WO2007102210A1 - Heat focusing jig for anodic bonding, method of anodic bonding and apparatus therefor - Google Patents

Heat focusing jig for anodic bonding, method of anodic bonding and apparatus therefor Download PDF

Info

Publication number
WO2007102210A1
WO2007102210A1 PCT/JP2006/304468 JP2006304468W WO2007102210A1 WO 2007102210 A1 WO2007102210 A1 WO 2007102210A1 JP 2006304468 W JP2006304468 W JP 2006304468W WO 2007102210 A1 WO2007102210 A1 WO 2007102210A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
silicon wafer
glass plate
jig
anodic bonding
Prior art date
Application number
PCT/JP2006/304468
Other languages
French (fr)
Japanese (ja)
Inventor
Ryoji Matsuyama
Masayuki Kitajima
Fumihiko Tokura
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/304468 priority Critical patent/WO2007102210A1/en
Publication of WO2007102210A1 publication Critical patent/WO2007102210A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0005Apparatus specially adapted for the manufacture or treatment of microstructural devices or systems, or methods for manufacturing the same
    • B81C99/0025Apparatus specially adapted for the manufacture or treatment of microstructural devices or systems not provided for in B81C99/001 - B81C99/002
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0118Bonding a wafer on the substrate, i.e. where the cap consists of another wafer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/031Anodic bondings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/5442Marks applied to semiconductor devices or parts comprising non digital, non alphanumeric information, e.g. symbols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54493Peripheral marks on wafers, e.g. orientation flats, notches, lot number
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heating concentration jig for anodic bonding, an anodic bonding method and apparatus, and more specifically, for anodic bonding in which a silicon wafer and a glass plate are anodic bonded by heating at a relatively low temperature.
  • the present invention relates to a heating concentration jig, an anodic bonding method, and an apparatus.
  • an example of anodic bonding of a silicon wafer and a glass plate will be described.
  • MEMS is a micro sensor that three-dimensionally processes silicon (Si) and reads three-dimensional motion.
  • MEMS-specific process technology for three-dimensional processing of silicon and the like has been developed.
  • development of technology for digging materials such as deep etching and technology for joining and laminating elements is active.
  • anodic bonding in which silicon and a glass plate are bonded without an adhesive is known.
  • the silicon 50 and the glass plate 51 are pressed and pressed together by the heaters 52a and 52b, and the bonding is performed by applying a voltage.
  • the glass material 51 has a thermal expansion coefficient close to that of silicon, and Pyrex (registered trademark) glass or the like is used.
  • this Pyrex (registered trademark) glass is a glass in which the softening point is lowered to keep the expansion coefficient as small as possible by adding an alkali metal such as sodium to quartz glass. .
  • the anodic bonding of the Pyrex (registered trademark) glass 51 and the silicon 50 is achieved by applying a voltage of 200V to 600V, heating at 400 ° C to 500 ° C, and pressing.
  • MEMS sensors manufactured by this anodic bonding technology have already been commercialized.
  • the demand for such an anodic bonding apparatus is increasing.
  • circuit wiring using A1 as a material is formed in signal and power supply circuits. And what is constructed as a sensor using a substrate in which this circuit wiring and insulating glass are three-dimensionally wired and different materials are joined is commercialized.
  • Migration is a phenomenon in which a metal component moves on or across a non-metallic medium due to the influence of an electric field. If this migration occurs, there is a risk of insulation failure.
  • solder in a bonded wafer in which solder is filled into through holes to form a three-dimensional wiring, the solder has a low melting temperature, and a bonding process at a low temperature of less than 400 ° C is essential.
  • Patent Document 1 JP-A-6-271134
  • Patent Document 2 Japanese Patent Laid-Open No. 6-208938
  • the conventional anodic bonding technique has a problem that the silicon wafer and the glass plate cannot be uniformly bonded at a bonding temperature of about 200 ° C.
  • the bonding temperature is less than 200 ° C
  • the thermal influence on the A1 wiring is mitigated.
  • a Sn-Ag-Cu solder three-dimensional wiring structure and a structure having a bump PAD require a joining process at less than 200 ° C with respect to the solder melting point.
  • a flat electrode (heater) is arranged on the entire surface of the silicon wafer and the Z or glass plate, and the silicon wafer and the glass plate are evenly distributed. Heating ⁇ Applicable voltage! I was ashamed.
  • a natural oxide film (SiOx) is formed on the surface of the silicon.
  • This natural oxide film is an insulating film.
  • power application to the substrate is hindered.
  • alkali ions are not moved to the bonding interface during bonding, which is the principle of anodic bonding. For this reason, it can be used for bonding! As a result, a non-distributed joint state is obtained.
  • the present invention has been made in view of such problems.
  • silicon and a glass plate can be bonded by heating at a relatively low temperature, and a wiring pattern is provided in the bonding surface or through hole.
  • the present invention employs the following means in order to solve the above problems.
  • the heating concentration jig for anodic bonding of the present invention is: A silicon wafer and a glass plate are laminated, a voltage is applied to the silicon wafer and the glass plate by a voltage applying unit, and the silicon wafer and the glass plate are anodically bonded by being heated by a heating unit.
  • a convex portion having substantially the same shape as a joint portion between the silicon wafer and the glass plate is provided.
  • Examples of the material having conductivity and heat conductivity include carbon. Carbon is preferable as a material for the heating concentration jig because of its high conductivity and heat conductivity.
  • the heating concentration jig body is formed of a material having conductivity and heat conductivity, and only the convex portions provided on the surface in contact with the silicon wafer or the glass plate are the silicon wafer and the glass. Abuts on the joint with the plate. Therefore, the heating of the heating means and the voltage of the voltage applying means pass only through the convex portions and are concentrated at the junction between the silicon wafer and the glass plate. As a result, the silicon wafer and the glass plate can be anodically bonded by heating at a relatively low temperature.
  • the present invention it is possible to prevent dust generation due to the surface force of the heating concentration jig. Accordingly, it is possible to prevent the particles having generated the surface force of the heating concentration jig from adhering to the bonding surface between the silicon nano and the glass plate. As a result, it is possible to prevent pores from being generated on the joint surface between the glass plate and silicon, and it is possible to prevent poor bonding caused by the pores and spark during energization.
  • the anodic bonding method of the present invention comprises:
  • a voltage is applied to the laminated silicon wafer and glass plate by the voltage applying means, and the silicon wafer and the glass plate are heated by the heating means.
  • the anodic bonding method in which the silicon wafer and the glass plate are anodically bonded, the heating means between the heating means and the silicon wafer, or between the heating means and the glass plate.
  • a heating concentration jig is provided for concentrating the heating by the process at the junction between the silicon wafer and the glass plate.
  • the heating concentration jig is formed in a plate shape from a material having conductivity and heat conductivity, and the silicon wafer and the glass are formed on a surface of the silicon wafer or the glass plate in contact with the glass wafer. Protrusions having almost the same shape as the joint with the plate are formed,
  • the heating concentration jig is disposed between the heating means and the silicon wafer, or between the heating means and the glass plate,
  • the convex portion is aligned with a joint portion between the silicon wafer and the glass plate, and the convex portion is in contact with the silicon wafer or the glass plate.
  • the silicon wafer and the glass plate are heated at a heating temperature of less than 250 ° C.
  • the bonded portion of the silicon wafer and the glass plate is heated at a heating temperature of less than 200 ° C.
  • a silicon wafer or a glass plate has a three-dimensional wiring structure of Sn-Ag-Cu solder or bump PAD, and the bonding plug is below 200 ° C with respect to the solder melting point. It can also be applied when oral access is required.
  • the anodic bonding apparatus of the present invention includes:
  • a heating concentration jig for concentrating the heating by the heating means at the junction between the silicon wafer and the glass plate.
  • the heating concentration jig is formed in a plate shape from a material having conductivity and heat conductivity, and the silicon wafer and the above-described surface are formed on a surface of the silicon wafer or the glass plate in contact with the above-mentioned silicon wafer. A convex part having almost the same shape as the joint part with the glass plate is formed, The heating concentration jig is disposed between the heating means and the silicon wafer, or between the heating means and the glass plate,
  • the convex portion can be arranged in alignment with the joint portion between the silicon wafer and the glass plate, and the convex portion can be in contact with the silicon wafer or the glass plate.
  • the heating means and the voltage applying means also serve as a heating / voltage applying member sandwiching the laminated silicon wafer and the glass plate, and the silicon / silicone via the heating / voltage applying member. It is preferable that the wafer and the glass plate are heated and voltage is applied.
  • Silicon and glass anodically bonded at a heating temperature of less than 200 ° C. are provided, and a wiring pattern or a through-hole wiring is provided on the silicon or the glass.
  • the substrate manufacturing method of the present invention includes:
  • a jig provided with a convex portion having a shape corresponding to the shape of the joint portion where the first member and the second member are in contact is provided on at least one of the second members. And a step of superimposing such that the position of the convex part overlaps with the position of the joint part, and heating the jig together with the first member and Z or the second member.
  • the jig is made of a member having high heat conductivity.
  • the method for manufacturing a substrate of the present invention includes:
  • the first member and the second member are arranged so that their bonding surfaces face each other.
  • the joining device of the present invention includes:
  • Voltage applying means for applying a voltage to the stacked first substrate and second substrate, and heating means for heating the first substrate and the second substrate.
  • the heat generated by the heating unit is intensively transferred to the bonding surface of the first substrate and the second substrate. And a jig.
  • the jig includes a convex portion having a shape corresponding to a shape of a joint surface where the first substrate and the second substrate are in contact with each other.
  • a silicon wafer and a glass plate can be anodically bonded by heating at a relatively low temperature. Therefore, wiring patterns and through-hole wiring are provided on the silicon wafer and glass plate! / Even in the case of rolling, there is no risk that the wiring pattern or through-hole wiring will melt during anodic bonding.
  • FIG. 1 is a diagram showing an anodic bonding apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing a convex portion of the heating concentration jig in the embodiment according to the present invention, and is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a view showing a surface coating in the embodiment according to the present invention, and is a cross-sectional view taken along the line BB in FIG.
  • FIG. 4 is a view showing notches of the heating concentration jig in the embodiment according to the present invention.
  • FIG. 5 is a cross-sectional view showing a state after anodic bonding between a silicon wafer and a glass plate in an embodiment according to the present invention.
  • FIG. 6 is a cross-sectional view showing a micro sensor in an embodiment according to the present invention.
  • FIG. 7 is a flowchart showing an anodic bonding process in the embodiment according to the present invention.
  • FIG. 8 is a cross-sectional view showing an anodic bonding method according to another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing an anodic bonding method according to a conventional example. Explanation of symbols
  • FIG. 1 shows an anodic bonding apparatus 1 according to a first embodiment of the present invention.
  • the anodic bonding apparatus 1 includes a voltage applying unit 13 that applies a voltage to the laminated silicon wafer 11 and the glass plate 12, and a heating unit that sandwiches and heats the silicon wafer 11 and the glass plate 12 with a predetermined pressure. 14 and a vacuum chamber 21 covering the entire apparatus.
  • the symbol + indicates a positive voltage
  • symbol F indicates a pressure
  • 15a indicates a surface facing the glass plate.
  • the size of each part is shown in a different size from the actual size in order to show each part easily.
  • the anodic bonding apparatus 1 includes a heating concentration jig 15 that concentrates and transmits the heating by the heating means 14 to the bonded portion between the silicon wafer 11 and the glass plate 12.
  • a plurality of cavities (recesses) l ib are provided at equal intervals.
  • a sensor actuator 33 (see Fig. 5) is provided in each cavity l ib.
  • a through hole Z through hole 16 is formed in the glass plate 12 at a position corresponding to the sensor actuator 33 of the silicon wafer 11.
  • the through hole 16 is filled with a conductor.
  • a wiring pattern 17 is provided on the bonding surface 12 a of the glass plate 12 with the silicon wafer 11.
  • the wiring pattern 17 is connected to the through hole conductor filling portion 16.
  • the heating means 14 has a pair of heating / power application plates 14a and 14b. These heating ⁇ The laminated silicon wafer 11 and the glass plate 12 are sandwiched between the power application plates 14a and 14b and pressurized with a predetermined pressure. A heater 20 is built in the heating / power application plates 14a and 14b.
  • a power source 25 that constitutes a part of the voltage application means 13 is connected to the heating / power application plates 14a and 14b.
  • a voltage is applied to the silicon wafer 11 and the glass plate 12 via the heating / power application plates 14a and 14b.
  • the heating / voltage applying materials 14a and 14b are also used as a pressurizing means, a heating means and a voltage applying means.
  • the heating concentration jig 15 is made of a material having conductivity and heat conductivity and is formed in a flat plate shape. As this material, a material having high conductivity and heat transfer is preferable. In the present embodiment, the heating concentration jig 15 is formed of a carbon member having high conductivity and high heat conductivity.
  • the outer shape of the heating concentration jig 15 is similar to the outer shapes of the silicon wafer 11 and the glass plate 12.
  • the diameter of the heating concentration jig 15 is the same as that of the silicon wafer 11 and the glass plate 12.
  • a concave portion 18 that avoids the wiring pattern 17 of the glass plate 12 is provided on a surface (opposite surface) 15a that is in contact with the glass plate 12 in the heating concentration jig 15.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and shows a state where the heating concentration jig 15 is viewed from above.
  • a convex portion 15b having substantially the same shape as the joint between the silicon wafer 11 and the glass plate 12 is formed on the surface 15a of the heating concentration jig 15 facing the glass plate 12.
  • the joint between the silicon wafer 11 and the glass plate 12 has a lattice shape (a grid pattern), and the convex portion 15b is also formed in a lattice like the joint.
  • FIG. 3 is a drawing showing a BB cross section shown in FIG. 2, and shows a state in which the heating concentration jig 15 is viewed from the side.
  • the convex portion 15b slightly protrudes from the facing surface 15a.
  • the convex portion 15b is formed to project in a grid pattern.
  • the convex portion 15b can be formed by reverse sputtering (etching) or the like.
  • the heating concentration jig 15 is formed of carbon, but it can also be formed by applying a metal coating to silicon with high conductivity and heat conductivity. Applying a metal coating to silicon in this way makes it easier to apply a voltage.
  • the opposing surface 15a of the heating concentration jig 15 is provided with a surface coating 24 for suppressing dust generation on the entire surface including the convex portion 15b. Examples of the surface coating 24 include a GLASTIX KOTE (registered trademark).
  • This glassics coat is impregnated with glassy carbon near and on the surface of the graphite substrate.
  • a notch 23 for confirming the alignment mark 26 of the glass plate 12 is provided on the outer peripheral portion of the heating concentration jig 15. By using this notch 23 to detect the alignment mark 26, the heating concentration jig 15 and the glass plate 12 are aligned.
  • the notches 23 are provided at positions corresponding to four equal circumferences of the heating concentration jig 15, respectively. In place of the notch 23, an appropriate size window (hole) is provided.
  • High-frequency oscillation means 22 are provided on both sides of the vacuum chamber 21 in FIG. Plasma is generated from the high-frequency oscillation means 22. The plasma generated here is irradiated onto the surface of the silicon wafer 11 during anodic bonding. As a result, the natural oxide film (SiOx) grown over time on the surface of the silicon wafer 11 is removed.
  • SiOx natural oxide film
  • FIG. 5 shows a silicon wafer 11 and a glass plate 12 that are anodically bonded by the anodic bonding apparatus 1.
  • a wiring pattern 19 is provided on the outer surface 12 b of the glass plate 12. This wiring pattern 19 is provided on the joint surface 12a of the glass plate 12 by the through hole conductor filling portion 16.
  • the concave portion 18 provided in the bonding surface 11a of the silicon wafer 11 before the anodic bonding functions as a vacuum sealing space for sealing the wiring pattern 17 after the anodic bonding.
  • a sensor actuator 33 is provided in the recess 18! /.
  • FIG. 6 shows a microsensor 30 that is an electronic component of the present invention.
  • the minute sensor 30 is obtained by dividing the silicon wafer 11 and the glass plate 12 anodic-bonded by the anodic bonding apparatus 1 at the bonding portions and individualizing them.
  • the micro sensor 30 is composed of a silicon 31 and a glass substrate separated from a silicon wafer 11 (see FIG. 1). Glass 32 divided from the glass plate 12, the sensor actuator 33 provided in advance in the recess 18 of the silicon wafer 11, the wiring patterns 17, 19 and the through-hole conductor filling portion provided in advance in the glass plate 12 (through Hole wiring) 16.
  • the wiring pattern 19 functions as a signal extraction terminal.
  • the minute sensor 30 can be used as a sensor for reading a three-dimensional operation.
  • a peel test of the joint portion between the silicon 31 and the glass 32 of the microsensor 30 was performed. As a result of this test, when the pulling force was less than 1.3 kgZmm 2 , it was strong without peeling of the bonded portion between the silicon 31 and the glass 32. As described above, in the present invention, it was possible to anodic-bond silicon and glass with sufficient bonding strength.
  • FIG. 7 is a flowchart showing an anodic bonding process performed by the anodic bonding apparatus 1.
  • the work in the anodic bonding apparatus according to the (S10) o the present embodiment is performed
  • Araimento the (silicon wafer 11 and the glass plate 12) set and intensively heated jig 15 and glass plate 12 is a plan work
  • a stage that can move in the direction is provided, and the alignment between the heating concentration jig 15 and the glass plate 12 is performed by referring to the alignment mark (24 in FIG. 4) formed on the workpiece. .
  • a plasma is generated by the high frequency generation means 22. This plasma is applied to the bonding surfaces 11 a and 12 a of the silicon wafer 11 and the glass plate 12. As a result, the silicon oxide film generated on the bonding surface 11a of the silicon wafer 11 and the organic foreign matter adhering to the bonding surface 12a of the glass plate 12 are removed.
  • the heating / power application plates 14a and 14b are set on the aligned workpiece (SI 1) o
  • the pressure is reduced to about 3.5 X 10 _5 Pa in the vacuum chamber 21 (S12 ).
  • the silicon wafer 11 and the glass plate 12 are heated at about 190 ° C. (S13).
  • the first stage of power application (300V '2.6 mmA, 5 minutes) is performed on the workpiece by the voltage applying means 13 (S14).
  • the voltage application means 13 applies a second-stage power application (400 V. 1.6 mmA, 5 minutes) to the workpiece (SI 5).
  • a second-stage power application 400 V. 1.6 mmA, 5 minutes
  • abnormal discharge (short circuit) of the junction voltage is monitored, and the voltage and current are adjusted (0 to 300V).
  • the heating concentration jig 15 is disposed between the glass plate 12 and the heating / voltage application plate 14b has been described.
  • the opposing surface 15a (see FIG. 3) of the heating concentration jig 15 is directed toward the silicon wafer 11, and the convex portion 15b is brought into contact with the silicon wafer 11.
  • anodic bonding is performed in a vacuum atmosphere, but anodic bonding is performed at atmospheric pressure.
  • the heating concentration jig 15 is formed in a plate shape with carbon having high conductivity and heat conductivity. Further, a convex portion 15 b having substantially the same shape as the joint portion between the silicon wafer 11 and the glass plate 12 is provided on the surface 15 a facing the silicon wafer 11 of the heating concentration jig 15.
  • a heating concentration jig 15 is disposed between the silicon wafer 11 and the heating voltage applying plate 14b of the heating means 14. Further, the convex portion 15 b of the heating concentration jig 15 is brought into contact with the silicon wafer 11.
  • the heating power by the heating means 14 is concentrated on the joint portion between the silicon wafer 11 and the glass plate 12. Therefore, the heating temperature of the heating means 14 is less than 200 ° C., 19 in this embodiment.
  • the silicon wafer 11 and the glass plate 12 can be anodically bonded at 0 ° C.
  • the silicon wafer 11 and the glass plate 12 can be anodically bonded at a relatively low temperature of less than 200 ° C., a wiring pattern or a bonding pattern 11a, 12a on the silicon wafer 11 or the glass plate 12 or Even when the through hole conductor filling portion (through hole wiring) 16 is provided, the wiring pattern or the through hole conductor filling portion 16 can be prevented from melting.
  • the heating concentration jig 15 is made of carbon, the heating means 14 It acts as a soaking plate that uniformly heats up the joint between the silicon wafer 11 and the glass plate 12.
  • the surface coating 24 is applied to the entire surface including the convex portion 15b on the surface 15a of the heating concentration jig 15 facing the silicon wafer 11. Therefore, dust generation from the opposed surface 15a of the heating concentration jig 15 can be suppressed. As a result, the generation of pores with dust as the core can be prevented, and the occurrence of poor connection due to the pores and the occurrence of sparks during energization can be prevented.
  • plasma is generated from the high frequency generating means 22 and 22 provided in the vacuum chamber 21. This plasma is applied to the surface of the silicon wafer 11.
  • the natural oxide film is removed by irradiating the surface of the silicon wafer 11 with plasma as described above. Thereby, the joining state of the silicon wafer 11 and the glass plate 12 can be made uniform.
  • the anodic bonding apparatus 1 can uniformly bond the silicon wafer 11 and the glass plate 12 and can easily align the heating concentration jig 15 and the glass plate 12. Further, the bonding surfaces 1 la and 12a of the silicon wafer 11 and the glass plate 12 can be automatically cleaned.
  • the silicon wafer 11 and the glass plate 12 are transported, the heating concentration jig 15 and the silicon wafer 11 and the glass plate 12 are aligned (alignment), and heating and voltage application during anodic bonding are mechanized. Can be automated.
  • the present invention can be applied to various MEMS such as a micro sensor and a miniature motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Pressure Sensors (AREA)

Abstract

Heat focusing jig (15) consists of a material with electrical conductivity and heat transfer capability shaped into a plate and is provided on its one major surface with protrudent portions of roughly the same configuration as that of portions of junction of silicon wafer (11) and glass plate (12). The heat focusing jig (15), at the time of anodic bonding, is disposed either between heating means (14) and the silicon wafer (11) or between the heating means (14) and the glass plate (12). The protrudent portions are fitted and disposed in the portions of junction of the silicon wafer (11) or glass plate (12) and simultaneously abut on the silicon wafer (11) or glass plate (12).

Description

明 細 書  Specification
陽極接合用の加熱集中治具、陽極接合方法及び装置  Heating concentration jig for anodic bonding, anodic bonding method and apparatus
技術分野  Technical field
[0001] 本発明は、陽極接合用の加熱集中治具、陽極接合方法及び装置に係り、更に詳 細には、比較的低温の加熱でシリコンウェハとガラス板とを陽極接合する陽極接合用 の加熱集中治具、陽極接合方法及び装置に関するものである。なお、以下の説明で は、シリコンウェハとガラス板とを陽極接合する例について説明する。  The present invention relates to a heating concentration jig for anodic bonding, an anodic bonding method and apparatus, and more specifically, for anodic bonding in which a silicon wafer and a glass plate are anodic bonded by heating at a relatively low temperature. The present invention relates to a heating concentration jig, an anodic bonding method, and an apparatus. In the following description, an example of anodic bonding of a silicon wafer and a glass plate will be described.
背景技術  Background art
[0002] 近年、半導体の微細加工技術を駆使して製造された微小な部品から構成される電 気機械システム(MEMS : Micro Electro Mechanical System)が開発されている。この In recent years, an electromechanical system (MEMS) composed of minute parts manufactured by making full use of semiconductor microfabrication technology has been developed. this
MEMSとしては、シリコン (Si)などを立体的に加工し、 3次元的な動作を読み取る微小 センサなどを例示できる。 An example of MEMS is a micro sensor that three-dimensionally processes silicon (Si) and reads three-dimensional motion.
[0003] この MEMSでは、従来の半導体製造技術で流用できるプロセス (加工)技術と、 ME[0003] In this MEMS, process (processing) technology that can be used in conventional semiconductor manufacturing technology and ME
MS特有のプロセス技術とが併用されて 、る。 Combined with MS-specific process technology.
[0004] なかでも、シリコンなどを立体的に加工する MEMS特有のプロセス技術が発達して いる。この MEMS特有のプロセス技術では、深掘エッチングなど素材を掘り込む技術 と、素子を接合し積層する技術の開発が活発化している。 [0004] Among these, MEMS-specific process technology for three-dimensional processing of silicon and the like has been developed. In the process technology peculiar to MEMS, development of technology for digging materials such as deep etching and technology for joining and laminating elements is active.
[0005] このうち、素子を接合し積層する技術としては、シリコンとガラス板とを接着剤なしで 接合する陽極接合と呼ばれる接合方法が知られている。この陽極接合では、図 9〖こ 示すように、ヒータ 52a, 52bによってシリコン 50とガラス板 51とを密着加圧すると共 に、電圧が印加されることにより接合される。 Among these, as a technique for bonding and laminating elements, a bonding method called anodic bonding in which silicon and a glass plate are bonded without an adhesive is known. In this anodic bonding, as shown in FIG. 9, the silicon 50 and the glass plate 51 are pressed and pressed together by the heaters 52a and 52b, and the bonding is performed by applying a voltage.
[0006] ガラス材 51には、熱膨張係数がシリコンに近 、パイレックス (登録商標)ガラスなど が用いられている。このパイレックス (登録商標)ガラスは、周知のように、石英ガラス にナトリウムなどのアルカリ金属を添加することにより、軟ィ匕点を下降させて膨張係数 をなるベく小さく保つようにしたガラスである。 [0006] The glass material 51 has a thermal expansion coefficient close to that of silicon, and Pyrex (registered trademark) glass or the like is used. As is well known, this Pyrex (registered trademark) glass is a glass in which the softening point is lowered to keep the expansion coefficient as small as possible by adding an alkali metal such as sodium to quartz glass. .
[0007] このパイレックス(登録商標)ガラス 51とシリコン 50との陽極接合は、 200V〜600V の電圧印加、 400°C〜500°Cでの加熱、及び加圧により達成される。 [0008] 近年では、この陽極接合技術によって製造された MEMSセンサも、既に商品化され ている。また、このような陽極接合装置の需要も増加している。 [0007] The anodic bonding of the Pyrex (registered trademark) glass 51 and the silicon 50 is achieved by applying a voltage of 200V to 600V, heating at 400 ° C to 500 ° C, and pressing. [0008] In recent years, MEMS sensors manufactured by this anodic bonding technology have already been commercialized. In addition, the demand for such an anodic bonding apparatus is increasing.
[0009] 従来の陽極接合では、 SOI基板とよばれるシリコンウェハとガラス板との接合が主と して行われていた。 [0009] In conventional anodic bonding, a silicon wafer called a SOI substrate and a glass plate are mainly bonded.
[0010] しかし、最近は、 MEMSセンサを製造するに際して、配線パターンの形成されたシリ コンウェハとガラス板とを接合する陽極接合の技術が要求されている。  However, recently, when manufacturing a MEMS sensor, an anodic bonding technique for bonding a silicon wafer on which a wiring pattern is formed and a glass plate is required.
[0011] また、最近の MEMSでは、信号、電源回路に A1を素材とした回路配線が形成されて いる。そして、この回路配線と絶縁性のあるガラスを立体配線し、異種材料を接合し た基板を用いてセンサとして構築したものが商品化されて 、る。  [0011] Further, in recent MEMS, circuit wiring using A1 as a material is formed in signal and power supply circuits. And what is constructed as a sensor using a substrate in which this circuit wiring and insulating glass are three-dimensionally wired and different materials are joined is commercialized.
[0012] そこで、 A1の融点 (約 600°C)に対応すベぐ陽極接合の低温化及び低電圧化が要 求されている。しかし、例えば 400°Cでの陽極接合においては、 A1配線層(膜)に与 える接合時の加熱による影響として、マイグレーションの懸念がある。  [0012] Therefore, there is a demand for lowering the temperature and lowering the voltage of the anodic bonding that corresponds to the melting point of A1 (about 600 ° C). However, for example, in anodic bonding at 400 ° C, there is a concern about migration as an effect of heating during bonding on the A1 wiring layer (film).
[0013] マイグレーション (migration)とは、周知のように、電界の影響で、金属成分が非金 属媒体の上や中を横切って移動する現象である。このマイグレーションが発生すると 、絶縁不良を起こすおそれがある。  [0013] Migration, as is well known, is a phenomenon in which a metal component moves on or across a non-metallic medium due to the influence of an electric field. If this migration occurs, there is a risk of insulation failure.
[0014] 一方、従来より、銅系の金属をめつき法により成長、埋め込む技術が広く開発され、 用いられている。銅めつき法では、 1000°C程度の融点の金属を常温域で成長できる 。この銅めつき法で回路配線を形成する場合には、マイグレーションなどの問題は少 ないものの、 10ミクロン程度の成長に約 1時間を要するという問題があり、回路形成に は不適切である。  [0014] On the other hand, conventionally, techniques for growing and embedding copper-based metals by a plating method have been widely developed and used. In the copper plating method, a metal having a melting point of about 1000 ° C can be grown at room temperature. When circuit wiring is formed by this copper plating method, although there are few problems such as migration, there is a problem that it takes about one hour to grow to about 10 microns, which is inappropriate for circuit formation.
[0015] また、はんだを貫通孔に充填して立体配線とした接合ウェハでは、はんだが低溶融 温度であり、 400°C未満での低温での接合プロセスが必須となって 、る。  [0015] In addition, in a bonded wafer in which solder is filled into through holes to form a three-dimensional wiring, the solder has a low melting temperature, and a bonding process at a low temperature of less than 400 ° C is essential.
[0016] そこで、 MEMSへの適合要求を受けて、ガラスメーカより接合下限温度を 250°Cとし た陽極接合加能なガラスが開発され、商品化されている。 [0016] Therefore, in response to a request for conformity to MEMS, glass capable of anodic bonding with a minimum bonding temperature of 250 ° C has been developed and commercialized by a glass manufacturer.
特許文献 1 :特開平 6— 271341号公報  Patent Document 1: JP-A-6-271134
特許文献 2:特開平 6 - 208938号公報  Patent Document 2: Japanese Patent Laid-Open No. 6-208938
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0017] し力しながら、従来の陽極接合技術では、 200°C程度の接合温度では、シリコンゥ ェハとガラス板とを均一に接合できないという問題があった。 Problems to be solved by the invention However, the conventional anodic bonding technique has a problem that the silicon wafer and the glass plate cannot be uniformly bonded at a bonding temperature of about 200 ° C.
[0018] また、接合温度が 200°C未満の場合は、 A1配線への熱影響が緩和されて ヽる。し かし、例えば、 Sn-Ag-Cu系のはんだの立体配線構造、バンプ PADを有する構造体 では、はんだ融点に対して 200°C未満での接合プロセスが要求される。 [0018] When the bonding temperature is less than 200 ° C, the thermal influence on the A1 wiring is mitigated. However, for example, a Sn-Ag-Cu solder three-dimensional wiring structure and a structure having a bump PAD require a joining process at less than 200 ° C with respect to the solder melting point.
[0019] また、シリコンウェハ及びガラス板を接合する際には、シリコンウェハ及び Z又はガラ ス板の全面に平坦な形状の電極 (ヒータ)を配置し、シリコンウェハやガラス板への均 一な加熱 ·電圧印加を可能として!ヽた。 [0019] Further, when bonding a silicon wafer and a glass plate, a flat electrode (heater) is arranged on the entire surface of the silicon wafer and the Z or glass plate, and the silicon wafer and the glass plate are evenly distributed. Heating · Applicable voltage! I was jealous.
[0020] しかし、接合すべきシリコンウェハ又はガラス板に配線パターンが形成されている場 合には、例えば配線パターンを避けた位置に電極を配置するなど、電極位置の最適 化を考慮する必要がある。 However, when a wiring pattern is formed on the silicon wafer or glass plate to be bonded, it is necessary to consider optimization of the electrode position, for example, by arranging the electrode at a position avoiding the wiring pattern. is there.
[0021] この理由は、電圧印加用の電極と配線パターンとが接近すると、ショート (短絡)によ り電力の局所集中が発生し、全面均一な接合現象が進行しなくなる力 である。また[0021] The reason is that when the voltage application electrode and the wiring pattern come close to each other, a local concentration of electric power occurs due to a short circuit (short circuit), and the uniform bonding phenomenon does not proceed on the entire surface. Also
、シリコンウェハ又はガラス板上の配線パターンが断線するおそれもある。 There is also a possibility that the wiring pattern on the silicon wafer or the glass plate is disconnected.
[0022] また、接合面にパーティクル (微小なゴミ)が付着すると、このパーティクルを核とし た気孔が発生する。この気孔は、接合不良や通電時スパークの要因となりうる。 [0022] Further, when particles (fine dust) adhere to the joint surface, pores having these particles as nuclei are generated. The pores can cause poor bonding and spark when energized.
[0023] シリコンは、長期にわたって放置すると、その表面にまだらに自然酸ィ匕膜 (SiOx)が 形成される。この自然酸化膜は、絶縁膜である。このような自然酸ィ匕膜を放置した状 態では、基板への電力印加が阻害される。この場合、通電されないため、陽極接合 の原理である接合時のアルカリイオンの接合界面への移動がなされない。このため、 接合処理にお!ヽて分布不均一な接合状態となる。 [0023] When silicon is left for a long period of time, a natural oxide film (SiOx) is formed on the surface of the silicon. This natural oxide film is an insulating film. When such a natural acid film is left untreated, power application to the substrate is hindered. In this case, since no current is applied, alkali ions are not moved to the bonding interface during bonding, which is the principle of anodic bonding. For this reason, it can be used for bonding! As a result, a non-distributed joint state is obtained.
[0024] 本発明は、このような問題に鑑みなされたもので、比較的低温の加熱でシリコンとガ ラス板とを接合でき、また接合面や貫通孔内に配線パターンが設けられている場合 でも接合できる陽極接合用の加熱集中治具、陽極接合方法及び装置の提供を課題 とする。 [0024] The present invention has been made in view of such problems. When silicon and a glass plate can be bonded by heating at a relatively low temperature, and a wiring pattern is provided in the bonding surface or through hole. However, it is an object to provide a heating concentration jig for anodic bonding, an anodic bonding method, and an apparatus that can be bonded.
課題を解決するための手段  Means for solving the problem
[0025] 本発明は、前記課題を解決するため、以下の手段を採用した。 The present invention employs the following means in order to solve the above problems.
[0026] (1)本発明の陽極接合用の加熱集中治具は、 シリコンウェハとガラス板とが積層され、前記シリコンウェハ及び前記ガラス板に電圧 印加手段によって電圧が印加されると共に、加熱手段によって加熱されることにより、 前記シリコンウェハと前記ガラス板とが陽極接合される際に、前記加熱手段の加熱を 前記シリコンウェハと前記ガラス板との接合部分に集中するための加熱集中治具で あって、 [0026] (1) The heating concentration jig for anodic bonding of the present invention is: A silicon wafer and a glass plate are laminated, a voltage is applied to the silicon wafer and the glass plate by a voltage applying unit, and the silicon wafer and the glass plate are anodically bonded by being heated by a heating unit. A heating concentration jig for concentrating the heating of the heating means on the joint between the silicon wafer and the glass plate,
導電性及び伝熱性を有する材料で板状に形成され、  It is formed in a plate shape with a material having conductivity and heat conductivity,
一方の表面に、前記シリコンウェハと前記ガラス板との接合部分とほぼ同一形状の 凸部が設けられている。  On one surface, a convex portion having substantially the same shape as a joint portion between the silicon wafer and the glass plate is provided.
[0027] 導電性及び伝熱性を有する材料としては、カーボンなどを例示できる。カーボンは 、電導性及び伝熱性が高いので、加熱集中治具の材料として好ましい。  [0027] Examples of the material having conductivity and heat conductivity include carbon. Carbon is preferable as a material for the heating concentration jig because of its high conductivity and heat conductivity.
[0028] 本発明では、加熱集中治具本体が導電性及び伝熱性を有する材料で形成され、 且つシリコンウェハ又はガラス板と当接する側の表面に設けられた凸部のみが、シリ コンウェハとガラス板との接合部分に当接する。従って、加熱手段の加熱及び電圧印 加手段の電圧が、凸部のみを通過して、シリコンウェハとガラス板との接合部分に集 中される。これにより、比較的低温の加熱によって、シリコンウェハとガラス板とを陽極 接合できる。  [0028] In the present invention, the heating concentration jig body is formed of a material having conductivity and heat conductivity, and only the convex portions provided on the surface in contact with the silicon wafer or the glass plate are the silicon wafer and the glass. Abuts on the joint with the plate. Therefore, the heating of the heating means and the voltage of the voltage applying means pass only through the convex portions and are concentrated at the junction between the silicon wafer and the glass plate. As a result, the silicon wafer and the glass plate can be anodically bonded by heating at a relatively low temperature.
[0029] (2)前記加熱集中治具本体の全面に、発塵を防止する表面コーティングが施され ていることが好ましい。  [0029] (2) It is preferable that a surface coating for preventing dust generation is applied to the entire surface of the heating concentration jig body.
[0030] ガラス板とシリコンウェハとの接合面に、パーティクル (微小なゴミ)が付着すると、こ のパーティクルを核とした気孔が発生する。この気孔は、接合不良や通電時スパーク の要因となりうる。  [0030] When particles (fine dust) adhere to the bonding surface between the glass plate and the silicon wafer, pores with these particles as nuclei are generated. These pores can cause poor bonding and sparks when energized.
[0031] 本発明では、加熱集中治具の表面力もの発塵を防止できる。従って、シリコンゥ ノ、とガラス板との接合面に、加熱集中治具の表面力も発生したパーティクルが付着 するのを防止できる。これにより、ガラス板とシリコンとの接合面に気孔が発生するの を防止でき、気孔を原因とする接合不良や通電時スパークを防止できる。  [0031] In the present invention, it is possible to prevent dust generation due to the surface force of the heating concentration jig. Accordingly, it is possible to prevent the particles having generated the surface force of the heating concentration jig from adhering to the bonding surface between the silicon nano and the glass plate. As a result, it is possible to prevent pores from being generated on the joint surface between the glass plate and silicon, and it is possible to prevent poor bonding caused by the pores and spark during energization.
[0032] (3)また、本発明の陽極接合方法は、  [0032] (3) Further, the anodic bonding method of the present invention comprises:
積層されたシリコンウェハ及びガラス板に電圧印加手段によって電圧が印加される と共に、前記シリコンゥヱハ及び前記ガラス板が加熱手段によって加熱されることによ り、前記シリコンウェハと前記ガラス板とが陽極接合される陽極接合方法にぉ ヽて、 前記加熱手段と前記シリコンウェハとの間、又は前記加熱手段と前記ガラス板との 間に、前記加熱手段による加熱を、前記シリコンウェハと前記ガラス板との接合部分 に集中する加熱集中治具が配置される。 A voltage is applied to the laminated silicon wafer and glass plate by the voltage applying means, and the silicon wafer and the glass plate are heated by the heating means. The anodic bonding method in which the silicon wafer and the glass plate are anodically bonded, the heating means between the heating means and the silicon wafer, or between the heating means and the glass plate. A heating concentration jig is provided for concentrating the heating by the process at the junction between the silicon wafer and the glass plate.
[0033] (4)前記加熱集中治具は、導電性及び伝熱性を有する材料で板状に形成され、前 記シリコンウェハ又は前記ガラス板と当接する側の表面に、前記シリコンウェハと前記 ガラス板との接合部分とほぼ同一形状の凸部が形成され、  [0033] (4) The heating concentration jig is formed in a plate shape from a material having conductivity and heat conductivity, and the silicon wafer and the glass are formed on a surface of the silicon wafer or the glass plate in contact with the glass wafer. Protrusions having almost the same shape as the joint with the plate are formed,
前記加熱集中治具は、前記加熱手段と前記シリコンウェハとの間、又は前記加熱 手段と前記ガラス版との間に配置され、  The heating concentration jig is disposed between the heating means and the silicon wafer, or between the heating means and the glass plate,
前記凸部が前記シリコンウェハと前記ガラス版との接合部分に整合配置され、且つ 前記凸部が前記シリコンウェハ又は前記ガラス板に当接されるのが好ましい。  It is preferable that the convex portion is aligned with a joint portion between the silicon wafer and the glass plate, and the convex portion is in contact with the silicon wafer or the glass plate.
[0034] (5)前記シリコンウェハ及び前記ガラス板の接合部分力 250°C未満の加熱温度で 加熱されることが好ましい。 [0034] (5) It is preferable that the silicon wafer and the glass plate are heated at a heating temperature of less than 250 ° C.
[0035] この場合は、加熱による A1配線などへの熱影響を緩和できる。 In this case, the thermal influence on the A1 wiring and the like due to heating can be reduced.
[0036] (6)前記シリコンウェハ及び前記ガラス板の接合部分が、 200°C未満の加熱温度で 加熱されるのが更に好ましい。 [0036] (6) It is more preferable that the bonded portion of the silicon wafer and the glass plate is heated at a heating temperature of less than 200 ° C.
[0037] この場合は、例えば、シリコンウェハ又はガラス板に、 Sn-Ag-Cu系のはんだの立体 配線構造、又はバンプ PADなどを有し、はんだ融点に対して 200°C未満での接合プ 口セスが要求される場合にも適用できる。 [0037] In this case, for example, a silicon wafer or a glass plate has a three-dimensional wiring structure of Sn-Ag-Cu solder or bump PAD, and the bonding plug is below 200 ° C with respect to the solder melting point. It can also be applied when oral access is required.
[0038] (7)また、本発明の陽極接合装置は、 [0038] (7) Further, the anodic bonding apparatus of the present invention includes:
積層されたシリコンウェハとガラス板に電圧が印加される電圧印加手段と、前記シリ コンウェハ及び前記ガラス板が挟まれて加熱される加熱手段とを備え、前記シリコン ウェハと前記ガラス板とが陽極接合される陽極接合装置において、  A voltage applying means for applying a voltage to the laminated silicon wafer and the glass plate; and a heating means for heating the silicon wafer and the glass plate to be sandwiched, wherein the silicon wafer and the glass plate are anodically bonded. In an anodic bonding apparatus,
前記加熱手段による加熱を、前記シリコンウェハと前記ガラス板との接合部分に集 中する加熱集中治具を備えている。  There is provided a heating concentration jig for concentrating the heating by the heating means at the junction between the silicon wafer and the glass plate.
[0039] (8)前記加熱集中治具は、導電性及び伝熱性を有する材料で板状に形成され、前 記シリコンウェハ又は前記ガラス板に当接する側の表面に、前記シリコンウェハと前 記ガラス板との接合部分とほぼ同一形状の凸部が形成され、 前記加熱集中治具が、前記加熱手段と前記シリコンウェハとの間、又は前記加熱 手段と前記ガラス板との間に配置され、 [0039] (8) The heating concentration jig is formed in a plate shape from a material having conductivity and heat conductivity, and the silicon wafer and the above-described surface are formed on a surface of the silicon wafer or the glass plate in contact with the above-mentioned silicon wafer. A convex part having almost the same shape as the joint part with the glass plate is formed, The heating concentration jig is disposed between the heating means and the silicon wafer, or between the heating means and the glass plate,
前記凸部が前記前記シリコンウェハと前記ガラス板との接合部分に整合配置され、 且つ前記凸部が前記シリコンウェハ又は前記ガラス板に当接されるように構成できる  The convex portion can be arranged in alignment with the joint portion between the silicon wafer and the glass plate, and the convex portion can be in contact with the silicon wafer or the glass plate.
[0040] (9)前記加熱手段と前記電圧印加手段には、積層された前記シリコンウェハ及び前 記ガラス板を挟む加熱 ·電圧印加部材が兼用され、前記加熱 ·電圧印加部材を介し て前記シリコンウェハ及び前記ガラス板が加熱及び電圧印加されることが好ましい。 (9) The heating means and the voltage applying means also serve as a heating / voltage applying member sandwiching the laminated silicon wafer and the glass plate, and the silicon / silicone via the heating / voltage applying member. It is preferable that the wafer and the glass plate are heated and voltage is applied.
[0041] この場合は、加熱印加部材と、電圧印加部材とを別々に設ける必要がないので、加 熱手段及び電圧印加手段の構成を簡略ィ匕できる。 [0041] In this case, since it is not necessary to separately provide the heating application member and the voltage application member, the configuration of the heating means and the voltage application means can be simplified.
[0042] (10)また、本発明の電子部品は、 [0042] (10) The electronic component of the present invention is
200°C未満の加熱温度で陽極接合されたシリコン及びガラスを備え、前記シリコン 又は前記ガラスに配線パターン又は貫通孔配線が設けられている。  Silicon and glass anodically bonded at a heating temperature of less than 200 ° C. are provided, and a wiring pattern or a through-hole wiring is provided on the silicon or the glass.
[0043] (11)また、本発明の基板製造方法は、 [0043] (11) Further, the substrate manufacturing method of the present invention includes:
第一の部材と第二の部材とが接合された基板を製造する方法において、 第一の部材と第二の部材とを重ね合わせるステップと、  In the method of manufacturing a substrate in which the first member and the second member are joined, the step of superimposing the first member and the second member;
第一の部材と第二の部材とが接触する接合部の形状に対応する形状を有する凸 部を備えた治具を、前記第一の部材ある!、は前記第二の部材の少なくとも一方に、 前記凸部の位置が前記接合部の位置と重なるように重ね合わせるステップと、 前記治具を、前記第一の部材及び Zまたは第二の部材とともに加熱するステップと 、を備えたことを特徴とする。  A jig provided with a convex portion having a shape corresponding to the shape of the joint portion where the first member and the second member are in contact is provided on at least one of the second members. And a step of superimposing such that the position of the convex part overlaps with the position of the joint part, and heating the jig together with the first member and Z or the second member. And
[0044] ( 12)前記治具は、熱の伝導率が高!ヽ部材から形成されて ヽることが好ま ヽ。 [0044] (12) It is preferable that the jig is made of a member having high heat conductivity.
[0045] (13)また、本発明の基板の製造方法は、 (13) Further, the method for manufacturing a substrate of the present invention includes:
第一の部材と第二の部材とが接合された基板を製造する方法において、 前記第一の部材と前記第二の部材とを、互!、の接合面が対向するように配置する ステップと、  In the method of manufacturing a substrate in which the first member and the second member are bonded, the first member and the second member are arranged so that their bonding surfaces face each other. ,
前記第一の部材と前記第二の部材との接合面にプラズマを供給するステップと、 前記第一の部材と前記第二の部材とが接触する部位の形状に対応する形状を有 する凸部を備えた治具を、前記第一の部材及び Zまたは前記第二の部材とともに加 熱するステップと、を備えたことを特徴とする。 Supplying plasma to the joint surface between the first member and the second member; and having a shape corresponding to the shape of the portion where the first member and the second member are in contact with each other. And heating the jig provided with the convex portion together with the first member and Z or the second member.
[0046] (14)また、本発明の接合装置は、  [0046] (14) Further, the joining device of the present invention includes:
積層された第一の基板と第二の基板とに電圧を印加する電圧印加手段と、 前記第一の基板及び第二の基板を挟んで加熱する加熱手段と  Voltage applying means for applying a voltage to the stacked first substrate and second substrate, and heating means for heating the first substrate and the second substrate.
前記第一の基板あるいは前記第二の基板と、前記加熱手段との間に、前記第一の 基板と前記第二の基板の接合面に前記加熱手段により発せられた熱を集中的に伝 達する治具と、を備えたことを特徴とする。  Between the first substrate or the second substrate and the heating unit, the heat generated by the heating unit is intensively transferred to the bonding surface of the first substrate and the second substrate. And a jig.
[0047] (15)前記治具は、前記第一の基板と前記第二の基板とが接触する接合面の形状 に対応した形状を有する凸部を備えるのが好ましい。 [0047] (15) Preferably, the jig includes a convex portion having a shape corresponding to a shape of a joint surface where the first substrate and the second substrate are in contact with each other.
発明の効果  The invention's effect
[0048] 以上説明したように、本発明によれば、シリコンウェハとガラス板とを比較的低温の 加熱によって陽極接合できる。従って、シリコンウェハとガラス板に配線パターンや貫 通孔配線が設けられて!/ヽる場合でも、陽極接合の際に配線パターン又は貫通孔配 線が溶融するおそれがな 、。  [0048] As described above, according to the present invention, a silicon wafer and a glass plate can be anodically bonded by heating at a relatively low temperature. Therefore, wiring patterns and through-hole wiring are provided on the silicon wafer and glass plate! / Even in the case of rolling, there is no risk that the wiring pattern or through-hole wiring will melt during anodic bonding.
図面の簡単な説明  Brief Description of Drawings
[0049] [図 1]本発明に係る実施の形態における陽極接合装置を示す図である。  FIG. 1 is a diagram showing an anodic bonding apparatus according to an embodiment of the present invention.
[図 2]本発明に係る実施の形態における加熱集中治具の凸部を示す図であり、図 1 の A— A断面図である。  2 is a view showing a convex portion of the heating concentration jig in the embodiment according to the present invention, and is a cross-sectional view taken along the line AA in FIG.
[図 3]本発明に係る実施の形態における表面コーティングを示す図であり、図 2の B— B断面図である。  FIG. 3 is a view showing a surface coating in the embodiment according to the present invention, and is a cross-sectional view taken along the line BB in FIG.
[図 4]本発明に係る実施の形態における加熱集中治具の切り欠きを示す図である。  FIG. 4 is a view showing notches of the heating concentration jig in the embodiment according to the present invention.
[図 5]本発明に係る実施の形態におけるシリコンウェハとガラス板との陽極接合後の 状態を示す断面図である。  FIG. 5 is a cross-sectional view showing a state after anodic bonding between a silicon wafer and a glass plate in an embodiment according to the present invention.
[図 6]本発明に係る実施の形態における微少センサを示す断面図である。  FIG. 6 is a cross-sectional view showing a micro sensor in an embodiment according to the present invention.
[図 7]本発明に係る実施の形態における陽極接合処理を示すフローチャートである。  FIG. 7 is a flowchart showing an anodic bonding process in the embodiment according to the present invention.
[図 8]本発明に係る別の実施の形態における陽極接合方法を示す断面図である。  FIG. 8 is a cross-sectional view showing an anodic bonding method according to another embodiment of the present invention.
[図 9]従来例に係る陽極接合方法を示す断面図である。 符号の説明 FIG. 9 is a cross-sectional view showing an anodic bonding method according to a conventional example. Explanation of symbols
1 陽極接合装置  1 Anodic bonding equipment
11 シリコンウエノヽ  11 Silicon Ueno
11a 接合面  11a Joint surface
l ib キヤビティ  l ib
12 ガラス板  12 Glass plate
12a 接合面  12a Joint surface
12b 外表面  12b outer surface
13 電圧印加手段  13 Voltage application means
14 加熱手段  14 Heating means
14a 加熱 ·電力印加板  14a Heating and power application plate
14b 加熱 ·電力印加版  14b Heating / Power application version
15 加熱集中治具  15 Heating concentration jig
15a 対向面  15a Opposite surface
15b 凸部  15b Convex
16 貫通孔導体充填部 (貫通孔配線) 17 配線パターン  16 Through hole conductor filling part (through hole wiring) 17 Wiring pattern
18 凹部  18 recess
19 配線パターン (信号取り出し端子) ) 19 Wiring pattern (Signal output terminal)
20 ヒータ 20 Heater
21 真空チャンバ  21 Vacuum chamber
22 高周波発生手段  22 High frequency generation means
23 切り欠き  23 Notch
24 表面コーティング  24 Surface coating
25 電源  25 Power supply
26 ァライメントマーク  26 Alignment Mark
30 微少センサ  30 Micro sensor
31 シリコン 32 ガラス 31 Silicon 32 glass
33 センサクチユエータ  33 Sensor actuator
33 センタァクチユエータ  33 Center actuator
50 シリコン  50 silicon
51 ガラス板  51 Glass plate
52a, 52b ヒータ  52a, 52b Heater
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0051] 以下、本発明の実施形態に係る陽極接合用の加熱集中治具、陽極接合方法及び 装置について、図面を参照して詳細に説明する。  Hereinafter, a heating concentration jig, an anodic bonding method, and an apparatus for anodic bonding according to an embodiment of the present invention will be described in detail with reference to the drawings.
[0052] 《第 1の実施の形態》  [0052] First Embodiment
図 1は、本発明の第 1の実施の形態に係る陽極接合装置 1を示す。本実施形態に よる陽極接合装置 1は、積層されたシリコンウェハ 11とガラス板 12に電圧を印加する 電圧印加手段 13と、シリコンウェハ 11及びガラス板 12を所定の圧力で挟んで加熱 する加熱手段 14と、装置全体を覆う真空チャンバ 21とを備えている。なお、図 1中の 記号 +は正電圧、—は負電圧を示す、符号 Fは加圧力、 15aはガラス板との対向面 を示す。また、図 1では、各部を分力り易く示すために、各部の大きさを実際とは異な る大きさで示している。  FIG. 1 shows an anodic bonding apparatus 1 according to a first embodiment of the present invention. The anodic bonding apparatus 1 according to this embodiment includes a voltage applying unit 13 that applies a voltage to the laminated silicon wafer 11 and the glass plate 12, and a heating unit that sandwiches and heats the silicon wafer 11 and the glass plate 12 with a predetermined pressure. 14 and a vacuum chamber 21 covering the entire apparatus. In FIG. 1, the symbol + indicates a positive voltage,-indicates a negative voltage, symbol F indicates a pressure, and 15a indicates a surface facing the glass plate. Also, in FIG. 1, the size of each part is shown in a different size from the actual size in order to show each part easily.
[0053] また、本実施形態による陽極接合装置 1は、加熱手段 14による加熱を、シリコンゥェ ハ 11とガラス板 12との接合部分に集中して伝達させる加熱集中治具 15を備えて 、 る。  Further, the anodic bonding apparatus 1 according to the present embodiment includes a heating concentration jig 15 that concentrates and transmits the heating by the heating means 14 to the bonded portion between the silicon wafer 11 and the glass plate 12.
[0054] シリコンウェハ 11の接合面 11aには、複数のキヤビティ(凹部) l ibが等間隔で設け られている。各キヤビティ l ib内には、センサクチユエータ 33 (図 5参照)が設けられて いる。  [0054] On the bonding surface 11a of the silicon wafer 11, a plurality of cavities (recesses) l ib are provided at equal intervals. A sensor actuator 33 (see Fig. 5) is provided in each cavity l ib.
[0055] ガラス板 12には、シリコンウェハ 11のセンサクチユエータ 33に対応する位置にスル 一ホール Z貫通孔 16が形成されている。貫通孔 16内には導体が充填されている。  A through hole Z through hole 16 is formed in the glass plate 12 at a position corresponding to the sensor actuator 33 of the silicon wafer 11. The through hole 16 is filled with a conductor.
[0056] また、ガラス板 12のシリコンウェハ 11との接合面 12aには、配線パターン 17が設け られている。この配線パターン 17は、貫通孔導体充填部 16に接続されている。  In addition, a wiring pattern 17 is provided on the bonding surface 12 a of the glass plate 12 with the silicon wafer 11. The wiring pattern 17 is connected to the through hole conductor filling portion 16.
[0057] 加熱手段 14は、一対の加熱'電力印加板 14a, 14bを有している。これらの加熱 · 電力印加板 14a, 14b間に、積層されたシリコンウェハ 11とガラス板 12とが挟まれて 所定の圧力で加圧される。加熱'電力印加板 14a, 14bには、ヒータ 20が内蔵されて いる。 The heating means 14 has a pair of heating / power application plates 14a and 14b. These heating · The laminated silicon wafer 11 and the glass plate 12 are sandwiched between the power application plates 14a and 14b and pressurized with a predetermined pressure. A heater 20 is built in the heating / power application plates 14a and 14b.
[0058] また、加熱'電力印加板 14a, 14bには、電圧印加手段 13の一部を構成する電源 2 5が接続されている。これにより、加熱'電力印加板 14a, 14bを介してシリコンウェハ 11及びガラス板 12に電圧が印加される。このように、加熱'電圧印加材 14a, 14bは 、加圧手段、加熱手段及び電圧印加手段に兼用されている。  Further, a power source 25 that constitutes a part of the voltage application means 13 is connected to the heating / power application plates 14a and 14b. As a result, a voltage is applied to the silicon wafer 11 and the glass plate 12 via the heating / power application plates 14a and 14b. Thus, the heating / voltage applying materials 14a and 14b are also used as a pressurizing means, a heating means and a voltage applying means.
[0059] 加熱集中治具 15は、導電性及び伝熱性を有する材料で平板状に形成されている 。この材料としては、導電性及び伝熱製の高い材料が好ましい。本実施形態では、 加熱集中治具 15が、導電性及び伝熱性の高いカーボン部材によって形成されてい る。  [0059] The heating concentration jig 15 is made of a material having conductivity and heat conductivity and is formed in a flat plate shape. As this material, a material having high conductivity and heat transfer is preferable. In the present embodiment, the heating concentration jig 15 is formed of a carbon member having high conductivity and high heat conductivity.
[0060] 加熱集中治具 15の外形は、シリコンウェハ 11及びガラス板 12の外形と相似形に形 成されている。本実施形態では、加熱集中治具 15の径はシリコンゥヱハ 11及びガラ ス板 12と同一径である。この加熱集中治具 15におけるガラス板 12と当接する側の面 (対向面) 15aには、ガラス板 12の配線パターン 17を避ける凹部 18が設けられてい る。  [0060] The outer shape of the heating concentration jig 15 is similar to the outer shapes of the silicon wafer 11 and the glass plate 12. In the present embodiment, the diameter of the heating concentration jig 15 is the same as that of the silicon wafer 11 and the glass plate 12. A concave portion 18 that avoids the wiring pattern 17 of the glass plate 12 is provided on a surface (opposite surface) 15a that is in contact with the glass plate 12 in the heating concentration jig 15.
[0061] 図 2は、図 1の図示 A— Aの断面図であり、加熱集中治具 15を上から見た状態を図 示している。加熱集中治具 15のガラス板 12との対向面 15aには、図 2に示すように、 シリコンウェハ 11とガラス板 12との接合部とほぼ同一形状の凸部 15bが形成されて いる。なお、本実施形態では、シリコンウェハ 11とガラス板 12との接合部が格子状( 碁盤の目状)であり、凸部 15bもこの接合部と同様に格子状に形成されている。  FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and shows a state where the heating concentration jig 15 is viewed from above. As shown in FIG. 2, a convex portion 15b having substantially the same shape as the joint between the silicon wafer 11 and the glass plate 12 is formed on the surface 15a of the heating concentration jig 15 facing the glass plate 12. In the present embodiment, the joint between the silicon wafer 11 and the glass plate 12 has a lattice shape (a grid pattern), and the convex portion 15b is also formed in a lattice like the joint.
[0062] 図 3は、図 2図示 B— B断面を示す図面であり、加熱集中治具 15を側面から見た状 態を図示している。凸部 15bは、図 3に示すように、対向面 15aから僅かに突出して いる。本実施形態では、凸部 15bが碁盤割り状に突出形成されている。凸部 15bは、 逆スパッタ(エッチング)などによって形成できる。  FIG. 3 is a drawing showing a BB cross section shown in FIG. 2, and shows a state in which the heating concentration jig 15 is viewed from the side. As shown in FIG. 3, the convex portion 15b slightly protrudes from the facing surface 15a. In the present embodiment, the convex portion 15b is formed to project in a grid pattern. The convex portion 15b can be formed by reverse sputtering (etching) or the like.
[0063] また、本実施の形態では、加熱集中治具 15をカーボンで形成したが、シリコンに導 電性及び伝熱性の高 、金属コーティングを施すことによって形成することもできる。こ のようにシリコンに金属コーティングを施すことにより、電圧をかけやすくなる。 [0064] この加熱集中治具 15における対向面 15aには、凸部 15bを含めた全面に、発塵抑 制用の表面コーティング 24が施されている。この表面コーティング 24としては、グラス ティックス 'コート(GLASTIX KOTE、登録商標)などを例示できる。 [0063] In the present embodiment, the heating concentration jig 15 is formed of carbon, but it can also be formed by applying a metal coating to silicon with high conductivity and heat conductivity. Applying a metal coating to silicon in this way makes it easier to apply a voltage. [0064] The opposing surface 15a of the heating concentration jig 15 is provided with a surface coating 24 for suppressing dust generation on the entire surface including the convex portion 15b. Examples of the surface coating 24 include a GLASTIX KOTE (registered trademark).
[0065] このグラスティックス 'コートは、黒鉛基材表面近傍及び表面にガラス状炭素を含浸  [0065] This glassics coat is impregnated with glassy carbon near and on the surface of the graphite substrate.
'被覆するものである。このような表面コーティング 24を加熱集中治具 15に施すこと により、加熱集中治具 15の表面力 黒鉛粉が発生するのを抑制できる。  'It is something to cover. By applying such a surface coating 24 to the heating concentration jig 15, it is possible to suppress generation of surface force graphite powder of the heating concentration jig 15.
[0066] 更に、加熱集中治具 15の外周部には、図 4に示すように、ガラス板 12のァライメント マーク 26を確認する切り欠き 23が設けられている。この切り欠き 23を利用して、ァラ ィメントマーク 26を検出することにより、加熱集中治具 15とガラス板 12とのァライメント が行われる。  Further, as shown in FIG. 4, a notch 23 for confirming the alignment mark 26 of the glass plate 12 is provided on the outer peripheral portion of the heating concentration jig 15. By using this notch 23 to detect the alignment mark 26, the heating concentration jig 15 and the glass plate 12 are aligned.
[0067] なお、本実施形態では、切り欠き 23が、加熱集中治具 15の円周 4等分の位置にそ れぞれ設けられている。また、切り欠き 23に代えて、適宜な大きさの窓(孔)を設ける ことちでさる。  [0067] In the present embodiment, the notches 23 are provided at positions corresponding to four equal circumferences of the heating concentration jig 15, respectively. In place of the notch 23, an appropriate size window (hole) is provided.
[0068] 図. 1の真空チャンバ 21内の両側には、高周波発振手段 22が設けられている。こ の高周波発振手段 22からプラズマが発生される。ここで発生したプラズマは、陽極接 合時にシリコンウェハ 11の表面に照射される。これによつて、シリコンウェハ 11の表面 に経時成長した自然酸化膜 (SiOx)が除去される。  [0068] High-frequency oscillation means 22 are provided on both sides of the vacuum chamber 21 in FIG. Plasma is generated from the high-frequency oscillation means 22. The plasma generated here is irradiated onto the surface of the silicon wafer 11 during anodic bonding. As a result, the natural oxide film (SiOx) grown over time on the surface of the silicon wafer 11 is removed.
[0069] 図 5は、陽極接合装置 1によって陽極接合されたシリコンウェハ 11とガラス板 12とを 示す。ガラス板 12の外表面 12bには、配線パターン 19が設けられる。この配線パタ ーン 19は、貫通孔導体充填部 16によって、ガラス板 12の接合面 12aに設けられてFIG. 5 shows a silicon wafer 11 and a glass plate 12 that are anodically bonded by the anodic bonding apparatus 1. A wiring pattern 19 is provided on the outer surface 12 b of the glass plate 12. This wiring pattern 19 is provided on the joint surface 12a of the glass plate 12 by the through hole conductor filling portion 16.
V、る配線パターン 17と電気的に接続される。 V, electrically connected to wiring pattern 17.
[0070] 陽極接合前に、シリコンウェハ 11の接合面 11aに設けられた凹部 18は、陽極接合 後には配線パターン 17を封止する真空封止空間として機能する。凹部 18内には、 センサクチユエータ 33が設けられて!/、る。 [0070] The concave portion 18 provided in the bonding surface 11a of the silicon wafer 11 before the anodic bonding functions as a vacuum sealing space for sealing the wiring pattern 17 after the anodic bonding. A sensor actuator 33 is provided in the recess 18! /.
[0071] 図 6は、本発明の電子部品である微少センサ 30を示す。この微少センサ 30は、陽 極接合装置 1によって陽極接合されたシリコンウェハ 11及びガラス板 12を接合部分 で分割し、個別化したものである。 FIG. 6 shows a microsensor 30 that is an electronic component of the present invention. The minute sensor 30 is obtained by dividing the silicon wafer 11 and the glass plate 12 anodic-bonded by the anodic bonding apparatus 1 at the bonding portions and individualizing them.
[0072] この微少センサ 30は、シリコンウェハ 11 (図 1参照)から分割されたシリコン 31、ガラ ス板 12から分割されたガラス 32、シリコンウェハ 11の凹部 18に予め設けられていた センサクチユエータ 33、配線パターン 17, 19、ガラス板 12に予め設けられていた貫 通孔導体充填部(貫通孔配線) 16を有している。 [0072] The micro sensor 30 is composed of a silicon 31 and a glass substrate separated from a silicon wafer 11 (see FIG. 1). Glass 32 divided from the glass plate 12, the sensor actuator 33 provided in advance in the recess 18 of the silicon wafer 11, the wiring patterns 17, 19 and the through-hole conductor filling portion provided in advance in the glass plate 12 (through Hole wiring) 16.
[0073] 配線パターン 19は、信号取り出し端子として機能する。この微少センサ 30は、 3次 元的な動作を読み取るセンサとして使用できる。  The wiring pattern 19 functions as a signal extraction terminal. The minute sensor 30 can be used as a sensor for reading a three-dimensional operation.
[0074] この微少センサ 30のシリコン 31とガラス 32における接合部分の剥離試験を行った 。この試験の結果、引っ張り力が 1. 3kgZmm2未満の場合には、シリコン 31とガラス 32における接合部分の剥離がみられな力つた。このように、本発明では、シリコンとガ ラスとを十分な接合強度で陽極接合できることが分力つた。 [0074] A peel test of the joint portion between the silicon 31 and the glass 32 of the microsensor 30 was performed. As a result of this test, when the pulling force was less than 1.3 kgZmm 2 , it was strong without peeling of the bonded portion between the silicon 31 and the glass 32. As described above, in the present invention, it was possible to anodic-bond silicon and glass with sufficient bonding strength.
[0075] 図 7は、陽極接合装置 1による陽極接合処理を示すフローチャートである。ここでは 、まず、ワーク(シリコンウェハ 11及びガラス板 12)のセット及び加熱集中治具 15とガ ラス板 12とのァライメントが行われる (S10) o本実施形態による陽極接合装置では、 ワークを平面方向に移動可能なステージが設けられており、ワークに形成されたァラ ィメントマーク(図 4図示 24など)を参照することで、加熱集中治具 15とガラス板 12と のァライメントが行われる。 FIG. 7 is a flowchart showing an anodic bonding process performed by the anodic bonding apparatus 1. Here, first, the work in the anodic bonding apparatus according to the (S10) o the present embodiment is performed Araimento the (silicon wafer 11 and the glass plate 12) set and intensively heated jig 15 and glass plate 12 is a plan work A stage that can move in the direction is provided, and the alignment between the heating concentration jig 15 and the glass plate 12 is performed by referring to the alignment mark (24 in FIG. 4) formed on the workpiece. .
[0076] シリコンウェハ 11及びガラス板 12がセットされた後、高周波発生手段 22によってプ ラズマが発生される。このプラズマは、シリコンウェハ 11及びガラス板 12の接合面 11 a, 12aに照射される。これにより、シリコンウェハ 11の接合面 11aに発生したシリコン 酸化膜、及びガラス板 12の接合面 12aに付着した有機系異物などが除去される。  After the silicon wafer 11 and the glass plate 12 are set, a plasma is generated by the high frequency generation means 22. This plasma is applied to the bonding surfaces 11 a and 12 a of the silicon wafer 11 and the glass plate 12. As a result, the silicon oxide film generated on the bonding surface 11a of the silicon wafer 11 and the organic foreign matter adhering to the bonding surface 12a of the glass plate 12 are removed.
[0077] 次に、ァライメントされたワーク上に加熱 ·電力印加板 14a, 14bがセットされる(SI 1 ) o次に、真空チャンバ 21内力 3. 5 X 10_5Pa程度まで減圧される(S12)。 Next, the heating / power application plates 14a and 14b are set on the aligned workpiece (SI 1) o Next, the pressure is reduced to about 3.5 X 10 _5 Pa in the vacuum chamber 21 (S12 ).
[0078] 次に、ヒータ 20に通電することによって、シリコンウェハ 11及びガラス板 12が約 190 °Cで加熱される(S13)。次に、電圧印可手段 13によって、ワークに対して第一段階 の電力印加(300V' 2. 6mmA、 5分)が行われる(S 14)。  Next, by energizing the heater 20, the silicon wafer 11 and the glass plate 12 are heated at about 190 ° C. (S13). Next, the first stage of power application (300V '2.6 mmA, 5 minutes) is performed on the workpiece by the voltage applying means 13 (S14).
[0079] 次に、電圧印可手段 13によってワークに対して第二段階の電力印加 (400V. 1. 6 mmA、 5分)が行われる(SI 5)。第一段階及び第二段階の電力印加時には、接合 電圧の異常放電 (短絡)が監視され、電圧 電流量の調整 (0〜300V)が行われる。  [0079] Next, the voltage application means 13 applies a second-stage power application (400 V. 1.6 mmA, 5 minutes) to the workpiece (SI 5). When power is applied in the first and second stages, abnormal discharge (short circuit) of the junction voltage is monitored, and the voltage and current are adjusted (0 to 300V).
[0080] 次に、電力印加及び加熱が停止される(S16)。次に、真空チャンバ 21内の減圧が 停止される(SI 7)。 Next, power application and heating are stopped (S16). Next, the vacuum in the vacuum chamber 21 is reduced. Stopped (SI 7).
[0081] 次に、加熱温度が 150°C程度となったときに冷却推進用の窒素ガスが真空チャン バ 21内に挿入される(S18)。次に、加熱温度が 100°Cとなったときに窒素ガスの揷 入が停止される(S 19)。  [0081] Next, when the heating temperature reaches about 150 ° C, nitrogen gas for cooling promotion is inserted into the vacuum chamber 21 (S18). Next, when the heating temperature reaches 100 ° C., the nitrogen gas injection is stopped (S 19).
[0082] 次に、真空チャンバ 21内が大気に開放される (S20)。次に、ワークが取り出される (Next, the inside of the vacuum chamber 21 is opened to the atmosphere (S20). Next, the workpiece is taken out (
S21)。これで、シリコンウェハ 11とガラス板 12の陽極接合が終了する。 S21). Thus, the anodic bonding between the silicon wafer 11 and the glass plate 12 is completed.
[0083] なお、実施の形態では、加熱集中治具 15をガラス板 12と加熱 ·電圧印加版 14bと の間に配置した場合について説明したが、図 8に示すように、加熱集中治具 15をシリ コンウェハ 11と加熱 ·電力印加板 14aとの間に配置することもできる。 In the embodiment, the case where the heating concentration jig 15 is disposed between the glass plate 12 and the heating / voltage application plate 14b has been described. However, as shown in FIG. Can be disposed between the silicon wafer 11 and the heating / power application plate 14a.
[0084] この場合は、加熱集中治具 15の対向面 15a (図 3参照)をシリコンウェハ 11側に向 けて、その凸部 15bをシリコンウェハ 11に当接させる。 In this case, the opposing surface 15a (see FIG. 3) of the heating concentration jig 15 is directed toward the silicon wafer 11, and the convex portion 15b is brought into contact with the silicon wafer 11.
[0085] また、実施の形態では、真空の雰囲気内で陽極接合したが、大気圧中で陽極接合 することちでさる。 In the embodiment, anodic bonding is performed in a vacuum atmosphere, but anodic bonding is performed at atmospheric pressure.
[0086] このように、本実施形態では、加熱集中治具 15が、導電性及び伝熱性が高いカー ボンで板状に形成されている。また、加熱集中治具 15のシリコンウェハ 11との対向面 15aに、シリコンウェハ 11及びガラス板 12の接合部とほぼ同一形状の凸部 15bが設 けられている。  Thus, in the present embodiment, the heating concentration jig 15 is formed in a plate shape with carbon having high conductivity and heat conductivity. Further, a convex portion 15 b having substantially the same shape as the joint portion between the silicon wafer 11 and the glass plate 12 is provided on the surface 15 a facing the silicon wafer 11 of the heating concentration jig 15.
[0087] そして、シリコンウェハ 11とガラス板 12の陽極接合の際に、シリコンウェハ 11と加熱 手段 14の加熱'電圧印加版 14bとの間に加熱集中治具 15が配置される。また、加熱 集中治具 15の凸部 15bがシリコンウェハ 11に当接される。  [0087] Then, at the time of anodic bonding of the silicon wafer 11 and the glass plate 12, a heating concentration jig 15 is disposed between the silicon wafer 11 and the heating voltage applying plate 14b of the heating means 14. Further, the convex portion 15 b of the heating concentration jig 15 is brought into contact with the silicon wafer 11.
[0088] これにより、加熱手段 14による加熱力 シリコンウェハ 11とガラス板 12との接合部分 に集中される。従って、加熱手段 14の加熱温度が 200°C未満、本実施形態では 19Thereby, the heating power by the heating means 14 is concentrated on the joint portion between the silicon wafer 11 and the glass plate 12. Therefore, the heating temperature of the heating means 14 is less than 200 ° C., 19 in this embodiment.
0°Cでシリコンウェハ 11とガラス板 12とを陽極接合できる。 The silicon wafer 11 and the glass plate 12 can be anodically bonded at 0 ° C.
[0089] このように、シリコンウェハ 11とガラス板 12とを 200°C未満の比較的低温で陽極接 合できることから、シリコンウェハ 11又はガラス板 12の接合面 11a, 12aに配線パター ン、若しくは貫通孔導体充填部(貫通孔配線) 16が設けられている場合でも、配線パ ターン又は貫通孔導体充填部 16が溶融するのを防止できる。 As described above, since the silicon wafer 11 and the glass plate 12 can be anodically bonded at a relatively low temperature of less than 200 ° C., a wiring pattern or a bonding pattern 11a, 12a on the silicon wafer 11 or the glass plate 12 or Even when the through hole conductor filling portion (through hole wiring) 16 is provided, the wiring pattern or the through hole conductor filling portion 16 can be prevented from melting.
[0090] また、加熱集中治具 15は、カーボンによって形成されているので、加熱手段 14の 加熱をシリコンウェハ 11とガラス板 12との接合部に均一にカ卩える均熱板として作用す る。 Further, since the heating concentration jig 15 is made of carbon, the heating means 14 It acts as a soaking plate that uniformly heats up the joint between the silicon wafer 11 and the glass plate 12.
[0091] 更に、加熱集中治具 15のシリコンウェハ 11との対向面 15aに、凸部 15bを含めて 全面的に表面コーティング 24が施されている。従って、加熱集中治具 15の対向面 1 5aからの発塵を抑制できる。これにより、塵埃を核とする気孔の発生を防止し、気孔 による接合不良や通電時スパークの発生を防止できる。  Furthermore, the surface coating 24 is applied to the entire surface including the convex portion 15b on the surface 15a of the heating concentration jig 15 facing the silicon wafer 11. Therefore, dust generation from the opposed surface 15a of the heating concentration jig 15 can be suppressed. As a result, the generation of pores with dust as the core can be prevented, and the occurrence of poor connection due to the pores and the occurrence of sparks during energization can be prevented.
[0092] また、真空チャンバ 21内に設けられた高周波発生手段 22, 22からプラズマが発生 される。このプラズマは、シリコンウェハ 11の表面に照射される。  Further, plasma is generated from the high frequency generating means 22 and 22 provided in the vacuum chamber 21. This plasma is applied to the surface of the silicon wafer 11.
[0093] シリコンは、長期にわたって放置すると、その表面にまだらに自然酸ィ匕膜 (SiOx)が 形成される。この自然酸化膜は、絶縁膜である。従って、このような自然酸ィ匕膜を放 置した状態では、陽極接合時にシリコンウェハ 11への電力印加が阻害される。  [0093] When silicon is left for a long period of time, a natural oxide film (SiOx) is formed on the surface of the silicon. This natural oxide film is an insulating film. Therefore, in the state where such a natural oxide film is left, application of power to the silicon wafer 11 is hindered during anodic bonding.
[0094] のように、シリコンウェハ 11への電力印加が阻害されると、シリコンウェハ 11に通電 されな 、ため、陽極接合の原理である接合時のアルカリイオンの接合界面への移動 がなされない。このため、接合処理において分布不均一な接合状態となる。  [0094] As described above, when power application to the silicon wafer 11 is hindered, the silicon wafer 11 is not energized, so that alkali ions do not move to the bonding interface, which is the principle of anodic bonding. . For this reason, in a joining process, it becomes a joining state with non-uniform distribution.
[0095] 本発明では、のようにシリコンウェハ 11の表面にプラズマが照射されることにより、自 然酸化膜が除去される。これにより、シリコンウェハ 11とガラス板 12との接合状態を均 一にできる。  In the present invention, the natural oxide film is removed by irradiating the surface of the silicon wafer 11 with plasma as described above. Thereby, the joining state of the silicon wafer 11 and the glass plate 12 can be made uniform.
[0096] また、この陽極接合装置 1は、シリコンウェハ 11とガラス板 12とを均一に接合できる と共に、加熱集中治具 15とガラス板 12とのァライメントを容易にできる。また、シリコン ウェハ 11及びガラス板 12の接合面 1 la, 12aの清浄を自動的にできる。  In addition, the anodic bonding apparatus 1 can uniformly bond the silicon wafer 11 and the glass plate 12 and can easily align the heating concentration jig 15 and the glass plate 12. Further, the bonding surfaces 1 la and 12a of the silicon wafer 11 and the glass plate 12 can be automatically cleaned.
[0097] これにより、シリコンゥヱハ 11及びガラス板 12の搬送、加熱集中治具 15とシリコンゥ ェハ 11及びガラス板 12との位置調整 (ァライメント)、陽極接合時の加熱及び電圧印 加などを機械化して自動化することができる。  [0097] Thereby, the silicon wafer 11 and the glass plate 12 are transported, the heating concentration jig 15 and the silicon wafer 11 and the glass plate 12 are aligned (alignment), and heating and voltage application during anodic bonding are mechanized. Can be automated.
産業上の利用可能性  Industrial applicability
[0098] 本発明は、微少センサ、極小モータなど各種の MEMSに適用できる。 The present invention can be applied to various MEMS such as a micro sensor and a miniature motor.

Claims

請求の範囲 The scope of the claims
[1] シリコンウェハとガラス板とが積層され、前記シリコンウェハ及び前記ガラス板を加熱 手段によって加熱して陽極接合する際に、前記加熱手段により発せられた熱を前記 シリコンウェハと前記ガラス板との接合部分に集中するための加熱集中治具であって 導電性及び伝熱性を有する材料で板状に形成され、  [1] A silicon wafer and a glass plate are laminated, and when the silicon wafer and the glass plate are heated and anodic bonded by a heating means, heat generated by the heating means is generated between the silicon wafer and the glass plate. It is a heating concentration jig for concentrating on the joint part of the material, and is formed in a plate shape with a material having conductivity and heat conductivity,
一方の表面に前記シリコンウェハと前記ガラス板との接合部分とほぼ同一形状の凸 部が設けられて ヽる陽極接合用の加熱集中治具。  A heating concentration jig for anodic bonding in which a convex portion having substantially the same shape as a bonding portion between the silicon wafer and the glass plate is provided on one surface.
[2] 前記加熱集中治具の表面に、表面コーティングが施されている請求項 1に記載の 陽極接合用の加熱集中治具。  [2] The heating concentration jig for anodic bonding according to claim 1, wherein a surface coating is applied to a surface of the heating concentration jig.
[3] 積層されたシリコンウェハ及びガラス板に電圧印加手段によって電圧が印加される と共に、前記シリコンゥヱハ及び前記ガラス板が加熱手段によって加熱されることによ り、前記シリコンウェハと前記ガラス板とが陽極接合される陽極接合方法にぉ ヽて、 前記加熱手段と前記シリコンウェハとの間、又は前記加熱手段と前記ガラス板との 間に、前記加熱手段による加熱を、前記シリコンウェハと前記ガラス板との接合部分 に集中する加熱集中治具が配置される陽極接合方法。 [3] A voltage is applied to the laminated silicon wafer and glass plate by the voltage applying means, and the silicon wafer and the glass plate are heated by the heating means, whereby the silicon wafer and the glass plate are separated from each other. According to an anodic bonding method for anodic bonding, heating by the heating unit is performed between the heating unit and the silicon wafer, or between the heating unit and the glass plate. An anodic bonding method in which a heating concentration jig that concentrates on the joint part is arranged.
[4] 前記加熱集中治具は、導電性及び伝熱性を有する材料で板状に形成され、前記 シリコンウェハ又は前記ガラス板と当接する側の表面に、前記シリコンウェハと前記ガ ラス板との接合部分とほぼ同一形状の凸部が形成され、 [4] The heating concentration jig is formed in a plate shape with a material having conductivity and heat conductivity, and the silicon wafer and the glass plate are formed on a surface in contact with the silicon wafer or the glass plate. A convex part having almost the same shape as the joint part is formed,
前記加熱集中治具は、前記加熱手段と前記シリコンウェハとの間、又は前記加熱 手段と前記ガラス版との間に配置され、  The heating concentration jig is disposed between the heating means and the silicon wafer, or between the heating means and the glass plate,
前記凸部が前記シリコンウェハと前記ガラス版との接合部分に整合配置され、且つ 前記凸部が前記シリコンウェハ又は前記ガラス板に当接される請求項 3に記載の陽 極接合方法。  4. The positive electrode bonding method according to claim 3, wherein the convex portion is arranged in alignment with a joint portion between the silicon wafer and the glass plate, and the convex portion is brought into contact with the silicon wafer or the glass plate.
[5] 前記シリコンウェハ及び前記ガラス板の接合部分力 250°C未満の加熱温度でカロ 熱される請求項 3に記載の陽極接合方法。  5. The anodic bonding method according to claim 3, wherein the silicon wafer and the glass plate are heated by heating at a heating temperature of less than 250 ° C.
[6] 前記シリコンウェハ及び前記ガラス板の接合部分力 200°C未満の加熱温度でカロ 熱される請求項 5に記載の陽極接合方法。 [6] The anodic bonding method according to [5], wherein the silicon wafer and the glass plate are heated by heating at a heating temperature of less than 200 ° C.
[7] 積層されたシリコンウェハとガラス板に電圧が印加される電圧印加手段と、前記シリ コンウェハ及び前記ガラス板が挟まれて加熱される加熱手段とを備え、前記シリコン ウェハと前記ガラス板とが陽極接合される陽極接合装置において、 [7] A voltage applying means for applying a voltage to the laminated silicon wafer and the glass plate, and a heating means for heating the silicon wafer and the glass plate to be sandwiched, the silicon wafer and the glass plate, In an anodic bonding apparatus where anodic bonding is performed,
前記加熱手段による加熱を、前記シリコンウェハと前記ガラス板との接合部分に集 中する加熱集中治具を備えた陽極接合装置。  An anodic bonding apparatus provided with a heating concentration jig for concentrating the heating by the heating means at a bonding portion between the silicon wafer and the glass plate.
[8] 前記加熱集中治具は、導電性及び伝熱性を有する材料で板状に形成され、一方 の表面に前記シリコンウェハと前記ガラス板との接合部分とほぼ同一形状の凸部が 形成され、  [8] The heating concentration jig is formed in a plate shape from a material having conductivity and heat conductivity, and a convex portion having substantially the same shape as a bonding portion between the silicon wafer and the glass plate is formed on one surface. ,
前記加熱集中治具が、前記加熱手段と前記シリコンウェハとの間、又は前記加熱 手段と前記ガラス板との間に配置されると共に、  The heating concentration jig is disposed between the heating means and the silicon wafer, or between the heating means and the glass plate,
前記凸部が前記前記シリコンウェハと前記ガラス板との接合部分に整合配置され、 且つ前記凸部が前記シリコンウェハ又は前記ガラス板に当接される請求項 7に記載 の陽極接合装置。  The anodic bonding apparatus according to claim 7, wherein the convex portion is aligned and arranged at a joint portion between the silicon wafer and the glass plate, and the convex portion is brought into contact with the silicon wafer or the glass plate.
[9] 前記加熱手段と前記電圧印加手段には、積層された前記シリコンウェハ及び前記 ガラス板を挟む加熱 ·電圧印加部材が兼用され、前記加熱 ·電圧印加部材を介して 前記シリコンウェハ及び前記ガラス板が加熱及び電圧印加される請求項 7に記載の 陽極接合装置。  [9] The heating means and the voltage applying means also serve as a heating / voltage applying member sandwiching the stacked silicon wafer and the glass plate, and the silicon wafer and the glass are interposed via the heating / voltage applying member. The anodic bonding apparatus according to claim 7, wherein the plate is heated and voltage is applied.
[10] 200°C未満の加熱温度で陽極接合されたシリコン及びガラスを備え、前記シリコン 又は前記ガラスに配線パターン又は貫通孔配線が設けられている電子部品。  [10] An electronic component comprising silicon and glass anodically bonded at a heating temperature of less than 200 ° C., wherein a wiring pattern or a through-hole wiring is provided on the silicon or the glass.
[11] 第一の部材と第二の部材とが接合された基板を製造する方法において、 [11] In the method of manufacturing the substrate in which the first member and the second member are joined,
第一の部材と第二の部材とを重ね合わせるステップと、  Superposing the first member and the second member;
第一の部材と第二の部材とが接触する接合部の形状に対応する形状を有する凸 部を備えた治具を、前記第一の部材ある!、は前記第二の部材の少なくとも一方に、 前記凸部の位置が前記接合部の位置と重なるように重ね合わせるステップと、 前記治具を、前記第一の部材及び Zまたは第二の部材とともに加熱するステップと 、を備えた基板の製造方法。  A jig provided with a convex portion having a shape corresponding to the shape of the joint portion where the first member and the second member are in contact is provided on at least one of the second members. And a step of superimposing such that the position of the convex part overlaps with the position of the joint part, and heating the jig together with the first member and Z or the second member. Method.
[12] 前記治具は、熱の伝導率が高!ヽ部材から形成されて!ヽる請求項 11に記載の基板 の製造方法。 [12] The jig has high thermal conductivity! Formed from a heel member! The method for manufacturing a substrate according to claim 11.
[13] 第一の部材と第二の部材とが接合された基板を製造する方法にぉ 、て、 前記第一の部材と前記第二の部材とを、互!、の接合面が対向するように配置する ステップと、 [13] According to a method of manufacturing a substrate in which a first member and a second member are bonded, the bonding surfaces of the first member and the second member face each other. Step to arrange and
前記第一の部材と前記第二の部材との接合面にプラズマを供給するステップと、 前記第一の部材と前記第二の部材とが接触する部位の形状に対応する形状を有 する凸部を備えた治具を、前記第一の部材及び Zまたは前記第二の部材とともに加 熱するステップと、を備えた基板の製造方法。  A step of supplying plasma to a joint surface between the first member and the second member; and a convex portion having a shape corresponding to a shape of a portion where the first member and the second member are in contact with each other Heating a jig together with the first member and Z or the second member.
[14] 積層された第一の基板と第二の基板とに電圧を印加する電圧印加手段と、  [14] voltage applying means for applying a voltage to the laminated first substrate and second substrate;
前記第一の基板及び第二の基板を挟んで加熱する加熱手段と  Heating means for heating between the first substrate and the second substrate;
前記第一の基板あるいは前記第二の基板と、前記加熱手段との間に、前記第一の 基板と前記第二の基板の接合面に前記加熱手段により発せられた熱を集中的に伝 達する治具と、を備えた接合装置。  Between the first substrate or the second substrate and the heating unit, the heat generated by the heating unit is intensively transferred to the bonding surface of the first substrate and the second substrate. A joining device including a jig.
[15] 前記治具は、前記第一の基板と前記第二の基板とが接触する接合面の形状に対 応した形状を有する凸部を備えた請求項 14に記載の接合装置。 15. The bonding apparatus according to claim 14, wherein the jig includes a convex portion having a shape corresponding to a shape of a bonding surface where the first substrate and the second substrate are in contact with each other.
PCT/JP2006/304468 2006-03-08 2006-03-08 Heat focusing jig for anodic bonding, method of anodic bonding and apparatus therefor WO2007102210A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304468 WO2007102210A1 (en) 2006-03-08 2006-03-08 Heat focusing jig for anodic bonding, method of anodic bonding and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304468 WO2007102210A1 (en) 2006-03-08 2006-03-08 Heat focusing jig for anodic bonding, method of anodic bonding and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2007102210A1 true WO2007102210A1 (en) 2007-09-13

Family

ID=38474659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304468 WO2007102210A1 (en) 2006-03-08 2006-03-08 Heat focusing jig for anodic bonding, method of anodic bonding and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2007102210A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041069A (en) * 2009-08-12 2011-02-24 Seiko Instruments Inc Method for manufacturing package, method for manufacturing piezoelectric vibrator, piezoelectric vibrator, oscillator, electronic equipment, and radio-controlled timepiece
JP2011049663A (en) * 2009-08-25 2011-03-10 Seiko Instruments Inc Package manufacturing method, piezoelectric vibrator manufacturing method, oscillator, electronic equipment, and radio wave clock
JP2011188145A (en) * 2010-03-05 2011-09-22 Seiko Instruments Inc Manufacturing method of electronic device package, electronic device package, and oscillator
CN111217324A (en) * 2018-11-27 2020-06-02 中科院微电子研究所昆山分所 Anodic bonding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05201752A (en) * 1991-09-30 1993-08-10 Canon Inc Anodic joining method using light radiation and device therefor and product thereof
JP2002348149A (en) * 2002-02-18 2002-12-04 Canon Inc Selective anode bonding method and full-face anode bonding method
JP2005187321A (en) * 2003-12-02 2005-07-14 Bondotekku:Kk Bonding method, device produced by this method, and bonding device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05201752A (en) * 1991-09-30 1993-08-10 Canon Inc Anodic joining method using light radiation and device therefor and product thereof
JP2002348149A (en) * 2002-02-18 2002-12-04 Canon Inc Selective anode bonding method and full-face anode bonding method
JP2005187321A (en) * 2003-12-02 2005-07-14 Bondotekku:Kk Bonding method, device produced by this method, and bonding device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041069A (en) * 2009-08-12 2011-02-24 Seiko Instruments Inc Method for manufacturing package, method for manufacturing piezoelectric vibrator, piezoelectric vibrator, oscillator, electronic equipment, and radio-controlled timepiece
JP2011049663A (en) * 2009-08-25 2011-03-10 Seiko Instruments Inc Package manufacturing method, piezoelectric vibrator manufacturing method, oscillator, electronic equipment, and radio wave clock
JP2011188145A (en) * 2010-03-05 2011-09-22 Seiko Instruments Inc Manufacturing method of electronic device package, electronic device package, and oscillator
CN111217324A (en) * 2018-11-27 2020-06-02 中科院微电子研究所昆山分所 Anodic bonding method

Similar Documents

Publication Publication Date Title
US20030068431A1 (en) Electrode sandwich separation
JP2004160648A (en) Vacuum mounting method and device for mems (micro electro mechanical system) on substrate
KR20080038053A (en) Functional device
WO2011027762A1 (en) Wiring connection method and functional device
WO2007102210A1 (en) Heat focusing jig for anodic bonding, method of anodic bonding and apparatus therefor
TW200308046A (en) Mounting method and mounting apparatus
JPH0529183A (en) Connecting method
JP4384724B2 (en) Probe card manufacturing method
JP2011029269A (en) Anodic bonding apparatus, and anodic bonding method
JP2000021962A (en) Electrostatic chuck device
JP2870822B2 (en) Bonding method between silicon and glass
JP4260339B2 (en) Method for manufacturing acceleration sensor
JP2009200156A (en) Bonding apparatus
KR20100090561A (en) Electrostatic chuck having junction structure between different materals and fabrication method thereof
US8444801B2 (en) Anodic bonding method and piezoelectric vibrator manufacturing method
JP2004210565A (en) Bubble-free anodic joining method
CN110473824A (en) A kind of semiconductor renewable electrostatic chuck and its manufacturing method
JPH10294127A (en) Manufacture and manufacturing apparatus for sodium-sulfur battery
JPH04171954A (en) Method of reproducing semiconductor device
JP2003224442A (en) Crystal device and production method for the device
KR102037368B1 (en) Diffusion bonding apparatus and Diffusion bonding method
JP4396199B2 (en) Anodic bonding equipment
JP2010143792A (en) Method for bonding substrate and mems device
TW380292B (en) Electrostatic attachment electrode and manufacturing method thereof
Dragoi et al. Triple-stack anodic bonding for MEMS applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06715388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP