JP4865940B2 - Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst - Google Patents

Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst Download PDF

Info

Publication number
JP4865940B2
JP4865940B2 JP2000234049A JP2000234049A JP4865940B2 JP 4865940 B2 JP4865940 B2 JP 4865940B2 JP 2000234049 A JP2000234049 A JP 2000234049A JP 2000234049 A JP2000234049 A JP 2000234049A JP 4865940 B2 JP4865940 B2 JP 4865940B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrotreating
alumina
heavy hydrocarbon
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000234049A
Other languages
Japanese (ja)
Other versions
JP2001162168A (en
Inventor
成存 各務
守 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Japan Petroleum Energy Center JPEC filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000234049A priority Critical patent/JP4865940B2/en
Publication of JP2001162168A publication Critical patent/JP2001162168A/en
Application granted granted Critical
Publication of JP4865940B2 publication Critical patent/JP4865940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は水素化処理触媒及びこれを用いた重質炭化水素油の水素化処理方法に関し、より詳しくは特定の物性を有する水素化処理触媒、及びこれを用いた重質炭化水素油の水素化処理方法に関する。
【0002】
【従来の技術】
現在、酸性雨等からの環境保護のため、燃料油中の硫黄分は水素化精製処理により低減されており、そこで脱硫触媒が一般に使用されている。しかし、特に常圧残油、減圧残油等の重質油を原料として低硫黄重油を生産する場合において、触媒の脱硫性能の限界から触媒寿命は短く、1年未満となっている。したがって、1年以内で精製装置を停止し、触媒を交換せざるを得ない。このように、重質油から低硫黄重油を生産する場合、灯軽油の水素化処理に比較して、硫黄分を低減するためには、運転初期から高い温度を必要とする。また、触媒の活性は時間とともに劣化していくため、製品の硫黄分の量を一定に維持するためには、運転温度を徐々に上げていく必要がある。特に、重質油にはバナジウム、ニッケルといった金属分が含まれ、反応中に触媒に堆積して活性を被毒するため、触媒の劣化が著しい。このため、1年以内に装置の上限温度に達し、触媒を交換することとなるわけである。したがって、より低温における高脱硫活性と耐金属蓄積性を有する触媒の開発が望まれている。
【0003】
【発明が解決しようとする課題】
本発明は、上記観点からなされたもので、より低温における高脱硫活性と耐金属蓄積性を有する水素化処理触媒を提供するとともに、その水素化処理触媒を用いた重質炭化水素油の水素化処理方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明者らは鋭意研究の結果、特定の物性を有する水素化処理触媒を使用することにより、上記本発明の目的を効果的に達成しうることを見出し本発明を完成したものである。
【0005】
すなわち、本発明の要旨は下記のとおりである。
1.シリカを1〜10質量%含有するアルミナ担体に、周期律表第6族の金属の少なくとも一種及び周期律表第8〜10族の金属から選ばれる少なくとも一種を担持し、さらにリンを触媒基準で、酸化物基準で3〜5質量%含有する触媒であって、前記担体への金属の担持が、沸点又は分解温度200℃以上の水溶性有機化合物を含有する含浸液を用いてなされたものであり、該触媒の平均細孔直径(PD)が100〜170Åで、比表面積(SA)が140〜250m2 /gであり、かつ両者が下記の(1)式を満足し、さらに全細孔容量が0.4〜1.0cc/gであることを特徴とする水素化処理触媒。
SA+1.65PD > 410 ・・・(1)
2.周期律表第6族金属がモリブデンであり、周期律表第8〜10族金属がニッケルである上記1記載の水素化処理触媒。
.水溶性有機化合物がポリエチレングリコールもしくは1,3−ブタンジオールである上記1又は2に記載の水素化処理触媒。
.上記1〜のいずれかに記載した水素化処理触媒を用いた重質炭化水素油の水素化処理方法。
.上流側に脱金属触媒、下流側に上記1〜のいずれかに記載の水素化処理触媒を用いた上記記載の重質炭化水素油の水素化処理方法。
.重質炭化水素油が減圧軽油、常圧残油又は減圧残油である上記又はに記載の重質炭化水素油の水素化処理方法。
【0006】
【発明の実施の形態】
以下に本発明について詳細に説明する。
本発明の水素化処理触媒は、シリカを1〜10質量%含有するアルミナ担体に、周期律表第6族の金属の少なくとも一種及び周期律表第8〜10族の金属から選ばれる少なくとも一種を担持した触媒であって、該触媒の平均細孔直径(PD)が100〜170Åで、比表面積(SA)が140〜250m2 /gであり、かつ両者が下記の(1)式を満足し、さらに全細孔容量が0.4〜1.0cc/gであることを特徴とする。
SA+1.65PD > 410 ・・・(1)
【0007】
まず、アルミナ担体に添加するシリカの量は1〜10質量%である。1質量%未満であると、アルミナの表面積を大にする効果は少なく、10質量%を超えると、特定の含浸液が担体に高分散に金属を担持する能力が低下し好ましくない。担体に担持する金属については、周期律表第6族金属として、モリブデン、タングステンなどを挙げることができるが、モリブデンが好ましい。第6族金属の担持量は、触媒基準で、酸化物基準で4〜25質量%、好ましくは8〜20質量%である。周期律表第8〜10族の金属として、コバルト、ニッケルなどを挙げることができるが、ニッケルが好ましい。第8〜10族金属の担持量は、触媒基準で、酸化物基準で1〜8質量%、好ましくは2〜5質量%である。また、その他の成分としては、特にリンが必要である。リンを添加すると、触媒の水素化活性が向上し、特に重質炭化水素油を原料とする場合においては、脱硫活性が向上する。その効果は添加量が、触媒基準で、酸化物基準で3〜5質量%で顕著となる。
【0008】
触媒の平均細孔直径(PD)は100〜170Åである。100Å未満であると、原料の炭化水素油中のバナジウムやニッケルの金属の堆積及びコーク前駆体の堆積により、短時間で細孔が閉塞し脱硫活性が低下してしまう。170Åを超えると、運転初期において、脱硫活性が著しく低くなり好ましくない。触媒の比表面積(SA)は140〜250m2 /gである。140m2 /g未満であると、触媒の脱硫活性が低く、250m2 /gを超えると、脱硫活性が飽和してしまい、効率が悪い。また、上記PDとSAは前記式(1)を満足する必要がある。その式(1)を満足しないと、脱硫活性及び触媒寿命ともに劣る触媒となる。
【0009】
次いで、上記水素化処理触媒の製造方法について説明する。
まず、担体のシリカ含有アルミナ担体の製造法としては、一般的には、アルミナ源とシリカ源を混合し、沈殿を熟成させ、乾燥させ、焼成する。
【0010】
用いられるアルミナ源としては、硫酸アルミニウム,硝酸アルミニウム等の 水溶性酸性アルミナ塩、アルミン酸ソーダ等の水溶性塩基性アルミナ塩を挙げることができる。用いられるシリカ源としては、水ガラス,珪酸ナトリウム,シリカゾル等を挙げることができる。アルミナ源とシリカ源を混合する場合のpHは3〜10、好ましくは3.3〜9.3である。混合温度は30〜90℃、好ましくは50〜80℃である。
【0011】
生成した沈殿の熟成方法については、一般には、混合時と同じ温度にて酸性及びアルカリ性溶液を交互に加える操作(スイング)を、pH3.0〜9.3の間で3回以上、好ましくは5回以上行うことによって行うことができる。また、pH9以上にて温度70℃以上、好ましくはpH10以上にて温度80℃以上で、一定の時間攪拌する方法を用いることもできる。これをスイング法と組み合わせてもよい。熟成した沈殿を80〜200℃(好ましくは100〜160℃)で乾燥させ、400〜700℃(好ましくは500〜600℃)で焼成する。
【0012】
上記の沈殿を得る方法として、アルミナ及びシリカのゲルを各々予め製造しておき両者を混合する方法、アルミナゲルにシリカ化合物の水溶液を混合する方法、アルミニウム化合物を含む溶液とアルミニウム化合物及びシリカ化合物を混合して沈殿を得る方法、アルミニウム化合物及びシリカ化合物を含む溶液のpHを変化させて沈殿を得る方法などを採用することができる。
【0013】
特に望ましい担体の沈殿を得るためには、水溶性塩基性アルミナ塩に、一旦、実質的にゲルを生じない条件で水溶性シリカを混合せしめた溶液を調製し、更に水溶性アルミナ塩を添加してゲルを生成せしめる方法を採用すればよい。さらに詳細に述べると、実質的にゲルを生じない条件で水溶性塩基性アルミナ塩と水溶性シリカの溶液を混合するには、水溶性塩基性アルミナ塩の水溶液に、予めアンモニア水や水酸化ナトリウム等の塩基を添加してpHを10以上に高めてから、水溶性シリカを添加すればよい。または、pH3以下で水ガラスと硫酸アルミニウムを混合することによっても、実質的にゲルを生じない混合が可能である。このようにして得られたシリカ・アルミナの水溶液に、さらに水溶性の酸性アルミナ溶液あるいは塩基性アルミナ溶液を添加して沈殿を生じさせる。アルカリ側で調製したシリカ・アルミナ透明溶液から沈殿を得るためには、水溶性の酸性アルミナ溶液を添加することが有効であり、酸性側で調製したシリカ・アルミナ透明溶液から沈殿を得るためには、水溶性の塩基性アルミナ溶液を添加することが有効である。
【0014】
以上のようにして得られたシリカ含有アルミナ担体に、以下の方法で金属を担持することができる。担持法は含浸法が好ましい。周期律表第6族のモリブデン化合物としては、三酸化モリブデン,パラモリブデン酸アンモニウム等が使用され、タングステン化合物としては、三酸化タングステン,タングステン酸アンモニウム等が使用される。また、周期律表第8〜10族のニッケル化合物としては、硝酸ニッケル,塩基性炭酸ニッケル等が使用され、コバルト化合物としては、硝酸コバルト,塩基性炭酸コバルト等が使用される。さらに、リン化合物としては、五酸化リン,リン酸等が使用される。上記の金属化合物を、周期律表第6族金属は0.7〜4.3モル/リットル、周期律表第8〜10族の金属は0.3〜2.4モル/リットル、リン化合物は1.1〜2.0モル/リットルの割合で純水に溶解させ、さらに沸点又は分解温度200℃以上の水溶性有機化合物を50〜200g/リットルの割合で溶解させたものを含浸液とし、担体に吸水率と等量になるように調整後含浸させる。その沸点又は分解温度200℃以上の水溶性有機化合物として、1,3−ブタンジオール,1,4−ブタンジオール,ポリエチレングリコール,ポリオキシエチレンフェニルエーテル,ポリオキシエチレンオクチルフェニルエーテル等のエーテル基含有水溶性高分子、ポリビニルアルコール等のアルコール水溶性高分子、サッカロース,グリコース等の各種糖類、メチルセルロース,水溶性でんぷん等の水溶性多糖類及びこれらの誘導体を使用することができるが、分子量400以上のポリエチレングリコールが好ましい。沸点又は分解温度200℃以上の水溶性有機化合物を使用することにより、金属の担体での凝集を抑制することができる。
【0015】
なお、含浸液のpH調整は特に限定されないが、硝酸,塩酸,硫酸等の無機酸、りんご酸,エチレンジアミン4酢酸等の有機酸、アンモニアなどを使用して行うことができる。含浸後乾燥、焼成するが、乾燥温度は80〜200℃(好ましくは100〜150℃)、焼成温度は300〜600℃(好ましくは400〜550℃)である。焼成温度が低すぎると、担持成分と担体と十分な結合を持つことができない場合があり、高すぎると、担持成分の凝集が起こり易くなる。
【0016】
次に、本発明の水素化処理触媒を用いて水素化処理を行う際には、予め安定化処理として予備硫化を行うことが望ましい。この予備硫化処理の条件は特に限定されないが、通常、予備硫化剤として、硫化水素,二硫化炭素,チオフェン,ジメチルジスルフィド等を挙げることができ、処理温度200〜400℃、処理圧力常圧〜30MPaの範囲で行われる。
【0017】
触媒の形状については、特に重質炭化水素油の水素化処理に使用される触媒は、通常押出成形で製造されるものが多く、その形状は実質的に柱状をしている。その断面は円形のものが多いが、三葉型、四葉型など外表面を多くする工夫のあるものもある。また、球状触媒もよく用いられる。球状触媒は圧縮強度や耐磨耗性が特に要求される場合に使用される。
【0018】
水素化処理条件については、原料油の種類や目的により異なるが、一般的には反応温度200〜550℃(好ましくは220〜500℃)、水素分圧5〜30MPa(好ましくは10〜25MPa)の範囲で行われる。
【0019】
反応形式は特に限定されないが、通常は、固定床,移動床,沸騰床,懸濁床等の種々のプロセスから選択できるが、固定床が好ましい。
固定床の場合の温度、圧力以外の反応条件としては、液空間速度(LHSV)は0.05〜10hr-1(好ましくは0.1〜5hr-1)、水素/オイル比は500〜2,500Nm3 /kl(好ましくは700〜2,000Nm3 /kl)である。
【0020】
本願の第二発明は、前記水素化処理触媒を用いた重質炭化水素油の水素化処理方法である。
該重質炭化水素として、常圧残油,減圧残油,減圧軽油,脱蝋減圧残油,アスファルテン油,タールサンド油及びこれらを一旦予備的二水素化処理した残油を挙げることができる。また、上記残油と接触分解軽油との混合油(残油/接触分解油(容量比)は1以上、好ましくは1.5以上)も使用することができる。原料油の性状として、特に限定されないが、代表的な性状としては下記のとおりである。
【0021】
比重(15/4℃):0.9530〜0.9940
動粘度(50℃):250〜3,000cSt
硫黄分:2.8〜4.5質量%
窒素分:1,500〜4,200ppm
金属分(V,Ni):30〜250ppm
残炭分:5〜18質量%
アスファルテン分:0.5〜12.0質量%
反応条件としては、上記の原料油を、単層の水素化処理触媒を充填して水素化処理してもよいが、より高脱硫活性で長寿命な触媒にするために、上流側にアルミナ担体に周期律表第6族の少なくとも一種及び周期律表第8〜10族から選ばれる少なくとも一種を担持した脱金属触媒を用い、下流側に本発明の水素化処理触媒を用いた触媒システムにすればよい。
【0022】
上記の上流側に使用する脱金属触媒の物性等の例を下記に示す。
周期律表第6族の金属として、モリブデン、タングステンなどを挙げることができるが、モリブデンが好ましい。第6族金属の担持量は、触媒基準で、酸化物基準で2〜15質量、好ましくは4〜12質量%である。周期律表第8〜10族の金属として、コバルト、ニッケルなどを挙げることができるが、ニッケルが好ましい。第8〜10族金属の担持量は、触媒基準で、酸化物基準で1〜4質量%、好ましくは1.5〜2.5質量%である。担体としては、アルミナが望ましく、触媒の細孔径は100〜250Å(好ましくは150〜220Å)、比表面積は、80〜200m2 /g(好ましくは100〜180m2 /g)、細孔容積は0.4〜1.0cc/g(好ましくは0.5〜0.9cc/g)である。
【0023】
脱金属触媒と本発明の水素化処理触媒の充填割合は、脱金属触媒が10〜50容量%(好ましくは20〜40容量%)に対して、本発明の水素化処理触媒は50〜90容量%(好ましくは60〜80容量%)である。
【0024】
【実施例】
次に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によりなんら制限されるものではない。
〔実施例1〕
純水2.38リットルを70℃に加温し、攪拌しながら、水ガラス16gを添加してシリカ溶液S1を得た。溶液のpHは9.3であった。また、純水1リットルに、水酸化ナトリウム35.4gを溶解させ、さらに、アルミン酸ソーダ99.3gを添加して、均一なアルミナ溶液B1を得た。さらに、純水1リットルに硝酸アルミニウム500gを溶解させ、アルミナ溶液A1を得た。次に、シリカ溶液S1にアルミナ溶液A1をpH3.6になるまで添加した。この時、溶液中には白色のゲルが生成した。次にアルミナ溶液B1をpH9.0になるまで添加して、5分間攪拌しながらゲルを熟成させた。続いて再びアルミナ溶液A1を添加して、pHを3.6とし、攪拌しながら5分間ゲルを熟成させた。このようにpHを3.6から9.0の間で変化させる操作を10回繰り返した。その後、得られたゲルをろ過、洗浄してシリカ含有アルミナゲルを580g得た。このゲルを120℃、16時間乾燥させ、さらに500℃で2時間焼成してシリカ含有アルミナ担体C1を得た。
【0025】
三酸化モリブデン83g、塩基性炭酸ニッケル37g(NiOとして20g)、正リン酸(純度85%)38gとポリエチレングリコール(分子量400,分解温度200℃以上)30gをイオン交換水に溶解させ、全量を275ccの含浸液とした。次にその含浸液55ccを前記のシリカ含有アルミナ担体C1の吸水量に見合った量に調製し、100gに常圧含浸させた。この担持物を、120℃で3時間乾燥させて、空気中500℃、3時間焼成して触媒Iを得た。その物性を第1表に示す。
【0026】
上記のようにして得られた触媒Iについて、下記の方法で脱硫活性試験を実施した。
超小型高圧固定床反応装置の反応管に、粉砕しメッシュにより粒径を揃えた触媒200mgを充填し、硫化水素/水素ガス(10%硫化水素)を50ミリリットル/分で400℃、2時間流通させて、予備硫化した。そして、温度350℃でチオフェン(6%)を常圧水素気流中にて50ミリリットル/分流通させて3時間後のチオフェンの転化率を測定した。結果を第1表に示す。なお、脱硫活性の評価としてはチオフェン転化の触媒質量あたりの速度定数を用いた。
【0027】
〔実施例2〕
三酸化モリブデン108g、塩基性炭酸ニッケル48g(NiOとして26g)、正リン酸(純度85%)38g、りんご酸5gとポリエチレングリコール(分子量400,分解温度200℃以上)30gをイオン交換水に溶解させ、全量を275ccの含浸液とした。次にその含浸液55ccを実施例1で調製したシリカ含有アルミナ担体C1の吸水量に見合った量に調製し、100gに常圧含浸させた。この担持物を、120℃で3時間乾燥させて、空気中500℃、3時間焼成して触媒IIを得た。その物性を第1表に示す。その触媒IIについて、実施例1と同様に脱硫活性試験を実施した。結果を第1表に示す。
【0028】
参考例1
実施例1において、ポリエチレングリコール30gを添加しなかったこと以外は同様にして触媒III を得た。その物性を第1表に示す。その触媒III について、実施例1と同様に脱硫活性試験を実施した。結果を第1表に示す。
【0029】
参考例2
実施例2において、ポリエチレングリコール30gを添加しなかったこと以外は同様にして触媒IVを得た。その物性を第1表に示す。その触媒IVについて、実施例1と同様に脱硫活性試験を実施した。結果を第1表に示す。
【0030】
〔実施例
実施例2において、ポリエチレングリコール30gの代わりに、1,3−ブタンジオール(沸点204℃)を使用したこと以外は同様にして触媒Vを得た。その物性を第1表に示す。その触媒Vについて、実施例1と同様に脱硫活性試験を実施した。結果を第1表に示す。
【0031】
〔比較例1〕
純水1リットルに、水酸化ナトリウム35.4gを溶解させ、さらに、アルミン酸ソーダ99.3gを添加して、均一なアルミナ溶液B2を得た。さらに、純水1リットルに硝酸アルミニウム500gを溶解させ、アルミナ溶液A2を得た。純水2.38リットルを70℃に加温し、攪拌しながら、アルミナ溶液A2をpH3.6になるまで添加した。次にアルミナ溶液B2をpH9.0になるまで添加して、5分間攪拌しながら熟成させた。続いて再びアルミナ溶液A2を添加して、pHを3.6とし、攪拌しなが5分間熟成させた。このようにpHを3.6から9.0の間で変化させる操作を8回繰り返した。その後、得られたゲルをろ過、洗浄してアルミナゲルを580g得た。このゲルを120℃、16時間乾燥させ、さらに500℃で2時間焼成してアルミナ担体C2を得た。
【0032】
三酸化モリブデン83g、塩基性炭酸ニッケル37g(NiOとして20g)、正リン酸(純度85%)38gとポリエチレングリコール(分子量400,分解温度200℃以上)30gをイオン交換水に溶解させ、全量を275ccの含浸液とした。次にその含浸液55ccを前記のアルミナ担体C2の吸水量に見合った量に調製し、100gに常圧含浸させた。この担持物を、120℃で3時間乾燥させて、空気中500℃、3時間焼成して触媒VIを得た。その物性を第1表に示す。その触媒VIについて、実施例1と同様に脱硫活性試験を実施した。結果を第1表に示す。
【0033】
〔比較例2〕
純水2.38リットルを70℃に加温し、攪拌しながら、水ガラス3.3gを添加してシリカ溶液S2を得た。溶液のpHは8.5であった。また、純水1リットルに水酸化ナトリウム35.4gを溶解させ、さらにアルミン酸ソーダ99.3gを添加して均一なアルミナ溶液B3を得た。さらに、純水1リットルに硝酸アルミニウム500gを溶解させ、アルミナ溶液A3を得た。次に、シリカ溶液S2にアルミナ溶液A3をpH3.6になるまで添加した。この時、溶液中には白色のゲルが生成した。次に、アルミナ溶液B3をpH9.0になるまで添加して、5分間攪拌しながらゲルを熟成させた。続いて再びアルミナ溶液A3を添加してpHを3.6とし、攪拌しながら5分間ゲルを熟成させた。このようにpHを3.6〜9.0の間で変化させる操作を10回繰り返した。その後、得られたゲルをろ過、洗浄してシリカ含有アルミナゲルを580g得た。このゲルを120℃、16時間乾燥させ、さらに500℃で2時間焼成してシリカ含有アルミン担体C3を得た。
【0034】
三酸化モリブデン108g、塩基性炭酸ニッケル48g(NiOとして26g)、正リン酸(純度85%)38g、りんご酸5gとポリエチレングリコール(分子量400,分解温度200℃以上)40gをイオン交換水に溶解させ、全量を275ccの含浸液とした。次にその含浸液55ccをシリカ含有アルミナ担体C3の吸水量に見合った量に調製し、100gに常圧含浸させた。この担持物を、120℃で3時間乾燥させて、空気中500℃、3時間焼成して触媒VII を得た。その物性を第1表に示す。その触媒VII について、実施例1と同様に脱硫活性試験を実施した。結果を第1表に示す。
【0035】
〔比較例3〕
比較例1において、ポリエチレングリコール30gを添加しなかったこと以外は同様にして触媒VIIIを得た。その物性を第1表に示す。その触媒VIIIについて、実施例1と同様に脱硫活性試験を実施した。結果を第1表に示す。
【0036】
〔比較例4〕
比較例2において、ポリエチレングリコール30gを添加しなかったこと以外は同様にして触媒IXを得た。その物性を第1表に示す。その触媒IXについて、実施例1と同様に脱硫活性試験を実施した。結果を第1表に示す。
【0037】
【表1】

Figure 0004865940
【0038】
【表2】
Figure 0004865940
【0039】
【表3】
Figure 0004865940
【0040】
〔実施例
上流側に充填する脱金属触媒の調製
純水1リットルに、水酸化ナトリウム35.4gを溶解させ、さらに、アルミン酸ソーダ99.3gを添加して、均一なアルミナ溶液B4を得た。また、純水1リットルに硝酸アルミニウム500gを溶解させ、アルミナ溶液A4を得た。純水2.38リットルを70℃に加温し、攪拌しながら、アルミナ溶液A4をpH2.6になるまで添加した。次にアルミナ溶液B4をpH9.0になるまで添加して、5分間攪拌しながら熟成させた。続いて再びアルミナ溶液A4を添加して、pHを3.6とし、攪拌しながら5分間熟成させた。このようにpHを3.6から9.0の間で変化させる操作を13回繰り返した。その後、得られたゲルをろ過、洗浄してアルミナゲルを1,075g得た。このゲルを120℃、16時間乾燥させ、さらに500℃で2時間焼成してアルミナ担体C4を得た。
【0041】
三酸化モリブデン31g、塩基性炭酸ニッケル11g(NiOとして6g)、りんご酸50gをイオン交換水に溶解させ、全量を200ccの含浸液とした。次にその含浸液55ccを前記のアルミナ担体C4の吸水量に見合った量に調製し、100gに常圧含浸させた。この担持物を、120℃で3時間乾燥させて、空気中500℃、3時間焼成して触媒Xを得た。その物性を第2表に示す。
【0042】
【表4】
Figure 0004865940
【0043】
上流側に触媒Xの脱金属触媒を30容量%、下流側に触媒Iの水素化処理触媒を70容量%を反応管に充填して、下記のとおり触媒の性能を評価した。結果を第4表に示す。
【0044】
・触媒の性能評価
小型高圧固定床反応装置の反応管に、上記の脱メタル触媒と水素化処理触媒を充填した。中東系軽質軽油(LGO,硫黄分1.18質量%、窒素分70ppm)にジメチルジスルフィドを添加して硫黄濃度を2.5質量%に調整した予備硫化油を調製した。この予備硫化油を、上記の触媒に、水素ガスとともに250℃で24時間流通させて予備硫化した。また、原料油としては、金属(バナジウム,ニッケル)含有量が非常に多い中東系原油の常圧残油を用いた。その性状を第3表に示す。
【0045】
【表5】
Figure 0004865940
【0046】
この原料油を、上記の予備硫化後の触媒に、水素ガスとともに流通させて、以下の条件で水素化処理を行った。
生成油のターゲット硫黄分:0.5質量%
水素分圧:13.5MPa
液空間速度(LHSV):0.6hr-1
水素/オイル比:850Nm3 /kl
【0047】
〔比較例5〕
上流側に触媒Xの脱メタル触媒を30容量%、下流側に触媒VIIIの水素化処理触媒を70容量%を反応管に充填して、実施例6と同様に触媒の性能を評価した。結果を第4表に示す。
【0048】
【表6】
Figure 0004865940
【0049】
【発明の効果】
本発明は、より低温における高脱硫活性と耐金属蓄積性を有する水素化処理触媒であるので、その水素化処理触媒を使用し重質炭化水素油を水素化処理を行うと、従来より運転初期温度を低くでき、また触媒の劣化速度を緩和できるため、触媒の寿命が長くなり、原料油の増処理と触媒交換頻度の低減につながる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrotreating catalyst and a method for hydrotreating heavy hydrocarbon oil using the same, and more particularly, to a hydrotreating catalyst having specific physical properties, and hydrogenation of heavy hydrocarbon oil using the same. It relates to the processing method.
[0002]
[Prior art]
At present, in order to protect the environment from acid rain and the like, the sulfur content in fuel oil is reduced by hydrorefining treatment, and therefore, a desulfurization catalyst is generally used. However, particularly in the case of producing low-sulfur heavy oil using heavy oil such as atmospheric residual oil and reduced-pressure residual oil as a raw material, the catalyst life is short and less than one year due to the limit of the desulfurization performance of the catalyst. Therefore, the refiner must be stopped and the catalyst replaced within one year. Thus, when producing low sulfur heavy oil from heavy oil, in order to reduce a sulfur content compared with the hydrogenation process of kerosene oil, a high temperature is required from the beginning of operation. Further, since the activity of the catalyst deteriorates with time, it is necessary to gradually increase the operating temperature in order to keep the amount of sulfur in the product constant. In particular, heavy oil contains metal components such as vanadium and nickel, and deposits on the catalyst during the reaction to poison the activity. For this reason, the upper limit temperature of the apparatus is reached within one year, and the catalyst is replaced. Therefore, development of a catalyst having high desulfurization activity and metal accumulation resistance at a lower temperature is desired.
[0003]
[Problems to be solved by the invention]
The present invention was made from the above viewpoint, and provides a hydrotreating catalyst having high desulfurization activity and metal accumulation resistance at lower temperatures, and hydrogenation of heavy hydrocarbon oils using the hydrotreating catalyst. The object is to provide a processing method.
[0004]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the object of the present invention can be effectively achieved by using a hydrotreating catalyst having specific physical properties, and have completed the present invention.
[0005]
That is, the gist of the present invention is as follows.
1. The alumina support containing 1 to 10% by mass of silica carries at least one selected from Group 6 metals of the periodic table and Group 8 to 10 metals of the periodic table, and further contains phosphorus on a catalyst basis. A catalyst containing 3 to 5% by mass on the oxide basis , wherein the metal is supported on the carrier by using an impregnating liquid containing a water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C. or higher. The catalyst has an average pore diameter (PD) of 100 to 170 mm, a specific surface area (SA) of 140 to 250 m @ 2 / g, both satisfy the following formula (1), and the total pore volume: Is 0.4 to 1.0 cc / g.
SA + 1.65PD> 410 (1)
2. 2. The hydrotreating catalyst according to 1 above, wherein the Group 6 metal of the periodic table is molybdenum and the Group 8-10 metal of the periodic table is nickel.
3 . 3. The hydrotreating catalyst according to 1 or 2 above, wherein the water-soluble organic compound is polyethylene glycol or 1,3-butanediol .
4 . A method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst described in any one of 1 to 3 above.
5 . 4. The method for hydrotreating heavy hydrocarbon oil according to 4 above, using the demetallation catalyst on the upstream side and the hydrotreating catalyst according to any one of 1 to 3 above on the downstream side.
6 . 6. The method for hydrotreating heavy hydrocarbon oil according to 4 or 5 above, wherein the heavy hydrocarbon oil is a vacuum gas oil, an atmospheric residue or a vacuum residue.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
In the hydrotreating catalyst of the present invention, an alumina support containing 1 to 10% by mass of silica contains at least one selected from Group 6 metals and 8 to 10 metals in the Periodic Table. The supported catalyst has an average pore diameter (PD) of 100 to 170 mm, a specific surface area (SA) of 140 to 250 m 2 / g, and both satisfy the following formula (1): Furthermore, the total pore volume is 0.4 to 1.0 cc / g.
SA + 1.65PD> 410 (1)
[0007]
First, the amount of silica added to the alumina support is 1 to 10% by mass. If it is less than 1% by mass, the effect of increasing the surface area of alumina is small, and if it exceeds 10% by mass, the ability of a specific impregnating solution to carry a metal in a highly dispersed state on the carrier is not preferred. With respect to the metal supported on the carrier, examples of the Group 6 metal of the periodic table include molybdenum and tungsten. Molybdenum is preferred. The amount of the Group 6 metal supported is 4 to 25% by mass, preferably 8 to 20% by mass, based on the catalyst and based on the oxide. Examples of metals in Groups 8 to 10 of the periodic table include cobalt and nickel, with nickel being preferred. The supported amount of the Group 8-10 metal is 1 to 8% by mass, preferably 2 to 5% by mass based on the oxide, based on the catalyst. As other components, phosphorus is particularly necessary . When phosphorus is added, the hydrogenation activity of the catalyst is improved, and particularly when heavy hydrocarbon oil is used as a raw material, the desulfurization activity is improved. The effect becomes remarkable when the addition amount is 3 to 5% by mass on the catalyst basis and on the oxide basis.
[0008]
The average pore diameter (PD) of the catalyst is 100 to 170 mm. If it is less than 100%, the deposition of vanadium or nickel metal in the raw hydrocarbon oil and the deposition of the coke precursor will clog the pores in a short time and reduce the desulfurization activity. If it exceeds 170%, the desulfurization activity is remarkably lowered in the initial stage of operation, which is not preferable. The specific surface area (SA) of the catalyst is 140 to 250 m 2 / g. If it is less than 140 m 2 / g, the desulfurization activity of the catalyst is low, and if it exceeds 250 m 2 / g, the desulfurization activity is saturated and the efficiency is poor. The PD and SA must satisfy the above formula (1). If the formula (1) is not satisfied, the catalyst is inferior in both desulfurization activity and catalyst life.
[0009]
Subsequently, the manufacturing method of the said hydroprocessing catalyst is demonstrated.
First, as a method for producing a silica-containing alumina carrier as a carrier, generally, an alumina source and a silica source are mixed, a precipitate is aged, dried and fired.
[0010]
Examples of the alumina source used include water-soluble acidic alumina salts such as aluminum sulfate and aluminum nitrate, and water-soluble basic alumina salts such as sodium aluminate. Examples of the silica source used include water glass, sodium silicate, and silica sol. When mixing the alumina source and the silica source, the pH is 3 to 10, preferably 3.3 to 9.3. The mixing temperature is 30 to 90 ° C, preferably 50 to 80 ° C.
[0011]
Regarding the aging method of the formed precipitate, generally, an operation (swing) in which an acidic solution and an alkaline solution are alternately added at the same temperature as the mixing is performed three times or more between pH 3.0 and 9.3, preferably 5 It can be done by doing more than once. Further, a method of stirring at a pH of 9 or higher and a temperature of 70 ° C. or higher, preferably a pH of 10 or higher and a temperature of 80 ° C. or higher for a certain period of time can be used. This may be combined with the swing method. The aged precipitate is dried at 80 to 200 ° C. (preferably 100 to 160 ° C.) and calcined at 400 to 700 ° C. (preferably 500 to 600 ° C.).
[0012]
As a method for obtaining the above-mentioned precipitation, a method in which an alumina gel and a silica gel are respectively prepared in advance and mixed together, a method in which an aqueous solution of a silica compound is mixed in an alumina gel, a solution containing an aluminum compound, an aluminum compound, and a silica compound A method of obtaining a precipitate by mixing, a method of obtaining a precipitate by changing the pH of a solution containing an aluminum compound and a silica compound, and the like can be employed.
[0013]
In order to obtain a particularly desirable carrier precipitate, a solution is prepared by mixing water-soluble basic alumina salt with water-soluble silica under conditions that do not substantially generate gel, and then adding water-soluble alumina salt. Thus, a method of generating a gel may be employed. More specifically, in order to mix a solution of a water-soluble basic alumina salt and a water-soluble silica under conditions that do not substantially generate a gel, an aqueous solution of water-soluble basic alumina salt is preliminarily mixed with aqueous ammonia or sodium hydroxide. The base may be added to increase the pH to 10 or more, and then water-soluble silica may be added. Alternatively, mixing with water glass and aluminum sulfate at a pH of 3 or less can also be performed without substantial gel formation. A water-soluble acidic alumina solution or basic alumina solution is further added to the silica / alumina aqueous solution thus obtained to cause precipitation. In order to obtain a precipitate from the silica-alumina transparent solution prepared on the alkali side, it is effective to add a water-soluble acidic alumina solution. To obtain a precipitate from the silica-alumina transparent solution prepared on the acidic side It is effective to add a water-soluble basic alumina solution.
[0014]
A metal can be supported on the silica-containing alumina support obtained as described above by the following method. The supporting method is preferably an impregnation method. As the molybdenum compound of Group 6 of the periodic table, molybdenum trioxide, ammonium paramolybdate or the like is used, and as the tungsten compound, tungsten trioxide, ammonium tungstate or the like is used. Moreover, nickel nitrate, basic nickel carbonate, etc. are used as a nickel compound of Group 8-10 of a periodic table, and cobalt nitrate, basic cobalt carbonate, etc. are used as a cobalt compound. Furthermore, phosphorus pentoxide, phosphoric acid, etc. are used as a phosphorus compound. In the metal compound, the group 6 metal of the periodic table is 0.7 to 4.3 mol / liter, the metal of the group 8 to 10 of the periodic table is 0.3 to 2.4 mol / liter, and the phosphorus compound is What was dissolved in pure water at a rate of 1.1 to 2.0 mol / liter, and further dissolved a water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C. or higher at a rate of 50 to 200 g / liter as an impregnation solution, The carrier is impregnated after adjustment so as to have the same amount of water absorption. As a water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C. or higher, 1,3-butanediol, 1,4-butanediol, polyethylene glycol, polyoxyethylene phenyl ether, polyoxyethylene octylphenyl ether, or other ether group-containing water-soluble Water-soluble polymers such as water-soluble polymers such as water-soluble polymers, polyvinyl alcohol and the like, various sugars such as saccharose and glycolose, methylcellulose, water-soluble starch and the like, and polyethylene having a molecular weight of 400 or more. Glycol is preferred. By using a water-soluble organic compound having a boiling point or decomposition temperature of 200 ° C. or higher, aggregation on a metal carrier can be suppressed.
[0015]
The pH adjustment of the impregnating solution is not particularly limited, but can be performed using an inorganic acid such as nitric acid, hydrochloric acid or sulfuric acid, an organic acid such as malic acid or ethylenediaminetetraacetic acid, ammonia or the like. The impregnation is followed by drying and firing. The drying temperature is 80 to 200 ° C (preferably 100 to 150 ° C), and the firing temperature is 300 to 600 ° C (preferably 400 to 550 ° C). If the calcination temperature is too low, the supported component and the carrier may not be sufficiently bonded. If it is too high, aggregation of the supported component tends to occur.
[0016]
Next, when hydrotreating using the hydrotreating catalyst of the present invention, it is desirable to perform preliminary sulfidation as a stabilization treatment in advance. The conditions for this preliminary sulfidation treatment are not particularly limited, but usually, as the presulfurization agent, hydrogen sulfide, carbon disulfide, thiophene, dimethyl disulfide and the like can be mentioned, treatment temperature 200 to 400 ° C., treatment pressure normal pressure to 30 MPa. It is done in the range.
[0017]
As for the shape of the catalyst, in particular, many of the catalysts used for the hydrogenation treatment of heavy hydrocarbon oils are usually produced by extrusion molding, and the shape thereof is substantially columnar. The cross-section is often circular, but there are also devices that devise to increase the outer surface such as a trilobal type and a four-leaf type. Also, spherical catalysts are often used. Spherical catalysts are used when compression strength and wear resistance are particularly required.
[0018]
The hydrotreating conditions vary depending on the type and purpose of the feedstock, but generally the reaction temperature is 200 to 550 ° C. (preferably 220 to 500 ° C.) and the hydrogen partial pressure is 5 to 30 MPa (preferably 10 to 25 MPa). Done in a range.
[0019]
Although the reaction mode is not particularly limited, it can be usually selected from various processes such as a fixed bed, a moving bed, a boiling bed, and a suspension bed, but a fixed bed is preferable.
As reaction conditions other than temperature and pressure in the case of a fixed bed, the liquid space velocity (LHSV) is 0.05 to 10 hr −1 (preferably 0.1 to 5 hr −1 ), and the hydrogen / oil ratio is 500 to 2. 500 Nm 3 / kl (preferably 700 to 2,000 Nm 3 / kl).
[0020]
The second invention of the present application is a method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst.
Examples of the heavy hydrocarbon include atmospheric residual oil, vacuum residual oil, vacuum gas oil, dewaxed vacuum residual oil, asphaltene oil, tar sand oil, and residual oil obtained by subjecting these to preliminary dihydrogenation. Moreover, the mixed oil (residual oil / catalyzed cracked oil (volume ratio) of 1 or more, preferably 1.5 or more) of the residual oil and the catalytically cracked light oil can be used. The properties of the feed oil are not particularly limited, but typical properties are as follows.
[0021]
Specific gravity (15/4 ° C.): 0.9530 to 0.9940
Kinematic viscosity (50 ° C.): 250 to 3,000 cSt
Sulfur content: 2.8 to 4.5% by mass
Nitrogen content: 1,500-4,200 ppm
Metal content (V, Ni): 30-250 ppm
Residual carbon content: 5 to 18% by mass
Asphaltene content: 0.5-12.0% by mass
As the reaction conditions, the above raw material oil may be hydrotreated by filling a single-layer hydrotreating catalyst. However, in order to obtain a catalyst having a higher desulfurization activity and a longer life, an upstream side of an alumina carrier is used. The catalyst system using a demetallization catalyst carrying at least one selected from the group 6 of the periodic table and at least one selected from the groups 8 to 10 of the periodic table is used on the downstream side. That's fine.
[0022]
Examples of physical properties of the demetallation catalyst used on the upstream side are shown below.
Examples of the metal of Group 6 of the periodic table include molybdenum and tungsten, but molybdenum is preferable. The amount of the Group 6 metal supported is 2 to 15% by mass, preferably 4 to 12% by mass based on the oxide, based on the catalyst. Examples of metals in Groups 8 to 10 of the periodic table include cobalt and nickel, with nickel being preferred. The supported amount of the Group 8-10 metal is 1 to 4% by mass, preferably 1.5 to 2.5% by mass based on the oxide, based on the catalyst. As the support, alumina is desirable, the catalyst has a pore diameter of 100 to 250 mm (preferably 150 to 220 mm), a specific surface area of 80 to 200 m 2 / g (preferably 100 to 180 m 2 / g), and a pore volume of 0. .4 to 1.0 cc / g (preferably 0.5 to 0.9 cc / g).
[0023]
The filling ratio of the demetallation catalyst and the hydrotreating catalyst of the present invention is such that the demetallation catalyst is 10 to 50% by volume (preferably 20 to 40% by volume), whereas the hydrotreating catalyst of the present invention is 50 to 90% by volume. % (Preferably 60 to 80% by volume).
[0024]
【Example】
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not restrict | limited at all by these Examples.
[Example 1]
While heating 2.38 liters of pure water to 70 ° C. and stirring, 16 g of water glass was added to obtain silica solution S1. The pH of the solution was 9.3. Further, 35.4 g of sodium hydroxide was dissolved in 1 liter of pure water, and 99.3 g of sodium aluminate was further added to obtain a uniform alumina solution B1. Furthermore, 500 g of aluminum nitrate was dissolved in 1 liter of pure water to obtain an alumina solution A1. Next, the alumina solution A1 was added to the silica solution S1 until the pH reached 3.6. At this time, a white gel was formed in the solution. Next, alumina solution B1 was added until pH 9.0 and the gel was aged while stirring for 5 minutes. Subsequently, the alumina solution A1 was added again to adjust the pH to 3.6, and the gel was aged for 5 minutes while stirring. The operation of changing the pH between 3.6 and 9.0 was repeated 10 times. Thereafter, the obtained gel was filtered and washed to obtain 580 g of silica-containing alumina gel. This gel was dried at 120 ° C. for 16 hours and further calcined at 500 ° C. for 2 hours to obtain a silica-containing alumina carrier C1.
[0025]
83 g of molybdenum trioxide, 37 g of basic nickel carbonate (20 g as NiO), 38 g of orthophosphoric acid (purity 85%) and 30 g of polyethylene glycol (molecular weight 400, decomposition temperature 200 ° C. or higher) are dissolved in ion-exchanged water, and the total amount is 275 cc. The impregnating solution was used. Next, 55 cc of the impregnating liquid was prepared in an amount commensurate with the water absorption amount of the silica-containing alumina support C1, and 100 g was impregnated at normal pressure. This support was dried at 120 ° C. for 3 hours and calcined in air at 500 ° C. for 3 hours to obtain Catalyst I. The physical properties are shown in Table 1.
[0026]
The catalyst I obtained as described above was subjected to a desulfurization activity test by the following method.
The reaction tube of an ultra-compact high-pressure fixed bed reactor is filled with 200 mg of pulverized catalyst with a uniform particle size, and hydrogen sulfide / hydrogen gas (10% hydrogen sulfide) is flowed at 400 ml at 50 ml / min for 2 hours. And presulfided. And thiophene (6%) was distribute | circulated 50 milliliters / minute in normal-pressure hydrogen stream at the temperature of 350 degreeC, and the conversion rate of the thiophene after 3 hours was measured. The results are shown in Table 1. In addition, the rate constant per catalyst mass of thiophene conversion was used for evaluation of desulfurization activity.
[0027]
[Example 2]
108 g of molybdenum trioxide, 48 g of basic nickel carbonate (26 g as NiO), 38 g of orthophosphoric acid (purity 85%), 5 g of malic acid and 30 g of polyethylene glycol (molecular weight 400, decomposition temperature 200 ° C. or higher) are dissolved in ion-exchanged water. The total amount was 275 cc of impregnation liquid. Next, 55 cc of the impregnating solution was prepared in an amount commensurate with the water absorption of the silica-containing alumina support C1 prepared in Example 1, and 100 g was impregnated at normal pressure. This support was dried at 120 ° C. for 3 hours and calcined in air at 500 ° C. for 3 hours to obtain Catalyst II. The physical properties are shown in Table 1. About the catalyst II, the desulfurization activity test was implemented like Example 1. FIG. The results are shown in Table 1.
[0028]
[ Reference Example 1 ]
In Example 1, Catalyst III was obtained in the same manner except that 30 g of polyethylene glycol was not added. The physical properties are shown in Table 1. The catalyst III was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.
[0029]
[ Reference Example 2 ]
Catalyst IV was obtained in the same manner as in Example 2, except that 30 g of polyethylene glycol was not added. The physical properties are shown in Table 1. The catalyst IV was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.
[0030]
[Example 3 ]
In Example 2, Catalyst V was obtained in the same manner except that 1,3-butanediol (boiling point 204 ° C.) was used instead of 30 g of polyethylene glycol. The physical properties are shown in Table 1. The catalyst V was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.
[0031]
[Comparative Example 1]
In 1 liter of pure water, 35.4 g of sodium hydroxide was dissolved, and 99.3 g of sodium aluminate was further added to obtain a uniform alumina solution B2. Furthermore, 500 g of aluminum nitrate was dissolved in 1 liter of pure water to obtain an alumina solution A2. 2.38 liters of pure water was heated to 70 ° C., and the alumina solution A2 was added to pH 3.6 while stirring. Next, the alumina solution B2 was added until pH 9.0 and aged with stirring for 5 minutes. Subsequently, the alumina solution A2 was added again to adjust the pH to 3.6, and the mixture was aged for 5 minutes while stirring. Thus, the operation of changing the pH between 3.6 and 9.0 was repeated 8 times. Thereafter, the obtained gel was filtered and washed to obtain 580 g of alumina gel. This gel was dried at 120 ° C. for 16 hours and further calcined at 500 ° C. for 2 hours to obtain an alumina carrier C2.
[0032]
83 g of molybdenum trioxide, 37 g of basic nickel carbonate (20 g as NiO), 38 g of orthophosphoric acid (purity 85%) and 30 g of polyethylene glycol (molecular weight 400, decomposition temperature 200 ° C. or higher) are dissolved in ion-exchanged water, and the total amount is 275 cc. The impregnating solution was used. Next, 55 cc of the impregnating solution was prepared in an amount commensurate with the water absorption of the alumina carrier C2, and 100 g was impregnated at normal pressure. This support was dried at 120 ° C. for 3 hours and calcined in air at 500 ° C. for 3 hours to obtain catalyst VI. The physical properties are shown in Table 1. The catalyst VI was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.
[0033]
[Comparative Example 2]
2.38 liters of pure water was heated to 70 ° C., and while stirring, 3.3 g of water glass was added to obtain silica solution S2. The pH of the solution was 8.5. Further, 35.4 g of sodium hydroxide was dissolved in 1 liter of pure water, and 99.3 g of sodium aluminate was further added to obtain a uniform alumina solution B3. Furthermore, 500 g of aluminum nitrate was dissolved in 1 liter of pure water to obtain an alumina solution A3. Next, alumina solution A3 was added to silica solution S2 until pH 3.6 was reached. At this time, a white gel was formed in the solution. Next, the alumina solution B3 was added until pH 9.0, and the gel was aged while stirring for 5 minutes. Subsequently, the alumina solution A3 was added again to adjust the pH to 3.6, and the gel was aged for 5 minutes while stirring. Thus, operation which changes pH between 3.6-9.0 was repeated 10 times. Thereafter, the obtained gel was filtered and washed to obtain 580 g of silica-containing alumina gel. This gel was dried at 120 ° C. for 16 hours and further calcined at 500 ° C. for 2 hours to obtain a silica-containing aluminum carrier C3.
[0034]
108 g of molybdenum trioxide, 48 g of basic nickel carbonate (26 g as NiO), 38 g of normal phosphoric acid (purity 85%), 5 g of malic acid and 40 g of polyethylene glycol (molecular weight 400, decomposition temperature 200 ° C. or more) are dissolved in ion-exchanged water. The total amount was 275 cc of impregnation liquid. Next, 55 cc of the impregnating solution was prepared in an amount commensurate with the water absorption of the silica-containing alumina support C3, and 100 g was impregnated at normal pressure. This support was dried at 120 ° C. for 3 hours and calcined in air at 500 ° C. for 3 hours to obtain catalyst VII. The physical properties are shown in Table 1. The catalyst VII was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.
[0035]
[Comparative Example 3]
Catalyst VIII was obtained in the same manner as in Comparative Example 1 except that 30 g of polyethylene glycol was not added. The physical properties are shown in Table 1. The catalyst VIII was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.
[0036]
[Comparative Example 4]
Catalyst IX was obtained in the same manner as in Comparative Example 2, except that 30 g of polyethylene glycol was not added. The physical properties are shown in Table 1. The catalyst IX was subjected to a desulfurization activity test in the same manner as in Example 1. The results are shown in Table 1.
[0037]
[Table 1]
Figure 0004865940
[0038]
[Table 2]
Figure 0004865940
[0039]
[Table 3]
Figure 0004865940
[0040]
[Example 4 ]
Preparation of Demetallization Catalyst Filled Upstream 35.4 g of sodium hydroxide was dissolved in 1 liter of pure water, and 99.3 g of sodium aluminate was added to obtain a uniform alumina solution B4. Moreover, 500 g of aluminum nitrate was dissolved in 1 liter of pure water to obtain an alumina solution A4. 2.38 liters of pure water was heated to 70 ° C., and the alumina solution A4 was added to pH 2.6 while stirring. Next, the alumina solution B4 was added until pH 9.0 and aged with stirring for 5 minutes. Subsequently, the alumina solution A4 was added again to adjust the pH to 3.6 and aged for 5 minutes while stirring. Thus, the operation of changing the pH between 3.6 and 9.0 was repeated 13 times. Thereafter, the obtained gel was filtered and washed to obtain 1075 g of alumina gel. This gel was dried at 120 ° C. for 16 hours, and further calcined at 500 ° C. for 2 hours to obtain an alumina carrier C4.
[0041]
31 g of molybdenum trioxide, 11 g of basic nickel carbonate (6 g as NiO), and 50 g of malic acid were dissolved in ion-exchanged water to make a total of 200 cc of impregnation liquid. Next, 55 cc of the impregnating solution was prepared in an amount commensurate with the water absorption of the alumina carrier C4, and 100 g was impregnated at normal pressure. This support was dried at 120 ° C. for 3 hours and calcined in air at 500 ° C. for 3 hours to obtain Catalyst X. The physical properties are shown in Table 2.
[0042]
[Table 4]
Figure 0004865940
[0043]
The reaction tube was filled with 30% by volume of the catalyst X demetallation catalyst on the upstream side and 70% by volume of the hydrotreating catalyst of Catalyst I on the downstream side, and the performance of the catalyst was evaluated as follows. The results are shown in Table 4.
[0044]
-Performance evaluation of catalyst The above-mentioned demetalization catalyst and hydrotreating catalyst were filled in a reaction tube of a small high-pressure fixed bed reactor. A preliminary sulfurized oil was prepared by adding dimethyl disulfide to a Middle Eastern light gas oil (LGO, sulfur content 1.18 mass%, nitrogen content 70 ppm) to adjust the sulfur concentration to 2.5 mass%. This pre-sulfided oil was pre-sulfided by flowing through the above catalyst together with hydrogen gas at 250 ° C. for 24 hours. Moreover, as the feedstock, a normal-pressure residual oil of Middle Eastern crude oil having a very high metal (vanadium, nickel) content was used. The properties are shown in Table 3.
[0045]
[Table 5]
Figure 0004865940
[0046]
This raw material oil was circulated together with hydrogen gas through the catalyst after the preliminary sulfidation, and the hydrogenation treatment was performed under the following conditions.
Target sulfur content of the product oil: 0.5% by mass
Hydrogen partial pressure: 13.5 MPa
Liquid space velocity (LHSV): 0.6 hr −1
Hydrogen / oil ratio: 850 Nm 3 / kl
[0047]
[Comparative Example 5]
The catalyst performance was evaluated in the same manner as in Example 6 by filling the reaction tube with 30% by volume of the catalyst X demetalization catalyst on the upstream side and 70% by volume of the hydrotreating catalyst of catalyst VIII on the downstream side. The results are shown in Table 4.
[0048]
[Table 6]
Figure 0004865940
[0049]
【Effect of the invention】
Since the present invention is a hydrotreating catalyst having high desulfurization activity and metal accumulation resistance at a lower temperature, when hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst, the operation is earlier than before. Since the temperature can be lowered and the deterioration rate of the catalyst can be mitigated, the life of the catalyst is extended, leading to an increase in the feed oil and a reduction in the frequency of catalyst replacement.

Claims (6)

シリカを1〜10質量%含有するアルミナ担体に、周期律表第6族の金属の少なくとも一種及び周期律表第8〜10族の金属から選ばれる少なくとも一種を担持し、さらにリンを触媒基準で、酸化物基準で3〜5質量%含有する触媒であって、前記担体への金属の担持が、沸点又は分解温度200℃以上の水溶性有機化合物を含有する含浸液を用いてなされたものであり、該触媒の平均細孔直径(PD)が100〜170Åで、比表面積(SA)が140〜250m2/gであり、かつ両者が下記の(1)式を満足し、さらに全細孔容量が0.4〜1.0cc/gであることを特徴とする水素化処理触媒。
SA+1.65PD > 410 ・・・(1)
The alumina support containing 1 to 10% by mass of silica carries at least one selected from Group 6 metals of the periodic table and Group 8 to 10 metals of the periodic table, and further contains phosphorus on a catalyst basis. A catalyst containing 3 to 5% by mass on the oxide basis , wherein the metal is supported on the carrier by using an impregnating liquid containing a water-soluble organic compound having a boiling point or a decomposition temperature of 200 ° C. or higher. The catalyst has an average pore diameter (PD) of 100 to 170 mm, a specific surface area (SA) of 140 to 250 m 2 / g, both satisfy the following formula (1), and the total pores A hydroprocessing catalyst having a capacity of 0.4 to 1.0 cc / g.
SA + 1.65PD> 410 (1)
周期律表第6族金属がモリブデンであり、周期律表第8〜10族金属がニッケルである請求項1記載の水素化処理触媒。The hydrotreating catalyst according to claim 1, wherein the Group 6 metal of the periodic table is molybdenum and the Group 8-10 metal of the periodic table is nickel. 水溶性有機化合物がポリエチレングリコールもしくは1,3−ブタンジオールである請求項1又は2に記載の水素化処理触媒。 The hydrotreating catalyst according to claim 1 or 2, wherein the water-soluble organic compound is polyethylene glycol or 1,3-butanediol . 請求項1〜のいずれかに記載した水素化処理触媒を用いた重質炭化水素油の水素化処理方法。A method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst according to any one of claims 1 to 3 . 上流側に脱金属触媒、下流側に請求項1〜のいずれかに記載の水素化処理触媒を用いた請求項記載の重質炭化水素油の水素化処理方法。The method for hydrotreating heavy hydrocarbon oil according to claim 4 , wherein the metal removal catalyst is used on the upstream side and the hydrotreating catalyst according to any one of claims 1 to 3 is used on the downstream side. 重質炭化水素油が減圧軽油、常圧残油又は減圧残油である請求項又はに記載の重質炭化水素油の水素化処理方法。The heavy hydrocarbon oil hydrotreating method according to claim 4 or 5 , wherein the heavy hydrocarbon oil is a vacuum gas oil, an atmospheric residue or a vacuum residue.
JP2000234049A 1999-09-29 2000-08-02 Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst Expired - Fee Related JP4865940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000234049A JP4865940B2 (en) 1999-09-29 2000-08-02 Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1999276563 1999-09-29
JP27656399 1999-09-29
JP11-276563 1999-09-29
JP2000234049A JP4865940B2 (en) 1999-09-29 2000-08-02 Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst

Publications (2)

Publication Number Publication Date
JP2001162168A JP2001162168A (en) 2001-06-19
JP4865940B2 true JP4865940B2 (en) 2012-02-01

Family

ID=26551980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000234049A Expired - Fee Related JP4865940B2 (en) 1999-09-29 2000-08-02 Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst

Country Status (1)

Country Link
JP (1) JP4865940B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2998488B1 (en) * 2012-11-29 2015-02-06 Ifp Energies Now HYDROTREATMENT CATALYST FROM ALUMIN GEL AND METHOD OF PREPARING SUCH A CATALYST
FR2999453B1 (en) * 2012-12-18 2015-02-06 IFP Energies Nouvelles RESIDUAL HYDROTREATMENT CATALYST COMPRISING VANADIUM AND USE THEREOF IN A RESIDUAL HYDROCONVERSION PROCESS
FR2999454B1 (en) * 2012-12-18 2015-02-06 IFP Energies Nouvelles CATALYST FOR HYDROTREATING RESIDUES WITH A CONTROLLED SILICON CONTENT AND USE THEREOF IN A PROCESS FOR HYDROCONVERSION OF RESIDUES
CN112973717B (en) * 2019-12-16 2024-01-30 山西腾茂科技股份有限公司 Hydrofining catalyst and preparation method thereof
CN116060022A (en) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 Hydrogenation catalyst and production method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335705A (en) * 1976-09-14 1978-04-03 Toa Nenryo Kogyo Kk Hydrogenation and purification of petroleum wax
JPS5437105A (en) * 1977-08-29 1979-03-19 Chiyoda Chem Eng & Constr Co Ltd Two-stage hydrogenation of heavy oil
US4941964A (en) * 1988-03-14 1990-07-17 Texaco Inc. Hydrotreatment process employing catalyst with specified pore size distribution
US5399259A (en) * 1992-04-20 1995-03-21 Texaco Inc. Hydroconversion process employing catalyst with specified pore size distribution
MX9305801A (en) * 1992-09-29 1994-07-29 Texaco Development Corp A NEW HYDROCONVERSION PROCESS USING A CATALYST WITH A SPECIFIED PORE SIZE DISTRIBUTION.
JP2854484B2 (en) * 1993-02-03 1999-02-03 出光興産株式会社 Hydroprocessing of kerosene oil fraction
JP3802939B2 (en) * 1994-09-21 2006-08-02 東燃ゼネラル石油株式会社 Catalyst for hydrotreating
JP3692207B2 (en) * 1997-04-30 2005-09-07 東燃ゼネラル石油株式会社 Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
JP3511128B2 (en) * 1998-03-02 2004-03-29 日立造船株式会社 Method for producing metal fine particles and method for supporting fine particles on porous carrier
JP4303820B2 (en) * 1999-01-26 2009-07-29 日本ケッチェン株式会社 Hydrotreating catalyst and hydrotreating method
JP2001003066A (en) * 1999-06-24 2001-01-09 Idemitsu Kosan Co Ltd Production of desulfurized fuel oil

Also Published As

Publication number Publication date
JP2001162168A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
TWI558455B (en) Hydrodemetallization and hydrodesulphurization catalysts, and use in a single formulation in a concatenated process
US10507458B2 (en) Hydrotreating catalyst and process for preparing the same
JP4839311B2 (en) Catalyst combination and two-stage hydroprocessing method for heavy hydrocarbon oils
KR101521313B1 (en) A composition useful in the catalytic hydroprocessing of hydrocarbon feedstocks, a method of making such catalyst, and a process of using such catalyst
JP6134334B2 (en) Silica-containing alumina support, catalyst produced therefrom and method of use thereof
EP0449144B2 (en) Catalyst composition for hydrotreating of hydrocarbons and hydrotreating process using the same
EP0341893A2 (en) Hydroprocessing catalyst and method of preparation
EP0349223B1 (en) Hydroprocessing catalytic composition and the preparation and use thereof
US20150144532A1 (en) Resid hydrotreating catalyst containing titania
TW201325714A (en) Hydrogenation catalyst and method for producing same
JP2008093493A (en) Demetallization catalyst and method for hydrotreating heavy oil by using the same
JP3662495B2 (en) Hydrocracking catalyst, production method thereof, and hydrocracking method
JP2014117703A (en) Vanadium-containing residual fraction hydrogenation catalyst and use of the same for residual fraction hydrogenating conversion method
CN103055952B (en) Residual oil hydrotreating catalyst supporter and preparation method thereof
JP4865940B2 (en) Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst
CN102039140A (en) Heavy oil hydrotreating catalyst as well as preparation method and application thereof
CN103374387B (en) A kind of nickel and the high heavy oil hydrogenation treatment method of content of vanadium
JP2013027838A (en) Method of regenerating hydrogenation catalyst
CN103374392B (en) A kind of hydrogenation modification method of catalytically cracked stock
JP4621371B2 (en) Hydrotreating catalyst bed and method for hydrotreating heavy hydrocarbon oil using the catalyst bed
JP4165961B2 (en) Hydrotreating catalyst for middle fraction of coal liquefied oil
JP2004115581A (en) Method for demetallating petroleum heavy oil
JP4519379B2 (en) Heavy hydrocarbon oil hydrotreating catalyst
JP4938178B2 (en) Hydrocarbon hydrotreating method
JP4319812B2 (en) Hydroprocessing catalyst and hydrocarbon oil hydroprocessing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees