JP2022536188A - Fgfrとvegfr二重阻害剤としての縮合環系化合物 - Google Patents

Fgfrとvegfr二重阻害剤としての縮合環系化合物 Download PDF

Info

Publication number
JP2022536188A
JP2022536188A JP2021574346A JP2021574346A JP2022536188A JP 2022536188 A JP2022536188 A JP 2022536188A JP 2021574346 A JP2021574346 A JP 2021574346A JP 2021574346 A JP2021574346 A JP 2021574346A JP 2022536188 A JP2022536188 A JP 2022536188A
Authority
JP
Japan
Prior art keywords
compound
mmol
added
μmol
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021574346A
Other languages
English (en)
Other versions
JP7343622B2 (ja
Inventor
チェン、チョンシア
タン、ハイチョン
チャン、ヤン
リー、チエン
チェン、シューホイ
Original Assignee
メッドシャイン ディスカバリー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メッドシャイン ディスカバリー インコーポレイテッド filed Critical メッドシャイン ディスカバリー インコーポレイテッド
Publication of JP2022536188A publication Critical patent/JP2022536188A/ja
Application granted granted Critical
Publication of JP7343622B2 publication Critical patent/JP7343622B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Abstract

本発明はFGFR及びVEGFR二重阻害剤としての縮合環系化合物を開示し、具体的に式(III)で表される化合物又はその薬学的に許容される塩を開示する。【化1】JPEG2022536188000147.jpg5170

Description

本出願は以下の優先権を主張する:
CN201910516134.1、出願日は2019年06月14日;
CN201911044514.6、出願日は2019年10月30日;
CN202010033842.2、出願日は2020年01月13日。
本発明はFGFRとVEGFR二重阻害剤としての縮合環系化合物に関し、具体的には、式(III)で表される化合物又は薬学的に許容される塩に関する。
FGFRは、生物学的シグナルの伝達、細胞増殖の調節、組織の修復に関与する機能を持つ生理活性物質の一群であり、近年、多くのFGFRファミリーメンバーが、腫瘍の発生と進行に重要な役割を果たすことが発見された。線維芽細胞成長因子受容体(FGFR)は、線維芽細胞成長因子(FGF)に特異的に結合可能な受容体タンパク質の一種であり、FGFRsのファミリーには、FGFR1b、FGFR1c、FGFR2b、FGFR2c、FGFR3b、FGFR3c、FGFR4が含まれる。異なるサブタイプのFGFRはそれらが結合するFGFと異なり、FGFsとFGFRsが結合した後、細胞内複数のチロシン残基の自己リン酸化を引き起こし、リン酸化されたFGFRsは、MEK/MAPK、PLCy/PKC、PI3K/AKT、STATSなどを含む下流のシグナル経路を活性化する。肝臓癌、膀胱癌、肺癌、乳癌、子宮内膜癌、脳神経膠腫、前立腺癌などの腫瘍では、FGFR活性化突然異変又はリガンド/受容体の過剰発現は、腫瘍の発生、進行、予後不良と密接に関係しているだけでなく、腫瘍の血管新生、腫瘍の浸潤及び転移の過程においても重要な役割を果たしている。そのため、FGFRは重要な抗腫瘍標的であると認定される。
血管新生とリンパ管生成は、腫瘍の形成と転移における重要なリンクであり、血管内皮細胞増殖因子(VEGF)とVEGF受容体(VEGFR)ファミリーは、上記の2つのリンクで主要な役割を果たしている。VERGFRファミリーには、VEGFR-1、VEGFR-2(KDR)及びVEGFR-3の三つの特異なチロシンキナーゼ受容体が含まれる。VEGFR-2は内皮細胞増殖を引き起こし、血管透過性効果を高め、血管新生を促進するVEGFのシグナル伝達の重要な調節因子であり、VEGFR-2とVEGFの親和性はVEGFR-1よりも高い。内皮細胞の中にはVEGFR-2のみが発現されると、VEGFR-2を活性化して血管新生を促進する効果が高いことが研究で明らかになった。そのため、VEGFR-2は抗血管新生薬の開発の主な標的である。
特定の実験条件下では、VEGFは血管新生促進効果を発揮するためにFGFの存在を必要であり、VEGFR経路とFGFR経路は、血管新生における内皮細胞の活性化と生成に共同で作用している。FGFRとVEGFRは、腫瘍細胞の成長、生存、増殖及び移動を直接的に阻害することができ;又、腫瘍の血管新生を阻害し、微小環境を改善する。FGFRとVEGFR経路の相乗効果は、腫瘍の免疫回避を阻害し、腫瘍抑制効果を高めることもできる。
本発明は、式(II)で表される化合物又はその薬学的に許容される塩を提供する。
Figure 2022536188000002
式中、
TはNとCHから選択され;
はH及び1、2又は3つのRにより任意に置換されたC1-3アルキルから選択され;
とRはそれぞれ独立してH、F、Cl、Br、I、OH及びNHから選択され;
はH、シクロプロパニル、及び1、2、又は3つのRにより任意に置換されたC1-3アルキルから選択され;
Lは-N(R)C(=0)-、-N(R)S(=O)-及び-N(R)-から選択され;
はそれぞれ独立してH及びC1-3アルキルから選択され;
RaとRbは、それぞれ独立してH、F、Cl、Br、I、OH、NH、CN及びCHから選択される。
環Bは5~6員のヘテロアリール及び5~6員のヘテロシクロアルキルから選択され;
前記5~6員のヘテロアリール及び5~6員のヘテロシクロアルキルは、それぞれ独立して-NH-、-O-、-S-及び-N-から選択される1、2、3又は4つのヘテロ原子、又はヘテロ原子団を含む。
本発明は、式(III)で表される化合物又はその薬学的に許容される塩を提供する。
Figure 2022536188000003
式中、
T、T及びTはそれぞれ独立してN及びCHから選択され;
は、H、C1-3アルキル、3~6員のヘテロシクロアルキル及び-C1-3アルキル-3~6員のヘテロシクロアルキルから選択され、前記C1-3アルキル、3~6員のヘテロシクロアルキル及び-C1-3アルキル-3~6のヘテロシクロアルキルは、1、2又は3つのRにより任意に置換され;
とRはそれぞれ独立してH、F、Cl、Br、I、OH及びNHから選択され;
は、H、C1-3アルキル、C1-3アルコキシ、C3-5シクロアルキル及び3~6員のヘテロシクロアルキルから選択され、前記C1-3アルキル、C1-3アルコキシ、C3-5シクロアルキル及び3~6員のヘテロシクロアルキルは1、2又は3つのRにより任意に置換され;
Lは-N(R)C(=O)-、-N(R)S(=O)-、-N(R)C(=O)N(R)-及び-NR-から選択され;
及びRはそれぞれ独立してH及びC1-3アルキルから選択され;
環Aはフェニル及び5~6員のヘテロアリールから選択され;
環Bは5~6員ヘテロアリール及び5~6員のヘテロシクロアルキルから選択され;
とRは、それぞれ独立してH、F、Cl、Br、I、OH、NH、CN、CH及びN(CHから選択され;
前記3~6員のヘテロシクロアルキル、5~6員のヘテロアリール及び5~6員のヘテロシクロアルキルは、それぞれ独立して-NH-、-O-、-S-及び-N-から選択される1、2、3又は4つのヘテロ原子、又はヘテロ原子団を含む。
本発明は、式(III)で表される化合物又はその薬学的に許容される塩を提供する。
Figure 2022536188000004
式中、
T、T及びTはそれぞれ独立してN及びCHから選択され;
は、H、C1-3アルキル、テトラヒドロピラニル、ピペリジニル、
Figure 2022536188000005

から選択され、前記C1-3アルキル、テトラヒドロピラニル、ピペリジニル、
Figure 2022536188000006

は、1、2、又は3つのRにより任意に置換され;
とRはそれぞれ独立してH、F、Cl、Br、I、OH及びNHから選択され;
は、H、C1-3アルキル、C1-3アルコキシ、C3-5シクロアルキル及びピロリジニルから選択され、前記C1-3アルキル、C1-3アルコキシ、C3-5シクロアルキル及びピロリジニルは1、2又は3つのRにより任意に置換され;
Lは-N(R)C(=O)-、-N(R)S(=O)-、-N(R)C(=O)N(R)-及び-NR-から選択され;
及びRはそれぞれ独立してH及びC1-3アルキルから選択され;
環Aはフェニル及びピリジルから選択され;
環Bはシクロプロピル、モルホリニル、ピペラジニル、テトラヒドロピラニル、ピラゾリル、イミダゾリル及びトリアゾリルから選択され;
とRは、それぞれ独立してH、F、Cl、Br、I、OH、NH、CN、CH、N(CH及び-S(=O)CHから選択され;
本発明は、式(III)で表される化合物又はその薬学的に許容される塩を提供する。
Figure 2022536188000007
式中、
T、T及びTはそれぞれ独立してN及びCHから選択され;
は、H、C1-3アルキル、テトラヒドロピラニル、ピペリジニル、
Figure 2022536188000008

から選択され、前記C1-3アルキル、テトラヒドロピラニル、ピペリジニル、
Figure 2022536188000009

は、1、2、又は3つのRにより任意に置換され;
とRはそれぞれ独立してH、F、Cl、Br、I、OH及びNHから選択され;
は、H、C1-3アルキル、C1-3アルコキシ、C3-5シクロアルキル、-CH-1,3ジオキソラニル-及びピロリジニルから選択され、前記C1-3アルキル、C1-3アルコキシ、C3-5シクロアルキル、-CH-1,3ジオキソラニル-及びピロリジニルは1、2又は3つのRにより任意に置換され;
Lは-N(R)C(=O)-、-N(R)S(=O)-、-N(R)C(=O)N(R)-及び-NR-から選択され;
及びRはそれぞれ独立してH及びC1-3アルキルから選択され;
環Aはフェニル及びピリジルから選択され;
環Bはシクロプロピル、モルホリニル、ピペラジニル、テトラヒドロピラニル、ピラゾリル、イミダゾリル及びトリアゾリルから選択され;
とRは、それぞれ独立してH、F、Cl、Br、I、OH、NH、CN、CH、N(CH、-S(=O)CH及びベンジルから選択され;
本発明の一部の形態において、上記RはH、CH、CHCH及びCHCHCHから選択され、上記CH、CHCH及びCHCHCHは1、2又は3つのRにより任意に置換され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RはH、CH、CHCH、CHCHCH、テトラヒドロピラニル、ピペリジニル及び
Figure 2022536188000010

から選択され、上記CH、CHCH、CHCHCH、テトラヒドロピラニル、ピペリジニル及び
Figure 2022536188000011

は1、2又は3つのRにより任意に置換され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RはH、CH、CHCH、CHCHCH
Figure 2022536188000012

から選択され、上記CH、CHCH、CHCHCH
Figure 2022536188000013

は1、2又は3つのRにより任意に置換され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RはH、CH、CHCH、CHCHCH
Figure 2022536188000014

から選択され、上記CH、CHCH、CHCHCH
Figure 2022536188000015

は1、2又は3つのRにより任意に置換され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RはH、CH、CHCH及び
Figure 2022536188000016

から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RはH、CH、CHCH
Figure 2022536188000017

から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RはH、CH、CHCH
Figure 2022536188000018

から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RはH、CH、CHCH
Figure 2022536188000019

から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RはH、シクロプロパニル、CH及びCHCHから選択され、上記シクロプロパニル、CH及びCHCHは1、2又は3つのRにより任意に置換され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RはH、シクロプロパニル、CH、CHCH、C(CH、OCH及びピロリジニルから選択され、上記シクロプロパニル、CH、CHCH、C(CH、OCH和ピロリジニルは1、2又は3つのRにより任意に置換され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RはH、シクロプロパニル、CH、CHCH、C(CH、CHCHCH、OCH、-CH-1,3-ジオキソラニル及びピロリジニルから選択され、上記シクロプロパニル、CH、CHCH、C(CH、CHCHCH、OCH、-CH-1,3-ジオキソラニル和ピロリジニルは1、2又は3つのRにより任意に置換され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RはH、
Figure 2022536188000020

、CH及びCHCHから選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RはH、
Figure 2022536188000021

、CH、CHCH、C(CH、OCH及び
Figure 2022536188000022

から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RはH、
Figure 2022536188000023

、CH、CHCH、C(CH、OCH
Figure 2022536188000024

から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記Rはそれぞれ独立してH、CH及びCHCHから選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記RとRはそれぞれ独立してH、CH及びCHCHから選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記Lは-NHC(=O)-、-NHS(=O)-及び-NH-から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記Lは-NHC(=O)-、-NHS(=O)-、-NHC(=O)NH-及び-NH-から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記-L-R
Figure 2022536188000025

から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記-L-R
Figure 2022536188000026

から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記-L-R
Figure 2022536188000027

から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記-L-R
Figure 2022536188000028

から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記環Aはフェニル及びピリジルから選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記構造単位
Figure 2022536188000029

から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記環Bはモルホリニル、ピペラジニル、テトラヒドロピラニル又はピラゾリルから選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記環Bはモルホリニル、ピペラジニル、テトラヒドロピラニル、ピラゾリル、イミダゾリル及びトリアゾリルから選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記Bは
Figure 2022536188000030

から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記構造単位
Figure 2022536188000031

から選択され、他の変量は本発明で定義された通りである。
本発明の一部の形態において、上記構造単位
Figure 2022536188000032

から選択され、他の変量は本発明で定義された通りである。
本発明一部の形態は、更に上記の変量を任意の組み合わせにより形成される。
本発明の一部の形態において、上記の化合物又はその薬学的に許容される塩は
Figure 2022536188000033

から選択され、
式中、
とXはそれぞれ独立してCH及びNから選択され、且つXとXは同時にNから選択されない;
、R、R、R、T、T和Tは本発明で定義された通りである。
本発明は、更に下記の式(III)で表される化合物又はその薬学的に許容される塩を提供する。
Figure 2022536188000034
Figure 2022536188000035
Figure 2022536188000036
Figure 2022536188000037
本発明は、更に有効成分としての治療有効量の上記化合物又はその薬学的に許容される塩及び薬学的に許容される担体を含む医薬組成物を提供する。
本発明は、更にFGFR及びVEGFR二重阻害剤に関連する薬物の調製における、上記化合物又はその薬学的許容される塩又は上記医薬組成物の使用を提供する。
本発明の一部の形態において、上記使用で、上記FGFR及びVEGFR二重阻害剤に関連する薬物は固形腫瘍に使用する薬物である。
[定義及び説明]
別途に説明しない限り、本明細書で用いられる以下の用語及び連語は以下の意味を含む。一つの特定の用語又は連語は、特別に定義されない場合、不確定又は不明瞭ではなく、普通の定義として理解されるべきである。本明細書で商品名が出た場合、相応の商品又はその活性成分を指す。
本明細書で用いられる「薬学的許容される塩」は、それらの化合物、材料、組成物及び/又は剤形に対するもので、これらは信頼できる医学判断の範囲内にあり、ヒト及び動物の組織との接触に適し、毒性、刺激性、アレルギー反応又はほかの問題又は合併症があまりなく、合理的な利益/リスク比に合う。
用語「薬学的に許容される塩」とは、本発明で発見した塩で、本発明で発見された特定の置換基を有する化合物と比較的に無毒の酸又は塩基とで製造される。本発明の化合物に比較的に酸性の官能基が含まれる場合、単独の溶液又は適切な不活性溶媒において十分な量の塩基でこれらの化合物の中性の形態と接触することで塩基付加塩を得ることができる。薬学的許容される塩基付加塩は、ナトリウム、カリウム、カルシウム、アンモニウム、有機アンモニア又はマグネシウム塩あるいは類似の塩を含む。本発明で化合物に比較的塩基性の官能基が含まれる場合、単独の溶液又は、適切な不活性溶媒において十分な量の酸でこれらの化合物の中性の形態と接触することで酸付加塩を得ることができる。薬学的に許容される酸付加塩の実例は、無機酸塩及び有機酸塩、更にアミノ酸(例えばアルギニンなど)の塩、及びグルクロン酸のような有機酸の塩を含み、上記無機酸は、例えば塩酸、臭化水素酸、硝酸、炭酸、炭酸水素イオン、リン酸、リン酸一水素イオン、リン酸二水素イオン、硫酸、硫酸水素イオン、ヨウ化水素酸、亜リン酸などを含み、上記有機酸は、例えば酢酸、プロピオン酸、イソ酪酸、マレイン酸、マロン酸、安息香酸、コハク酸、スベリン酸、フマル酸、乳酸、マンデル酸、フタル酸、ベンゼンスルホン酸、p-トルエンスルホン酸、クエン酸、酒石酸やメタンスルホン酸などの類似の酸を含む。本発明の一部の特定的の化合物は、塩基性及び酸性の官能基を含有するため、任意の塩基付加塩又は酸付加塩に転換することができる。
本発明の薬学的許容される塩は、酸基又は塩基性基を含む母体化合物から通常の方法で合成することができる。通常の場合、このような塩の製造方法は、水又は有機溶媒あるいは両者の混合物において、遊離酸又は塩基の形態のこれらの化合物を化学量論量の適切な塩基又は酸と反応させて製造する。
塩の形態以外、本発明によって提供される化合物はプロドラッグの形態も存在する。本明細書で記載される化合物のプロドラッグは、生理条件で化学変化が生じて本発明の化合物に転換しやすい。また、プロドラッグ薬物は、体内環境で化学又は生物化学の方法で本発明の化合に転換される。
本発明の一部の化合物は、非溶媒和物形態又は溶媒和物の形態で存在してもよく、水化合物形態を含む。一般的に、溶媒和物の形態は非溶媒和物の形態と同等であり、いずれも本発明の範囲に含まれる。
本発明の化合物は、特定の幾何又は立体異性体の形態が存在してもよい。本発明は、全てのこのような化合物を想定し、シス及びトランス異性体、(-)-及び(+)-エナンチオマー、(R)-及び(S)-エナンチオマー、ジアステレオマー、(D)-異性体、(L)-異性体、及びそのラセミ混合物並びに他の混合物、例えばエナンチオマー又は非エナンチオマーを多く含有する混合物を含み、全てのこれらの混合物は本発明の範囲内に含まれる。アルキル等の置換基に他の不斉炭素原子が存在してもよい。全てのこれらの異性体及びこれらの混合物はいずれも本発明の範囲内に含まれる。
別途に説明しない限り、用語「エナンチオマー」又は「光学異性体」とは互いに鏡像の関係にある立体異性体である。
別途に説明しない限り、用語「シス-トランス異性体」又は「幾何異性体」とは二重結合又は環構成炭素原子の単結合が自由に回転できないことによるものである。
別途に説明しない限り、用語「ジアステレオマー」とは分子が二つ又は複数のキラル中心を有し、かつ分子同士は非鏡像の関係にある立体異性体である。
本発明の化合物は、特定に存在することができる。別途に説明しない限り、用語「互変異性体」又は「互変異性体の形態」とは室温において、異なる官能基の異性体が動的平衡にあり、かつ快速に互いに変換できることを指す。互変異性体は可能であれば(例えば、溶液において)、互変異性体の化学的平衡に達することが可能である。例えば、プロトン互変異性体(proton tautomer)(プロトトロピー互変異性体(prototropic tautomer)とも呼ばれる)は、プロトンの移動を介する相互変換、例えばケト-エノール異性化やイミン-エナミン異性化を含む。原子価互変異性体(valence tautomer)は、一部の結合電子の再構成による相互変換を含む。中では、ケト-エノール互変異性化の具体的な実例は、ペンタン-2、4-ジオンと4-ヒドロキシ-3-ペンテン-2-オンの二つの互変異性体の間の相互変換である。
光学活性な(R)-及び(S)-異性体ならびにD及びL異性体は、不斉合成又はキラル試薬又はほかの通常の技術を用いて調製することができる。本発明のある化合物の一つの鏡像異性体を得るには、不斉合成又はキラル補助剤を有する誘導作用によって調製することができるが、ここで、得られたジアステレオマー混合物を分離し、かつ補助基を分解させて単離された所要の鏡像異体性を提供する。あるいは、分子に塩基性官能基(例えばアミノ基)又は酸性官能基(例えばカルボキシル基)が含まれる場合、適切な光学活性な酸又は塩基とジアステレオマーの塩を形成させ、更に本分野で公知の通常方式の方法によってジアステレオマーの分割を行った後、回収して単離された鏡像異体を得る。また、エナンチオマーとジアステレオマーの分離は、通常、クロマトグラフィー法によって行われ、上記クロマトグラフィーはキラル固定相を使用し、かつ任意の化学誘導法(例えば、アミンからカルバミン酸塩を生成させる)併用する。
本発明の化合物は、化合物を構成する一つまた複数の原子には、非天然の原子同位元素が含まれてもよい。例えば三重水素(H)、ヨウ素-125(125I)又はC-14(14C)のような放射性同位元素で化合物を標識することができる。また、例えば重水素を水素に置換して重水素化薬物を形成することができ、重水素と炭素で形成された結合は、通常の水素と炭素で形成された結合よりも強く、重水素化されていない薬物と比較して、重水素化された薬物には、毒性の副作用が軽減され、薬物の安定性が増し、治療効果が向上され、薬物の生物学的半減期が延ばされるという利点がある。本発明の化合物の同位体組成の変換は、放射性であるかいやかに関わらず、本発明の範囲に含まれる。
用語「任意」また「任意に」は後記の事項又は状況によって可能であるが必ずしも現れるわけではなく、かつ当該記述はそれに記載される事項又は状況が生じる場合によってその事項又は状況が乗じない場合を含むことを意味する。
用語「置換された」は特定の原子における任意の一つ又は複数の水素原子が置換基で置換されたことで、特定の原子価状態が正常でかつ置換後の化合物が安定していれば、重水素及び水素の変形体を含んでもよい。置換基が酸素(すなわち=O)である場合、2つの水素原子が置換されたことを意味する。酸素置換は、芳香族基を生じない。用語「任意に置換される」は、置換されてもよく、置換されなくてもよく、別途に定義しない限り、置換基の種類と数は化学的に安定して実現できれば任意である。
変量(例えばR)のいずれかが化合物の組成又は構造に1回以上現れた場合、その定義はいずれの場合においても独立である。そのため、例えば、一つの基が0~2個のRで置換された場合、上記基は任意に2個以下のRで置換され、かついずれの場合においてもRは独立して選択肢を有する。また、置換基及び/又はその変形体の組み合わせは、このような組み合わせであれば安定した化合物になる場合のみ許容される。
連結基の数が0の場合、例えば、-(CRR)-は、当該連結基が単結合であることを意味する。
置換基の数が0の場合、当該置換基が存在しないことを表し、例えば、-A-(R)は当該構造が実際に-Aとなることを表す。
置換基がない場合、当該置換基が存在しないことを表し、例えば、A-XのXがない場合、当該構造が実際にAとなることを表す。
そのうち一つの変量が単結合の場合、それで連結する2つの基が直接に連結し、例えばA-L-ZにおけるLが単結合を表す場合、この構造は実際にA-Zになる。
置換基の結合が環上の2つ以上の原子に交差結合できる場合、置換基は環上の任意の原子を通して結合することができ、例えば、構造単位
Figure 2022536188000038

は、置換基Rがシクロヘキシルまたはシクロヘキサジエンの任意の位置で置換できることを示す。挙げられた置換基に対してどの原子を通して置換された置換基が明示しない場合、このような置換基はその任意の原子を通して結合することができ、例えば、置換基としてのピリジル基は、ピリジン環の任意の炭素原子を通して置換基に結合してもよい。
挙げられた連結基がほかの連結方向を明示しない場合、その連結方向は任意であり、例えば、
Figure 2022536188000039
における連結基Lは-M-W-であり、この時-M-W-は左から右への読み取る順序と同じ方向に環Aと環Bを構成
Figure 2022536188000040

することができ、また、左から右への読み取る順序と逆方向に環Aと環Bを構成
Figure 2022536188000041

することもできる。上記連結基、置換基及び/又はその変形体の組み合わせは、このような組み合わせであれば安定した化合物になる場合のみ許容される。
特に明記しない限り、ある基が一つ以上の結合可能な部位を有する場合、該基の任意の一つ以上の部位は、化学結合によって他の基に結合することができる。該化学結合の結合方式が非局在であり、且つ結合可能な部位にH原子が存在する場合、化学結合を結合すると、該部位のH原子の個数は、結合された化学結合の個数に応じて相応の価数の基に減少する。前記部位が他の基と結合する化学結合は、直線実線結合(
Figure 2022536188000042

)、直線破線結合(
Figure 2022536188000043

)、又は波線(
Figure 2022536188000044

)で表すことができる。例えば、-OCHの直線実線結合は、該基の酸素原子を介して他の基に結合されていることを意味する。
Figure 2022536188000045

中の直線の破線結合は、該基内の窒素原子の両端が他の基に結合されていることを意味する。
Figure 2022536188000046

中の波線は、当該フェニルの部位1と2の炭素原子を介して他の基に結合されていることを意味する。
Figure 2022536188000047

は、当該ピペリジニルの任意の結合可能な部位が1つの化学結合によって他の基に結合できることを意味し、少なくとも
Figure 2022536188000048

の四つの結合形態を含み、H原子が-N-に描かれていても、
Figure 2022536188000049

この結合形態の基が含まれるが、1つの化学結合が接続されると、その部位のHは1つ減少して対応する一価ピペリジンになる。
別途に定義しない限り、用語「C1~3アルキル」は直鎖又は分枝鎖の1~3個の炭素原子で構成された飽和炭化水素基を表す。上記C1~3アルキルにはC1~2とC2~3のアルキルなどが含まれ、それは1価(例えばメチル)、2価(例えばメチレン)及び多価(例えばメチン)であってもよい。C1~3アルキルの実例は、メチル(Me)、エチル(Et)、プロピル(n-プロピル及びイソプロピルを含む)を含むが、これらに限定されない。
別途に定義しない限り、用語「C1~3アルコキシ」は酸素原子を通して分子の残り部分に連結した1~3個の炭素原子を含むアルキルを表す。上記C1~3アルコキシは、C1~2、C2~3、C及びCアルコキシなどが含まれる。C1~3アルコキシの実例はメトキシ、エトキシ、プロポキシ(n―プロポキシ又はイソプロポキシを含む)などを含むが、これらに限定されない。
別途に定義しない限り、「C3~5シクロアルキル」は3~5個の炭素原子から構成された飽和炭化水素基であり、それは単環式環系を表し、上記C3~5シクロアルキルはC3~4又はC4~5シクロアルキルなどが含まれ;それは1価、2価又は多価であってもよい。C3~5シクロアルキルの実例はシクロプロピル、シクロブチル、シクロペンチルなどを含むが、これらに限定されない。
別途に定義しない限り、本発明の用語「5~6員のヘテロアリール環」と「5~6員のヘテロアリール」は交換的に使用することができ、用語「5~6員のヘテロアリール」は5~6個の環原子で構成された共役π電子系を持つ単環式基であり、その1、2、3及び4個の環原子は独立してO、S及びNのヘテロ原子から選ばれ、残りは炭素原子である。ここで、窒素原子が任意に四級化されており、窒素及び硫黄ヘテロ原子は任意に酸化される(すなわち、NO及びS(O)、pは1又は2である。)。5~6員ヘテロアリールは、ヘテロ原子又は炭素原子を通して分子の他の部分に連結される。前記5~6員のヘテロアリールは5員又は6員のヘテロアリールを含む。5~6員のヘテロアリールの実例は、ピロリル(N-ピロリル、2-ピロリル、及び3-ピロリルなどを含む)、ピラゾリル(2-ピラゾリル及び3-ピラゾリルなどを含む)、イミダゾリル(N-イミダゾリル、2-イミダゾリル、4-イミダゾリルな及び5-イミダゾリルなどを含む)、オキザゾリル(2-オキサゾリル、4-オキサゾリル及び5-オキザゾリルなどを含む)、トリアゾリル(1H-1、2、3-トリアゾリル、2H-1、2、3-トリアゾリル、1H-1、2、4-トリアゾリル及び4H-1、2、4-トリアゾリルなど)、テトラゾリル、イソキサゾリル(3-イソキサゾリル、4-イソキサゾリル及び5-イソキサゾリルなど)、チアゾリル(2-チアゾリル、4-チアゾリル及び5-チアゾリルなどを含む)、フラニル(2-フラニル及び3―フラニルなどを含む)、チエニル(2-チエニル及び3-チエニルなどを含む)、ピリジル(2-ピリジル、3-ピリジル及び4-ピリジルなどを含む)、ピラジニル又はピリミジニル(2-ピリミジニル又は4-ピリミジニルなどを含む)を含むが、これらに限定されない。
別途に定義しない限り、用語、「5~6員のヘテロシクロアルキル」自体又は他の用語と組み合わせて5~6個の環原子で構成された飽和環状基であり、その1、2、3及び4個の環原子は独立してO、S及びNのヘテロ原子から選ばれ、残りは炭素原子である。窒素原子が任意に四級化されており、窒素及び硫黄ヘテロ原子は任意に酸化される(すなわち、NO及びS(O)、pは1又は2である)。これは、単環式及び二環式環系を含み、ここで、二環式環系にはスピロ環、パラ環式環及び架橋環が含まれる。更に、「5~6員のヘテロシクロアルキル」に関して、ヘテロ原子はヘテロシクロアルキルと分子他の部分の連結されるの位置を占めることができる。前記5~6員のヘテロシクロアルキルは5員又は6員のヘテロシクロアルキルを含む。5~6員のヘテロアリール基の実例は、ピロリジニル、ピラゾリジニル、イミダゾリジニル、テトラヒドロチエニル(テトラヒドロチオフェン-2-イル及びテトラヒドロチオフェン-3-イルなどを含む)、テトラヒドロピラン、ピペリジニル(1-ピペリジニル、2-ピペリジニル及び3-ピペリジニルなどを含む)、ピペラジニル(1-ピペラジニル及び2-ピペラジニルなどを含む)、モルホリニル(3-モルホリニル及び4-モルホリニルなどを含む)、ジオキサニル、ジチアニル、イソキサゾリジニル、イソチアゾリジニル、1,2-オキサジニル、1,2-チアジニル、ヘキサヒドロピリダジニル、ホモピペラジニル又はホモピペリジニルを含むが、これらに限定されない。
別途に定義しない限り、用語、「3~6員のヘテロシクロアルキル」自体又は他の用語と組み合わせて3~6個の環原子で構成された飽和環状基であり、その1、2、3及び4個の環原子は独立してO、S及びNのヘテロ原子から選ばれ、残りは炭素原子である。窒素原子が任意に四級化されており、窒素及び硫黄ヘテロ原子は任意に酸化される(すなわち、NO及びS(O)、pは1又は2である)。これは、単環式及び二環式環系を含み、ここで、二環式環系にはスピロ環、パラ環式環及び架橋環が含まれる。更に、「3~6員のヘテロシクロアルキル」に関して、ヘテロ原子はヘテロシクロアルキルと分子他の部分の連結されるの位置を占めることができる。前記3~6員のヘテロアリール基は4~6員、5~6員、4員、5員及び6員のヘテロアリール基などを含む。3~6員のヘテロアリール基の実例は、ヘテロブチル、オキセタニル、チエタニル、ピロリジニル、ピラゾリジニル、イミダゾリジニル、テトラヒドロチエニル(テトラヒドロチオフェン-2-イル及びテトラヒドロチオフェン-3-イルなどを含む)、テトラヒドロピラン、ピペリジニル(1-ピペリジニル、2-ピペリジニル及び3-ピペリジニルなどを含む)、ピペラジニル(1-ピペラジニル及び2-ピペラジニルなどを含む)、モルホリニル(3-モルホリニル及び4-モルホリニルなどを含む)、ジオキサニル、ジチアニル、イソキサゾリジニル、イソチアゾリジニル、1,2-オキサジニル、1,2-チアジニル、ヘキサヒドロピリダジニル、ホモピペラジニル又はホモピペリジニルを含むが、これらに限定されない。
用語「脱離基」とは別の官能基又は原子で置換反応(例えば求核置換反応)で置換されてもよい官能基又は原子を指す。例えば、体表的な脱離基は、トリフルオロメタンスルホン酸エステル、塩素、臭素、ヨウ素、例えばメタンスルホン酸エステル、トルエンスルホン酸エステル、p-ブロモベンゼンスルホン酸エステル、p-トルエンスルホン酸エステルなどのスルホン酸エステル基、例えばアセチルオキシ基、トリフルオロアセチルオキシ基などのアシルオキシ基を含む。
用語「保護基」は「アミノ保護基」、「ヒドロキシ保護基」又は「メルカプト保護基」を含むが、これらに限定されない。用語「アミノ保護基」とはアミノの窒素の位置における副反応の防止に適する保護基を指す。代表的なアミノ酸保護基は、ホルミル、アルカノイル(例えばアセチル、トリクロロアセチル又はトリフルオロアセチル)のようなアシル、t-ブトキシカルボニル(Boc)のようなアルコキシカルボニル、ベントキシカルボニル(Cbz)及び9-フルオレニルメトキシカルボニル(Fmoc)のようなアリールメトキシカルボニル、ベンジル(Bn)、トリフェニルメチル(Tr)、1,1-ビス(4’-メトキシフェニルのようなアリールメチル、トリメチル(TMS)及びt-ブチルジメチルシリル(TBS)のようなシリルなどを含むが、これらに限定されない。用語「ヒドロキシ保護基」とはヒドロキシの副反応の防止に適する保護基を指す。代表的なヒドロキシ保護基は、メチル、エチル及びt-ブチルのようなアルキル、アルカノイル(例えばアセチル)のようなアシル、ベンジル(Bn)、p-メトキシベンジル(PMB)、9-フルオレニルチル(Fm)及びジフェニルメチル(DPM)のようなアリールメチル、トリメチルシリル(TMS)及びt-ブチルジメチルシリル(TBS)のようなシリルなどを含むが、これらに限定されない。
本発明の化合物は当業者に熟知の様々な合成方法によって製造することができ、以下に挙げられた具体的な実施形態、他の化学合成方法と合わせた実施形態及び当業者に熟知の同等の代替方法を含み、好適な実施形態は本発明の実施例を含むが、これらに限定されない。
本発明に使用されたすべての溶媒は市販品から得ることができる。
本発明は以下の略語を使用する。aqは水を表し;eqは当量、等量を表し;DCMはジクロロメタンを表し;PEは石油エーテルを表し;DMFはN,N-ジメチルホルムアミドを表し;DMSOはジメチルスルホキシドを表し;EtOAcは酢酸エチルを表し;EtOHはエタノールを表し;MeOHはメタノールを表し;CBzはアミン保護基であるベントキシカルボニルを表し;BOCはアミン保護基であるt-ブトキシカルボニルを表し;HOAcは酢酸を表し;r.t.は室温を表し;O/Nは一晩行うことを表し;THFはテトラヒドロフランを表し;BocOはジカルボン酸ジ―t-ブチルを表し;TFAはトリフルオロ酢酸を表し;DIPEAはジイソプロピルエチルアミンを表し;SOClは塩化チオニルを表し;NISはN-ヨードスクシンイミドを表し;iPrOHは2-プロパノールを表し;mpは融点を表し;Xantphosは4,5-ビス(ジフェニルホスフィノ-9,9-ジメチルキサンテンを表し;LiAlHはリチウムテトラヒドロアルミニウムを表し;Pd(dba)はトリス(ジベンジリデンアセトン)ジパラジウムを表し;Pd(dppf)Clは[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウムジクロリドを表す。
化合物は本分野の通常の名称又はChemDraw(R)ソフトによって名付けられ、市販化合物はメーカーのカタログの名称が使用された。
特許WO2013053983の実施例5(本出願の比較実施例1)と比較して、環状コア構造を有する本発明の複数の化合物は、FGFR1又はFGFR2、VEGFR2キナーゼ活性を著しく改善した。SNU-16細胞の活性において、本発明の化合物は、対照化合物1と比較して活性を2~10倍増加させ、臨床診療においてより低い用量でより優れた治療効果を示すことができる可能性が非常に高い。更に、本発明の化合物は、優れたhERG安全性を有する。本発明の化合物は、優れた創薬可能性、体内での安定した代謝、高い経口吸収のための薬物のバイオアベイラビリティを有する。前臨床動物モデルにおいて、低用量で、優れた腫瘍治療効果を示した。
:腫瘍増殖阻害曲線。 :投与期間中のマウスの体重曲線。
比較例1
Figure 2022536188000050
合成スキーム:
Figure 2022536188000051
工程1
3,5-ジニトロブロモベンゼン(10g、40.49mmol)及び(2,4-ジフルオロ)フェニルボロン酸(6.39g、40.49mmol)を水(2mL)及びアセトニトリル(120mL)に溶解させ、酢酸パラジウム(454.46mg、2.02mmol)及びトリエチルアミン(12.29g、121.46mmol、16.91mL)を入れ、85℃で16時間撹拌した後、反応溶液を直接にスピン乾燥して、固体粗生成物を得、PE:EtOAc=5:1のカラムによって精製し、化合物aを得た。
H NMR(400MHz,CDCl)δ9.06(t,J=2.00Hz,1H),8.72(dd,J=1.92,1.10Hz,2H),7.54(td,J=8.74,6.32Hz,1H),7.00-7.15(m,2H).
工程2
化合物a(6.5g、23.20mmol)をEtOAc(65mL)の水素化ボトルに溶解させ、Pd/C(1g、23.20mmol、10%純度)を加え、50Psi圧力の水素ボンベ(46.77mg、23.20mmol、2ep)で、45℃で16時間撹拌した。反応溶液を濾過し、濾液をスピン乾燥して、化合物bを得た。
LCMS(ESI)m/z:220.9[M+1]
H NMR(400MHz,DMSO-d,):δ7.36-7.45(m,1H),7.20-7.30(m,1H),7.10(td,J=8.52,2.44Hz,1H),5.92(d,J=1.52Hz,2H),5.86(d,J=1.82Hz,1H),4.84(s,4H).
工程3
化合物b(2.37g、10.76mmol)のDMSO(15mL)溶液に、DIEA(417.28mg、3.23mmol、562.37μl)、エトキシトリメチルシラン(2.29g、19.37mmol)を添加し、4-ブロモ-1-フルオロ-2-ニトロベンゼン(2.37g、10.76mmol、1.32mL)を添加し、100℃で16時間撹拌した。反応溶液に100mLの水を加えて撹拌し、大量の固体を析出させ、減圧で濾過した後、濾過ケーキを回収し、ケーキを20mLの無水トルエンでスピン乾燥して、化合物cを得た。
LCMS(ESI)m/z:419.9[M+3],421.9[M+3]
H NMR(400MHz,CDCl)δ9.40(s,1H),8.33(d,J=2.26Hz,1H),7.33-7.46(m,2H),7.21-7.25(m,2H),7.11-7.19(m,1H),6.86-6.97(m,2H),6.76(d,J=1.52Hz,1H),6.68(d,J=1.76Hz,1H),6.56(t,J=2.02Hz,1H),
工程4
窒素の保護下で、化合物c(4.5g、10.71mmol)のピリジン(30mL)の懸濁液にシクロプロピルスルホニルクロリド(1.66g、11.78mmol)を添加し、20℃で2時間撹拌した。反応溶液に酢酸(34.6mL)を添加し、更に水(250mL)を添加し、酢酸エチル(150mL*2)を添加して抽出し、有機相を合わせて、無水硫酸ナトリウムで乾燥させ、減圧濃縮し、化合物dを得た。
LCMS(ESI)m/z:523.8[M+1],525.8[M+3]
工程5
化合物d(5.6g、10.68mmol)に、1-メチル-4-ピラゾールボレート(2.78g、13.35mmol)のジメチルスルホキシド(110mL)/水(30mL)中に、トリフェニルホスフィン(1.40g、5.34mmol)、酢酸パラジウム(359.67mg、1.60mmol)、炭酸カリウム(3.84g、27.77mmol)を添加し、窒素ガスの保護下で、100℃で16時間撹拌した。反応溶液に200mLの撹拌した水を添加して固体を析出し、減圧しで濾過し、ケーキを回収して、ケーキをジクロロメタン経由でシングルネックボトルに移し、再び減圧濃縮し、粗生成物を得た。粗生成物をPE/EtOAc=0/1のカラム(高速シリカゲルカラムクロマトグラフィー)によって精製し、化合物eを得た。
LCMS(ESI)m/z:526.4[M+3]
H NMR(400MHz,CDCl)δ9.45(s,1H),8.29(d,J=2.02Hz,1H),7.73(s,1H),7.62(s,1H),7.53-7.58(m,1H),7.37-7.48(m,2H),7.16-7.24(m,3H),6.90-7.01(m,2H),6.71(s,1H),3.96(s,3H),2.52-2.65(m,1H),1.22-1.26(m,2H),0.98-1.11(m,2H).
工程6
化合物e(2.8g、5.33mmol、1ep)のギ酸(30mL)溶液にPd/C(1g、5.33mmol、純度10%)を添加し、水素バルーン(15psi)雰囲気下で、30℃で16時間撹拌した。反応完了後、珪藻土で濾過し、濾液を減圧濃縮して、粗生成物を得た。粗生成物を高速液体クロマトグラフィー(カラム:YMC-Triart Prep C18 150*40mm*7μm;移動相:[水(0.1%のトリフルオロ酢酸)-アセトニトリル];B(アセトニトリル)%:35%~50%、10min)にかけ、比較例1のトリフルオロ酢酸塩を得た。
LCMS(ESI)m/z:506.0[M+1]
H NMR(400MHz,DMSO-d)δ10.25(brs,1H),8.65(s,1H),8.19(s,1H),7.99(s,1H),7.94(s,1H),7.71-7.81(m,1H),7.64-7.70(m,1H),7.55-7.63(m,3H),7.40-7.51(m,2H),7.27(brt,J=7.53Hz,1H),3.88(s,3H),2.81-2.93(m,1H),0.98-1.08(m,4H).
比較例1のトリフルオロ酢酸塩を炭酸水素ナトリウム溶液に添加し、酢酸エチルで抽出し、有機相を無水硫酸ナトリウムで乾燥して、減圧濃縮し、比較例1を得た。
実施例1
Figure 2022536188000052
合成スキーム:
Figure 2022536188000053
Figure 2022536188000054
工程1
3,5-ジニトロブロモベンゼン(20g、80.97mmol)を氷酢酸(120mL)に溶解させ、90℃に昇温させ、還元したFe粉末(11.30g、202.43mmol)を30分にかけてゆっくり反応溶液に添加し、添加が完了すると反応が終了した。反応溶液に砕いた氷を添加し、固体を析出し、濾過し、水で3回洗浄した。濾過ケーキを回収し、トルエン及び水を除去して、化合物1aを得た。
H NMR(400MHz、DMSO-d)δ7.09-7.32(m、3H)、6.13(brs、2H).
工程2
0℃で無水酢酸(16.02g、156.95mmol、14.7mL)を1a(14.7g、67.74mmol)に添加し、15℃で30分間撹拌を続けた。反応溶液に砕いた氷140mLを添加し、固体を析出し、濾過し、氷水で2回洗浄し、ケーキを回収し、スピン乾燥して、化合物1bを得た。
H NMR(400MHz,DMSO-d)δ8.46(s,1H),8.19(s,1H),8.02(s,1H),2.10(s,3H).
工程3
化合物1b(16g、61.76mmol)及び2、4-ジフルオロフェニルボロン酸(11.70g、74.12mmol)をエチレングリコールジメチルエーテル(160mL)及びHO(60mL)に溶解させ、Pd(dppf)Cl(4.52g、6.18mmol)及び炭酸ナトリウム(19.64g、185.29mmol)を添加し、90℃で2時間撹拌した。反応溶液を濾過し、水(200mL)、ジクロロメタン(300mL*2)を添加して抽出し、有機相を合わせて、無水硫酸ナトリウムで乾燥して濾過し、濾液をスピン乾燥して、粗生成物を得た。粗生成物を高速シリカゲルカラム(石油エーテル:酢酸エチル=1:1~0:1)によって精製して、化合物1cを得た。
工程4
化合物1c(4g、13.69mmol)を酢酸エチル(25mL)及びメタノール(50mL)に溶解させ、乾燥したPd/C(0.5g、13.69mmol)を添加し、窒素ガスで2回置換した後、水素ガスで2回置換し、最後に30℃で、50psiで8時間撹拌して反応させた。反応溶液を濾過し、濾液をスピン乾燥して、粗生成物1dを得た。
H NMR(400MHz,DMSO-d)δ9.75(s,1H),7.14-7.48(m,3H),6.98(s,1H),6.85(s,1H),6.38(s,1H),5.31(s,2H),2.01(s,3H).
工程5
0℃で化合物1d(1g、3.81mmol)のアセトニトリル(30mL)溶液に、亜硝酸tert-ブチル(786.41mg、7.63mmol)添加し、0℃で30分間撹拌した後、臭化第一銅(1.09g、7.63mmol)を添加し、25℃で30分間撹拌した後、60℃で1時間撹拌した。反応溶液に水(50mL)を添加し、更に酢酸エチル(50mL*2)を添加して抽出し、有機相を合わせて無水硫酸ナトリウムで乾燥させ、減圧濃縮して、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(石油エーテル:酢酸エチル=1:1)によって分離し、生成物である化合物1eを得た。
工程6
化合物1e(100mg、306.62μmol)、ビス(ピナコラート)ジボロン(116.79mg、459.93μmol)のジオキサン(5mL)溶液にPd(dppf)Cl(22.44mg、30.66μmol)、KOAc(60.18mg、613.24μmol)添加した。窒素ガスの保護下、100℃で3時間撹拌した。濾過しスピン乾燥して、粗生成物である化合物1fを得た。
LCMS(ESI)m/z:374.2[M+1]
工程7
6-ブロモピラゾロ[1,5-a]ピリジン(1g、5.08mmol)、1-メチル-4-ピラゾールボロン酸ピナコールエステル(1.27g、6.09mmol)のジオキサン(30mL)/HO(10mL)溶液にPd(dppf)Cl(371.36mg、507.53μmol)、KPO(2.15g、10.15mmol)を添加し、窒素ガスの保護下で、85℃で16時間撹拌した。反応溶液に水(30mL)、酢酸エチル(50mL*3)を添加して抽出し、有機相を合わせて無水硫酸ナトリウムで乾燥させ、減圧濃縮して、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(石油エーテル:酢酸エチル=1:1)によって分離して、化合物1gを得た。
LCMS(ESI)m/z:198.9[M+1]
工程8
化合物1g(920mg、4.64mmol)のジクロロメタン(30mL)溶液にブロモスクシンイミド(826.06mg、4.64mmol)を添加し、20℃で16時間撹拌した。反応溶液に水(30mL)を添加し、更にジクロロメタン(30mL*3)を添加して抽出し、有機相を合わせて無水硫酸ナトリウムで乾燥させ、減圧濃縮して、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(石油エーテル:酢酸エチル=1:1)によって分離して、化合物1hを得た。
LCMS(ESI)m/z:276.8[M+1]
工程9
化合物1h(0.4g、1.44mmol)、化合物1f(538.69mg、1.44mmol)のジオキサン(10mL)/HO(3mL)溶液にPd(dppf)Cl(105.62mg、144.34μmol)、KPO(612.78mg、2.89mmol)を添加し、窒素ガスの保護下に90℃で16時間撹拌した。反応溶液に水(50mL)を添加し、酢酸エチル(50mL*2)を添加して抽出し、有機相を合わせて無水硫酸ナトリウムで乾燥させ、減圧濃縮し粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(DCM:MeOH=10:1)によって分離して、生成物を得た。50mgの生成物を取り、高速液体クロマトグラフィー(カラム:Boston Green ODS150*30mm*5μm;移動相:[水(0.075%のトリフルオロ酢酸)-アセトニトリル];B(アセトニトリル)%:43%~73%、8min)によって精製して、化合物3を得た。
LCMS(ESI)m/z:444.0[M+1]
H NMR(400MHz,DMSO-d)δ10.15(s,1H),9.06(s,1H),8.37(s,1H),8.29(s,1H),8.04(s,1H),7.97(d,J=8.78Hz,2H),7.58-7.73(m,3H),7.34-7.51(m,2H),7.18-7.27(m,1H),3.89(s,3H),2.10(s,3H).
工程10
化合物3(220mg、496.11μmol)のシングルネックボトルにHCl(20.40g、207.02mmol、20mL、純度37%)を添加し、85℃で16時間撹拌した。反応溶液に4MのNaOH溶液を添加し、pHを8に調製し、酢酸エチル(30mL*3)を添加して抽出し、有機相を合わせて無水硫酸ナトリウムで乾燥して、減圧濃縮し粗生成物1jを得、更に精製する必要はなかった。
LCMS(ESI)m/z:401.9[M+1]
工程11
化合物1j(0.11g、274.03μmol)のピリジン(2.94g、37.17mmol、3mL)溶液にシクロプロピルスルホニルクロリド(92.46mg、657.68μmol)を添加し、15℃で4時間撹拌した。反応溶液に6mLの酢酸を添加し、pHを5に調製し、更に10mLの水を添加し、酢酸エチル(10mL*2)を添加して抽出し、有機相を合わせて無水硫酸ナトリウムで乾燥させ、減圧濃縮し粗生成物を得た。粗生成物を高速液体クロマトグラフィー(カラム:Boston Green ODS150*30mm*5μm;移動相:[水(0.075%のトリフルオロ酢酸)-アセトニトリル];B(アセトニトリル)%:45%~75%、9min)によって分離して、化合物1を得た。
LCMS(ESI)m/z:506.0[M+1]
H NMR(400MHz,DMSO-d)δ9.94(s,1H),9.07(s,1H),8.40(s,1H),8.29(s,1H),8.04(s,1H),7.95(d,J=9.04Hz,1H),7.63-7.75(m,2H),7.60(s,1H),7.53(s,1H),7.36-7.45(m,1H),7.30(s,1H),7.24(brt,J=8.42Hz,1H),3.88(s,3H),2.72-2.81(m,1H),0.93-1.03(m,4H).
実施例2
Figure 2022536188000055
合成スキーム:
Figure 2022536188000056
工程1
化合物1j(0.11g、274.03μmol)のピリジン(2mL)溶液にエチルスルホニルクロリド(42.28mg、328.84μmol)を添加し、15℃で16時間撹拌した。反応溶液に醋酸(6mL)を添加し、pHを5に調製し、水(10mL)を添加し、酢酸エチル(10mL*2)を添加して抽出し、有機相を合わせて減圧濃縮して、粗生成物を得た。粗生成物を高速液体クロマトグラフィー(カラム:Boston Green ODS150*30mm*5μm;移動相:[水(0.075%トリフルオロ酢酸)-アセトニトリル];B(アセトニトリル)%:47%~77%、8min)によって分離して、化合物2を得た。
LCMS(ESI)m/z:493.8[M+1]
H NMR(400MHz,DMSO-d)δ10.00(s,1H),9.07(s,1H),8.40(s,1H),8.29(s,1H),8.05(s,1H),7.95(d,J=9.30Hz,1H),7.64-7.74(m,2H),7.59(s,1H),7.52(s,1H),7.34-7.45(m,1H),7.19-7.30(m,2H),3.89(s,3H),3.21(q,J=7.28Hz,2H),1.25(t,J=7.28Hz,3H).
実施例4
Figure 2022536188000057
合成スキーム:
Figure 2022536188000058
工程1
化合物1j(0.23g、572.98μmol)のピリジン(2mL)溶液にメチルスルホニルクロリド(78.76mg、687.58μmol)を添加し、20℃で2時間撹拌した。反応溶液を醋酸(10mL)でpHを5に調整し、水(10mL)を添加し、酢酸エチル(15mL*2)を添加して抽出し、有機相を合わせて減圧濃縮して、粗生成物を得た。粗生成物を高速液体クロマトグラフィー(カラム:Boston Green ODS150*30mm*5μm;移動相:[水(0.075%のトリフルオロ酢酸)-アセトニトリル];B(アセトニトリル)%:43%~63%、12min)によって分離して、化合物4を得た。
LCMS(ESI)m/z:480.0[M+1]
H NMR(400MHz,DMSO-d)δ9.95(s,1H),9.03-9.17(m,1H),9.07(s,1H),8.40(s,1H),8.29(s,1H),8.04(s,1H),7.96(brd,J=9.30Hz,1H),7.62-7.77(m,2H),7.56(brd,J=15.32Hz,2H),7.41(brt,J=10.04Hz,1H),7.20-7.30(m,2H),3.89(s,3H),3.10(s,3H)
実施例5
Figure 2022536188000059
合成スキーム:
Figure 2022536188000060
工程1
3-ブロモ-5-ニトロフェノール(10g、45.87mmol)、2,4-ジフルオロフェニルボロン酸(8.69g、55.04mmol)のテトラヒドロフラン(100mL)及び水(50mL)溶液にPd(dppf)Cl(3.36g、4.59mmol)、リン酸カリウム(24.34g、114.68mmol)を添加し、窒素ガスの保護下で、90℃で16時間撹拌した。反応溶液に水(250mL)を添加し、更に酢酸エチル(250mL*3)を添加し、無水硫酸ナトリウムで乾燥して濾過し、濾液をスピン乾燥して、粗生成物を得た。粗生成物を高速シリカゲルカラム(石油エーテル:酢酸エチル=5:1)によって精製して、化合物5aを得た。
H NMR(400MHz,DMSO-d)δ10.68(brs,1H),7.76(d,J=1.76Hz,1H),7.62-7.71(m,1H),7.59(t,J=2.14Hz,1H),7.36-7.47(m,1H),7.32-7.36(m,1H),7.18-7.27(m,1H)
工程2
化合物5a(10g、39.81mmol)のDMF(100mL)溶液にDIEA(15.44g、119.43mmol、20.80mL)、N-フェニルビス(トリフルオロメタンスルホニル)イミド(21.33g、59.72mmol)を添加し、20℃で16時間撹拌した。反応溶液に水500mLを添加し、酢酸エチル(350mL*2)で抽出し、有機相を合わせて、有機相を無水硫酸ナトリウムで乾燥して濾過し、濾液をスピン乾燥して、粗生成物を得た。粗生成物を高速シリカゲルカラム(PE:EtOAc=3:1)によって精製して、化合物5bを得た。
工程3
化合物5b(7.5g、19.57mmol)のエタノール(50mL)及び水(10mL)溶液に亜鉛粉末(12.80g、195.70mmol)、塩化アンモニウム(10.47g、195.70mmol)を添加し、80℃で16時間撹拌した。反応溶液を直接に珪藻土で濾過し、濾液を減圧濃縮して、粗生成物化合物5cを得た。
LCMS(ESI)m/z:353.8[M+1]
工程4
化合物5c(6.9g、19.53mmol)のピリジン(67.62g、854.87mmol、69.00mL)溶液にシクロプロピルスルホニルクロリド(3.30g、23.44mmol)を添加し、20℃で16時間撹拌した。反応溶液に醋酸(80mL)を添加し、更に水(250mL)を添加し、酢酸エチル(200mL*3)で抽出し、有機相を合わせて、無水硫酸ナトリウムで乾燥して濾過し、濾液をスピン乾燥して、粗生成物化合物5dを得た。
工程5
化合物5d(8g、17.49mmol)、ビス(ピナコラート)ジボロン(4.44g、17.49mmol)のジオキサン(80mL)溶液に、Pd(dppf)Cl(1.28g、1.75mmol)、酢酸カリウム(3.43g、34.98mmol)を添加し、窒素ガスの保護下で90℃で16時間撹拌した。反応溶液を珪藻土で抽出して濾過し、濾液を減圧濃縮し粗生成物を得た。粗生成物を高速シリカゲルカラム(PE:EtOAc=3:1)によって精製して、化合物5eを得た。
工程6
0℃で2-ブロモマロンアルデヒド(15.1g、100.03mmol)のエタノール(120mL)溶液に5-アミノピラゾール(8.31g、100.03mmol)を添加し、0℃でHCl(10.13g、100.03mmol、9.93mL、純度36%)を添加し、20℃で2時間撹拌した。反応溶液を直接に濾過し、ケーキを飽和炭酸水素ナトリウム水溶液(300mL)で洗浄し、更に水を添加して洗浄(300mL)し、ケーキを無水トルエン及び水を除去して、化合物5fを得た。
LCMS(ESI)m/z:197.7[M+1],199.7[M+3]
H NMR(400MHz,DMSO-d)δ9.60(dd,J=0.88,2.14Hz,1H),8.62(d,J=2.26Hz,1H),8.24(d,J=2.52Hz,1H),6.80(dd,J=0.75,2.26Hz,1H)
工程7
化合物5f(2g、10.10mmol)、1-メチル-4-ピラゾールボロン酸ピナコールエステル(2.52g、12.12mmol)のテトラヒドロフラン(30mL)及び水(10mL)溶液にPd(dppf)Cl2(739.02mg、1.01mmol)、リン酸カリウム(4.29g、20.20mmol)を添加し、窒素ガスの保護下で、90℃で16時間撹拌した。反応溶液に水(50mL)、酢酸エチル(60mL*3)を添加して抽出し、有機相を合わせて、無水硫酸ナトリウムで乾燥させ、濾過し、濾液を濃縮して、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(石油エーテル:酢酸エチル=0:1)によって分離して、化合物5gを得た。
LCMS(ESI)m/z:200.1[M+1]
H NMR(400MHz,CDOD)δ9.02-9.16(m,1H),8.78(d,J=2.02Hz,1H),8.08-8.16(m,2H),7.96(s,1H),6.69(d,J=1.76Hz,1H),3.97(s,3H).
工程8
化合物5g(200mg、1.00mmol)のジクロロメタン(10mL)溶液にブロモスクシンイミド(196.56mg、1.10mmol)を添加し、25℃で3時間撹拌した。反応溶液に水30mLを添加し、ジクロロメタン(20mL*2)で抽出し、有機相を合わせて、無水硫酸ナトリウムで乾燥して濾過し、濾液を減圧濃縮し、粗生成物化合物5hを得た。
LCMS(ESI)m/z:277.7[M+1],279.7[M+3]
工程9
化合物5h(100mg、359.57μmol)、化合物5e(187.82mg、431.49μmol)のテトラヒドロフラン(10mL)及び水(3.5mL)溶液にPd(dppf)Cl(26.31mg、35.96μmol)、リン酸カリウム(152.65mg、719.15μmol)を添加し、窒素ガスの保護下で、90℃で16時間撹拌した。反応溶液に水(20mL)を添加し、酢酸エチル(25mL*2)を添加して抽出し、有機相を合わせて無水硫酸ナトリウムで乾燥させ、濾過し、濾液を減圧濃縮し、粗生成物を得た。粗生成物を分取薄層クロマトグラフィー(PE:EA=0:1)によって分離して、化合物5を得た。
LCMS(ESI)m/z:529.0[M+23]
H NMR(400MHz,DMSO-d)δ9.93(s,1H),9.47(d,J=2.26Hz,1H),9.02(d,J=2.26Hz,1H),8.72(s,1H),8.38(s,1H),8.08-8.15(m,2H),7.98(s,1H),7.59-7.71(m,1H),7.37-7.47(m,1H),7.22-7.31(m,2H),3.91(s,3H),2.70-2.80(m,1H),0.93-1.06(m,4H).
実施例6
Figure 2022536188000061
合成スキーム:
Figure 2022536188000062
工程1
化合物5c(2g、5.66mmol)及び2,2-ジメトキシプロパン(1.18g、11.32mmol、1.39mL)を1,2-ジクロロエタン(30mL)に添加し、更にトリアセトキシ水素化ホウ素ナトリウム(3.60g、16.98mmol)及び氷酢酸(1.02g、16.98mmol、971.35μL)を添加し、反応溶液を25℃で2時間撹拌した。反応溶液をスピン乾燥した後、カラムクロマトグラフィーによって精製して、化合物6aを得た。
LCMS(ESI)m/z:396.1[M+1]
工程2
化合物6a(0.5g、1.26mmol)、ビス(ピナコラート)ジボロン(481.74mg、1.90mmol)、酢酸カリウム(248.24mg、2.53mmol)及びPd(dppf)Cl(92.54mg、126.47μmol)をジオキサン(10mL)に添加し、窒素ガスで3回置換した後、反応溶液を100℃で3時間撹拌した。反応溶液に酢酸エチル(100mL)及び水(100mL)を添加して抽出して分層し、有機相を乾燥して濾過し、スピン乾燥して、粗生成物を得、更にカラムクロマトグラフィーによって精製して、化合物6bを得た。
LCMS(ESI)m/z:374.3[M+1]
工程3
化合物6b(0.3g、803.77μmol)、化合物1h(289.56mg、1.04mmol)、リン酸カリウム(341.23mg、1.61mmol)及びPd(dppf)Cl(58.81mg、80.38μmol)をジオキサン(10mL)及び水(3mL)に添加し、窒素ガスがバブリングした後、100℃のマイクロウエーブ(7bar)条件で1時間撹拌した。反応溶液に酢酸エチル(100mL)及び水(100mL)を添加して抽出して分層し、有機相を乾燥して濾過し、濃縮して、粗生成物を得た。粗生成物をカラム及び高速液体クロマトグラフィー(カラム:Welch Xtimate C18 150*25mm*5μm;移動相:[水(10mMの炭酸アンモニウム)-アセトニトリル];B(アセトニトリル)%:50%~80%、10.5min)によって精製して、化合物6を得た。
LCMS(ESI)m/z:444.3[M+1]
H NMR(400MHz,DMSO-d)δ9.00-9.08(m,1H),8.24-8.35(m,2H),8.01-8.09(m,1H),7.88-7.97(m,1H),7.53-7.74(m,2H),7.30-7.38(m,1H),7.14-7.26(m,1H),6.87-6.97(m,2H),6.57-6.65(m,1H),5.62-5.72(m,1H),3.82-3.99(m,3H),3.60-3.76(m,1H),1.12-1.31(m,6H)
実施例7
Figure 2022536188000063
合成スキーム:
Figure 2022536188000064
工程1
化合物5c(16.5g、46.71mmol)のピリジン(75mL)溶液にメチルスルホニルクロリド(8.03g、70.06mmol)を添加し、30℃で3時間撹拌した。反応終了後、反応溶液に水(100mL)を添加し、酢酸エチルで(80mL*3)抽出し、有機相を合わせて無水硫酸ナトリウムで乾燥し、オイルポンプで減圧濃縮し、化合物5iを得た。
工程2
化合物5i(11.52g、26.7mmol)、ビス(ピナコラート)ジボロン(8.12g、31.99mmol)をジオキサン(200mL)に溶解させ、Pd(dppf)Cl(1.95g、2.67mmol)、酢酸カリウム(5.23g、53.32mmol)を添加し、100℃で16時間撹拌して反応させた。反応溶液を珪藻土で濾過し、濾液を回収し、濾液を減圧濃縮し、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(PE:EtOAc=5:1)によって分離して、化合物5jを得た。
LCMS(ESI)m/z:409.13[M+1]
H NMR(400MHz,DMSO-d)δ7.93(s,1H),7.54-7.55(m,1H),7.50(s,2H),7.48-7.46(m,1H),7.33-7.42(m,1H),7.20(brd,J=2.24Hz,1H),3.01(s,3H),1.26-1.35(m,12H).
工程3
トリエチルアミン(770.36mg、7.61mmol、1.06mL)を6-ブロモピラゾロ[1,5-a]ピリジン(0.5g、2.54mmol)、酢酸パラジウム(113.94mg、507.53μmol)及び1,1’-ビス(ジフェニルホスフィノ)フェロセン(281.36mg、507.53μmol)のメタノール(5mL)/ジオキサン(5mL)溶液に滴下した。70℃に加熱させ50psiの一酸化炭素の環境下で12時間反応させた。反応溶液を室温に冷却させ濾過した。濾液を濃縮して、カラムクロマトグラフィーによって精製して、化合物7aを得た。
LCMS(ESI)m/z:177.1[M+1]
工程4
N-ヨードスクシンイミド(646.20mg、2.87mmol)を化合物7a(0.44g、2.50mmol)の乾燥したN,N-ジメチルホルムアミド(6mL)溶液に添加し、反応溶液を窒素ガスの保護下で、25℃で1時間撹拌した。反応溶液をチオ硫酸ナトリウム/飽和炭酸水素ナトリウム溶液(1:1、30mL)で、クエンチした。25℃で15分間撹拌し、エチルエステル/水(30mL/20mL)で抽出して分層した。有機相を水(30mL)、飽和塩水(30mL)で洗浄し、無水硫酸ナトリウムで乾燥して濾過し、濃縮して、粗生成物を得、粗生成物をカラムクロマトグラフィーによって精製して、化合物7bを得た。
LCMS(ESI)m/z:303.0[M+1]
工程5
水酸化リチウム一水物(138.92mg、3.31mmol)を化合物7b(500mg、1.66mmol)のメタノール(2mL)/テトラヒドロフラン(2mL)/水(2mL)溶液に添加し、反応溶液を25℃で12時間撹拌した。反応溶液を濃縮し0.2MのHClでpH=4に調製した後、酢酸エチル/水(30mL/20mL)で抽出して分層した。有機相を塩水で洗浄(30mL)し、無水硫酸ナトリウムで乾燥して濾過し、濃縮して、化合物7cを得た。
LCMS(ESI)m/z:288.9[M+1]
工程6
テトラヒドロフラン(5mL)に化合物7c(0.42g、1.46mmol)を添加し、反応溶液を0℃に冷却し、塩化オキサリル(370.15mg、2.92mmol、255.27μL)及びN,N-ジメチルホルムアミド(21.32mg、291.62μmol、22.44μL)を滴下し0.5時間撹拌し、反応終了後、スピン乾燥させた。-78℃で、アンモニア(880.90mg、51.73mmol)をTHF(5mL)に通過させ、0℃でガスを通過させた反応溶液を上記濃縮して乾燥させた粗生成物に滴下し、反応溶液を25℃で0.5時間反応させた。反応溶液を濃縮して乾燥させ、精製せず、直接に次の工程に使用し、化合物7dを得た。
LCMS(ESI)m/z:288.0[M+1]
工程7
化合物7d(0.4g、1.39mmol)及びN,N-ジメチルホルムアミドジメチルアセタール(3.32g、27.87mmol、3.70mL)の混合物を95℃に加熱し、28分間撹拌し、透明な溶液を得、反応溶液を25℃に冷却し、1,2-ジクロロエタン(5mL)を添加し、濃縮を続け、過剰なN,N-ジメチルホルムアミドジメチルアセタールを取り除いた。得られた粗生成物を製造した氷エタノール溶液に溶解させた。ボトルにエタノール(5mL)及び氷酢酸(1.5mL)を添加し、0℃に冷却させた。ヒドラジン(697.56mg、13.93mmol、677.25μL)を一滴づつ滴下、2分間後にN,N-ジメチルホルムアミドジメチルアセタールの粗生成物氷エタノール溶液を添加した。25℃に昇温させ2時間撹拌した。濃縮して、精製せず化合物7eを得た。
LCMS(ESI)m/z:312.0[M+1]
工程8
N,N-ジメチルホルムアミド(3mL)に化合物7e(0.09g、289.31μmol)及び炭酸カリウム(119.95mg、867.94μmol)を添加し、反応を0℃に冷却し、5分後ヨードメタンヨウ化メチル(55.44mg、390.57μmol、24.31μL)及びN,N-ジメチルホルムアミド(1mL)を滴下し、滴下完了後25℃にゆっくりと昇温させ、2時間20分間反応させた。反応溶液に20mLの5%アンモニアを添加し、酢酸エチル(10mL*2)で抽出し、合わせた有機相を20mLの飽和塩水で洗浄し、無水硫酸ナトリウムで乾燥して濾過し、有機相を濃縮し、粗生成物を得、分取薄層クロマトグラフィーによって精製して、化合物7fを得た。
LCMS(ESI)m/z:325.9,326.8[M+1]
工程9
化合物7f(25mg、76.90μmol)、5j(56.65mg、138.42μmol)、リン酸カリウム(32.65mg、153.80μmol)及びPd(dppf)Cl(5.63mg、7.69μmol)を水(1mL)及びジオキサン(3mL)に添加し、窒素ガスでバブリングした後、100℃のマイクロウエーブ(2bar)条件で30分間撹拌した。反応溶液に水(100mL)及び酢酸エチル(100mL)を添加し、抽出して分層し、有機相を乾燥し、濾過し、濃縮して、粗生成物を得た。粗生成物を分取薄層クロマトグラフィー(展開剤として酢酸エチルを使用)によって精製して、化合物7を得た。
LCMS(ESI)m/z:481.1[M+1]
H NMR(400MHz,DMSO-d)δ9.06-9.10(m,1H),8.54-8.59(m,1H),8.39-8.54(m,1H),7.96-8.03(m,1H),7.70-7.90(m,2H),7.59-7.66(m,1H),7.41-7.47(m,1H),7.29-7.38(m,2H),7.13-7.24(m,2H),3.88-3.95(m,3H)2.90-2.98(m,3H).
実施例8
Figure 2022536188000065
合成スキーム:
Figure 2022536188000066
工程1
3-ブロモ-5-ニトロフェノール(20g、91.74mmol)及びビス(ピナコラート)ジボロン(25.63g、100.92mmol)をジオキサン(200mL)に溶解させ、KOAc(18.01g、183.48mmol)及びPd(dppf)Cl(3.36g、4.59mmol)を添加し、窒素ガスの保護下で90℃で16時間撹拌した。反応溶液を直接に珪藻土で濾過し、ケーキを酢酸エチルで2回洗浄し、濾液を回収し、スピン乾燥させ粗生成物を得、粗生成物をPE/EtOAc=5/1カラムクロマトグラフィーによって精製して、化合物8aを得た。
H NMR(400MHz,CDCl)δ8.17(d,J=1.52Hz,1H),7.76(t,J=2.26Hz,1H),7.57(d,J=2.02Hz,1H),7.00(brs,1H),1.35(s,12H).
工程2
化合物8a(3g、11.32mmol)及びジメチルtert-ブチルクロロシラン(2.05g、13.58mmol、1.66mL)をDMF(30mL)に溶解させ、イミダゾール(1.93g、28.29mmol)及び4-N,N-ジメチルアミノピリジン(138.27mg、1.13mmol)を添加し、室温で30℃で16時間撹拌して反応させた。反応溶液に3mLの水を添加して抽出し、有機相を回収し、無水硫酸ナトリウムで乾燥し、スピン乾燥して、化合物8bを得た。
H NMR(400MHz,DMSO-d)δ8.01(d,J=1.24Hz,1H),7.69(t,J=2.12Hz,1H),7.45(d,J=1.52Hz,1H),1.32(s,12H),0.98(s,9H),0.24(s,6H).
工程3
化合物8b(2.8g、7.38mmol)をエタノール(120mL)及び水(20mL)に溶解させ、塩化アンモニウム(3.95g、73.81mmol)及び亜鉛粉末(4.83g、73.81mmol)を添加し、室温30℃で16時間撹拌して反応させた。反応溶液を直接に濾過し、ケーキを无水エタノールで2回洗浄し、濾液をスピン乾燥させ粗生成物を得た。粗生成物をPE/EtOAc=5/1カラムクロマトグラフィーによって精製して、化合物8cを得た。
LCMS(ESI)m/z:350.0[M+1]
工程4
化合物8c(1.9g、5.44mmol)をピリジン(5mL)に溶解させ、シクロプロピルスルホニルクロリド(917.55mg、6.53mmol)を添加し、30℃で16時間撹拌して反応させた。反応溶液に10mLの水を添加し、15mLの酢酸エチルで抽出し、更に有機相を10mLの水で2回洗浄し、無水硫酸ナトリウムで乾燥し、スピン乾燥して、粗生成物得た。粗生成物をPE/EtOAc=5/1~1/1カラムクロマトグラフィーによって精製して、化合物8dを得た。
LCMS(ESI)m/z:454.1[M+1]
工程5
化合物8d(500mg、1.10mmol)及び化合物1h(203.70mg、735.07μmol)を水(5mL)及びテトラヒドロフラン(2.5mL)に溶解させ、リン酸カリウム(312.06mg、1.47mmol)及びPd(dppf)Cl(53.79mg、73.51μmol)を添加し、窒素ガスの保護下でマイクロウエーブで90℃で0.5時間撹拌した。反応溶液に8mLの水及び8mLの酢酸エチルを添加し、2回抽出し、有機相を無水硫酸ナトリウムで乾燥、スピン乾燥して、粗生成物を得た。粗生成物をPE/EtOAc=1/1~0/1カラムクロマトグラフィーによって精製して、化合物8eを得た。
LCMS(ESI)m/z:524.1[M+1]
工程6
化合物8e(10mg、19.09μmol)をEtOAc(0.5mL)に溶解させ、HCl/EtOAc(4M、250.00μL)を添加し、室温30℃で16時間撹拌して反応させた。反応溶液を直接にスピン乾燥して、粗生成物を得、精製せず直接に化合物8fを得た。
LCMS(ESI)m/z:409.9[M+1]
工程7
化合物8f(20mg、48.84μmol)をDMF(2mL)に溶解させ、DIEA(25.25mg、195.38μmol、34.03μL)及びN-フェニルビス(トリフルオロメタンスルホニル)イミド(26.17mg、73.27μmol)を添加し、室温30℃で、1時間撹拌して、反応させた。反応溶液に2mLの水及び2mLの酢酸エチルを添加して抽出し、更に有機相を2mLの水で3回洗浄し、スピン乾燥して、粗生成物を得、精製せず直接に化合物8gを得た。
LCMS(ESI)m/z:542.0[M+1]
工程8
化合物8g(20mg、36.93μmol)及び化合物8h(13.35mg、55.40μmol)をジオキサン(1mL)及び水(0.5mL)に溶解させ、Pd(dppf)Cl(2.70mg、3.69μmol)及びリン酸カリウム(15.68mg、73.87μmol)を添加し、窒素ガスの保護下で、90℃で、16時間撹拌して反応させた。反応溶液に2mLの水及び2mLの酢酸エチルを添加して抽出し、有機相を無水硫酸ナトリウムで乾燥させ、スピン乾燥して、粗生成物を得た。粗生成物をメタノールに溶解させ、高速液体クロマトグラフィー(カラム:Phenomenex Gemini-NX80*40mm*3μm;移動相:[水(0.05%のアンモニア水+10mMの重炭酸アンモニウム)-アセトニトリル];B(アセトニトリル)%:42%~58%、8min)によって精製して、化合物8を得た。
LCMS(ESI)m/z:507.0[M+1]
H NMR(400MHz,CDOD)δ8.83-8.85(m,1H),8.28-8.32(m,2H),8.10-8.13(m,1H),7.97-8.02(m,1H),7.96(s,1H),7.69(s,1H),7.64(brd,J=7.78Hz,3H),7.42(s,1H),7.14(s,1H),3.99(s,3H),2.69(s,1H),1.13(brs,2H),1.03(brd,J=8.04Hz,2H).
表1の化合物は、前記実施例8のスキームと類似した工程を参照して製造し、特に化合物33を合成する工程において、実施例8の合成スキームを参照して8c~8dを合成する工程でシクロプロピルスルホニルクロリドを中間体33aに取り替え、最後の工程で中間体8hを中間体33bに取り替えて、化合物33を合成した。得られた化合物のトリフルオロ酢酸塩を炭酸水素ナトリウム溶液に加え、酢酸エチルで抽出し、有機相を無水硫酸ナトリウムで乾燥し、減圧で濃縮して、対応する化合物を得た。
Figure 2022536188000067
Figure 2022536188000068
実施例11
Figure 2022536188000069
合成スキーム:
Figure 2022536188000070
工程1
化合物8g(90mg、166.20μmol)及びビス(ピナコラート)ジボロン(50.64mg、199.44μmol)をジオキサン((1.5mL)に溶解させ、Pd(dppf)Cl(12.16mg、16.62μmol)及びKOAc(48.93mg、498.59μmol)を添加し、窒素ガスの保護下で、90℃で、16時間撹拌して反応させた。反応溶液を直接に濾過し、濾液をスピン乾燥して、粗生成物を得た。粗生成物を分取薄層クロマトグラフィーによって精製して、化合物11aを得た。
LCMS(ESI)m/z:520.1[M+1]
工程2
化合物11a(70mg、134.77μmol)及び2-ブロモ-3,5-ジフルオロ-ピリジン(17.43mg、89.84μmol)をジオキサン(2mL)及び水(1mL)に溶解させ、Pd(dppf)Cl(6.57mg、8.98μmol)及び硫酸カリウム(38.14mg、179.69μmol)を添加し、窒素ガスの保護下で、90℃で、16時間撹拌して反応させた。反応溶液に4mLの水を添加し、4mLの酢酸エチルで抽出し、有機相を無水硫酸ナトリウムで乾燥し、スピン乾燥して粗生成物を得た。粗生成物を高速液体クロマトグラフィー(カラム:Boston Green ODS 150*30mm*5μm;移動相:[水(0.075%のトリフルオロ酢酸)-アセトニトリル];B(アセトニトリル)%:40%~70%、8min)によって精製して、化合物11のトリフルオロ酢酸塩を得た。
LCMS(ESI)m/z:507.0[M+1]
H NMR(400MHz,CDOD)δ8.83(s,1H),8.55(d,J=2.26Hz,1H),8.28(s,1H),8.12(s,1H),8.00(d,J=9.54Hz,1H),7.96(s,2H),7.75-7.80(m,2H),7.71(s,1H),7.63(brd,J=8.28Hz,1H),3.99(s,3H),2.66-2.72(m,1H),1.13(brs,2H),0.98-1.06(m,2H).
化合物11のトリフルオロ酢酸塩を炭酸水素ナトリウム溶液に添加し、酢酸エチルで抽出し、有機相を無水硫酸ナトリウムで乾燥して、減圧濃縮し、化合物11を得た。
実施例12
Figure 2022536188000071
合成スキーム:
Figure 2022536188000072
工程1
化合物1h(2g、7.22mmol)及び(2,6-ジクロロ-4-ピリジン)ホウ酸(1.66g、8.66mmol)をジオキサン(20mL)及び水(10mL)に溶解させ、Pd(dppf)Cl(528.08mg、721.71μmol)及びリン酸カリウム(3.06g、14.43mmol)を添加し、窒素ガスの保護下で、90℃で、16時間撹拌して反応させた。反応溶液に30mLの水を添加し、30mLの酢酸エチルで抽出し、有機相を無水硫酸ナトリウムで乾燥させ、スピン乾燥して、粗生成物を得た。粗生成物をPE/EtOAc=0/1カラムクロマトグラフィーによって精製して、化合物12aを得た。
LCMS(ESI)m/z:343.8[M+1]
工程2
化合物12a(250mg、726.33μmol)及びメチルスルホンアミド(69.09mg、726.33μmol)をジオキサン(1.5mL)に溶解させ、酢酸カリウム(16.31mg、72.63μmol)、4,5-ビスジフェニルホスフィノ-9,9-ジメチルキサンテン(84.05mg、145.27μmol、0.2eq)、炭酸セシウム(709.95mg、2.18mmol)を添加し、窒素ガスの保護下で、マイクロウエーブで、120℃で、1時間撹拌して反応させた。反応溶液を直接に濾過し、濾液スピン乾燥して、粗生成物を得た。粗生成物をPE/EtOAc=0/1カラムクロマトグラフィーによって精製して、化合物12bを得た。
LCMS(ESI)m/z:402.9[M+1]
工程3
実施例12b(60mg、148.94μmol)及び(2,4-ジフルオロ)フェニルボロン酸(28.22mg、178.72μmol)をジオキサン(1.5mL)及び水(0.7mL)に溶解させ、Pd(dppf)Cl(10.90mg、14.89μmol)及びリン酸カリウム(63.23mg、297.87μmol)を添加し、窒素ガスの保護下で、90℃で、16時間撹拌して反応させた。反応溶液に2mLの水を添加し、2mLの酢酸エチルで抽出し、有機相をスピン乾燥して、粗生成物を得、粗生成物を高速液体クロマトグラフィー(カラム:Welch Xtimate C18 150*25mm*5μm;移動相:[水(0.05%のアンモニア水)-アセトニトリル];B(アセトニトリル)%:15%~45%、8.5min)によって精製して、化合物12を得た。
LCMS(ESI)m/z:481.0[M+1]
H NMR(400MHz,CDOD):δ8.62-8.66(m,1H),8.13-8.18(m,1H),8.01(brs,1H),7.90-7.94(m,1H),7.81-7.87(m,1H),7.74-7.77(m,1H),7.44-7.48(m,1H),7.33(brs,1H),7.14(brd,J=5.3Hz,1H),6.89(brd,J=9.0Hz,3H),3.78(s,3H),3.08(brs,3H).
表2の化合物は、前記実施例12のスキームと類似した工程を参照して製造した。
Figure 2022536188000073
実施例15
Figure 2022536188000074
合成スキーム:
Figure 2022536188000075
工程1
化合物7e(30mg、96.44μmol)、4-ヨードテトラヒドロピラン(24.54mg、115.73μmol)及び炭酸カリウム(39.99mg、289.31μmol)をN,N-ジメチルホルムアミド(1mL)に添加し、25℃で1時間撹拌した。反応溶液に水(10mL)及び酢酸エチル(10mL)を添加し、抽出して分層させ、有機相を乾燥し、濾過し、濃縮して、化合物15aを得た。
LCMS(ESI)m/z:396.1,397.1[M+1]
工程2
化合物15a(30mg、75.91μmol)、化合物5j(37.28mg、91.09μmol)、リン酸カリウム(48.34mg、227.73μmol)及びPd(dppf)Cl(5.55mg、7.59μmol)をジオキサン(2mL)及び水(0.5mL)に添加し、窒素ガスで3回置換した後、100℃で2時間撹拌した。反応溶液に水(10mL)及び酢酸エチル(10mL)を添加し、抽出して分層させ、有機相を乾燥し、濾過し、濃縮して、粗生成物を得、分取薄層クロマトグラフィーによって精製して、化合物15を得た。
LCMS(ESI)m/z:551.2[M+1]
H NMR(400MHz,DMSO-d)δ9.98(s,1H),9.13(s,1H),8.74(s,1H),8.45(s,1H),8.03(s,1H),7.89(s,1H),7.67(s,1H),7.31-7.46(m,3H),7.16-7.25(m,2H),4.62(s,1H),3.92-4.06(m,2H),3.50(m,2H),2.95(s,3H),1.97-2.14(m,4H).
実施例16
Figure 2022536188000076
合成スキーム:
Figure 2022536188000077
工程1
3-メチル-1H-1,2,4-トリアゾール(632.58mg、7.61mmol)、6-ブロモピラゾロ[1,5-a]ピリジン(1g、5.08mmol)、(1S,2S)-N,N-ジメチルシクロヘキシル-1,2-ジアミン(1.44g、10.15mmol)、炭酸セシウム(3.31g、10.15mmol)及びヨウ化第一銅(241.65mg、1.27mmol)をN,N-ジメチルホルムアミド(10mL)に添加し、窒素ガスで3回置換した後、120℃の条件下で、5時間撹拌した。反応溶液に飽和塩化アンモニウム(20mL)及び酢酸エチル(30mL*3)を添加し、抽出して分層させた。有機相を無水硫酸ナトリウムで乾燥して濾過し、濾液を濃縮して、粗生成物を得、カラムクロマトグラフィーによって精製して、化合物16aを得た。
LCMS(ESI)m/z:200.2[M+1]
工程2
化合物16a(0.3g、1.51mmol)をジクロロメタン(50mL)に添加し、更にN-ヨードスクシンイミド(440.45mg、1.96mmol)を添加し、反応溶液を25℃で2時間撹拌した。反応溶液を炭酸水素ナトリウム溶液(100mL)及びジクロロメタン(100mL*2)に添加し、抽出して分層させ、有機相を乾燥し、濾過し濃縮して、粗生成物を得た。薄層分取クロマトグラフィーで精製して化合物16bを得た。
LCMS(ESI)m/z:326.0[M+1]
工程3
化合物5e(107.11mg、246.07μmol)、化合物16b(0.08g、246.07μmol)、リン酸カリウム(156.70mg、738.22μmol)及びPd(dppf)Cl(18.01mg、24.61μmol)をジオキサン(5mL)及び水(2mL)に添加し、100℃で1時間撹拌した。反応溶液に水(100mL)、酢酸エチル(200mL)を添加し、抽出して分層させ、有機相を乾燥して濾過し、濃縮し、粗生成物を高速液体クロマトグラフィー(カラム:Welch Xtimate C18100*25mm*3μm;移動相:[水(10mMの重炭酸アンモニウム)-アセトニトリル];B(アセトニトリル)%:35%~65%、10.5min)によって精製して、化合物16を得た。
LCMS(ESI)m/z:507.1[M+1]
H NMR(399MHz,DMSO-d)δ9.91-9.95(m,1H)9.29-9.33(m,1H)9.15-9.19(m,1H)8.49-8.53(m,1H)8.04-8.09(m,1H)7.83-7.89(m,1H)7.64-7.70(m,1H)7.57-7.60(m,1H)7.51-7.55(m,1H7.36-7.42(m,1H)7.30-7.34(m,1H)7.18-7.24(m,1H)2.71-2.76(m,1H)2.33-2.41(m,3H)0.90-1.01(m,4H).
実施例17
Figure 2022536188000078
合成スキーム:
Figure 2022536188000079
工程1
化合物5c(2g、5.66mmol)をピリジン(10mL)に溶解させ、エチルスルホニルクロリド(873.53mg、6.79mmol、642.30μL)を滴下し、室温30℃で4時間撹拌して反応させた。反応溶液に30mLの水、30mLの酢酸エチルを添加し抽出し、有機相をまた30mLの水で2回洗浄し、粗生成物をスピン乾燥して、化合物5kを得た。
H NMR(400MHz,CDCl):δ7.70(tt,J=7.74,1.82Hz,1H),7.30-7.32(m,1H),7.25(t,J=2.12Hz,1H),7.17(d,J=0.84Hz,1H),6.90-7.02(m,2H),3.21(q,J=7.56Hz,2H),1.37-1.43(m,3H).
工程2
化合物5k(2.5g、5.61mmol)及びビス(ピナコラート)ジボロン(1.71g、6.74mmol)をジオキサン(20mL)に溶解させ、Pd(dppf)Cl(410.72mg、561.32μmol)及びKOAc(1.10g、11.23mmol)を添加し、窒素ガスの保護下で、90℃で16時間撹拌して反応させた。反応溶液を直接に濾過し、ケーキを酢酸エチルで洗浄し、濾液をスピン乾燥して、粗生成物を得た。粗生成物をPE/EtOAc=5/1カラムクロマトグラフィーによって精製して、化合物5mを得た。
H NMR(400MHz,CDCl):δ7.68-7.72(m,1H),7.55-7.58(m,1H),7.51-7.54(m,1H),7.41(td,J=8.78,6.52Hz,1H),6.86-6.97(m,2H),3.16(q,J=7.56Hz,2H),1.33-1.35(m,12H),1.25ppm(s,3H).
工程3
ジオキサン(2mL)及び水(0.5mL)に化合物5m(208.32mg、492.14μmol)、16b(80mg、246.07μmol)、无水リン酸カリウム(156.70mg、738.22μmol)、Pd(dppf)Cl(18.01mg、24.61μmol)を添加し、反応溶液を100℃に置き、2時間反応させた。反応溶液を50mLの水及びジクロロメタン(50mL*3)で抽出し、有機相を無水硫酸ナトリウムで乾燥して濾過し、濃縮し、粗生成物を高速液体クロマトグラフィー(カラム:Waters Xbridge BEH C18100*30mm*10μm;移動相:[水(10mMの重炭酸アンモニウム)-アセトニトリル];B(アセトニトリル)%:30% ~60%、8min)によって精製して、化合物17を得た。
LCMS(ESI)m/z:495.3[M+1]
H NMR(400MHz,DMSO-d)δ10.02(s,1H),9.34(s,1H),9.20(s,1H),8.54(s,1H),8.08-8.10(d,J=9.2Hz,1H),7.88-7.90(m,1H),7.67-7.73,(m,1H),7.60(s,1H),7.55(s,1H),7.39-7.44(m,1H),7.32(s,1H),7.22-7.27(m,1H),3.25-3.29(m,2H),2.40(s,3H),1.23-1.27(t,J=7.4Hz,3H).
実施例18
Figure 2022536188000080
合成スキーム:
Figure 2022536188000081
工程1
化合物7e(25mg、80.36μmol)、ブロモエタノール(12.05mg、96.44μmol)及び炭酸カリウム(33.32mg、241.09μmol)をN,N-ジメチルホルムアミド(1mL)に添加し、25℃で1時間撹拌した。反応溶液に酢酸エチル(10mL)及び水(10mL)を添加し、抽出して分層させ、有機相を乾燥して濾過し、濃縮して化合物18aを得た。
LCMS(ESI)m/z:356.1[M+1]
工程2
5j(51.86mg、126.71μmol)、化合物18a(30mg、84.48μmol)、リン酸カリウム(44.83mg、211.19μmol)及びPd(dppf)Cl(6.18mg、8.45μmol)を水(1mL)及びジオキサン(3mL)に添加し、窒素ガスで3回置換した後、100℃で2時間撹拌した。反応溶液に水(100mL)及び酢酸エチル(100mL)を添加し、抽出して分層させ、有機相を乾燥して濾過し、濃縮して粗生成物を得た。高速液体クロマトグラフィー(カラム:Phenomenex Gemini-NX C1875*30mm*3μm;移動相:[水(10mMの炭酸アンモニウム)-アセトニトリル];B(アセトニトリル)%:15%~50%、10.5min)によって精製して、化合物18を得た。
LCMS(ESI)m/z:511.2[M+1]
H NMR(400MHz,DMSO-d)δ9.09(s,1H),8.58-8.60(m,1H),8.59(s,1H),8.31(s,1H),8.14(s,1H),7.98(s,1H),7.80-7.86(m,1H),7.76(s,1H),7.69(s,1H),7.59(s,1H),7.31m,1H),6.82-6.92(m,2H),4.31-4.28(m,2H),3.82-3.80(m,2H),2.60(s,3H).
実施例19
Figure 2022536188000082
合成スキーム:
Figure 2022536188000083
工程1
5j(251.77mg、615.18μmol)、化合物16b(0.2g、615.18μmol)、リン酸カリウム(391.75mg、1.85mmol)及びPd(dppf)Cl(45.01mg、61.52μmol)をジオキサン(10mL)及び水(4mL)に添加し、100℃で2時間撹拌した。反応溶液に水(100mL)及び酢酸エチル(200mL)を添加し、抽出して分層させ、有機相を乾燥し、濾過し濃縮して粗生成物を得た。粗生成物を分取薄層クロマトグラフィーシリカゲルプレート(PE:EtOAc=1:8)によって精製して、化合物19を得た。
LCMS(ESI)m/z:481.2[M+1]
H NMR(400MHz,DMSO-d)δ9.30-9.37(m,1H),9.17-9.22(m,1H),8.51-8.55(m,1H),8.06-8.13(m,1H),7.83-7.90(m,1H),7.66-7.74(m,1H),7.48-7.58(m,2H),7.36-7.,(m,1H),7.18-7.31(m,2H),6.69-6.80(m,1H),3.01-3.14(m,3H),2.36(m,3H).
実施例20
Figure 2022536188000084
合成スキーム:
Figure 2022536188000085
工程1
ジオキサン(45mL)及び水(15mL)に1-(テトラヒドロ-2H-ピラン-2-イル)-1H-ピラゾール-4-ボロン酸ピナコールエステル(8.47g、30.45mmol)、6-ブロモピラゾロ[1,5-a]ピリジン(4g、20.30mmol)、Pd(dppf)Cl(148.55mg、203.00μmol)、リン酸カリウム(6.46g、30.45mmol)を添加し、反応溶液を100℃で、2時間反応させた。反応溶液を100mLの水及びジクロロメタン(100mL*2)で抽出し、有機相を無水硫酸ナトリウムで乾燥させた後、濾過し、スピン乾燥した。粗生成物をPE/EtOAc=5/1カラムクロマトグラフィーによって精製して、化合物20aを得た。
LCMS(ESI)m/z:269.3[M+1]
H NMR(400MHz,DMSO-d)δ9.04(s,1H),8.48(s,1H),8.08(s,1H),7.96-7.97(d,J=2.4Hz,1H),7.70-7.72(d,J=8.8Hz,1H),7.51-7.54(m,1H),6.58-6.59(d,J=2.0Hz,1H),5.40-5.43(m,1H),3.93-3.96(m,1H),3.62-3.69(m,1H),2.07-2.16(m,1H),1.94-1.98(m,2H),1.65-1.75(m,1H),1.53-1.59(m,2H).
工程2
酢酸エチル(30mL)に化合物20a(3g、11.18mmol)、塩化水素/酢酸エチル(4M、2.80mL)を添加し、反応溶液を25℃で3時間反応させた。反応溶液をスピン乾燥して、化合物20bを得た。
LCMS(ESI)m/z:185.2[M+1]
H NMR(399MHz,DMSO-d)δ11.76(s,1H),9.05(s,1H),8.29(s,2H),7.96-7.97(d,J=2.4Hz,1H),7.7,1-7.73(m,1H),7.52-7.55(m,1H),6.58-6.62(m,1H).
工程3
无水ジクロロメタン(10mL)に化合物20b(1g、5.43mmol)、N-ヨードスクシンイミド(1.34g、5.97mmol)、氷酢酸(32.60mg、542.90μmol、31.05μL)を添加し、反応溶液を25℃で、12時間反応させた。反応溶液を20mLの水及びジクロロメタン(50mL*2)で抽出し、有機相を無水硫酸ナトリウムで乾燥させた後、濾過し、濾液を減圧濃縮して、粗生成物を得た。粗生成物をPE/EtOAc=1/1カラムクロマトグラフィーによって精製して、化合物20cを得た。
LCMS(ESI)m/z:311.1[M+1]
H NMR(400MHz,DMSO-d)δ11.07(s,1H),9.09(s,1H),8.21(s,2H),8.07(s,1H),7.65-7.67(m,1H),7.50-7.52(d,J=9.2Hz,1H).
工程4
N,N-ジメチルホルムアミド(2mL)に化合物20c(50mg、161.24μmol)、2-クロロ-N,N-ジメチルエチルアミン(26.02mg、241.86μmol)及び炭酸セシウム(105.07mg、322.48μmol)を添加し、反応溶液を25℃で2時間反応させた。反応溶液を飽和塩化ナトリウム水溶液30mL及びジクロロメタン(30mL*3)で抽出し、有機相を無水硫酸ナトリウムで乾燥させた後、濾過し、スピン乾燥し化合物20dを得た。
LCMS(ESI)m/z:382.2[M+1]
H NMR(400MHz,DMSO-d)δ9.04(s,1H),8.31(s,1H),8.05(s,1H),8.01(s,1H),7.58-7.60(m,1H),7,49-7.52(d,J=9.2Hz,1H),4.20-4.23(t,J=6.4Hz,2H),2.69-2.71(t,J=6.4Hz,2H),2.19(s,6H).
工程5
ジオキサン(2mL)及び水(0.5mL)に化合物20d(30mg、78.70μmol)、5j(48.31mg、118.04μmol)及び无水リン酸カリウム(33.41mg、157.39μmol)、Pd(dppf)Cl(5.76mg、7.87μmol)を添加し、反応溶液を65℃で2時間反応させた。反応溶液を30mLの水溶液及びジクロロメタン(30mL*3)で抽出し、有機相を無水硫酸ナトリウムで乾燥した後、濾過し、スピン乾燥して、粗生成物を得、粗生成物を分取薄層クロマトグラフィーシリカゲルプレート(ジクロロメタン:メタノール=9:1)によって精製して、化合物20を得た。
LCMS(ESI)m/z:537.3[M+1]
H NMR(400MHz,DMSO-d)δ9.95(s,1H),9.08(s,1H),8.40(s,1H),8.35(s,1H),8.05(s,1H),7.95-7.97(d,J=9.2Hz,1H),7.65-7.73(m,2H),7.54-7.58(m,2H),7.38-7.44(m,1H),722.-7.27(m,2H),4.21-4.24(t,J=6.4Hz,2H),3.10(s,3H),2.68-2.71(t,J=6.,6Hz,2H),2.19(s,6H).
実施例21
Figure 2022536188000086
合成スキーム:
Figure 2022536188000087
工程1
N,N-ジメチルホルムアミド(1mL)に化合物20c(0.18g、580.47μmol)、化合物4a(324.31mg、1.16mmol)及び炭酸セシウム(945.64mg、2.90mmol)を添加し、反応溶液を60℃で12時間反応させた。反応溶液を飽和塩水50mL及びジクロロメタン(50mL*4)で抽出し、有機相を無水硫酸ナトリウムで乾燥して濾過し、スピン乾燥して、化合物21aを得た。
LCMS(ESI)m/z:438.1[M-56]
H NMR(400MHz,DMSO-d)δ9.07(s,1H),8.43(s,1H),8.07(s,1H),8.05(s,1H),7.61-7.64(m,1H),7.51-7.53(d,J=9.2Hz,1H),4.79-4.85(m,1H),3.57-3.63(m,2H),3.1,5-3.17(m,2H),2.04-2.06(m,2H),1.88-1.93(m,2H),1.40(s,9H).
工程2
ジオキサン(2mL)及び水(0.5mL)に化合物21a(90mg、182.43μmol)、5j(74.66mg、182.43μmol)、无水リン酸カリウム(116.17mg、547.29μmol)、Pd(dppf)Cl(13.35mg、18.24μmol)を添加し、反応を65℃で2時間反応させた。反応溶液を50mLの水及びジクロロメタン(50mL*3)で抽出し、有機相を無水硫酸ナトリウムで乾燥して濾過し、濾液をスピン乾燥した。粗生成物を分取薄層クロマトグラフィーシリカゲルプレート(石油エーテル:酢酸エチル=1:1)によって精製して、化合物21bを得た。
LCMS(ESI)m/z:649.3[M+1]
H NMR(400MHz,DMSO-d)δ9.95(s,1H),9.09(s,1H),8.46(s,1H),8.41(s,1H),8.09(s,1H),7.95-7.97(d,J=9.2Hz,1H),7.68-7.71(m,2H),7.55-7.58(m,2H),7.39-7.45(m,2H),7.27(s,1H),4.40(s,1H),4.04-4.09(m,2H),3.10(s,3H),2.89-2.95(m,2H),2.06-2.09(m,2H),1.79-1.83(m,2H),1.43(s,9H).
工程3
无水メタノール(2mL)に化合物21b(25mg、38.54μmol)、塩化水素/メタノール(4M、5mL)を添加し、反応溶液を25℃で1時間反応させた。反応溶液をスピン乾燥し、高速液体クロマトグラフィー(カラム:Phenomenex Luna C18100*30mm*5μm;移動相:[水(0.04%塩酸)-アセトニトリル];B(アセトニトリル)%:20%~50%、10min)によって精製して、化合物21の塩酸塩を得た。
LCMS(ESI)m/z:549.2[M+1]
H NMR(400MHz,DMSO-d)δ9.98(s,1H),9.14(s,1H),8.89-8.92(m,1H),8.65-8.66(m,1H),8.42-8.43(d,J=6.0Hz,2H),8.15(s,1H),7.86-7.98(d,J=9.2Hz,1H),7.69-7.73(m,1H),7.59(s,1H),7.55(s,1H),7.39-7.45(m,1H),7.27(s,1H),4.50-4.56(m,1H),3.45-3.53(m,4H),3.13-3.19(m,1H),3.11(s,3H),2.26-2.28(m,2H),2.15-2.18(m,2H).
化合物21の塩酸塩を炭酸水素ナトリウム溶液に添加し、酢酸エチルで抽出し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮して、化合物21を得た。
表3の化合物22は、前記実施例21のスキームと類似した工程を参照して製造した。
Figure 2022536188000088
実施例23
Figure 2022536188000089
合成スキーム:
Figure 2022536188000090
工程1
化合物5c(0.1g、283.07μmol)をジオキサン(2mL)に溶解させ、ビス(ピナコラート)ジボロン(86.26mg、339.69μmol)、KOAc(55.56mg、566.15μmol)、Pd(dppf)Cl(20.71mg、28.31μmol)を添加し、窒素ガスで3回置換し、窒素ガスの雰囲気で、100℃で16時間撹拌して反応させ、反応溶液を珪藻土で濾過し、濾液を減圧蒸発させて、粗生成物を得た。粗生成物をPE/EtOAc=3/1分取薄層クロマトグラフィーシリカゲルプレートによって精製して、化合物23aを得た。
LCMS(ESI)m/z:332.0[M+1]
工程2
化合物1h(320.78mg、1.16mmol)、化合物23a(0.46g、1.39mmol)をジオキサン(10mL)及び水(3mL)に溶解させ、Pd(dppf)Cl(84.70mg、115.75μmol)及びリン酸カリウム(491.42mg、2.32mmol)を添加し、窒素ガスで3回置換し、窒素ガスの雰囲気下で、100℃で16時間撹拌して反応させた。反応溶液を珪藻土で濾過し、濾液をスピン乾燥して、粗生成物を得た。粗生成物をPE/EA=1/1カラムクロマトグラフィーによって精製して、化合物1jを得た。
LCMS(ESI)m/z:402.0[M+1]
工程3
化合物1j(0.05g、124.56μmol)をジクロロメタン(1mL)に溶解させ、DIEA(48.29mg、373.68μmol、65.09μL)、トリホスゲン(55.44mg、186.84μmol)を添加し、0℃で10分間撹拌し;同時にシクロプロピルアミン(14.22mg、249.12μmol、17.26μL)をジクロロメタン(1mL)に溶解させ、DIEA(48.30mg、373.68μmol、65.09μL)を添加し、0℃で10分間撹拌した後、それを上記の反応溶液に添加し、7~10分間撹拌を続けた。反応溶液に水(2mL*2)を添加して抽出し、有機相を減圧濃縮して、粗生成物を得た。粗生成物を高速液体クロマトグラフィー(カラム:Boston Green ODS150*30mm*5μm;移動相:[水(0.075%のトリフルオロ酢酸)-アセトニトリル];B(アセトニトリル)%:45%~75%、7min)によって精製して、化合物23を得た。
LCMS(ESI)m/z:485.1[M+1]
H NMR(400MHz,CDOD)δ8.79(s,1H),8.23(s,1H),8.08(s,1H),7.99(d,J=9.04Hz,1H),7.93(s,1H),7.87(s,1H),7.54-7.63(m,2H),7.41(s,2H),7.04-7.12(m,2H),3.96(s,3H),2.63(s,1H),0.66-0.86(m,2H),0.55(brs,2H).
表4の化合物は、前記実施例23のスキームと類似した工程を参照して製造した。
Figure 2022536188000091
実施例26
Figure 2022536188000092
合成スキーム:
Figure 2022536188000093
工程1
6-ブロモピラゾロ[1,5-a]ピリジン(0.2g、1.02mmol)のジクロロメタン(5mL)溶液にNIS(274.05mg、1.22mmol)を添加し、30℃で5時間撹拌した。反応溶液に水(10mL)を添加し、ジクロロメタン(10mL*3)を添加して抽出し、有機相を合わせて、無水硫酸ナトリウムで乾燥させ、更に減圧濃縮して、化合物26aを得た。
LCMS(ESI)m/z:324.7[M+3]
工程2
化合物26a(0.4g、1.24mmol)、5j(608.31mg、1.49mmol)のジオキサン(2mL)及び水(0.5mL)溶液に炭酸ナトリウム(328.21mg、3.10mmol)、Pd(dppf)Cl(90.63mg、123.87μmol)を添加した。窒素ガスの保護下で、マイクロウエーブの条件下で、110℃で20分間撹拌した。反応溶液に水(10mL)を添加し、更に酢酸エチル(10mL*3)を添加して抽出し、有機相を合わせて、無水硫酸ナトリウムで乾燥し、減圧濃縮して、粗生成物を得た。粗生成物をPE/EA=3/1カラムクロマトグラフィーによって精製して、化合物26bを得た。
LCMS(ESI)m/z:479.9[M+3]
工程3
化合物26b(0.3g、627.21μmol)、ビス(ピナコラート)ジボロン(175.20mg、689.93μmol)のジオキサン(3mL)溶液にPd(dppf)Cl(45.89mg、62.72μmol)、酢酸カリウム(123.11mg、1.25mmol)を添加した。窒素ガスの保護下で、100℃で16時間撹拌した。反応溶液を直接に珪藻土で抽出して、濾過し、濾液を減圧濃縮して、粗生成物化合物26cを得た。
LCMS(ESI)m/z:526.1[M+1]
工程4
4-ブロモ-1-メチル-トリアゾール(30mg、185.20μmol)、化合物26c(145.95mg、277.80μmol)のジオキサン(3mL)及び水(1mL)溶液にPd(dppf)Cl(13.55mg、18.52μmol)、リン酸カリウム(78.62mg、370.40μmol)を添加した。窒素ガスの保護下で、マイクロウエーブの条件下で、100℃で0.5時間撹拌した。反応溶液に水(10mL)、酢酸エチル(10mL*3)を添加し、抽出し分層させ、有機相を合わせて、無水硫酸ナトリウムで乾燥し、減圧濃縮して、粗生成物を得た。粗生成物を高速液体クロマトグラフィー(カラム:BostonGreenODS150*30mm*5μm;移動相:[水(0.075%のトリフルオロ酢酸)-アセトニトリル];B(アセトニトリル)%:40%~70%、7min)によって精製して、化合物26のトリフルオロ酢酸塩を得た。
LCMS(ESI)m/z:481.3[M+1]
H NMR(400MHz,DMSO-d)δ9.96(s,1H),9.21(s,1H),8.65(s,1H),8.48(s,1H),8.05(d,J=9.54Hz,1H),7.87(d,J=9.30Hz,1H),7.64-7.77(m,1H),7.57(brd,J=11.04Hz,2H),7.35-7.47(m,1H),7.18-7.33(m,2H),4.13(s,3H),3.10(s,3H).
化合物26のトリフルオロ酢酸塩を炭酸水素ナトリウム溶液に添加し、酢酸エチルで抽出し、有機相を無水硫酸ナトリウムで乾燥し、減圧下で濃縮して、化合物26を得た。
表5の化合物は、前記実施例26のスキームと類似した工程を参照して製造した。得られた化合物のトリフルオロ酢酸塩を炭酸水素ナトリウム溶液に添加し、酢酸エチルで抽出し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮して、当該化合物を得た。
Figure 2022536188000094
実施例29
Figure 2022536188000095
合成スキーム:
Figure 2022536188000096
工程1
4-(2-クロロエチル)モルホリン(1g、6.68mmol、HCl)をアセトニトリル(10mL)に溶解させ、4-ボロネートピラゾール(925.47mg、4.77mmol)、炭酸セシウム(6.53g、20.04mmol)を添加し、90℃でマイクロウエーブで、1時間反応させた。反応溶液を吸引濾過し、濾液を減圧濃縮して、粗生成物を得た。更に精製せず、直接次の工程に使用し、粗生成物化合物29aを得た。
工程2
6-ブロモピラゾロ[1,5-a]ピリジン(0.95g、4.82mmol)をジオキサン(20mL)及び水(5mL)に溶解させ、化合物29a(1.78g、5.79mmol)、Pd(dppf)Cl(352.80mg、482.16μmol)及びリン酸カリウム(1.02g、4.82mmol)を添加し、窒素ガスの保護下で、100℃で16時間反応させた。反応溶液を珪藻土で濾過し、濾液を減圧蒸発させて、粗生成物を得、粗生成物をPE/EA=1/1カラムクロマトグラフィーによって精製して、化合物29bを得た。
LCMS(ESI)m/z:298.2[M+1]
工程3
化合物29b(0.4g、1.35mmol)をDCM(10mL)に溶解させ、NIS(363.18mg、1.61mmol)を添加し、25℃で16時間撹拌して反応させた。反応溶液に10mLの水を添加して抽出し、有機相を合わせて、減圧蒸発させて、粗生成物を得、粗生成物をDCM/MeOH=10/1カラムクロマトグラフィーによって精製して、化合物29cを得た。
LCMS(ESI)m/z:423.9[M+1]
工程4
化合物29c(0.59g、1.39mmol)をジオキサン(10mL)及び水(2mL)に溶解させ、(2,6-ジクロロ-4-ピリジン)ボロン酸(320.85mg、1.67mmol)、Pd(dppf)Cl(102.00mg、139.40μmol)、リン酸カリウム(591.79mg、2.79mmol)を添加し、窒素ガスで3回置換し、100℃で16時間反応させた。反応溶液を珪藻土で濾過し、濾液を減圧蒸発させて、粗生成物を得た。粗生成物をDCM/MeOH=20/1カラムクロマトグラフィーによって精製して、化合物29dを得た。
LCMS(ESI)m/z:443.1[M+1]
工程5
化合物29d(0.05g、112.78μmol)をジオキサン(3mL)に溶解させ、メチルスルホンアミド(21.46mg、225.57μmol)、酢酸パラジウム(2.53mg、11.28μmol)、4,5-ビスジフェニルホスフィノ-9,9-ジメチルキサンテン(6.53mg、11.28μmol)、炭酸セシウム(110.24mg、338.35μmol)を添加し、窒素ガスの保護下で、120℃で、マイクロウエーブで、1時間反応させた。反応溶液を珪藻土で濾過し、濾液を減圧スピン蒸発させて、粗生成物を得、粗生成物を分取薄層クロマトグラフィーシリカゲルプレート(DCM/MEOH=20:1)によって精製して、化合物29eを得た。
LCMS(ESI)m/z:502.1[M+1]
工程6
化合物29e(0.03g、59.76μmol)をジオキサン(2mL)及び水(0.5mL)に溶解させ、2,4-ジフルオロフェニルボロン酸(18.87mg、119.52μmol)、Pd(dppf)Cl(4.37mg、5.98μmol)、リン酸カリウム(25.37mg、119.52μmol)を添加し、窒素ガスで3回置換し、100℃で16時間撹拌して反応させた。反応溶液を珪藻土で濾過し、濾液を減圧蒸発させて、粗生成物を得た。粗生成物をHPLC(カラム:Boston Green ODS150*30mm*5μm;移動相:[水(0.075%のトリフルオロ酢酸)-アセトニトリル];B(アセトニトリル)%:25%~55%,8min)によって精製して、化合物29のトリフルオロ酢酸塩を得た。
LCMS(ESI)m/z:580.2[M+1]
H NMR(400MHz,CDOD)δ8.86(s,1H),8.39(s,1H),8.22(s,1H),8.12(brd,J=6.78Hz,1H),8.06(s,1H),8.00(d,J=9.04Hz,1H),7.74(s,1H),7.64-7.71(brd,J=8.78Hz,1H),7.26(s,1H),7.03-7.18(m,2H),4.69(brt,J=5.64Hz,2H),3.95(brs,2H),3.75(brt,J=5.64Hz,2H),3.43(brs,2H),3.35-3.38(m,3H),1.29(brs,4H).
化合物29のトリフルオロ酢酸塩を炭酸水素ナトリウム溶液に添加し、酢酸エチルで抽出し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮して、化合物29を得た。
実施例30
Figure 2022536188000097
合成スキーム:
Figure 2022536188000098
工程1
THF(3mL)に化合物21(150mg、273.42μmol)、氷酢酸(32.84mg、546.84μmol、31.28μL)、ホルムアルデヒド(110.94mg、1.37mmol、101.78μL、純度37%)を添加し、反応溶液を25℃で、0.5時間撹拌し、更にシアノ水素化ホウ素ナトリウム(85.91mg、1.37mmol)を添加し、反応溶液を25℃で、2時間反応させた。反応溶液を30mLの水及び30mL*2の酢酸エチルで抽出し、有機相を30mLの飽和塩水で洗浄し、有機相を無水硫酸ナトリウムで乾燥し、濾過し、減圧濃縮した。粗生成物を高速液体クロマトグラフィー(カラム:Phenomenex Gemini-NX C1875*30mm*3μm;;移動相:[水(10mMの重炭酸アンモニウム)-アセトニトリル];B(アセトニトリル)%:37%~57%,10.5min)によって精製して、化合物30を得た。
LCMS(ESI)m/z:563.3[M+1]
H NMR(400MHz,DMSO-d)δ10.01(s,1H),9.09(s,1H),8.41(d,J=8.8Hz,2H),8.07(s,1H),7.95(d,J=9.2Hz,1H),7.68-7.70(m,3H),7.39-7.54(m,1H),7.22-7.22(m,3H),4.11-4.22(m,1H),3.34(s,3H),2.87-3.10(m,2H),2.23(s,3H),1.96-2.15(m,6H).
実施例31
Figure 2022536188000099
合成スキーム:
Figure 2022536188000100
工程1
ビス(ピナコラート)ジボロン(9.1g、35.84mmol)、Pd(dppf)Cl(2.19g、2.99mmol)、酢酸カリウム(17.58g、179.20mmol)、3,5-ジブロモアニリン(14.99g、59.73mmol)をジオキサン(300mL)を含むボトルに添加し、窒素ガスで3回置換し、反応を80℃で3時間撹拌した。反応溶液を100mLの水に添加し、50mL*3の酢酸エチルで抽出し、有機相を乾燥し、濾過し、減圧濃縮した。粗生成物をカラム(石油エーテル~石油エーテル:酢酸エチル=20:1)によって分離し精製して、31aを得た。
LCMS(ESI)m/z:298.0[M+1]
工程2
31a(6g、20.14mmol)、2-ブロモ-3,5-ジフルオロピリジン(4.69g、24.16mmol)、炭酸ナトリウム(5.34g、50.34mmol)、Pd(dppf)Cl.CHCl(1.64g、2.01mmol)をジオキサン(150mL)及び水(40mL)を含むボトルに添加し、窒素ガスで3回置換し、当該反応を90℃で12時間撹拌した。反応溶液を50mLの水に添加し、50mL*3酢酸エチルで抽出し、有機相を乾燥して濾過し、減圧濃縮した。粗生成物カラム(石油エーテル~石油エーテル:酢酸エチル=10:1)によって分離し精製して、31bを得た。
LCMS(ESI)m/z:285.1[M+1]
工程3
31b(3.5g、12.28mmol)、ビス(ネオペンチルグリコラート)ジボロン(5.55g、24.55mmol)、Pd(PPhCl(861.72mg、1.23mmol)、酢酸カリウム(3.61g、36.83mmol)をジオキサン(70mL)を含むボトルに添加し、窒素ガスで3回置換し、当該反応を80℃で2時間撹拌した。反応溶液を50mLの水に添加し、50mL*2の酢酸エチルで抽出し、有機相を乾燥して濾過し、減圧濃縮した。粗生成物をカラム(石油エーテル~石油エーテル:酢酸エチル=4:1)によって分離し精製して、31cを得た。
LCMS(ESI)m/zボロン酸:MS=251.2[M+1]
工程4
31c(2.5g、7.86mmol)をピリジン(20mL)に溶解させ、メチルスルホニルクロリド(2.39g、20.86mmol、1.61mL)を滴下し、反応溶液を25℃で1時間撹拌した。反応溶液に水(300mL)を添加し、大量の固体を析出させ、濾過し、ケーキを回転蒸発機で、トルエン及び水を除去(10mL*2)して、31dを得た。
LCMS(ESI)m/zボロン酸:MS=329.1[M+1]
工程5
20c(0.3g、967.45μmol)及び1-クロロ-2-メチル-2-プロパノール(157.55mg、1.45mmol)をN,N-ジメチルホルムアミド(5mL)に添加し、更に炭酸カリウム(401.12mg、2.90mmol)を添加し、反応溶液を80℃で12時間撹拌した。反応溶液に100mLの酢酸エチル及び200mLの水を添加して分層させ、有機相を300mLの半飽和食塩水で洗浄し、有機相を乾燥し、濾過し減圧濃縮して、粗生成物をカラムクロマトグラフィー(ジクロロメタン:メタノール=1:0~10:1)によって精製して、31eを得た。
LCMS(ESI)m/z:383.1[M+1]
工程6
化合物31e(0.09g、235.48μmol)、化合物31d(111.96mg、282.58μmol)、炭酸カリウム(97.63mg、706.44μmol)及びPd(dppf)Cl(19.23mg、23.55μmol)を水(1mL)及びアセトニトリル(1mL)に添加し、窒素ガスで3回置換した後、反応溶液を60℃で2時間撹拌した。反応溶液を減圧濃縮し、アセトニトリルを除去し、更に酢酸エチル200mL及び水300mLを添加して、抽出して分層させ、有機相を乾燥し、濾過し、減圧濃縮し、粗生成物をカラムクロマトグラフィー(ジクロロメタン:メタノール=50:1~10:1)によって精製して、化合物31を得た。
LCMS(ESI)m/z:539.1[M+1]
H NMR(400MHz,DMSO-d)δ10.09-9.87(m,1H),9.11(s,1H),8.70(m,1H),8.37(m,1H),8.27(m,1H),8.19-8.04(m,2H),8.02-7.83(m,2H),7.79-7.59(m,3H),4.84-4.69(m,1H),4.13-3.95(m,2H),3.13-3.02(m,3H),1.21-1.00(m,6H).
表6の化合物は、前記実施例31のスキームと類似した工程を参照して製造した。特に、化合物36は、化合物37を開始原料として、実施例30のスキームと類似した工程で製造した。得られた化合物のトリフルオロ酢酸塩又は、塩酸塩を炭酸水素ナトリウム溶液に添加し、酢酸エチルで抽出し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮して、当該化合物を得た。
Figure 2022536188000101
Figure 2022536188000102
Figure 2022536188000103
Figure 2022536188000104
Figure 2022536188000105
実施例41
Figure 2022536188000106
合成スキーム:
Figure 2022536188000107
工程一
ビス(ピナコラート)ジボロン(1g、3.94mmo)、炭酸カリウム(742.18mg、5.37mmol)、トリシクロヘキシルホスフィン(200.79mg、716.00μmol)、化合物1h(992.08mg、3.58mmol)及び酢酸パラジウム(160.75mg、716.00μmol)をエチレングリコールジメチルエーテル(10mL)及び水(0.1mL)を含むボトルに添加し、窒素ガスで3回置換し、当該反応溶液を100℃で12時間撹拌した。反応溶液を10mLの水に添加し、酢酸エチル(10mL*3)で抽出し、有機相で乾燥して濾過し、減圧濃縮した。粗生成物をカラムクロマトグラフィー(石油エーテル~石油エーテル:酢酸エチル=1:2)によって精製して、41aを得た。
LCMS(ESI)m/z:325.1[M+H]
工程2
2,6-ジクロロ-4-ヨードピリジン(5g、18.26mmol)、2,4-ジフルオロフェニルボロン酸(2.88g、18.26mmol)、Pd(dppf)Cl(1.34g、1.83mmol)、炭酸ナトリウム(4.84g、45.64mmol)をエチレングリコールジメチルエーテル(30mL)及び水(5mL)のボトルに添加し、窒素ガスで3回置換し、当該反応を90℃で1時間撹拌した。反応溶液を20mLの水に添加し、酢酸エチル(20mL*2)で抽出し、有機相を乾燥し、濾過し、減圧濃縮した。粗生成物をカラム(石油エーテル)によって分離し精製して、化合物41cを得た。
工程3
41a(150mg、462.70μmol)、化合物41c(240.67mg、925.40μmol)、トリシクロヘキシルホスフィン(45.41mg、161.94μmol)、リン酸カリウム(294.65mg、1.39mmol)、Pd(dba)(84.74mg、92.54μmol)をN,N-ジメチルホルムアミド(15mL)のボトルに添加し、当該反応溶液を100℃のマイクロウエーブで1時間反応させた。反応溶液を50mLの半飽和食塩水に添加し、酢酸エチル(20mL*2)で抽出し、有機相を合わせて、半飽和塩水(20mL*2)で洗浄し、有機相を乾燥し、濾過し、減圧濃縮した。粗生成物を15mLのメチルtert-ブチルエーテルでスラリー化し、吸引濾過した、ケーキを15mLのメチルtert-ブチルエーテルで洗浄し、ケーキを濃縮し残留のメチルtert-ブチルエーテルを除去し、化合物41bを得た。
LCMS(ESI)m/z:422.0[M+H]
工程4
41b(25mg、59.27μmol)、メチルスルホンアミド(22.55mg、237.06μmol)、炭酸セシウム(57.93mg、177.80μmol)、酢酸パラジウム(6.65mg、29.63μmol)、Xantphos(17.15mg、29.63μmol)を1,4ジオキサン(5mL)の密封されたチューブに添加し、窒素ガスで3回置換し、当該反応溶液を120℃で2時間撹拌した。反応溶液を減圧濃縮し乾燥させた。粗生成物をカラムクロマトグラフィー:(Waters Xbridge BEH C18100*30mm*10μm;移動相:[水(10mMの重炭酸アンモニウム)-アセトニトリル];B(アセトニトリル)%:25%~60%、8min)によって分離して、化合物41を得た。
LCMS(ESI)m/z:481.2[M+H]
H NMR(400MHz,DMSO-d)δ10.84(brs,1H),9.07(s,1H),8.84-8.86(m,1H),8.74(s,1H),8.32(s,1H),8.07(s,1H),7.75-7.77(m,1H),7.66-7.69(m,2H),7.45-7.50(m,1H),7.30-7.45(m,1H),6.84(s,1H),3.89(s,3H),3.57(s,3H).
表7の化合物は、前記実施例41のスキームと類似した工程を参照して製造した。
Figure 2022536188000108
実施例47
Figure 2022536188000109
合成スキーム:
Figure 2022536188000110
工程1
化合物31c(0.2g、628.68μmol)をピリジン(5mL)に溶解させ、更にシクロプロピルスルホニルクロリド(176.77mg、1.26mmol)を添加し、反応溶液を25℃で2時間撹拌した。反応溶液に酢酸エチル(100mL)及び塩酸(1N、100mL)を添加し、抽出して分層させ、有機相を乾燥して濾過し、濃縮して、粗生成物を得た。粗生成物をカラムクロマトグラフィー(石油エーテル:酢酸エチル=10:1)によって精製して、化合物47aを得た。
LCMS(ESI)m/z:355.0[M-68+1]
工程2
化合物47a(123.25mg、291.89μmol)、化合物21a(0.12g、243.24μmol)、炭酸カリウム(100.85mg、729.72μmol)及び1,1-ビス(ジフェニルホスフィノ)フェロセンパラジウムクロリドジクロロメタン(19.86mg、24.32μmol)をアセトニトリル(5mL)及び水(5mL)に添加し、窒素ガスで3回置換し、反応溶液を60℃で2時間撹拌した。反応溶液を減圧濃縮して、アセトニトリルを除去し、更に酢酸エチル(200mL)及び水(300mL)を抽出して分層させ、有機相を乾燥して濾過し、減圧濃縮して、粗生成物を得た。粗生成物をTLCプレート(石油エーテル:酢酸エチル=1:1)によって分離し精製して、合物47bを得た。
LCMS(ESI)m/z:676.3[M+1]
工程3
化合物47b(0.04g、59.19μmol)を酢酸エチル(2mL)に添加し、更に塩酸/酢酸エチル(4M、5mL、337.87eq)に添加し、反応溶液を25℃で0.5時間撹拌した。反応溶液をスピン乾燥し、メタノール(2mL)で溶解させ、高速液体クロマトグラフィー(カラム:Welch Xtimate C18150*25mm*5μm;移動相:[水(0.04%のHCl)-アセトニトリル];B(アセトニトリル)%:20%~50%,8min)によって精製して、化合物47の塩酸塩を得た。
LCMS(ESI)m/z:576.4[M+1]
H NMR(400MHz,DMSO-d)δ9.97-10.01(m,1H),9.11-9.15(m,1H),8.88-8.93(m,1H),8.67-8.70(m,1H),8.40-8.44(m,1H),8.34-8.37(m,1H),8.12-8.15(m,1H),7.90-7.96(m,1H),7.84-7.88(m,1H),7.70-7.75(m,1H),7.64-7.70(m,2H),4.47-4.58(m,2H),3.37-3.45(m,2H),3.06-3.16(m,2H),2.71-2.77(m,1H),2.12-2.26(m,4H),1.49-1.54(m,1H),0.93-1.03(m,4H).
実施例48
Figure 2022536188000111
合成スキーム:
Figure 2022536188000112
工程1
化合物1g(1.0g、5.04mmol)をジクロロメタン(10mL)に添加し、ヨードスクシンイミド(1.36g、6.05mmol)を反応系に添加し、反応溶液を25℃で2時間撹拌した。反応溶液に飽和炭酸水素ナトリウム(100mL)及びジクロロメタン(100mL)を添加し、抽出して分層させ、有機相を乾燥して濾過し、減圧濃縮して、化合物48aを得た。
LCMS(ESI)m/z:325.1[M+1]
工程2
化合物31c(1.35g、4.26mmol)、化合物48a(1.15g、3.55mmol)、炭酸カリウム(1.47g、10.64mmol)及び1,1-ビス(ジフェニルホスフィノ)フェロセンパラジウムクロリドジクロロメタン(289.75mg、354.81μmol)をアセトニトリル(10mL)及び水(10mL)に添加し、窒素ガスで3回置換した後、反応溶液を60℃で2時間撹拌した。反応溶液を減圧濃縮しアセトニトリルを除去し、酢酸エチル(50mL)及び水(50mL)を添加し、抽出して分層させ、有機相を乾燥し、濾過し、濃縮して、粗生成物を得た。粗生成物をカラム(石油エーテル:酢酸エチル=1:1)によって分離し精製して、化合物48bを得た。
LCMS(ESI)m/z:403.3[M+1]
工程3
化合物48b(0.8g、1.99mmol)を臭化水素酸の酢酸溶液(10mL、純度33%)に添加し、25℃で0.5時間撹拌した。反応溶液を0℃に冷却し、亜硝酸ナトリウム(685.89mg、5.96mmol)の水(10mL)溶液をゆっくりと添加し、温度を0~5℃に制御し、反応溶液を0~5℃で0.5時間撹拌した。臭化第一銅(855.57mg、5.96mmol、181.65μL)の臭化水素酸の酢酸溶液(10mL、含有量33%)を反応系に添加し、当該反応溶液を70℃で1時間撹拌した。反応溶液を15℃に冷却し、反応溶液を氷水(300mL)及びジクロロメタン(300mL*3)に添加し、抽出し、分層させて、飽和炭酸水素ナトリウム(250mL)で有機相を洗浄し、有機相を乾燥して濾過し、減圧濃縮した。粗生成物をカラム(石油エーテル:酢酸エチル=1:1)によって分離し精製して、化合物48cを得た。
LCMS(ESI)m/z:466.2/468.2[M+1]
工程4
化合物48c(0.1g、214.46μmol)をトルエン(2mL)に添加し、tert-ブトキシドナトリウム(61.83mg、643.39μmol)、(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチルアミン塩酸塩(26.71mg、42.89μmol)及びトリス(ジベンジリデンアセトン)ジパラジウム(19.64mg、21.45μmol)を添加し、窒素ガスで3回置換し、当該反応溶液を100℃で2時間撹拌した。反応溶液を減圧濃縮し乾燥した。粗生成物を高速液体クロマトグラフィー(カラム:Waters Xbridge BEHC18 100*30mm*10μm;移動相:[水(10mMの重炭酸アンモニウム)-アセトニトリル];B(アセトニトリル)%:35%~60%,8min)によって精製して、化合物48を得た。
LCMS(ESI)m/z:517.4[M+1]
H NMR(400MHz,DMSO-d)δ9.00-9.08(m,1H),8.61-8.67(m,1H),8.25-8.34(m,2H),8.00-8.10(m,2H),7.90-7.98(m,1H),7.55-7.64(m,1H),7.29-7.36(m,1H),7.00-7.09(m,2H),5.99-6.07(m,1H),4.25-4.35(m,1H),4.04-4.13(m,1H),3.85-3.93(m,3H),3.68-3.78(m,1H),3.23-3.29(m,2H),1.35-1.41(m,3H),1.27-1.33(m,3H).
表8の化合物は、前記実施例48のスキームと類似した工程を参照して製造した。
Figure 2022536188000113
実施例51
Figure 2022536188000114
合成スキーム:
Figure 2022536188000115
工程1
化合物21a(0.06g、121.62μmol)、化合物5e(79.41mg、182.43μmol)、リン酸カリウム(77.45mg、364.86μmol)及び1,1-ビス(ジフェニルホスフィノ)フェロセンパラジウムクロリド(8.90mg、12.16μmol)をジオキサン(2mL)及び水(2mL)に添加し、窒素ガスで3回置換した後、反応溶液を90℃で2時間撹拌した。反応溶液に酢酸エチル(50mL)及び水(50mL)を添加して抽出し分層させ、有機相を乾燥し、濾過し、濃縮して、化合物51aを得た。
LCMS(ESI)m/z:675.4[M+1]
工程2
化合物51a(0.045g、66.69μmol)をメタノール(2mL)に添加し、塩酸メタノール(4M、2mL)を反応系に添加し、反応溶液を25℃で1時間撹拌した。反応溶液を減圧濃縮し、乾燥して、化合物51の塩酸塩を得た。
LCMS(ESI)m/z:575.4[M+1]
H NMR(400MHz,DMSO-d)δ9.92-10.02(m,1H),9.11-9.18(m,1H),8.84-8.97(m,1H),8.59-8.73(m,1H),8.39-8.46(m,2H),8.13-8.17(m,1H),7.93-8.00(m,1H),7.65-7.76(m,2H),7.60-7.64(m,1H),7.52-7.56(m,1H),7.38-7.47(m,1H),7.29-7.32(m,1H),7.21-7.29(m,1H),4.47-4.58(m,1H),3.38-3.41(m,2H),3.04-3.19(m,2H),2.73-2.81(m,1H),2.08-2.30(m,4H),0.95-1.03(m,4H).
化合物51の塩酸塩を炭酸水素ナトリウム溶液に添加し、酢酸エチルで抽出し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮して、化合物51を得た。
実施例52
Figure 2022536188000116
合成スキーム:
Figure 2022536188000117
工程1
化合物1j(2.2g、5.48mmol)を臭化水素(30mL、純度33%)水溶液に添加し、25℃で0.5時間撹拌した。0℃に冷却し、亜硝酸ナトリウム(1.89g、16.44mmol)の水(20mL)溶液をゆっくりと添加し、温度を0~5℃に制御し、反応溶液を0~5℃で0.5時間撹拌し、更に臭化第一銅(2.36g、16.44mmol、500.77μL)の臭化水素(20mL、純度33%)溶液を添加し、反応溶液を70℃で1時間撹拌した。反応溶液を20℃に冷却し、反応溶液を氷水(300mL)に添加し、ジクロロメタン(300mL*3)で抽出した後、飽和炭酸水素ナトリウム(250mL)で有機相を洗浄し、有機相を乾燥し、濾過し、減圧濃縮し、粗生成物をカラム(石油エーテル:酢酸エチル=1:0~1:1)によって分離し、精製して、化合物52aを得た。
LCMS(ESI)m/z:465.0[M+1]
工程2
(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチルアミン塩酸塩(216.17mg、1.29mmol、214.03μL、HCl)及び化合物52a(0.5g、1.07mmol)をトルエン(10mL)に添加し、更にtert-ブトキシドナトリウム(309.81mg、3.22mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(133.82mg、214.92μmol)及び4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(98.40mg、107.46μmol)を添加し、窒素ガスで3回置換し、反応溶液を100℃で2時間撹拌した。反応溶液に酢酸エチル(200mL)及び水(100mL)を添加して抽出して分層させ、有機相を乾燥し、濾過し、減圧濃縮した。粗生成物をカラムクロマトグラフィー(ジクロロメタン:メタノール=100:1~10:1)によって精製して、粗生成物を得た。粗生成物を高速液体クロマトグラフィー(カラム:Waters Xbridge Prep OBD C18 150*40mm*10μm;移動相:[水(10mMの重炭酸アンモニウム)-アセトニトリル];B(アセトニトリル)%:45%~70%,8min)によって精製して、化合物52を得た。
LCMS(ESI)m/z:516.2[M+1]
H NMR(400MHz,DMSO-d)δ8.99-9.06(m,1H),8.25-8.34(m,2H),8.01-8.05(m,1H),7.92-7.99(m,1H),7.53-7.69(m,2H),7.31-7.40(m,1H),7.15-7.23(m,1H),6.91-7.04(m,2H),6.62-6.70(m,1H),5.90-6.01(m,1H),4.24-4.34(m,1H),4.03-4.13(m,1H),3.81-3.97(m,3H),3.66-3.75(m,1H),3.21-3.28(m,2H),1.15-1.51(m,6H).
工程3
化合物52(0.09g、174.57μmol)を硫酸(33.18g、169.17mmol、18.03mL、純度50%)に溶解させ、反応溶液を70℃で2時間撹拌した。反応溶液に飽和炭酸ナトリウム溶液を添加しpHを8に調整し、酢酸エチル(200mL)を添加して、抽出し分層させ、有機相を乾燥し、濾過し、減圧濃縮して、粗生成物を得た。粗生成物をTLCプレート(酢酸エチル:メタノール=10:1)によって精製した後、高速液体クロマトグラフィー(カラム:Waters Xbridge BEH C18 100*30mm*10μm;移動相:[水(10mMの重炭酸アンモニウム)-アセトニトリル];B(アセトニトリル)%:25%~55%,8min)によって精製して、化合物53を得た。
LCMS(ESI)m/z:476.2[M+1]
H NMR(400MHz,DMSO-d)δ8.98-9.09(m,1H),8.22-8.36(m,2H),7.89-8.09(m,2H),7.48-7.72(m,2H),7.28-7.42(m,1H),7.13-7.25(m,1H),6.87-7.07(m,2H),6.56-6.72(m,1H),5.65-5.87(m,1H),4.72-4.87(m,1H),4.51-4.67(m,1H),3.80-4.02(m,3H),3.63-3.76(m,1H),3.36-3.49(m,3H),2.93-3.11(m,1H).
表9の化合物は、前記実施例52のスキームと類似した工程を参照して製造した。
Figure 2022536188000118
生物学的試験データ:
実験例1:本発明の化合物の体外酵素活性試験
33P同位体標識キナーゼ活性試験(Reaction Biology Corp)を使用してIC50値を測定して、ヒトFGFR1、FGFR2、VEGFR2に対する試験化合物の阻害能力を評価した。
バッファー条件:20mMのHepes(pH7.5)、10mMのMgCl、1mMのEGTA、0.02%のBrij35、0.02mg/mLのBSA、0.1mMのNaVO、2mMのDTT、1%のDMSO。
実験工程:温室下で、試験化合物をDMSOに溶解させ、10mMの溶液を調製して準備した。基質を新しく調製したバッファーに溶解させ、その中に試験キナーゼを加えて均一に混合した。音響技術(Echo550)を使用して、試験化合物の溶解されたDMSO溶液を上記均一に混合した反応溶液に加えた。反応溶液中の化合物濃度は、3μM、1μM、0.333μM、0.111μM、37.0nM、12.3nM、4.12nM、1.37nM、0.457nM、0.152nMである。15分間インキュベーションした後、33P-ATP(活性0.01μCi/μL、対応する濃度は表10に示される)を添加し、反応を開始した。FGFR1、KDR及び反応溶液中の濃度の情報は表10に挙げられた。温室で120分間反応させた後、反応液をP81イオン交換濾紙(Whtman#3698-915)にスポットした。濾紙を0.75%のリン酸溶液で繰り返し洗浄した後、濾紙上に残ったリン酸化基質の放射能を測定した。キナーゼ活性データは、試験化合物を含むキナーゼ活性とブランク群(DMSOのみを含む)のキナーゼ活性の比で表し、Prism4ソフトウェア(GraphPad)によりカーブフィッティングを行ってIC50を得、実験結果は表11に示した通りである。
Figure 2022536188000119
Figure 2022536188000120
Figure 2022536188000121
Figure 2022536188000122
結論:本発明の化合物は、優れたFGFR1、FGFR2、VEGFR2キナーゼ活性を有する。
実験例2:本発明の化合物の胃癌細胞株SNU-16細胞活性試験
実験目的:
FGFR2を発現するヒト胃癌SNU-16細胞に対する試験化合物の増殖阻害効果を評価する。
実験方法:
試験に使用された化合物は、3倍に濃度希釈し、濃度は10μMから、3倍系希釈液から初め、9つの濃度、10μM、2.50μM、0.62μM、0.156μM、39.1nM、9.8nM、2.4nM、0.61nM、0.15nM。
機器:
(1)Promega CellTiter-Glo発光細胞活力試験キット(Promega-G7573)。
(2)2104EnVisionマルチタグリーダー、PerkinElmer。
結果分析:
試験化合物の阻害率(IR)は、以下の式によって決定される:IR(%)=(1-(RLU化合物-RLUブランク)/(RLU対照-RLUブランク))*100%。異なる使用量の化合物の阻害率をExcelファイルで計算し、パラメトリックカーブフィッティング(GraphPad Software)によって化合物IC50データを得、実験結果は表12に示した通りである。
Figure 2022536188000123
結論:本発明の化合物は、SNU-16細胞活性において、細胞の増殖に有意な阻害作用を有する。
実験例3:hERGカリウムイオンチャネルの阻害試験
実験目的:
自動パッチクランプ法を使用し、hERGカリウムイオンチャネルに対する本発明の化合物の効果を検出する。
実験方法:
1.細胞の準備
1.1CHO-hERG細胞を175cm培養ボトルで培養し、細胞密度が60~80%に成長した後、培養溶液を除去し、7mLのPBS(Phosphate Buffered Salineリン酸塩緩衝液)で1回洗浄した後、3mLのDetachinを添加して消化した。
1.2消化完了後、7mLの培養溶液を添加して中和し、遠心分離し、上清溶液を吸引し、更に5mLの培養液を添加して、細胞密度が2~5×10/mLとなるように再懸濁した。
2.溶液の準備
Figure 2022536188000124
3.電気生理学の記録過程
単一細胞のハイインピーダンスシーリングと全細胞パターン形成はすべてQpatch機によって自動的に実行され、全細胞記録パターンを取得した後、細胞を-80mVでクランプし、-50mVの50msの前電圧を添加した後、更に+40mVの5秒間の脱分極刺激を行い、続いて-50mVに5秒間再分極させ、その後-80mVに戻した。当該電圧刺激を15秒ごとに印加して2分間記録した後、細胞外液を与えて5分間記録した後、薬物を投与し、化合物の濃度は、最低試験濃度から開始し、各試験濃度で2.5分間投与し、すべての濃度を連続して投与した後、陽性対照化合物である3μM Cisaprideを投与した。各濃度で少なくとも3つの細胞を試験した(n≧3)。
4.化合物の準備
4.1 化合物母液をDMSOで希釈し、10μLの化合物母液を20μL DMSO溶液に添加し、6つのDMSO濃度まで3倍連続希釈した。
4.2 4μLの6つのDMSO濃度の化合物を取り、396μLの細胞外液に添加し、100倍に希釈し、6つの中間濃度tお験濃度は40μMであり、6つの濃度として、それぞれ40、13.33、4.44、1.48、0.49、0.16μMである。
4.4 最終試験濃度のDMSO含有量は0.2%を超えず、当該濃度のDMSOはhERGカリウムイオンチャネルに影響しなかった。
4.5 化合物の準備はBravo機器を使用して、希釈過程全体を完了した。
5.データ分析
実験データはGraphPad Prism 5.0ソフトウェアによって分析された。
6.品質管理
環境:湿度20~50%、温度22~25℃
試薬:使用した全ての実験試薬はSigma社から購入し、純度>98%
報告書の実験データは、以下の基準を満たさなければならない:全細胞シーリングインピーダンス>100MΩ;尾電流振幅>300pA
薬理学的パラメーター:hERGチャネルに対する複数の濃度でのCisaprideの阻害効果を陽性対照として設定する。
7.試験結果
実施例の化合物hERG IC50値の結果は表14に示した通りである。
Figure 2022536188000125
結論:本発明の化合物は、hERGカリウムイオンチャネルに対して阻害効果を有さず、体外試験は、心臓毒性を引き起こす安全上のリスクを示さなかった。
実験例4:薬物動態研究
実験目的:
Cassette静脈内注射及び胃内投与後の本発明の化合物の薬物動態行動を評価し、胃内投与後のバイオアベイラビリティを研究した。
実験操作:
7~10週齢のBalb/cオスマウスを選択し、静脈及び口服投与の投与量はそれぞれ0.2mg/kg及び1mg/kgであった。マウスは投与する前に少なくとも12時間禁食させ、投与4時間后に回復させ、実験全体を通して、自由に水を飲ませた。本実験は、Cassette投与を使用し、静脈内注射群:各化合物を秤量し5%のDMSO/10%のSolutol/85%のWaterを使用し、ボルテックスで0.1mg/mLの透明な溶液を製造し、使用のために微孔濾膜で濾過した;胃内投与群:各化合物を秤量し、90%(25%HP-β-CD/10%Cremophor ELでpH=4~5に調整し、使用のために均一な懸濁液を製造した。実験当日、静脈内注射群の動物は尾静脈から単回注射により対応する化合物を投与し、投与体積は2mL/kgであり;経口投与群は単回胃内投与により対応する化合物を投与し、投与体積は10mL/kgであった。投与前に動物の体重を測定し、体重により投与量を計算した。サンプルの収集時間は:0.083(注射群)、0.25、0.5、1、2、4、8、24hであった。各時点で伏在静脈から約30uLの全血を収集し、高速液体クロマトグラフィー-タンデム質量分析(LC-MS/MS)に用いられる血漿を調製して、濃度を測定した。すべての動物は在最後の時点でPK試料を収集した後、CO麻酔で安楽死させた。WinNonlinTM Version 6.3(Pharsight、 Mountain View、CA)薬物動態学ソフトの非コンパートメントモデルを使用して血漿濃度を処理し、線形対数ラダー法によって薬物動態パラメーターを計算した。
実験結果:
PK特性の評価結果は表15に示した通りである。
Figure 2022536188000126
結論:本発明の化合物は低い薬物クリアランスを示し、本発明の化合物を経口投与した後、快速にピークに達し、高い経口吸收バイオアベイラビリティを示した。
実験例5:体内動物腫瘍モデルでの抗腫瘍活性試験
試験目的:
マウスのヒト胃癌SNU―16皮下異種移植腫瘍モデルにおける本発明の化合物の抗腫瘍効果を研究する。
実験方法:
1)腫瘍組織の準備:
腫瘍組織の準備:5%のCO、37℃で、飽和湿度の条件で、SNU-16細胞を、10%の牛胎児血清を含むRPMI-160培地で定期的に培養した。細胞の成長によって、週に1~2回、継代又は水分補給し、継代比は1:3~1:4であった。
2)組織接種と群分け
対数増殖期のSNU-16細胞を収集し、細胞を数えた後、50%の無血清RPMI―1640培地と50%のマトリゲルに再懸濁させ、細胞濃度を4×10細胞/mLに調整し;細胞をアイスボックスに置き、1mLのシリンジを使用して細胞懸濁液を吸引し、ヌードマウスの右脇下に皮下注射し、各動物に200μL(8×10細胞/匹)を接種して、SNU-16移植腫瘍モデルを構築した。動物の状態を定期的に観察し、電子ノギスを使用して腫瘍の直径を測定し、Excelスプレッドシートにデータを入力し、腫瘍の体積を計算して、腫瘍の成長をモニタリングした。腫瘍の体積が100~300mmに達したら、健康状態が良く、腫瘍の体積が類似している60匹の担癌マウス(腫瘍の体積104~179mm)を選択し、無作為化ブロック法を使用し、毎群6匹に分けられ、各群の平均腫瘍の体積は約143mmにし、投与を始めた。
3)週に2回腫瘍の直径を測定し、腫瘍の体積を計算し、動物の体重を測って記録した。
腫瘍体積(TV)の計算式は次の通りである:TV(mm)=1×w/2。ここで、1は腫瘍の長径(mm)を表し、wは腫瘍の短径(mm)を表す。
化合物の抗腫瘍効果は、TGI(%)又は相対腫瘍増殖率T/C(%)によって評価される。相対腫瘍増殖率T/C(%)=TRTV/CRTV×100%(TRTV:治療群の平均RTV;CRTV:陰性対照群の平均RTV)。腫瘍測定結果に基づいて相対腫瘍体積(relative tumor volume、RTV)を計算する。計算式はRTV=V/Vである。ここで、Vは群を分けて投与する時(すなわち、D)に測定した腫瘍体積であり、Vtは対応するマウスの特定の測定時の腫瘍体積であり、TRTV及びCRTVは同じ日のデータを取る。
TGI(%)は、腫瘍増殖阻害率を反映する。TGI(%)=[(1-(特定の治療群の投与終了時の平均腫瘍体積-当該治療群の投与開始時の平均腫瘍体積)/(溶媒対照群の治療終了時の平均腫瘍体積-溶媒対照群の治療開始時の平均腫瘍体積))×100%。
試験結果:
ヒト胃癌異系腫瘍抑制因子SNU-16モデルにおいて、25日間連続投与した後、溶媒群と比較して、本発明の化合物は顕著な抗腫瘍活性を表し、腫瘍増殖阻害率(%TGI)はそれぞれ74%、70%であり、相対腫瘍増殖率(%T/C)は36%、40%であった。具体的な結果は表16、図1と図2に示された。
Figure 2022536188000127
実験結論:本発明の化合物はヒト胃癌マウスのモデルにおいて有意な抗腫瘍活性を示した。

Claims (16)

  1. 式(III)で表される化合物又はその薬学的に許容される塩。
    Figure 2022536188000128

    (式中、
    T、T及びTはそれぞれ独立してN及びCHから選択され;
    は、H、C1-3アルキル、テトラヒドロピラニル、ピペリジニル、
    Figure 2022536188000129
    及び
    Figure 2022536188000130

    から選択され、前記C1-3アルキル、テトラヒドロピラニル、ピペリジニル、
    Figure 2022536188000131

    は、1、2、又は3つのRにより任意に置換され;
    とRはそれぞれ独立してH、F、Cl、Br、I、OH及びNHから選択され;
    は、H、C1-3アルキル、C1-3アルコキシ、C3-5シクロアルキル、-CH-1,3ジオキソラニル-及びピロリジニルから選択され、前記C1-3アルキル、C1-3アルコキシ、C3-5シクロアルキル、-CH-1,3ジオキソラニル-及びピロリジニルは1、2又は3つのRにより任意に置換され;
    Lは-N(R)C(=O)-、-N(R)S(=O)-、-N(R)C(=O)N(R)-及び-NR-から選択され;
    及びRはそれぞれ独立してH及びC1-3アルキルから選択され;
    環Aはフェニル及びピリジルから選択され;
    環Bはシクロプロピル、モルホリニル、ピペラジニル、テトラヒドロピラニル、ピラゾリル、イミダゾリル及びトリアゾリルから選択され;
    とRは、それぞれ独立してH、F、Cl、Br、I、OH、NH、CN、CH、N(CH、-S(=O)CH及びベンジルから選択される。)
  2. はH、CH、CHCH、CHCHCH
    Figure 2022536188000132

    から選択され、上記CH、CHCH、CHCHCH
    Figure 2022536188000133

    は1つ、2又は3つのRにより任意に置換される、請求項1に記載の化合物又はその薬学的に許容される塩。
  3. は、H、CH、CHCH
    Figure 2022536188000134

    から選択される、請求項2に記載の化合物又はその薬学的に許容される塩。
  4. はH、シクロプロパニル、CH、CHCH、C(CH、CHCHCH、OCH、-CH-1,3-ジオキソラニル及びピロリジニルから選択され、上記シクロプロパニル、CH、CHCH、C(CH、CHCHCH、OCH、-CH-1,3-ジオキソラニル及びピロリジニルは1、2又は3つのRにより任意に置換される、請求項1~3のいずれか一項に記載の化合物又はその薬学的に許容される塩。
  5. は、H、
    Figure 2022536188000135

    、CH、CHCH、C(CH、OCH
    Figure 2022536188000136

    から選ばれる、請求項4に記載の化合物又はその薬学的に許容される塩。
  6. 及びRはそれぞれ独立してH、CH及びCHCHから選択される、請求項1~3のいずれか一項に記載の化合物又はその薬学的に許容される塩。
  7. Lは-NHC(=O)-、-NHS(=O)-、-NHC(=O)NH-及び-NH-から選択される、請求項6に記載の化合物又はその薬学的に許容される塩。
  8. -L-R
    Figure 2022536188000137

    から選択される、請求項5又は7に記載の化合物又はその薬学的に許容される塩。
  9. 構造単位
    Figure 2022536188000138

    から選択される、請求項1に記載の化合物又はその薬学的に許容される塩。
  10. 環Bは
    Figure 2022536188000139

    から選択される、請求項1~3のいずれか一項に記載の化合物又はその薬学的に許容される塩。
  11. 構造単位
    Figure 2022536188000140

    から選択される、請求項10に記載の化合物又はその薬学的に許容される塩。
  12. 下記式から選択される、請求項1~7のいずれか一項に記載の化合物又はその薬学的に許容される塩。
    Figure 2022536188000141

    (式中、
    とXはそれぞれ独立してCH及びNから選択され、且つXとXは同時にNから選択されない;
    、T、T、T、R、R及びRは、請求項1~7のいずれか一項に定義した通りである。)
  13. 下記式で示される化合物又はその薬学的に許容される塩。
    Figure 2022536188000142

    Figure 2022536188000143

    Figure 2022536188000144

    Figure 2022536188000145

    Figure 2022536188000146
  14. 有効成分としての請求項1~13のいずれか一項に記載の治療有効量の化合物又はその薬学的に許容される塩、及び薬学的に許容される担体を含む医薬組成物。
  15. FGFR及びVEGFR二重阻害剤に関連する薬物の調製における、請求項1~13のいずれか一項に記載の化合物又はその薬学的に許容される塩、又は請求項14に記載の組成物の使用。
  16. 上記FGFR及びVEGFRの二重阻害剤に関連する薬物が固形腫瘍に使用する薬物であることを特徴とする請求項15に記載の使用。
JP2021574346A 2019-06-14 2020-06-12 Fgfrとvegfr二重阻害剤としての縮合環系化合物 Active JP7343622B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN201910516134.1 2019-06-14
CN201910516134 2019-06-14
CN201911044514 2019-10-30
CN201911044514.6 2019-10-30
CN202010033842 2020-01-13
CN202010033842.2 2020-01-13
PCT/CN2020/095864 WO2020249096A1 (zh) 2019-06-14 2020-06-12 作为fgfr和vegfr双重抑制剂的并环类化合物

Publications (2)

Publication Number Publication Date
JP2022536188A true JP2022536188A (ja) 2022-08-12
JP7343622B2 JP7343622B2 (ja) 2023-09-12

Family

ID=73781948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021574346A Active JP7343622B2 (ja) 2019-06-14 2020-06-12 Fgfrとvegfr二重阻害剤としての縮合環系化合物

Country Status (8)

Country Link
US (1) US20220315581A1 (ja)
EP (1) EP3985005A4 (ja)
JP (1) JP7343622B2 (ja)
KR (1) KR20220020918A (ja)
CN (1) CN113993867B (ja)
AU (1) AU2020292664B2 (ja)
CA (1) CA3141424C (ja)
WO (1) WO2020249096A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3601262B1 (en) * 2017-03-23 2022-11-09 Aurigene Discovery Technologies Limited Process for the preparation of a sulfonamide structured kinase inhibitor
SG11202102110PA (en) * 2018-09-06 2021-04-29 Orion Corp Novel hydrochloride salt forms of a sulfonamide structured kinase inhibitor
US20240124450A1 (en) * 2022-09-21 2024-04-18 Pfizer Inc. Novel SIK Inhibitors

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002501532A (ja) * 1997-05-30 2002-01-15 メルク エンド カンパニー インコーポレーテッド 新規血管形成阻害薬
WO2002088107A1 (en) * 2001-04-26 2002-11-07 Eisai Co., Ltd. Nitrogenous fused-ring compound having pyrazolyl group as substituent and medicinal composition thereof
JP2002539126A (ja) * 1999-03-11 2002-11-19 メルク エンド カムパニー インコーポレーテッド チロシンキナーゼ阻害剤
US20040220189A1 (en) * 2003-02-20 2004-11-04 Sugen, Inc. Use of 8-amino-aryl-substituted imidazopyrazines as kinase inhbitors
JP2010513447A (ja) * 2006-12-22 2010-04-30 アステックス、セラピューティックス、リミテッド Fgfrインヒビターとしての二環式ヘテロ環式化合物
JP2010513448A (ja) * 2006-12-22 2010-04-30 アステックス、セラピューティックス、リミテッド 新規化合物
JP2014528469A (ja) * 2011-10-10 2014-10-27 オリオン コーポレーション タンパク質キナーゼ阻害剤
JP2016515604A (ja) * 2013-04-04 2016-05-30 オリオン コーポレーション タンパク質キナーゼ阻害剤
JP2018531218A (ja) * 2015-08-07 2018-10-25 ハルビン チェンバオ ファーマシューティカル カンパニー リミテッド Fgfr及びvegfr阻害剤であるビニル化合物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI2041138T1 (sl) * 2006-07-07 2014-08-29 Bristol-Myers Squibb Company Pirolotriazin kinazni inhibitorji
CN106046007B (zh) * 2015-04-07 2019-02-05 广东众生睿创生物科技有限公司 酪氨酸激酶抑制剂及包含该酪氨酸激酶抑制剂的药物组合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002501532A (ja) * 1997-05-30 2002-01-15 メルク エンド カンパニー インコーポレーテッド 新規血管形成阻害薬
JP2002539126A (ja) * 1999-03-11 2002-11-19 メルク エンド カムパニー インコーポレーテッド チロシンキナーゼ阻害剤
WO2002088107A1 (en) * 2001-04-26 2002-11-07 Eisai Co., Ltd. Nitrogenous fused-ring compound having pyrazolyl group as substituent and medicinal composition thereof
US20040220189A1 (en) * 2003-02-20 2004-11-04 Sugen, Inc. Use of 8-amino-aryl-substituted imidazopyrazines as kinase inhbitors
JP2010513447A (ja) * 2006-12-22 2010-04-30 アステックス、セラピューティックス、リミテッド Fgfrインヒビターとしての二環式ヘテロ環式化合物
JP2010513448A (ja) * 2006-12-22 2010-04-30 アステックス、セラピューティックス、リミテッド 新規化合物
JP2014528469A (ja) * 2011-10-10 2014-10-27 オリオン コーポレーション タンパク質キナーゼ阻害剤
JP2016515604A (ja) * 2013-04-04 2016-05-30 オリオン コーポレーション タンパク質キナーゼ阻害剤
JP2018531218A (ja) * 2015-08-07 2018-10-25 ハルビン チェンバオ ファーマシューティカル カンパニー リミテッド Fgfr及びvegfr阻害剤であるビニル化合物

Also Published As

Publication number Publication date
US20220315581A1 (en) 2022-10-06
KR20220020918A (ko) 2022-02-21
AU2020292664A1 (en) 2022-02-03
JP7343622B2 (ja) 2023-09-12
AU2020292664B2 (en) 2023-04-13
CA3141424C (en) 2023-11-07
WO2020249096A1 (zh) 2020-12-17
EP3985005A4 (en) 2023-07-19
CA3141424A1 (en) 2020-12-17
EP3985005A1 (en) 2022-04-20
CN113993867A (zh) 2022-01-28
CN113993867B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
JP6559275B2 (ja) 置換ベンゼン化合物
JP7343622B2 (ja) Fgfrとvegfr二重阻害剤としての縮合環系化合物
ES2899937T3 (es) Inhibidores de quinasa de pirazolilquinoxalina
KR102499780B1 (ko) Fgfr4 저해제인 헤테로 고리 화합물
CN113490667B (zh) 作为fgfr和vegfr双重抑制剂的咪唑并吡啶衍生物
JP2024505594A (ja) ピリミジン芳香環化合物
JP7214879B2 (ja) c-Met阻害剤としてのピリミジニルを含むトリシクリル系化合物
CN112812100B (zh) 一种具有降解btk激酶的化合物及其制备方法和药学上的应用
JP2021514997A (ja) ピラゾロピリミジン誘導体及びその使用
JP2024505732A (ja) ピリドピリミジノン系誘導体及びその製造方法と使用
WO2020186220A1 (en) Compounds as inhibitors of macrophage migration inhibitory factor
WO2020259626A1 (zh) 作为irak4抑制剂的咪唑并吡啶类化合物
CN113316578B (zh) 杂环化合物、包含其的药物组合物及其制备方法和用途
CN116234551A (zh) 一类1,7-萘啶类化合物及其应用
CN109608464B (zh) 一种放射性碘标记Larotrectinib化合物及其制备方法和应用
JP7300057B2 (ja) Fgfrとvegfr二重阻害剤としてのピリジン誘導体
JP7296017B2 (ja) ベンゾスルタムを含む化合物
CN114072408B (zh) 作为porcupine抑制剂的化合物及其应用
WO2021004533A1 (zh) 作为irak4和btk多靶点抑制剂的噁唑类化合物
DK3189060T3 (en) DERIVATIVES OF MACROCYCLIC N-ARYL-2-AMINO-4-ARYL-PYRIMIDINE POLYETHERS AS FTL3 AND JAK INHIBITORS
JP2023539275A (ja) 新規なrho関連タンパク質キナーゼ阻害剤の調製方法およびその調製方法における中間体
CN112778294A (zh) 5-氨基异噁唑衍生物及其在制备多激酶抑制剂中的应用
KR20210124329A (ko) Pd-l1 면역조절제인 비닐 피리딘 카르복사미드 화합물
WO2011070299A1 (fr) DERIVES DE 9H-BETA-CARBOLINE (OU 9H-PYRIDINO[3,4-b]INDOLE) TRISUBSTITUES, LEUR PREPARATION ET LEUR UTILISATION THERAPEUTIQUE
CN115515958A (zh) 一种新型磺酰胺类menin-MLL相互作用抑制剂、其制备方法及医药用途

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230831

R150 Certificate of patent or registration of utility model

Ref document number: 7343622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150