JP3353102B2 - Method for manufacturing sodium-sulfur battery - Google Patents

Method for manufacturing sodium-sulfur battery

Info

Publication number
JP3353102B2
JP3353102B2 JP01077697A JP1077697A JP3353102B2 JP 3353102 B2 JP3353102 B2 JP 3353102B2 JP 01077697 A JP01077697 A JP 01077697A JP 1077697 A JP1077697 A JP 1077697A JP 3353102 B2 JP3353102 B2 JP 3353102B2
Authority
JP
Japan
Prior art keywords
flange
electrode container
negative electrode
sodium
sulfur battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01077697A
Other languages
Japanese (ja)
Other versions
JPH10208771A (en
Inventor
善美 佐藤
三郎 宇佐美
哲雄 小山
久光 波東
竜二郎 有働
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01077697A priority Critical patent/JP3353102B2/en
Publication of JPH10208771A publication Critical patent/JPH10208771A/en
Application granted granted Critical
Publication of JP3353102B2 publication Critical patent/JP3353102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ナトリウム−硫黄
電池の絶縁リングと金属容器フランジとの接合に係り、
特に摩擦圧接による短時間接合することにより、接合部
のナトリウム及び硫黄による耐食性を向上するに好適な
ナトリウム−硫黄電池の製造方法に関する。
The present invention relates to the joining of an insulating ring of a sodium-sulfur battery to a metal container flange.
Particularly, by joining short by friction welding, suitable sodium to improve the corrosion resistance with sodium junction and sulfur - a method of manufacturing sulfur batteries.

【0002】[0002]

【従来の技術】従来のナトリウム−硫黄電池の構造は、
例えば特開昭63−26947号公報、特開平2−12
1272号公報及び特開平2−126572号公報に開
示されている。その構造は絶縁リングとしてα−アルミ
ナを使用し、この絶縁リングと鋼製の正極及び負極容器
フランジを熱圧接する際に、α−アルミナ面に無酸素銅
層を設け、その上にニッケルろうを塗布処理後に熱圧接
を実施しており、耐食性のニッケル材を使用することで
熱圧接部の耐食性を向上することや、絶縁材と固体電解
質管及び正極と負極の接合の組合わせに際し、熱膨張係
数を考慮して熱応力の発生の面から熱サイクル及び耐食
性を向上することや、正極容器を熱圧接部の下部で全周
にわたって内側に湾曲させ凹状溝を形成することにより
正極活物質の移動を防止して、耐食性を向上する工夫が
なされている。
2. Description of the Related Art The structure of a conventional sodium-sulfur battery is as follows.
For example, JP-A-63-26947, JP-A-2-12
No. 1272 and JP-A-2-126572. The structure uses α-alumina as an insulating ring, and when this insulating ring and the steel positive and negative electrode container flanges are hot-pressed, an oxygen-free copper layer is provided on the α-alumina surface, and a nickel solder is placed thereon. A thermal pressure welding is performed after the coating process, and the corrosion resistance of the thermal pressure welding part is improved by using a corrosion-resistant nickel material, and thermal expansion is performed when combining the insulating material and the solid electrolyte tube and joining the positive electrode and the negative electrode. Movement of the positive electrode active material by improving the thermal cycle and corrosion resistance from the aspect of thermal stress generation in consideration of the coefficient, and by forming the concave groove by curving the positive electrode container inward all around the lower part of the thermal pressure welding part To prevent corrosion and improve corrosion resistance.

【0003】また特開平8−5023号公報に開示され
ているように残留応力を改善することによって耐食性を
向上する工夫等がなされている。また特開平1−221
866号公報には、絶縁リングと陰極容器又は正極容器
とを相対回転させながら摩擦圧接する接合方法が記載さ
れている。
Further, as disclosed in Japanese Patent Application Laid-Open No. Hei 8-5023, a device for improving corrosion resistance by improving residual stress has been made. Also, Japanese Patent Application Laid-Open No. Hei 1-221
Japanese Patent Publication No. 866 describes a joining method in which the insulating ring and the cathode container or the positive electrode container are friction-welded while being relatively rotated.

【0004】[0004]

【発明が解決しようとする課題】従来は、上記の如く接
合部材そのものの耐食性を向上するための工夫及び発生
応力に対する工夫、液面移動に対す工夫等によって耐食
性改善がなされている。しかし、接合時間を極短時間と
して、接合界面に不純物が濃縮することを防止すること
により正極及び負極活物質に対する耐食性を向上するた
めの配慮がなされていなかった。特開平1−22186
6号公報に開示された接合方法は接合時間を幾分か短時
間にする配慮をしたものであるが、まだ充分とは言いえ
なかった。
Heretofore, as described above, the corrosion resistance has been improved by improving the corrosion resistance of the joining member itself, by reducing the generated stress, and by reducing the liquid level. However, no consideration has been given to improving the corrosion resistance to the positive electrode and the negative electrode active material by preventing the impurities from concentrating at the bonding interface by setting the bonding time to an extremely short time. JP-A-1-2186
Although the bonding method disclosed in Japanese Patent Publication No. 6 is designed to shorten the bonding time somewhat, it cannot be said that it is still sufficient.

【0005】本発明の課題は、負極フランジ及び正極フ
ランジと絶縁リングとの接合部界面に不純物が濃縮する
のを防止し、接合部の耐食性を向上することができ、か
つ製造工程を簡略化できるナトリウム−硫黄電池の製造
方法を提供することにある。
An object of the present invention is to provide a negative electrode flange and a positive electrode flange.
It is possible to prevent impurities from concentrating at the interface between the flange and the insulating ring, thereby improving the corrosion resistance of the bonded portion .
One sodium manufacturing process can be simplified - there is provided a method for producing a sulfur batteries.

【0006】[0006]

【課題を解決するための手段】前記課題を達成するた
め、本発明に係るナトリウム−硫黄電池の製造方法は、
ナトリウム−硫黄電池の負極容器フランジ及び正極容器
フランジとなる金属材を絶縁リングの同一面に摩擦圧接
により接合した後、該金属材の周方向に機械加工により
絶縁用スリットを形成して前記負極容器フランジと前記
正極容器フランジとに分離することを含んでなることを
特徴とする。すなわち、本発明によれば、摩擦圧接によ
る接合を採用したので、接合時間を短縮でき、これによ
り接合界面への不純物の濃縮を防止して活物質のナトリ
ウム等に対する耐食性を向上できるため、ナトリウム−
硫黄電池の強度信頼性を向上することが可能と成る。
に、1回の摩擦圧接により負極容器フランジと絶縁リン
グとの接合及び正極容器フランジと絶縁リングとの接合
を行えるため、製造工程を簡略化できる。
In order to achieve the above object, a method for manufacturing a sodium-sulfur battery according to the present invention comprises:
Negative electrode container flange and positive electrode container of sodium-sulfur battery
Friction welding of metal material to be the flange on the same surface of the insulation ring
After joining by metal, by machining in the circumferential direction of the metal material
Forming an insulating slit and the negative electrode container flange and the
Comprising separating into a positive electrode container flange
Features. That is, according to the present invention, since the joining by friction welding is employed , the joining time can be shortened , thereby preventing the concentration of impurities at the joining interface and improving the corrosion resistance of the active material to sodium or the like.
It is possible to improve the strength reliability of the sulfur battery. Special
In addition, the negative electrode container flange and insulating phosphor
Of the positive electrode container flange and the insulating ring
Therefore, the manufacturing process can be simplified.

【0007】上記の場合において、絶縁リングと金属材
との間に、純アルミニウムより融点の低いアルミブレー
ジング材を挟んで摩擦圧接することが好ましい。これに
よれば、純アルミニウムより融点の低いアルミブレージ
ング材より成る中間材を挟んだ状態で摩擦圧接するの
で、接合時間を大幅に短縮できる。また、負極容器フラ
ンジ及び正極容器フランジはアルミニウム合金又はアル
ミニウムを用いることが好ましい。さらに、絶縁リング
はα−アルミナであることが好ましい。
In the above case, the insulating ring and the metal material
Between the pure aluminum and the aluminum
It is preferable to perform friction welding with the jing material interposed therebetween. to this
According to the description, aluminum brazing with a lower melting point than pure aluminum
Friction welding with the intermediate material
Thus, the joining time can be greatly reduced. In addition, the anode container
Flange and positive electrode container flange are made of aluminum alloy or aluminum
It is preferable to use minium. In addition, insulating ring
Is preferably α-alumina.

