JP2870822B2 - Bonding method between silicon and glass - Google Patents

Bonding method between silicon and glass

Info

Publication number
JP2870822B2
JP2870822B2 JP18524289A JP18524289A JP2870822B2 JP 2870822 B2 JP2870822 B2 JP 2870822B2 JP 18524289 A JP18524289 A JP 18524289A JP 18524289 A JP18524289 A JP 18524289A JP 2870822 B2 JP2870822 B2 JP 2870822B2
Authority
JP
Japan
Prior art keywords
glass
silicon
glass substrate
bonding
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18524289A
Other languages
Japanese (ja)
Other versions
JPH0350141A (en
Inventor
哲生 深田
克弘 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18524289A priority Critical patent/JP2870822B2/en
Publication of JPH0350141A publication Critical patent/JPH0350141A/en
Application granted granted Critical
Publication of JP2870822B2 publication Critical patent/JP2870822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 シリコンとガラスとをガラスの軟化温度以下で接合す
るシリコンとガラスとの接合方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a bonding method of silicon and glass for bonding silicon and glass at a temperature lower than the softening temperature of glass.

〔従来の技術〕[Conventional technology]

例えば半導体デバイスの製造工程において、シリコン
ウエハとガラス基板とを接合する場合、接合体に残る応
力歪みを少なくするために、ガラスの軟化温度以下で接
合することが望ましい。例えば特公昭53−28747号公報
に示された陽極接合方法が一般に行われている。
For example, when a silicon wafer and a glass substrate are joined in a semiconductor device manufacturing process, it is desirable that the joining be performed at a temperature equal to or lower than the softening temperature of the glass in order to reduce stress distortion remaining in the joined body. For example, the anodic bonding method disclosed in Japanese Patent Publication No. 53-28747 is generally used.

第3図は従来のシリコンとガラスとの陽極接合を説明
するための断面図である。図において、(1)はシリコ
ンウエハ、(2)はシリコンウエハ(1)に重ねたガラ
ス基板で、一般にパイレツクスガラスが用いられる。
(3)はシリコンウエハに付けた第1の電極、(4)は
ガラス基板(2)に付けた第2の電極、(5)はシリコ
ンウエハ(1)とガラス基板(2)とを加熱するための
ヒータである。
FIG. 3 is a sectional view for explaining a conventional anodic bonding of silicon and glass. In the figure, (1) is a silicon wafer, (2) is a glass substrate overlaid on the silicon wafer (1), and generally, pyrex glass is used.
(3) is a first electrode attached to a silicon wafer, (4) is a second electrode attached to a glass substrate (2), and (5) heats the silicon wafer (1) and the glass substrate (2). For heating.

次に、接合方法について説明する。先ず、ガラス基板
(2)の電気伝導度を上げるために、ヒータ(5)でシ
リコンウエハ(1)とガラス基板(2)とをガラス基板
(2)の軟化温度以下の適当な温度まで加熱する。次
に、第1の電極(3)を正に第2の電極(4)を負にし
て、電流を流してシリコンウエハ(1)とガラス基板
(2)とを接合する。例えばガラス基板(2)がパイレ
ツクスガラスの場合、400℃に加熱し、10μA/mm2の電流
を1分間通じて接合を行う。
Next, a joining method will be described. First, in order to increase the electric conductivity of the glass substrate (2), the silicon wafer (1) and the glass substrate (2) are heated by the heater (5) to an appropriate temperature lower than the softening temperature of the glass substrate (2). . Next, the first electrode (3) is made positive and the second electrode (4) is made negative, and an electric current is applied to join the silicon wafer (1) and the glass substrate (2). For example, when the glass substrate (2) is pyrex glass, the substrate is heated to 400 ° C., and a current of 10 μA / mm 2 is passed for 1 minute to perform bonding.

パイレツクスガラスから成るガラス基板(2)の熱膨
張係数は、シリコンウエハ(1)より僅かに小さいの
で、接合後温度が常温に戻つた時、シリコンウエハ
(1)の方がガラス基板(2)より体積の収縮量が少し
大きい。従つて、シリコンウエハ(1)とガラス基板
(2)との接合体には、接合部のガラス基板(2)界面
に僅かに圧縮応力が残留する。
Since the thermal expansion coefficient of the glass substrate (2) made of Pyrex glass is slightly smaller than that of the silicon wafer (1), the silicon wafer (1) has the glass substrate (2) when the temperature returns to normal temperature after bonding. The volume shrinkage is slightly larger. Therefore, in the joined body of the silicon wafer (1) and the glass substrate (2), a slight compressive stress remains at the interface of the glass substrate (2) at the joint.

また、シリコンウエハ(1)からガラス基板(2)へ
電流が流れると、ガラス中のアルカリ金属イオンが負極
である第2の電極(4)の方へ移動するので、ガラス基
板(2)表面の第2の電極(4)近傍にアルカリ金属が
集中する。アルカリ金属はガラス構造中の空隙(自由体
積)に入り込むので、温度が下がつてもガラス基板
(2)表面の第2の電極(4)近傍は、他の部分より体
積の収縮量が小さい。従つて、接合体の接合部には第2
の電極(4)直下のガラス基板(2)界面に圧縮応力が
集中して残留する。
When a current flows from the silicon wafer (1) to the glass substrate (2), the alkali metal ions in the glass move toward the second electrode (4), which is a negative electrode, so that the surface of the glass substrate (2) Alkali metal concentrates near the second electrode (4). Since the alkali metal enters voids (free volume) in the glass structure, the amount of volume shrinkage in the vicinity of the second electrode (4) on the surface of the glass substrate (2) is smaller than in other portions even when the temperature is lowered. Therefore, the joint of the joined body
Compressive stress is concentrated and remains at the interface of the glass substrate (2) immediately below the electrode (4).

上記で説明した2種類の圧縮応力が重なつて、接合体
の接合部のパイレツクスから成るガラス基板(2)表面
には第4図に示すような分布の圧縮応力が残留する。こ
の残留応力により、シリコンウエハ(1)とパイレツク
スガラス基板(2)との接合体は第5図のように変形す
る。
When the two types of compressive stresses described above overlap, a compressive stress having a distribution shown in FIG. 4 remains on the surface of the glass substrate (2) formed of pyrex at the joint of the joined body. Due to this residual stress, the joined body of the silicon wafer (1) and the pyrex glass substrate (2) is deformed as shown in FIG.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来のシリコンとガラスの接合は以上のように行われ
ているので、シリコンとガラスの接合体に応力が残留し
て、接合体に変形や亀裂が発生する等の問題点があつ
た。
Since the conventional bonding of silicon and glass is performed as described above, there is a problem that stress remains in the bonded body of silicon and glass, and deformation and cracks are generated in the bonded body.

この発明は上記のような問題点を解決するためになさ
れたもので、シリコンとガラスとの接合体に変形や亀裂
が発生しないシリコンとガラスとの接合方法を得ること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for bonding silicon and glass, which does not cause deformation or cracks in a bonded body of silicon and glass.

〔課題を解決するための手段〕[Means for solving the problem]

この発明にかかるシリコンとガラスの接合方法は、シ
リコンとガラスとを接触させる工程と、上記シリコンと
上記ガラスとを上記ガラスの軟化温度以下の温度に加熱
する工程と、上記シリコンに正の電圧を加えることによ
り上記シリコンと上記ガラスとの接触部を通じて上記シ
リコンから上記ガラスへ正の電流を流して上記シリコン
と上記ガラスとを接合する工程とを備えたシリコンとガ
ラスとの接合方法であって、上記シリコンと上記ガラス
との組み合わせにおいて、上記ガラスは上記シリコンよ
り少なくとも大きい熱膨張係数を備えるようにしたもの
である。
The method for bonding silicon and glass according to the present invention includes a step of bringing silicon and glass into contact, a step of heating the silicon and the glass to a temperature equal to or lower than the softening temperature of the glass, and a step of applying a positive voltage to the silicon. A step of flowing a positive current from the silicon to the glass through a contact portion between the silicon and the glass to join the silicon and the glass, the method comprising: In the combination of the silicon and the glass, the glass has a coefficient of thermal expansion at least larger than that of the silicon.

〔作用〕[Action]

この発明におけるシリコンとガラスとの接合方法は、
シリコンとシリコンより少なくとも大きい熱膨張係数を
有するガラスを接合して、接合部のガラス界面に発生す
る圧縮応力と引張応力とを相殺する。
The method for bonding silicon and glass in the present invention is as follows.
Bonding silicon and glass having a thermal expansion coefficient at least larger than that of silicon cancels out the compressive stress and the tensile stress generated at the glass interface of the bonded portion.

〔発明の実施例〕(Example of the invention)

以下、この発明の一実施例を第1図について説明す
る。図において、(1)は直径100mm、厚み0.4mm、熱膨
張係数34.5×10-7/℃のシリコンウエハ、(2)は直径1
00mm、厚み3mm、熱膨張係数38.5×10-7/℃のガラス基
板、(3)及び(4)はそれぞれ表面を平滑にしたシリ
コン板を用いた第1及び第2の電極、(5)はヒーター
である。
An embodiment of the present invention will be described below with reference to FIG. In the figure, (1) is a silicon wafer having a diameter of 100 mm, a thickness of 0.4 mm, and a thermal expansion coefficient of 34.5 × 10 −7 / ° C., and (2) is a silicon wafer having a diameter of 1 mm.
00 mm, thickness 3 mm, glass substrate having a thermal expansion coefficient of 38.5 × 10 −7 / ° C., (3) and (4) are first and second electrodes using a silicon plate having a smooth surface, respectively, and (5) is It is a heater.

次に接合方法について説明する。先ず、ヒータ(5)
でシリコンウエハ(1)とガラス基板(2)を420℃に
加熱する。次にシリコンウエハ(1)側の第1の電極
(3)を正に、ガラス基板(2)側の第2の電極(4)
を負にして、直流電圧700Vを15分間加えて、シリコンウ
エハ(1)とガラス基板(2)とを接合する。この接合
体のガラス基板(2)に残留する応力は、第2図に示す
ようにゼロになつた。これは、ガラス基板(2)の熱膨
張係数がシリコンウエハ(1)より僅かに大きいので、
接合後温度が常温に戻つた時、ガラス基板(2)の方が
シリコンウエハ(1)より体積の収縮量が大きくなる。
その接合体の接合部においてガラス基板(2)の界面に
引張応力が発生して、陽極接合時にアルカリ金属イオン
が第2の電極(4)付近へ集中することにより接合部の
ガラス基板(2)界面に発生する圧縮応力を相殺するの
で、接合体のガラス基板(2)に残留する応力がゼロに
なつたのである。
Next, a joining method will be described. First, the heater (5)
To heat the silicon wafer (1) and the glass substrate (2) to 420 ° C. Next, the first electrode (3) on the silicon wafer (1) side is positive, and the second electrode (4) on the glass substrate (2) side is positive.
Is negative, and a DC voltage of 700 V is applied for 15 minutes to bond the silicon wafer (1) and the glass substrate (2). The stress remaining on the glass substrate (2) of the joined body became zero as shown in FIG. This is because the coefficient of thermal expansion of the glass substrate (2) is slightly larger than that of the silicon wafer (1).
When the temperature returns to normal temperature after bonding, the glass substrate (2) has a larger volume shrinkage than the silicon wafer (1).
Tensile stress is generated at the interface of the glass substrate (2) at the joint of the joined body, and alkali metal ions concentrate near the second electrode (4) during anodic bonding, so that the glass substrate (2) at the joint is formed. Since the compressive stress generated at the interface is offset, the stress remaining on the glass substrate (2) of the joined body is reduced to zero.

また、上記一実施例と同じで、ただガラス基板(2)
の厚みが1mm、熱膨張係数が36.5×10-7/℃であることの
み異なる場合も、接合体の残留応力はゼロであつた。
Further, the same as the above embodiment, except that the glass substrate (2) is used.
The residual stress of the joined body was also zero when the only difference was that the thickness was 1 mm and the thermal expansion coefficient was 36.5 × 10 −7 / ° C.

ここで、シリコンウエハ(1)とガラス基板(2)の
加熱温度は、ガラスの軟化点以下であればよいが、あま
り加熱温度が低いとガラスの電気伝導度が小さくなり接
合時間が長くなり、あまり加熱温度が高いと少しの外部
応力で変形し易くなるので、400℃〜450℃が好適であ
る。
Here, the heating temperature of the silicon wafer (1) and the glass substrate (2) may be lower than the softening point of the glass. However, if the heating temperature is too low, the electrical conductivity of the glass decreases and the bonding time increases, If the heating temperature is too high, it is easy to be deformed by a small external stress.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、シリコンとガラス
とを接触させる工程と、上記シリコンと上記ガラスとを
上記ガラスの軟化温度以下の温度に加熱する工程と、上
記シリコンに正の電圧を加えることにより上記シリコン
と上記ガラスとの接触部を通じて上記シリコンから上記
ガラスへ正の電流を流して上記シリコンと上記ガラスと
を接合する工程とを備えたシリコンとガラスとの接合方
法であって、上記シリコンと上記ガラスとの組み合わせ
において、上記ガラスは上記シリコンより少なくとも大
きい熱膨張係数を備えるようにしたので、接合体に変形
や亀裂が発生しないシリコンとガラスとの接合方法が得
られる効果がある。
As described above, according to the present invention, a step of bringing silicon and glass into contact, a step of heating the silicon and the glass to a temperature equal to or lower than the softening temperature of the glass, and applying a positive voltage to the silicon A step of flowing a positive current from the silicon to the glass through the contact portion between the silicon and the glass to bond the silicon and the glass, the method comprising: In the combination of silicon and the glass, the glass has a coefficient of thermal expansion at least greater than that of the silicon. Therefore, there is an effect that a bonding method of the silicon and the glass that does not cause deformation or cracks in the bonded body is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による接合方法を示す断面
図、第2図はこの発明の一実施例による接合体のガラス
基板に残留する応力の分布を示す図、第3図は従来の方
法による接合方法を示す断面図、第4図は従来の接合方
法による接合体の接合部のガラス基板界面に残留する応
力の分布を示す図、第5図は従来の接合方法による接合
体の変形の一例を示す断面図である。 図において、(1)はシリコンウエハ、(2)はガラス
基板、(3)及び(4)はそれぞれ第1及び第2の電
極、(5)はヒータである。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a cross-sectional view showing a bonding method according to one embodiment of the present invention, FIG. 2 is a diagram showing a distribution of stress remaining on a glass substrate of a bonded body according to one embodiment of the present invention, and FIG. FIG. 4 is a cross-sectional view showing a joining method by the method, FIG. 4 is a view showing a distribution of a stress remaining at a glass substrate interface at a joint of the joined body by the conventional joining method, and FIG. 5 is a deformation of the joined body by the conventional joining method. FIG. 3 is a cross-sectional view showing one example. In the figure, (1) is a silicon wafer, (2) is a glass substrate, (3) and (4) are first and second electrodes, respectively, and (5) is a heater. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリコンとガラスとを接触させる工程と、
上記シリコンと上記ガラスとを上記ガラスの軟化温度以
下の温度に加熱する工程と、上記シリコンに正の電圧を
加えることにより上記シリコンと上記ガラスとの接触部
を通じて上記シリコンから上記ガラスへ正の電流を流し
て上記シリコンと上記ガラスとを接合する工程とを備え
たシリコンとガラスとの接合方法であって、上記シリコ
ンと上記ガラスとの組み合わせにおいて、上記ガラスは
上記シリコンより少なくとも大きい熱膨張係数を有する
ものであることを特徴とするシリコンとガラスとの接合
方法。
1. A step of bringing silicon into contact with glass;
Heating the silicon and the glass to a temperature equal to or lower than the softening temperature of the glass, and applying a positive voltage to the silicon to cause a positive current from the silicon to the glass through a contact portion between the silicon and the glass. And bonding the silicon and the glass by flowing the silicon and the glass, wherein in the combination of the silicon and the glass, the glass has a coefficient of thermal expansion at least larger than the silicon. A method for bonding silicon and glass, comprising:
JP18524289A 1989-07-17 1989-07-17 Bonding method between silicon and glass Expired - Lifetime JP2870822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18524289A JP2870822B2 (en) 1989-07-17 1989-07-17 Bonding method between silicon and glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18524289A JP2870822B2 (en) 1989-07-17 1989-07-17 Bonding method between silicon and glass

Publications (2)

Publication Number Publication Date
JPH0350141A JPH0350141A (en) 1991-03-04
JP2870822B2 true JP2870822B2 (en) 1999-03-17

Family

ID=16167377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18524289A Expired - Lifetime JP2870822B2 (en) 1989-07-17 1989-07-17 Bonding method between silicon and glass

Country Status (1)

Country Link
JP (1) JP2870822B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525388B4 (en) * 1994-07-12 2005-06-02 Mitsubishi Denki K.K. Electronic component with anodically bonded lead frame
DE19549563B4 (en) * 1994-07-12 2004-03-25 Mitsubishi Denki K.K. Semiconductor chip electronic component with current input and output conductor
JP3383081B2 (en) 1994-07-12 2003-03-04 三菱電機株式会社 Electronic component manufactured using anodic bonding and method of manufacturing electronic component
DE4436561C1 (en) * 1994-10-13 1996-03-14 Deutsche Spezialglas Ag Changing curvature of anodically bonded flat composite bodies, e.g. glass and metal
CN103338998B (en) 2011-01-31 2016-08-10 铃木株式会社 Motor vehicle driven by mixed power drive dynamic control device
CN110246769B (en) * 2019-05-10 2020-09-11 太原理工大学 Eutectic bonding method based on in-situ metallization of cation conductive metal and glass surface

Also Published As

Publication number Publication date
JPH0350141A (en) 1991-03-04

Similar Documents

Publication Publication Date Title
JP2870822B2 (en) Bonding method between silicon and glass
JP2527834B2 (en) Anodic bonding method
JP3353102B2 (en) Method for manufacturing sodium-sulfur battery
EP0503094A4 (en) Method of electrically joining objects to be joined including ceramics
WO2007102210A1 (en) Heat focusing jig for anodic bonding, method of anodic bonding and apparatus therefor
JPH02141442A (en) Method for anodically bonding silicon wafer and glass substrate
JPH08279444A (en) Microstructure and manufacturing method thereof
JPS6338265A (en) Method for bonding anode
JPS6297341A (en) Bonding device
JP2841598B2 (en) Electrical joining method of ceramics and insert material for electrical joining
JPH0383870A (en) Electric bonding of metal si-containing silicon carbide ceramic
JPS5936947A (en) Semiconductor device
JPH0276237A (en) Anode junction of silicon wafer and glass substrate
JPH0426149A (en) Lead frame and method of connecting lead frame with semiconductor device
JPS63229863A (en) Method of joining anode
JPS6418245A (en) Ceramic substrate having metal pin and its manufacture
JP2996054B2 (en) How to attach film to lead frame
JP2591600B2 (en) Bonding method
JPH065659A (en) Mounting method of semiconductor element
JPH0581167B2 (en)
JPS5872113A (en) Optical fiber fixing method
JPS6255705B2 (en)
KR100563604B1 (en) Method of bonding stud pin on a glass panel for cathode ray tube
JP2003221284A (en) Method for bonding silicon wafer to glass
JPS60206035A (en) Manufacture of semiconductor device