductive particle, manufacturing method of coated conductive particle, anisotropic conductive adhesive, and conductive adhesive
JP2009127062A (en) * 2007-11-20 2009-06-11 Noritake Co Ltd Metal particulate dispersion and method for producing the same
JP2009144241A (en) * 2007-12-05 2009-07-02 Xerox Corp Metal nanoparticle stabilized with carboxylic acid-organoamine complex
JP2009242824A (en) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The Manufacturing method of copper particulate dispersion liquid, and copper particulate dispersion liquid
JP2011518254A (en) * 2008-04-28 2011-06-23 タタ ケミカルズ リミテッド Method for preparing silver nanoparticles
JP2009299162A (en) * 2008-06-16 2009-12-24 Fujifilm Corp Silver nanowire, method for producing the same, water base dispersion product and transparent conductor
JP2010053409A (en) * 2008-08-28 2010-03-11 Sumitomo Electric Ind Ltd Method for producing metal powder, metal powder, electrically conductive paste, and multilayer ceramic capacitor
JP2010069465A (en) * 2008-09-22 2010-04-02 Noritake Co Ltd Platinum catalyst and its manufacturing method
JP2010168606A (en) * 2009-01-20 2010-08-05 Fuji Electric Holdings Co Ltd Method for producing particle, and reactor
JP2010174312A (en) * 2009-01-28 2010-08-12 Tosoh Corp Method for producing copper particulate dispersion
JP2010244724A (en) * 2009-04-01 2010-10-28 Mitsubishi Materials Corp Method of manufacturing particulate dispersion bodies, and particle dispersion manufactured using the method
JP2013067865A (en) * 2012-11-12 2013-04-18 Sumitomo Electric Ind Ltd Metal powder, electroconductive paste and multilayer ceramic capacitor
JPWO2016031860A1 (en) * 2014-08-28 2017-06-15 石原産業株式会社 Metallic copper particles and method for producing the same
WO2020044983A1 (en) * 2018-08-31 2020-03-05 京セラ株式会社 Production method for copper particles, bonding paste, semiconductor device, and electrical and electronic components

Similar Documents

Publication Publication Date Title
JP2004232012A (en) Method for producing high-concentration metal microparticle dispersion
JP4822783B2 (en) Method for producing metal nanoparticles and colloid of particles obtained by the method
JP2019527770A (en) Method for producing metal nanoparticle colloidal dispersion
Jang et al. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules
US20080245186A1 (en) Synthesis of nano-materials in ionic liquids
JP5070138B2 (en) Method for producing metal nanoparticles
WO2015182395A1 (en) Coated copper particles and method for manufacturing same
JP2006213955A (en) Particle powder of silver and method for producing the same
US8052958B2 (en) Method for manufacturing metal oxide hollow nanoparticles and metal oxide hollow nanoparticles manufactured by the same
US20080105085A1 (en) Method Of Production Of High Purity Silver Particles
JP2007217794A (en) Metal nanoparticle and method of producing the same
KR20160126989A (en) Copper nanoparticles and production method for same, copper nanoparticle fluid dispersion, copper nanoink, copper nanoparticle preservation method, and copper nanoparticle sintering method
JP2008013846A (en) Method for producing metal nanoparticle, and metal nanoparticle
JP2010037657A (en) Method for producing silver nanoparticle
JP2006097116A (en) High concentration metal particulate-dispersed liquid and its production method
JP2013072091A (en) Metal microparticle and method for producing the same, metal paste containing the metal microparticle, and metal coat made of the metal paste
JP2006219693A (en) Method for producing fine particle of metallic silver
JP6057379B2 (en) Copper nitride fine particles and method for producing the same
JP5426270B2 (en) Method for producing metallic copper fine particles
JP4995492B2 (en) Method for producing copper nanoparticles, copper nanoparticles, copper nanoparticle dispersion, and electronic device
JP2016176146A (en) Coated copper particle
JP2006342399A (en) Ultra-fine iron particle and production method therefor
JP2011184725A (en) Method for synthesizing cobalt nanoparticle by hydrothermal reduction process
JP4433743B2 (en) Method for producing copper fine particles
WO2006090151A1 (en) Process of forming a nanocrystalline metal alloy