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】[0011]

【0012】[0012]

【0013】[0013]

【0014】[0014]

【発明の実施の形態】本発明のナトリウム−硫黄電池の
一実施の形態例を図1〜図3に示す。ナトリウム導伝性
のβ”−アルミナ製の固体電解質管8の上部にα−アル
ミナ製の絶縁リング1が設置され、この絶縁リング1に
鋼製の負極容器フランジ2及び正極容器フランジ3が接
合されている。β”−アルミナ製の固体電解質管8の内
側には負極活物質7のナトリウムが、外側にはモールド
に含浸された正極活物質6の硫黄が納められている。本
実施の形態例では、絶縁リング1と正極及び負極フラン
ジ2、3を摩擦圧接にて短時間で接合してある。
1 to 3 show an embodiment of a sodium-sulfur battery according to the present invention. An α-alumina insulating ring 1 is installed on an upper part of a solid electrolyte tube 8 made of sodium conductive β ″ -alumina, and a steel negative electrode container flange 2 and a steel negative electrode container flange 3 are joined to the insulating ring 1. The inside of the solid electrolyte tube 8 made of β ″ -alumina contains sodium of the negative electrode active material 7 and the outside contains sulfur of the positive electrode active material 6 impregnated in the mold. In this embodiment, the insulating ring 1 and the positive and negative electrode flanges 2, 3 are joined in a short time by friction welding.

【0015】負極容器フランジ2と絶縁リング1の場
合、摩擦圧接は、図2に示すように絶縁リング1と容器
フランジ2の間にアルミブレージング材の中間材9を挟
み、図3に示すように、負極容器フランジ2側を高速で
回転させ、摩擦熱により発熱した時点で加圧力Pを負荷
し接合させた。
In the case of the negative electrode container flange 2 and the insulating ring 1, friction welding is performed by sandwiching an intermediate material 9 of an aluminum brazing material between the insulating ring 1 and the container flange 2 as shown in FIG. Then, the negative electrode container flange 2 side was rotated at a high speed, and when heat was generated by frictional heat, a pressing force P was applied to perform joining.

【0016】その際、この実施の形態例では負極容器フ
ランジ2の先端部外側には凸部10を周設した。凸部1
0は図4に示すように、接合の冷却過程で生じる熱収縮
曲げモーメントMにより、絶縁リング1と中間材9の接
合界面外側端部に圧縮の応力σを付与するため、接合冷
却時にα−アルミナ絶縁材1が割れるのを防止する効果
がある。
At this time, in this embodiment, a convex portion 10 is provided around the front end of the negative electrode container flange 2. Convex part 1
0, as shown in FIG. 4, a compressive stress .sigma. Is applied to the outer edge of the joint interface between the insulating ring 1 and the intermediate member 9 by the heat shrinkage bending moment M generated in the joint cooling process. This has the effect of preventing the alumina insulating material 1 from breaking.

【0017】また、絶縁リング1と負極容器フランジ2
の間に挟む中間材9は純アルミニウムの融点より低い融
点を有するアルミブレージング材を使用することによ
り、より低い温度で摩擦圧接できるため、発生する熱応
力を一層低減でき、絶縁リング1の割れを防止する効果
が得られる。
Also, an insulating ring 1 and a negative electrode container flange 2
By using an aluminum brazing material having a melting point lower than the melting point of pure aluminum as the intermediate material 9 sandwiched therebetween, friction welding can be performed at a lower temperature, so that the generated thermal stress can be further reduced and cracks in the insulating ring 1 can be reduced. The effect of preventing is obtained.

【0018】接合終了後に図5に示したように、接合時
にはみ出た部分を削除し、かつ負極容器フランジ2の所
望の形状に加工して仕上げた。
After the joining, as shown in FIG. 5, a portion protruding at the time of joining was removed, and the negative electrode container flange 2 was processed into a desired shape and finished.

【0019】正極容器フランジ3においても、上記負極
容器フランジ2の摩擦圧接と同様に加工した。
The positive electrode container flange 3 was processed similarly to the friction welding of the negative electrode container flange 2 described above.

【0020】本摩擦圧接では数10秒の短時間で接合で
きるため、絶縁リング1と中間材9の界面に鉄元素(F
e)などの不純物が濃縮することを防止でき、ナトリウ
ム7及び硫黄6に対する腐食強度が増し、ナトリウム−
硫黄電池全体の強度信頼性を向上する効果が得られる。
In this friction welding, the joining can be performed in a short time of several tens of seconds, so that the iron element (F
e) and other impurities can be prevented from being concentrated, the corrosion strength against sodium 7 and sulfur 6 increases, and sodium-
The effect of improving the strength reliability of the entire sulfur battery can be obtained.

【0021】図6は本願他の発明例である。負極容器フ
ランジ2及び正極容器フランジ3となる金属材と絶縁リ
ング1とが摩擦圧接により接合され、その後、該フラン
ジとなる金属材の周方向に絶縁用スリット11を設けて
分離し、この分離により一方を極容器フランジ2と
し、他方を極容器フランジ3とする工程を経て作られ
たものである。すなわち摩擦圧接終了後に容器フランジ
の周方向に機械加工により絶縁用スリット11を設ける
ことで負極容器フランジ2と正極容器フランジ3を製作
した。この場合は1回の摩擦圧接で正極と負極容器フラ
ンジが製作できる効果がある。
FIG. 6 shows another example of the present invention. The metal material serving as the negative electrode container flange 2 and the positive electrode container flange 3 is joined to the insulating ring 1 by friction welding. Thereafter, the metal material serving as the flange is separated by providing an insulating slit 11 in the circumferential direction. one a negative electrode container flange 2, are those made via the process of the other positive electrode container flange 3. That is, after the friction welding was completed, the insulating slit 11 was provided in the circumferential direction of the container flange by machining to manufacture the negative electrode container flange 2 and the positive electrode container flange 3. In this case, there is an effect that the positive and negative electrode container flanges can be manufactured by one friction welding.

【0022】また、固体電解質管8と絶縁リング1とは
1000℃近傍の高温でガラス半田接合されるため、こ
のガラス半田接合の後に前記摩擦圧接工程を行うことに
なる。このような状態で絶縁リング1の下面に正極容器
フランジ3を接合しようとすると、その際にできるバリ
によって固体電解質管8を破損する恐れがある。図6の
方法によれば、このような破損の恐れは全く無くせる効
果がある。
Further, since the solid electrolyte tube 8 and the insulating ring 1 are joined by glass soldering at a high temperature of about 1000 ° C., the friction welding step is performed after the glass solder joining. If it is attempted to join the positive electrode container flange 3 to the lower surface of the insulating ring 1 in such a state, the solid electrolyte tube 8 may be damaged by burrs formed at that time. According to the method of FIG. 6, there is an effect that such a risk of breakage can be completely eliminated.

【0023】尚、本発明では絶縁リング1にα−アルミ
ナを使用し、負極容器フランジ2及び正極容器フランジ
3はアルミニウム又はアルミニウム合金を使用した。
In the present invention, α-alumina is used for the insulating ring 1, and the negative electrode container flange 2 and the positive electrode container flange 3 are made of aluminum or an aluminum alloy.

【0024】[0024]

【発明の効果】本発明によれば、負極フランジ及び正極
フランジと絶縁リングとの接合部界面に不純物が濃縮す
るのを防止し、接合部の耐食性を向上することができ、
かつ製造工程を簡略化できる。
According to the present invention, a negative electrode flange and a positive electrode
Impurities concentrate at the interface between the flange and insulating ring.
Can be prevented, and the corrosion resistance of the joint can be improved.
In addition, the manufacturing process can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態例を示すナトリウム−硫
黄電池の断面図である。
FIG. 1 is a sectional view of a sodium-sulfur battery showing one embodiment of the present invention.

【図2】本発明の負極フランジ材と絶縁材及び中間材を
設置し摩擦圧接する前段状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state before a negative electrode flange material, an insulating material, and an intermediate material of the present invention are installed and subjected to friction welding.

【図3】本発明の摩擦圧接している状態を示す断面図で
ある。
FIG. 3 is a cross-sectional view illustrating a state of friction welding according to the present invention.

【図4】本発明の摩擦圧接終了後の冷却過程を示す断面
図である。
FIG. 4 is a cross-sectional view showing a cooling process after the completion of the friction welding according to the present invention.

【図5】本発明の機械加工した状態を示す断面図であ
る。
FIG. 5 is a sectional view showing a machined state of the present invention.

【図6】本願他の実施の形態例を示す断面図である。FIG. 6 is a sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 絶縁リング 2 負極容器フランジ 3 正極容器フランジ 4 負極容器 5 正極容器 6 正極活物質 7 負極活物質 8 固体電解質管 9 中間材 10 凸部 11 絶縁用スリット DESCRIPTION OF SYMBOLS 1 Insulation ring 2 Negative electrode container flange 3 Positive electrode container flange 4 Negative electrode container 5 Positive electrode container 6 Positive electrode active material 7 Negative electrode active material 8 Solid electrolyte tube 9 Intermediate material 10 Convex part 11 Insulating slit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 波東 久光 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (72)発明者 有働 竜二郎 茨城県土浦市神立町502番地 株式会社 日立製作所 機械研究所内 (56)参考文献 特開 平7−272754(JP,A) 特開 平5−3049(JP,A) 特開 平7−94209(JP,A) 特開 昭59−151778(JP,A) 特開 平7−263023(JP,A) 特開 平1−221866(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/39 ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Hisamitsu Hatoh 3-1-1, Komachi, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Inside the Hitachi Plant (56) References JP-A-7-272754 (JP, A) JP-A-5-3049 (JP, A) JP-A-7-94209 (JP, A) JP-A-59-151778 (JP, A) JP-A-7-263023 (JP, A) JP-A-1-221866 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/39

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ナトリウム−硫黄電池の負極容器フラン
ジ及び正極容器フランジとなる金属材を絶縁リングの同
一面に摩擦圧接により接合した後、該金属材の周方向に
機械加工により絶縁用スリットを形成して前記負極容器
フランジと前記正極容器フランジとに分離することを含
んでなるナトリウム−硫黄電池の製造方法。
1. A metal material to be a flange of a negative electrode container and a flange of a positive electrode container of a sodium-sulfur battery is made of an insulating ring.
After joining to one surface by friction welding, in the circumferential direction of the metal material
Forming an insulating slit by machining to produce the negative electrode container
Including separating the flange and the positive electrode container flange.
And a method for manufacturing a sodium-sulfur battery.
【請求項2】 請求項1において、前記絶縁リングと前
記金属材との間に、純アルミニウムより融点の低いアル
ミブレージング材を挟んで摩擦圧接することを特徴とす
るナトリウム−硫黄電池の製造方法。
2. The apparatus according to claim 1, wherein said insulating ring and said
Aluminum having a lower melting point than pure aluminum
It is characterized by friction welding with mibrazing material in between
For producing a sodium-sulfur battery.
【請求項3】 請求項1又は2において、前記負極容器
フランジ及び前記正極容器フランジはアルミニウム合金
又はアルミニウムであることを特徴とするナトリウム−
硫黄電池の製造方法。
3. The negative electrode container according to claim 1, wherein
The flange and the positive electrode container flange are made of aluminum alloy
Or sodium, which is aluminum.
Manufacturing method of sulfur battery.
【請求項4】 請求項1〜3のいずれかにおいて、絶縁
リングはα−アルミナであることを特徴とするナトリウ
ム−硫黄電池の製造方法。
4. The insulation according to claim 1, wherein
Natriu characterized in that the ring is α-alumina
A method for producing a sulfur battery.
JP01077697A 1997-01-24 1997-01-24 Method for manufacturing sodium-sulfur battery Expired - Fee Related JP3353102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01077697A JP3353102B2 (en) 1997-01-24 1997-01-24 Method for manufacturing sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01077697A JP3353102B2 (en) 1997-01-24 1997-01-24 Method for manufacturing sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH10208771A JPH10208771A (en) 1998-08-07
JP3353102B2 true JP3353102B2 (en) 2002-12-03

Family

ID=11759744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01077697A Expired - Fee Related JP3353102B2 (en) 1997-01-24 1997-01-24 Method for manufacturing sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP3353102B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
EP3058605B1 (en) 2013-10-16 2023-12-06 Ambri Inc. Seals for high temperature reactive material devices
WO2016141354A2 (en) 2015-03-05 2016-09-09 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
CN110731027A (en) 2017-04-07 2020-01-24 安保瑞公司 Molten salt battery with solid metal cathode

Also Published As

Publication number Publication date
JPH10208771A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
EP0964461B1 (en) Non-aqueous electrolyte secondary cell
US4530151A (en) Manufacture method of a sodium-sulfur storage battery
JP3353102B2 (en) Method for manufacturing sodium-sulfur battery
CA1220307A (en) Bonding sheets
JPS6116483A (en) Sodium-sulfur battery and method of producing same
JPS58128281A (en) Diffusion bonding method of sintered hard alloy and steel
JP3526229B2 (en) Bonding method and bonding structure of insulating ring and cathode metal fitting for sodium-sulfur battery
JP2000004034A (en) Connecting method for bus bar in solar battery module
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
JPH0757777A (en) Manufacture of sodium-sulfur battery thermo-compression bonding part
JPS6297240A (en) Anode structure for x-ray tube and its manufacture
JP2000323167A (en) Manufacture and manufacturing device of sodium-sulfur battery
JPH0431800B2 (en)
JPH0969318A (en) Manufacture of composite superconductive conductor
JPH0227498Y2 (en)
JPS5821424B2 (en) Method for manufacturing semiconductor material supporting substrate
JP3325238B2 (en) Anode and cathode fittings for sodium-sulfur battery and method of joining these to insulating ring
JPH07262910A (en) Bulb with cap
JPH1197618A (en) Bonding of silicon wafer
JPH0615462A (en) Joining method for member made of copper
JP2002008713A (en) Sodium-sulfur battery
JP2024020590A (en) Metal member hybrid-joining method
JPH064198B2 (en) Manufacturing method of fitting parts for pipe connection made of dissimilar metal materials
JPS6418245A (en) Ceramic substrate having metal pin and its manufacture
JPH0424154B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees