JP2016176093A - Silver-covered metal powder and method for producing the same - Google Patents

Silver-covered metal powder and method for producing the same Download PDF

Info

Publication number
JP2016176093A
JP2016176093A JP2015055530A JP2015055530A JP2016176093A JP 2016176093 A JP2016176093 A JP 2016176093A JP 2015055530 A JP2015055530 A JP 2015055530A JP 2015055530 A JP2015055530 A JP 2015055530A JP 2016176093 A JP2016176093 A JP 2016176093A
Authority
JP
Japan
Prior art keywords
silver
copper
copper alloy
coated
coated metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015055530A
Other languages
Japanese (ja)
Other versions
JP6956459B2 (en
Inventor
英幸 藤本
Hideyuki Fujimoto
英幸 藤本
孝造 尾木
Kozo Ogi
孝造 尾木
井上 健一
Kenichi Inoue
健一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2015055530A priority Critical patent/JP6956459B2/en
Publication of JP2016176093A publication Critical patent/JP2016176093A/en
Priority to JP2021049786A priority patent/JP7042945B2/en
Application granted granted Critical
Publication of JP6956459B2 publication Critical patent/JP6956459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide silver-covered metal powder in which particles are difficult to be sintered each other, and in the case of being used for a conductive paste, capable of suppressing the secular increase of the viscosity of the conductive paste, and a production method therefor.SOLUTION: The powder of copper or a copper alloy is covered with a silver-containing layer of 7 to 50 mass%, preferably, 8 to 45 mass%, preferably made of a layer of silver or a silver compound, thereafter, the powder of copper or a copper alloy is heated at 60 to 160°C under reducing atmosphere, preferably under hydrogen atmosphere, preferably at 80 to 150°C for 0.5 to 50 hr, preferably for 1 to 40 hr, and surface modification is performed.SELECTED DRAWING: None

Description

本発明は、銀被覆金属粉末およびその製造方法に関し、特に、導電ペーストなどに使用する銀被覆銅粉または銀被覆銅合金粉末およびその製造方法に関する。   The present invention relates to a silver-coated metal powder and a method for producing the same, and more particularly to a silver-coated copper powder or a silver-coated copper alloy powder used for a conductive paste and the like and a method for producing the same.

従来、印刷法などにより電子部品の電極や配線を形成するために、銀粉や銅粉などの導電性の金属粉末に溶剤、樹脂、分散剤などを配合して作製した導電ペーストが使用されている。   Conventionally, in order to form electrodes and wiring of electronic parts by printing methods, etc., conductive pastes prepared by blending a conductive metal powder such as silver powder or copper powder with a solvent, resin, dispersant, etc. have been used. .

しかし、銀粉は、体積抵抗率が極めて小さく、良好な導電性物質であるが、貴金属の粉末であるため、コストが高くなる。一方、銅粉は、体積抵抗率が低く、良好な導電性物質であるが、酸化され易いため、銀粉に比べて保存安定性(信頼性)に劣っている。   However, although silver powder has a very small volume resistivity and is a good conductive material, it is a noble metal powder, and thus costs are high. On the other hand, copper powder has a low volume resistivity and is a good conductive material. However, since it is easily oxidized, it has poor storage stability (reliability) compared to silver powder.

これらの問題を解消するために、導電ペーストに使用する金属粉末として、銅または銅合金の粉末の表面を銀で被覆した銀被覆金属粉末が使用されている。   In order to solve these problems, a silver-coated metal powder in which the surface of a copper or copper alloy powder is coated with silver is used as the metal powder used in the conductive paste.

しかし、従来の銀被覆金属粉末では、銅または銅合金の粉末の表面に銀単独の層が存在するため、耐マイグレーション性が悪くなるという問題がある。   However, the conventional silver-coated metal powder has a problem in that the migration resistance deteriorates because a layer of silver alone exists on the surface of the copper or copper alloy powder.

このような問題を解消するため、表面に銀を被着した銅粒子からなる銀被着銅粉を非酸化性雰囲気中150〜600℃の温度で熱処理することによって銀拡散銅粉を製造する方法(例えば、特許文献1参照)や、銀コート銅粉を湿式還元雰囲気中で加熱する方法が提案されている(例えば、特許文献2参照)。   In order to eliminate such problems, a method for producing silver-diffused copper powder by heat-treating silver-coated copper powder comprising copper particles having silver deposited on the surface at a temperature of 150 to 600 ° C. in a non-oxidizing atmosphere. (For example, refer patent document 1) and the method of heating silver coat copper powder in wet reduction atmosphere is proposed (for example, refer patent document 2).

特開2001−11502号公報(段落番号0006)JP 2001-11502 (paragraph number 0006) 特開2003−105404号公報(段落番号0017)JP 2003-105404 A (paragraph number 0017)

しかし、特許文献1の方法により製造した銀拡散銅粉や、特許文献2の銀コート銅粉などの従来の銀被覆金属粉末は、粒子同士が焼結し易く、導電ペーストの導電性粉体として使用した場合に、銀被覆金属粉末の分散性が低下したり、また、導電ペーストの粘度が経時的に増大して、導電ペーストとして使用するのが困難になるという問題があった。   However, conventional silver-coated metal powders such as silver-diffused copper powder produced by the method of Patent Document 1 and silver-coated copper powder of Patent Document 2 are easy to sinter, and as a conductive powder of a conductive paste. When used, there is a problem that the dispersibility of the silver-coated metal powder is reduced, and the viscosity of the conductive paste increases with time, making it difficult to use as a conductive paste.

したがって、本発明は、このような従来の問題点に鑑み、粒子同士が焼結し難く且つ導電ペーストに使用した場合にその導電ペーストの粘度の経時的な増大を抑制することができる銀被覆金属粉末およびその製造方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention is a silver-coated metal that makes it difficult for particles to sinter and can suppress an increase in the viscosity of the conductive paste over time when used in a conductive paste. An object is to provide a powder and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究した結果、銅または銅合金の粉末を銀含有層により被覆した後、銀含有層で被覆した銅または銅合金の粉末を還元性雰囲気下において60〜160℃で0.5〜50時間加熱して表面改質を行うことにより、粒子同士が焼結し難く且つ導電ペーストに使用した場合にその導電ペーストの粘度の経時的な増大を抑制することができる銀被覆金属粉末を製造することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have coated copper or copper alloy powder with a silver-containing layer, and then applied the copper or copper alloy powder coated with the silver-containing layer under a reducing atmosphere. By heating the surface at 60 to 160 ° C. for 0.5 to 50 hours to modify the surface, the particles are difficult to sinter and when used in a conductive paste, the increase in the viscosity of the conductive paste over time is suppressed. The present inventors have found that a silver-coated metal powder that can be produced can be produced, and have completed the present invention.

すなわち、本発明による銀被覆金属粉末の製造方法は、銅または銅合金の粉末を銀含有層により被覆した後、銀含有層で被覆した銅または銅合金の粉末を還元性雰囲気下において60〜160℃で0.5〜50時間加熱して表面改質を行うことを特徴とする。   That is, in the method for producing a silver-coated metal powder according to the present invention, a copper or copper alloy powder is coated with a silver-containing layer, and then the copper or copper alloy powder coated with the silver-containing layer is 60 to 160 in a reducing atmosphere. The surface modification is performed by heating at a temperature of 0.5 to 50 hours.

この銀被覆金属粉末の製造方法において、銀含有層の被覆量が、銀含有層で被覆した銅または銅合金の粉末に対して7〜50質量%であるのが好ましく、銀含有層が銀または銀化合物からなる層であるのが好ましい。また、銅合金が、1〜50質量%の亜鉛を含み、残部が銅および不可避不純物からなる組成を有するのが好ましい。また、還元性雰囲気が水素雰囲気であるのが好ましく、表面改質の前または後に、銀含有層で被覆した銅または銅合金の粉末を表面処理剤で表面処理するのが好ましい。また、銅または銅合金の粉末をアトマイズ法により製造するのが好ましく、銅または銅合金の粉末のレーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)が0.1〜15μmであるのが好ましい。 In this method for producing a silver-coated metal powder, the coating amount of the silver-containing layer is preferably 7 to 50% by mass with respect to the copper or copper alloy powder coated with the silver-containing layer, and the silver-containing layer is silver or A layer made of a silver compound is preferred. Moreover, it is preferable that a copper alloy has a composition which contains 1-50 mass% zinc and the remainder consists of copper and an unavoidable impurity. The reducing atmosphere is preferably a hydrogen atmosphere, and the surface treatment is preferably performed on the copper or copper alloy powder coated with the silver-containing layer before or after the surface modification. Further, it is preferable to manufacture the copper or powder atomization method of the copper alloy, volume-reduced cumulative 50% particle diameter measured by a laser diffraction type particle size distribution apparatus copper powder or copper alloy (D 50 diameter) 0.1 It is preferably ~ 15 μm.

また、本発明による銀被覆金属粉末は、銅または銅合金の粉末が銀含有層により被覆され、粒子形状を真球としてBET比表面積から算出した粒子径DBET(μm)に対するレーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)の比(D50/DBET)が3.5以下であり、pH0の硫酸水溶液に30分間浸漬したときの銅イオン溶出量が450mg/L以下であることを特徴とする。 Further, the silver-coated metal powder according to the present invention is a laser diffraction particle size distribution with respect to the particle diameter D BET (μm) calculated from the BET specific surface area with a copper or copper alloy powder coated with a silver-containing layer and the particle shape as a true sphere. The ratio (D 50 / D BET ) of volume-based cumulative 50% particle diameter (D 50 diameter) measured by the apparatus is 3.5 or less, and the copper ion elution amount when immersed in a sulfuric acid aqueous solution at pH 0 is 450 mg. / L or less.

この銀被覆金属粉末において、銀含有層の被覆量が、銀含有層で被覆した銅または銅合金の粉末に対して7〜50質量%であるのが好ましく、銀含有層が銀または銀化合物からなる層であるのが好ましい。また、銅合金が、1〜50質量%の亜鉛を含み、残部が銅および不可避不純物からなる組成を有するのが好ましい。また、銅または銅合金の粉末のレーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)が0.1〜15μmであるのが好ましい。 In this silver-coated metal powder, the coating amount of the silver-containing layer is preferably 7 to 50% by mass with respect to the copper or copper alloy powder coated with the silver-containing layer, and the silver-containing layer is made of silver or a silver compound. It is preferable that it is a layer. Moreover, it is preferable that a copper alloy has a composition which contains 1-50 mass% zinc and the remainder consists of copper and an unavoidable impurity. Further, preferably copper or volume cumulative 50% particle size measured by a laser diffraction type particle size distribution apparatus of the powder of the copper alloy (D 50 diameter) is 0.1-15.

さらに、本発明による導電ペーストは、樹脂と溶剤および反応性希釈剤の少なくとも一方とを含み、導電性粉体として上記の銀被覆金属粉末を含むことを特徴とする。   Furthermore, the conductive paste according to the present invention includes a resin, at least one of a solvent and a reactive diluent, and includes the above silver-coated metal powder as the conductive powder.

本発明によれば、粒子同士が焼結し難く且つ導電ペーストに使用した場合にその導電ペーストの粘度の経時的な増大を抑制することができる銀被覆金属粉末およびその製造方法を提供することができる。   According to the present invention, it is possible to provide a silver-coated metal powder that is difficult to sinter between particles and can suppress an increase in the viscosity of the conductive paste over time and a method for producing the same. it can.

本発明による銀被覆金属粉末の製造方法の実施の形態では、銅または銅合金の粉末を銀含有層により被覆した後、銀含有層で被覆した銅または銅合金の粉末を還元性雰囲気下において60〜160℃で0.5〜50時間加熱して表面改質を行う。   In the embodiment of the method for producing a silver-coated metal powder according to the present invention, a copper or copper alloy powder is coated with a silver-containing layer, and then the copper or copper alloy powder coated with the silver-containing layer is reduced to 60 under a reducing atmosphere. Surface modification is performed by heating at ˜160 ° C. for 0.5 to 50 hours.

この銀被覆金属粉末の製造方法において、銀含有層は、銀または銀化合物からなる層であるのが好ましい。また、銀含有層の被覆量は、銀含有層で被覆した銅または銅合金の粉末に対して7〜50質量%であるのが好ましく、8〜45質量%であるのがさらに好ましく、9〜40質量%であるのが最も好ましい。銀含有層の被覆量が7質量%未満では、銀被覆金属粉末の導電性に悪影響を及ぼすので好ましくない。一方、50質量%を超えると、銀の使用量の増加によってコストが高くなるので好ましくない。   In this method for producing a silver-coated metal powder, the silver-containing layer is preferably a layer made of silver or a silver compound. Moreover, it is preferable that the coating amount of a silver content layer is 7-50 mass% with respect to the copper or copper alloy powder coat | covered with the silver content layer, and it is still more preferable that it is 8-45 mass%. Most preferably, it is 40 mass%. A coating amount of the silver-containing layer of less than 7% by mass is not preferable because it adversely affects the conductivity of the silver-coated metal powder. On the other hand, if it exceeds 50 mass%, the cost increases due to an increase in the amount of silver used, which is not preferable.

銅合金の粉末を銀含有層で被覆する場合、銅合金は、1〜50質量%(好ましくは1〜10質量%、さらに好ましくは2〜5質量%)の亜鉛を含み、残部が銅および不可避不純物からなる組成を有するのが好ましい。亜鉛の含有量が1質量%未満では、銅合金粉末中の銅の酸化が著しく、耐酸化性に問題が生じるので好ましくない。一方、50質量%を超えると、銀被覆金属粉末の導電性に悪影響を及ぼすので好ましくない。   When the copper alloy powder is coated with a silver-containing layer, the copper alloy contains 1-50% by mass (preferably 1-10% by mass, more preferably 2-5% by mass) of zinc, with the balance being copper and inevitable. It preferably has a composition comprising impurities. If the zinc content is less than 1% by mass, copper in the copper alloy powder is significantly oxidized, which causes a problem in oxidation resistance. On the other hand, if it exceeds 50% by mass, the conductivity of the silver-coated metal powder is adversely affected.

銅または銅合金の粉末の粒子径は、(ヘロス法によって)レーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)が0.1〜15μmであるのが好ましく、0.3〜10μmであるのがさらに好ましく、1〜5μmであるのが最も好ましい。体積基準累積50%粒子径(D50径)が0.1μm未満では、銀被覆金属粉末の導電性に悪影響を及ぼすので好ましくない。一方、15μmを超えると、微細な配線の形成が困難になるので好ましくない。 As for the particle diameter of the copper or copper alloy powder, the volume-based cumulative 50% particle diameter (D50 diameter) measured by a laser diffraction particle size distribution device (by the Heros method) is preferably 0.1 to 15 μm. More preferably, it is 3-10 micrometers, and it is most preferable that it is 1-5 micrometers. The volume-reduced cumulative 50% particle diameter (D 50 diameter) of less than 0.1 [mu] m, undesirably adversely affects the conductive silver coated metal powder. On the other hand, if it exceeds 15 μm, it is not preferable because formation of fine wiring becomes difficult.

銅または銅合金の粉末は、湿式還元法、電解法、気相法などにより製造してもよいが、合金成分を溶解温度以上で溶解し、タンディッシュ下部から落下させながら高圧ガスまたは高圧水を衝突させて急冷凝固させることにより微粉末とする、(ガスアトマイズ法、水アトマイズ法などの)所謂アトマイズ法により製造するのが好ましい。特に、高圧水を吹き付ける、所謂水アトマイズ法により製造すると、粒子径が小さい銅または銅合金の粉末を得ることができるので、銅または銅合金の粉末を導電ペーストに使用した際に粒子間の接触点の増加による導電性の向上を図ることができる。   Copper or copper alloy powder may be produced by a wet reduction method, electrolysis method, gas phase method, etc., but dissolve high-temperature gas or high-pressure water while dissolving the alloy components above the melting temperature and dropping from the bottom of the tundish. It is preferably produced by a so-called atomizing method (such as a gas atomizing method or a water atomizing method) that is made into a fine powder by colliding and rapidly solidifying. In particular, when manufactured by a so-called water atomization method in which high-pressure water is sprayed, a copper or copper alloy powder having a small particle diameter can be obtained, so contact between particles when copper or copper alloy powder is used as a conductive paste. The conductivity can be improved by increasing the number of points.

銅または銅合金の粉末を銀含有層で被覆する方法として、銅と銀の置換反応を利用する方法や、還元剤を用いる還元法により、銅または銅合金の粉末の表面に銀または銀化合物を析出させる方法を使用することができ、例えば、溶媒中に銅または銅合金の粉末と銀または銀化合物を含む溶液を攪拌しながら銅または銅合金の粉末の表面に銀または銀化合物を析出させる方法や、溶媒中に銅または銅合金の粉末および有機物を含む溶液と溶媒中に銀または銀化合物および有機物を含む溶液とを混合して攪拌しながら銅または銅合金の粉末の表面に銀または銀化合物を析出させる方法などを使用することができる。   As a method of coating copper or copper alloy powder with a silver-containing layer, silver or a silver compound is applied to the surface of copper or copper alloy powder by a method using a substitution reaction between copper and silver or a reduction method using a reducing agent. For example, a method of depositing silver or silver compound on the surface of copper or copper alloy powder while stirring a solution containing copper or copper alloy powder and silver or silver compound in a solvent. In addition, a solution containing copper or a copper alloy powder and an organic substance in a solvent and a solution containing silver or a silver compound and an organic substance in a solvent are mixed and stirred while the silver or silver compound is formed on the surface of the copper or copper alloy powder. For example, a method of precipitating can be used.

この溶媒としては、水、有機溶媒またはこれらを混合した溶媒を使用することができる。水と有機溶媒を混合した溶媒を使用する場合には、室温(20〜30℃)において液体になる有機溶媒を使用する必要があるが、水と有機溶媒の混合比率は、使用する有機溶媒により適宜調整することができる。また、溶媒として使用する水は、不純物が混入するおそれがなければ、蒸留水、イオン交換水、工業用水などを使用することができる。   As this solvent, water, an organic solvent, or a solvent in which these are mixed can be used. When using a mixed solvent of water and organic solvent, it is necessary to use an organic solvent that becomes liquid at room temperature (20 to 30 ° C.). The mixing ratio of water and organic solvent depends on the organic solvent used. It can be adjusted appropriately. In addition, as water used as a solvent, distilled water, ion-exchanged water, industrial water, or the like can be used as long as there is no fear that impurities are mixed therein.

銀含有層の原料として、銀イオンを溶液中に存在させる必要があるため、水や多くの有機溶媒に対して高い溶解度を有する硝酸銀を使用するのが好ましい。また、銅または銅合金の粉末を銀含有層で被覆する反応(銀被覆反応)をできるだけ均一に行うために、固体の硝酸銀ではなく、硝酸銀を溶媒(水、有機溶媒またはこれらを混合した溶媒)に溶解した硝酸銀溶液を使用するのが好ましい。なお、使用する硝酸銀溶液の量、硝酸銀溶液中の硝酸銀の濃度および有機溶媒の量は、目的とする銀含有層の量に応じて決定することができる。   Since silver ions need to be present in the solution as the raw material for the silver-containing layer, it is preferable to use silver nitrate having high solubility in water and many organic solvents. In addition, in order to carry out the reaction of coating copper or copper alloy powder with a silver-containing layer (silver coating reaction) as uniformly as possible, instead of solid silver nitrate, use silver nitrate as a solvent (water, organic solvent or a mixture of these) It is preferred to use a silver nitrate solution dissolved in The amount of silver nitrate solution used, the concentration of silver nitrate in the silver nitrate solution, and the amount of organic solvent can be determined according to the amount of the target silver-containing layer.

銀含有層をより均一に形成するために、溶液中にキレート化剤を添加してもよい。キレート化剤としては、銀イオンと金属銅との置換反応により副生成する銅イオンなどが再析出しないように、銅イオンなどに対して錯安定度定数が高いキレート化剤を使用するのが好ましい。特に、銀被覆金属粉末のコアとなる銅または銅合金の粉末は(主構成要素として)銅を含んでいるので、銅との錯安定度定数に留意してキレート化剤を選択するのが好ましい。具体的には、キレート化剤として、エチレンジアミン四酢酸(EDTA)、イミノジ酢酸、ジエチレントリアミン、トリエチレンジアミンおよびこれらの塩からなる群から選ばれたキレート化剤を使用することができる。   In order to form the silver-containing layer more uniformly, a chelating agent may be added to the solution. As the chelating agent, it is preferable to use a chelating agent having a high complex stability constant with respect to copper ions or the like so that copper ions or the like by-produced by substitution reaction between silver ions and metallic copper do not reprecipitate. . In particular, since the copper or copper alloy powder that is the core of the silver-coated metal powder contains copper (as a main constituent), it is preferable to select a chelating agent in consideration of the complex stability constant with copper. . Specifically, a chelating agent selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, diethylenetriamine, triethylenediamine, and salts thereof can be used as the chelating agent.

銀被覆反応を安定かつ安全に行うために、溶液中にpH緩衝剤を添加してもよい。このpH緩衝剤として、炭酸アンモニウム、炭酸水素アンモニウム、アンモニア水、炭酸水素ナトリウムなどを使用することができる。   In order to perform the silver coating reaction stably and safely, a pH buffer may be added to the solution. As this pH buffering agent, ammonium carbonate, ammonium hydrogen carbonate, aqueous ammonia, sodium hydrogen carbonate, or the like can be used.

銀被覆反応の際には、銀塩を添加する前に溶液中に銅または銅合金の粉末を入れて攪拌し、銅または銅合金の粉末が溶液中に十分に分散している状態で、銀塩を含む溶液を添加するのが好ましい。この銀被覆反応の際の反応温度は、反応液が凝固または蒸発する温度でなければよいが、好ましくは10〜40℃、さらに好ましくは15〜35℃の範囲で設定する。また、反応時間は、銀または銀化合物の被覆量や反応温度によって異なるが、1分〜5時間の範囲で設定することができる。   In the silver coating reaction, before adding the silver salt, the copper or copper alloy powder is put in the solution and stirred, and the copper or copper alloy powder is sufficiently dispersed in the solution. It is preferred to add a solution containing salt. The reaction temperature in the silver coating reaction may be a temperature at which the reaction solution is solidified or evaporated, but is preferably set in the range of 10 to 40 ° C, more preferably 15 to 35 ° C. Moreover, although reaction time changes with the coating amount of silver or a silver compound, and reaction temperature, it can set in the range of 1 minute-5 hours.

表面改質は、銀含有層で被覆した銅または銅合金の粉末を還元性雰囲気下において60〜160℃、好ましくは80〜150℃、さらに好ましくは80〜140℃で0.5〜50時間、好ましくは1〜40時間加熱することによって行う。加熱温度が60℃より低いと、導電ペーストに使用した場合に、時間の経過により導電ペーストの粘度が上昇し、160℃より高いと、粒子同士が焼結し、導電ペーストに使用した場合に、銀被覆金属粉末の分散性が低下する。また、還元性雰囲気は、水素雰囲気(水素ガス100%の雰囲気)であるのが好ましい。   The surface modification is performed by reducing the copper or copper alloy powder coated with the silver-containing layer in a reducing atmosphere at 60 to 160 ° C., preferably 80 to 150 ° C., more preferably 80 to 140 ° C. for 0.5 to 50 hours, Preferably, it is performed by heating for 1 to 40 hours. When the heating temperature is lower than 60 ° C., when used in a conductive paste, the viscosity of the conductive paste increases with the passage of time, and when higher than 160 ° C., when the particles are sintered and used in the conductive paste, Dispersibility of the silver-coated metal powder is lowered. The reducing atmosphere is preferably a hydrogen atmosphere (an atmosphere containing 100% hydrogen gas).

この表面改質の前または後に、銀含有層で被覆した銅または銅合金の粉末を表面処理剤で表面処理するのが好ましく、この表面処理剤が、脂肪酸またはベンゾトリアゾールであるのが好ましい。この脂肪酸として、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、エイコサジエン酸、エイコサトリエン酸、エイコサテトラエン酸、アラキドン酸、ベヘン酸、リグノセリン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸などを使用することができるが、パルミチン酸、ステアリン酸またはオレイン酸を使用するのが好ましい。   Before or after the surface modification, the copper or copper alloy powder coated with the silver-containing layer is preferably surface-treated with a surface treatment agent, and the surface treatment agent is preferably a fatty acid or benzotriazole. These fatty acids include butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, palmitoleic acid, margaric acid, stearic acid, oleic acid, vaccenic acid , Linoleic acid, linolenic acid, arachidic acid, eicosadienoic acid, eicosatrienoic acid, eicosatetraenoic acid, arachidonic acid, behenic acid, lignoceric acid, nervonic acid, serotic acid, montanic acid, melicic acid, etc. Although it is possible, it is preferred to use palmitic acid, stearic acid or oleic acid.

表面処理剤の添加量は、銀被覆金属粉末に対して0.1〜7質量%であるのが好ましく、0.3〜6質量%であるのがさらに好ましく、0.3〜5質量%であるのが最も好ましい。表面処理は、銀含有層で被覆した銅または銅合金の粉末と表面処理剤とを混合して行ってもよいし、銀含有層で被覆した銅または銅合金の粉末のスラリーに表面処理剤を添加して行ってもよい。このように銀被覆金属粉末を表面処理剤(好ましくは0.1〜7質量%の表面処理剤)で表面処理することにより、タップ密度を高めて分散性を向上させて、導電膜の体積抵抗率を低下させるとともに、耐酸化性を付与して、体積抵抗率の変化率を低下させることができる。   The addition amount of the surface treatment agent is preferably 0.1 to 7% by mass, more preferably 0.3 to 6% by mass, and 0.3 to 5% by mass with respect to the silver-coated metal powder. Most preferably. The surface treatment may be performed by mixing a copper or copper alloy powder coated with a silver-containing layer and a surface treatment agent, or adding a surface treatment agent to a slurry of copper or copper alloy powder coated with a silver-containing layer. You may carry out by adding. Thus, by surface-treating the silver-coated metal powder with a surface treatment agent (preferably 0.1 to 7% by mass of a surface treatment agent), the tap density is increased to improve dispersibility, and the volume resistance of the conductive film is increased. The rate of change in volume resistivity can be reduced while reducing the rate and imparting oxidation resistance.

また、本発明による銀被覆金属粉末の実施の形態では、銅または銅合金の粉末が銀含有層により被覆され、粒子形状を真球としてBET比表面積から算出した粒子径DBET(μm)に対するレーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)の比(D50/DBET)が3.5以下、好ましくは3.0以下であり、pH0の硫酸水溶液に30分間浸漬したときの銅イオン溶出量が450mg/L以下、好ましくは420mg/L以下である。D50/DBETが3.5以下であれば、粒子同士の焼結が少なく、導電ペーストに使用した際に銀被覆金属粉末の分散性が良好であり、また、銅イオン溶出量が450mg/L以下であれば、導電ペーストを製造した後に時間の経過による導電ペーストの粘度の上昇を抑制することができる。 In the embodiment of the silver-coated metal powder according to the present invention, the laser for the particle diameter D BET (μm) calculated from the BET specific surface area with copper or copper alloy powder coated with a silver-containing layer and the particle shape as a true sphere. The ratio (D 50 / D BET ) of volume-based cumulative 50% particle diameter (D 50 diameter) measured with a diffractive particle size distribution apparatus is 3.5 or less, preferably 3.0 or less. The amount of elution of copper ions when immersed for a minute is 450 mg / L or less, preferably 420 mg / L or less. When D 50 / D BET is 3.5 or less, there is little sintering between particles, the dispersibility of the silver-coated metal powder is good when used in a conductive paste, and the copper ion elution amount is 450 mg / If it is L or less, an increase in the viscosity of the conductive paste over time can be suppressed after the conductive paste is manufactured.

この銀被覆金属粉末において、銀含有層が銀または銀化合物からなる層であるのが好ましい。また、銀含有層の被覆量は、銀含有層で被覆した銅または銅合金の粉末に対して7〜50質量%であるのが好ましく、8〜45質量%であるのがさらに好ましく、9〜40質量%であるのが最も好ましい。また、銅合金が、1〜50質量%の亜鉛を含み、残部が銅および不可避不純物からなる組成を有するのが好ましい。さらに、銅または銅合金の粉末の粒子径は、(ヘロス法によって)レーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)が0.1〜15μmであるのが好ましく、0.3〜10μmであるのがさらに好ましく、1〜5μmであるのが最も好ましい。 In this silver-coated metal powder, the silver-containing layer is preferably a layer made of silver or a silver compound. Moreover, it is preferable that the coating amount of a silver content layer is 7-50 mass% with respect to the copper or copper alloy powder coat | covered with the silver content layer, and it is still more preferable that it is 8-45 mass%. Most preferably, it is 40 mass%. Moreover, it is preferable that a copper alloy has a composition which contains 1-50 mass% zinc and the remainder consists of copper and an unavoidable impurity. Further, the particle diameter of the copper or copper alloy powder is preferably such that the volume-based cumulative 50% particle diameter (D50 diameter) measured by a laser diffraction particle size distribution apparatus (by the Helos method) is 0.1 to 15 μm. 0.3 to 10 μm is more preferable, and 1 to 5 μm is most preferable.

以下、本発明による銀被覆金属粉末およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the silver-coated metal powder and the method for producing the same according to the present invention will be described in detail.

[実施例1]
銅7.6kgと亜鉛0.4kgを加熱した溶湯をタンディッシュ下部から落下させながら高圧水を吹付けて急冷凝固させ、ろ過し、水洗し、乾燥し、解砕し、分級して、銅合金粉末(銅−亜鉛合金粉末)を得た。
[Example 1]
Copper alloy with 7.6 kg of copper and 0.4 kg of zinc dropped from the bottom of the tundish is sprayed with high-pressure water to rapidly solidify, filtered, washed, dried, crushed, classified, and copper alloy A powder (copper-zinc alloy powder) was obtained.

このようにして得られた(銀被覆前の)銅合金粉末の組成および体積基準累積50%粒子径(D50径)を求めたところ、銅合金粉末中の銅の含有量は95.1質量%、亜鉛の含有量は4.9質量%であり、銅合金粉末はCu95Zn合金の粉末であった。また、銅合金粉末の体積基準累積50%粒子径(D50径)は2.0μmであった。なお、銅合金粉末中の銅および亜鉛の含有量は、銅合金粉末(約2.5g)を塩化ビニル製リング(内径3.2mm×厚さ4mm)内に敷き詰めた後、錠剤型の成型圧縮機(株式会社前川試験製作所製の型番BRE−50)により100kNの荷重をかけて、銅合金粉末のペレットを作製し、このペレットをサンプルホルダー(開口径3.0cm)に入れて蛍光X線分析装置(株式会社リガク製のRIX2000)内の測定位置にセットし、測定雰囲気を減圧下(8.0Pa)とし、X線出力を50kV、50mAとした条件で測定した結果から、装置に付属のソフトウェアで自動計算することによって求め、ナトリウム未満の軽元素を除いた成分の比率を算出した。また、銅合金粉末の体積基準累積50%粒子径(D50径)は、レーザー回折式粒度分布装置(SYMPATEC社製のヘロス粒度分布測定装置(HELOS&RODOS))により測定した。 When the composition of the copper alloy powder thus obtained (before silver coating) and the volume-based cumulative 50% particle diameter (D 50 diameter) were determined, the copper content in the copper alloy powder was 95.1 mass. %, The zinc content was 4.9% by mass, and the copper alloy powder was a Cu 95 Zn 5 alloy powder. The volume cumulative 50% particle size of the copper alloy powder (D 50 diameter) was 2.0 .mu.m. The content of copper and zinc in the copper alloy powder was determined by placing the copper alloy powder (about 2.5 g) in a vinyl chloride ring (inner diameter: 3.2 mm × thickness: 4 mm) and then compressing the tablet mold. A copper alloy powder pellet was produced by applying a load of 100 kN using a machine (model number BRE-50 manufactured by Maekawa Test Co., Ltd.), and this pellet was placed in a sample holder (opening diameter: 3.0 cm) and subjected to fluorescent X-ray analysis. Software attached to the device from the measurement results set in the measurement position in the device (RIX2000 manufactured by Rigaku Co., Ltd.), the measurement atmosphere under reduced pressure (8.0 Pa), and the X-ray output of 50 kV and 50 mA. It calculated | required by calculating automatically and calculated | required the ratio of the component except the light element less than sodium. Further, the volume-based cumulative 50% particle diameter (D 50 diameter) of the copper alloy powder was measured by a laser diffraction particle size distribution device (Heros particle size distribution measurement device (HELOS & RODOS) manufactured by SYMPATEC).

また、EDTA−2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液(溶液1)と、EDTA−2Na二水和物307.1gと炭酸アンモニウム153.5gを純水1223gに溶解した溶液に、硝酸銀51.2gを純水158gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。   Further, a solution (solution 1) in which 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate are dissolved in 720 g of pure water, 307.1 g of EDTA-2Na dihydrate and 153.5 g of ammonium carbonate are purified. A solution (solution 2) obtained by adding a solution obtained by dissolving 51.2 g of silver nitrate in 158 g of pure water to a solution dissolved in 1223 g of water was prepared.

次に、窒素雰囲気下において、得られた銅合金粉末(銅−亜鉛合金粉末)130gを溶液1に加えて、攪拌しながら25℃まで昇温させた。この銅合金粉末(銅−亜鉛合金粉末)が分散した溶液に溶液2を加えて1時間攪拌した後、ろ過し、水洗し、乾燥して、銀被覆銅合金粉末(銀被覆銅−亜鉛合金粉末)を得た。   Next, 130 g of the obtained copper alloy powder (copper-zinc alloy powder) was added to the solution 1 in a nitrogen atmosphere, and the temperature was raised to 25 ° C. while stirring. The solution 2 is added to the solution in which the copper alloy powder (copper-zinc alloy powder) is dispersed, and the mixture is stirred for 1 hour, then filtered, washed with water, and dried to obtain a silver-coated copper alloy powder (silver-coated copper-zinc alloy powder). )

この銀被覆銅合金粉末を水素ガス(100%)雰囲気中において80℃で10時間保持して、銀被覆銅合金粉末の表面改質を行った。   This silver-coated copper alloy powder was held at 80 ° C. for 10 hours in an atmosphere of hydrogen gas (100%) to modify the surface of the silver-coated copper alloy powder.

このようにして得られた銀被覆銅合金粉末の組成、体積基準累積50%粒子径(D50径)、BET比表面積を求めた。 The composition of the silver-coated copper alloy powder thus obtained, the volume cumulative 50% particle diameter (D 50 diameter), was determined a BET specific surface area.

銀被覆銅合金粉末中の銅および亜鉛の含有量は、銀被覆前の銅合金粉末中の銅および亜鉛の含有量と同様の方法により、銀被覆銅合金粉末のペレットを作製して求めた。また、銀被覆銅合金粉末の断面を集束イオンビーム(FIB)加工観察装置(日本電子株式会社製のJEM−9310FIB)によって加工した後、電界放出形走査電子顕微鏡(FE−SEM)(日本電子株式会社製のJSM−6700F)によって観察したところ、銅合金粉末の表面が銀で被覆されていることが確認された。また、銀被覆銅合金粉末の銀(Ag)の被覆量も、銀被覆銅合金粉末中の銅および亜鉛の含有量と同様の方法により求めた。その結果、銀被覆銅合金粉末の銀の被覆量は21.8質量%、銅の含有量は74.9質量%、亜鉛の含有量は3.3質量%であった。   The contents of copper and zinc in the silver-coated copper alloy powder were determined by preparing pellets of silver-coated copper alloy powder by the same method as the contents of copper and zinc in the copper alloy powder before silver coating. Further, after processing the cross section of the silver-coated copper alloy powder with a focused ion beam (FIB) processing observation apparatus (JEM-9310FIB manufactured by JEOL Ltd.), a field emission scanning electron microscope (FE-SEM) (JEOL Ltd.) Observation with JSM-6700F) made by the company confirmed that the surface of the copper alloy powder was coated with silver. The silver (Ag) coating amount of the silver-coated copper alloy powder was also determined by the same method as the copper and zinc contents in the silver-coated copper alloy powder. As a result, the silver coating amount of the silver-coated copper alloy powder was 21.8% by mass, the copper content was 74.9% by mass, and the zinc content was 3.3% by mass.

銀被覆銅合金粉末の体積基準累積50%粒子径(D50径)は、レーザー回折式粒度分布装置(SYMPATEC社製のヘロス粒度分布測定装置(HELOS&RODOS))により測定した。その結果、体積基準累積50%粒子径(D50径)は2.2μmであった。 The volume-based cumulative 50% particle diameter (D 50 diameter) of the silver-coated copper alloy powder was measured with a laser diffraction particle size distribution device (Heros particle size distribution measurement device (HELOS & RODOS) manufactured by SYMPATEC). As a result, the volume cumulative 50% particle diameter (D 50 diameter) was 2.2 .mu.m.

銀被覆銅合金粉末のBET比表面積は、BET比表面積測定装置(ユアサイオニクス株式会社製の4ソーブUS)を用いてBET法により求めた。その結果、銀被覆銅合金粉末のBET比表面積は0.78m/gであった。また、この銀被覆銅合金粉末の真密度をAgとCuとZnの金属単体の密度(Ag:10.49g/cm、Cu:8.92g/cm、Zn:7.14g/cm)の加重平均値として算出すると9.20g/cmになり、粒子形状を真球としてBET比表面積から算出した粒子径DBET(μm)=6/(BET比表面積(m/g)×真密度(g/cm)は0.84μmになる。また、銀被覆銅合金粉末の焼結の度合いを示す指標としてD50/DBETを算出すると2.6になる。なお、D50/DBET=1であれば、レーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)とBET比表面積から算出したDBETが等しいこと、すなわち、個々の粒子が完全に分散している状態を示し、D50/DBETが大きいほど、BET比表面積から算出したDBETに対して、レーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)が大きいこと、すなわち、粒子の焼結が進んでいることを示している。 The BET specific surface area of the silver-coated copper alloy powder was determined by the BET method using a BET specific surface area measuring apparatus (4 Sorb US manufactured by Yours IONICS Inc.). As a result, the BET specific surface area of the silver-coated copper alloy powder was 0.78 m 2 / g. Also, the true density of the metal simple substance of Ag, Cu and Zn density of the silver-coated copper alloy powder (Ag: 10.49g / cm 3, Cu: 8.92g / cm 3, Zn: 7.14g / cm 3) When calculated as a weighted average value of 9.20 g / cm 3 , the particle diameter D BET (μm) = 6 / (BET specific surface area (m 2 / g) × true calculated from the BET specific surface area with the particle shape as a true sphere The density (g / cm 3 ) is 0.84 μm, and D 50 / D BET is calculated to be 2.6 as an index indicating the degree of sintering of the silver-coated copper alloy powder, where D 50 / D if BET = 1, that D BET calculated from the BET specific surface area volume-reduced cumulative 50% particle diameter measured by a laser diffraction type particle size distribution apparatus (D 50 diameter) are equal, i.e., the individual particles are fully dispersed Indicates the status The larger the D 50 / D BET is, the larger the volume-based cumulative 50% particle diameter (D 50 diameter) measured by the laser diffraction particle size distribution device with respect to the D BET calculated from the BET specific surface area, that is, It shows that the sintering of the particles is progressing.

また、銀被覆銅合金粉末5gを液温25℃でpH0の硫酸水溶液45gとともに容量100mLのポリプロピレン製の広口ビンに入れ、高周波出力200Wの超音波洗浄機により超音波を30分間印加した後、得られたスラリーを0.2μmのフィルタにより固液分離して得られた溶出液中の銅イオン量(銅イオン溶出量)をICP法により求めたところ、325mg/Lであった。   Further, 5 g of silver-coated copper alloy powder was put into a 100 mL polypropylene wide-mouth bottle together with 45 g of pH 0 sulfuric acid aqueous solution at a liquid temperature of 25 ° C., and ultrasonic waves were applied for 30 minutes with an ultrasonic washer having a high frequency output of 200 W. The amount of copper ions (copper ion elution amount) in the eluate obtained by solid-liquid separation of the obtained slurry with a 0.2 μm filter was determined to be 325 mg / L.

また、得られた銀被覆銅合金粉末5gを、エチルセルロース(100cps)4gとヒドロキシプロピルメチルセルロースフタレート(信越化学工業株式会社製のHP−55S)5gをテルピネオール(試薬)91gに溶解して作製したビヒクル5gと混練脱泡機で混合した後、三本ロールを5回パスして均一に分散させることによって導電ペーストを作製した。この導電ペーストの作製直後の粘度η1と、25℃恒温で4日間放置した後に測定した粘度η2を、粘度計(Brookfield社製のDV−III粘度計、CP−52コーン)を使用して、1rpm(ずり速度2sec-1)で測定し、粘度増加率=(η2−η1)/η1を求めたところ、導電ペーストの粘度増加率は25%であった。 Further, 5 g of a vehicle obtained by dissolving 5 g of the obtained silver-coated copper alloy powder in 4 g of ethyl cellulose (100 cps) and 5 g of hydroxypropylmethylcellulose phthalate (HP-55S manufactured by Shin-Etsu Chemical Co., Ltd.) in 91 g of terpineol (reagent). After mixing with a kneading and defoaming machine, a conductive paste was prepared by passing three rolls five times and dispersing uniformly. The viscosity η1 immediately after preparation of this conductive paste and the viscosity η2 measured after standing at 25 ° C. for 4 days were measured using a viscometer (Dark-III viscometer, CP-52 cone manufactured by Brookfield) at 1 rpm. When the viscosity increase rate = (η2−η1) / η1 was determined by measuring at (shear rate 2 sec −1 ), the viscosity increase rate of the conductive paste was 25%.

[実施例2]
表面改質の際の加熱時間を40時間とした以外は、実施例1と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Example 2]
The silver-coated copper alloy powder obtained by the same method as in Example 1 except that the heating time at the time of surface modification was 40 hours was determined by the same method as in Example 1 and the composition and volume-based cumulative 50%. The particle diameter (D 50 diameter) and the BET specific surface area were determined, the true density, D BET , D 50 / D BET were calculated, the amount of copper ions in the eluate was determined, and the viscosity increase rate of the conductive paste was determined.

その結果、銀被覆銅合金粉末の銀の被覆量は22.0質量%、銅の含有量は74.8質量%、亜鉛の含有量は3.2質量%であった。また、体積基準累積50%粒子径(D50径)は2.3μmであり、BET比表面積は0.75m/gであった。また、真密度は9.21g/cm、DBETは0.87μm、D50/DBETは2.6になる。また、溶出液中の銅イオン量は237mg/Lであり、導電ペーストの粘度増加率は24%であった。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.0 mass%, the copper content was 74.8 mass%, and the zinc content was 3.2 mass%. The volume cumulative 50% particle diameter (D 50 diameter) is 2.3 .mu.m, BET specific surface area was 0.75 m 2 / g. In addition, the true density is 9.21 g / cm 3 , D BET is 0.87 μm, and D 50 / D BET is 2.6. Moreover, the amount of copper ions in the eluate was 237 mg / L, and the viscosity increase rate of the conductive paste was 24%.

[実施例3]
表面改質の際の加熱温度を100℃とした以外は、実施例1と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Example 3]
A silver-coated copper alloy powder obtained by the same method as in Example 1 except that the heating temperature at the time of surface modification was set to 100 ° C., the composition and volume-based cumulative 50% were obtained by the same method as in Example 1. The particle diameter (D 50 diameter) and the BET specific surface area were determined, the true density, D BET , D 50 / D BET were calculated, the amount of copper ions in the eluate was determined, and the viscosity increase rate of the conductive paste was determined.

その結果、銀被覆銅合金粉末の銀の被覆量は21.8質量%、銅の含有量は74.8質量%、亜鉛の含有量は3.4質量%であった。また、体積基準累積50%粒子径(D50径)は2.1μmであり、BET比表面積は0.77m/gであった。また、真密度は9.20g/cm、DBETは0.85μm、D50/DBETは2.4になる。また、溶出液中の銅イオン量は203mg/Lであり、導電ペーストの粘度増加率は17%であった。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.8% by mass, the copper content was 74.8% by mass, and the zinc content was 3.4% by mass. The volume cumulative 50% particle diameter (D 50 diameter) is 2.1 .mu.m, BET specific surface area was 0.77 m 2 / g. The true density is 9.20 g / cm 3 , D BET is 0.85 μm, and D 50 / D BET is 2.4. The amount of copper ions in the eluate was 203 mg / L, and the viscosity increase rate of the conductive paste was 17%.

[実施例4]
表面改質の際の加熱温度を150℃として加熱時間を40時間とした以外は、実施例1と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Example 4]
The silver-coated copper alloy powder obtained by the same method as in Example 1 except that the heating temperature at the time of surface modification was set to 150 ° C. and the heating time was set to 40 hours. , Volume-based cumulative 50% particle diameter (D 50 diameter), BET specific surface area, true density, D BET , D 50 / D BET are calculated to determine the amount of copper ions in the eluate, and the viscosity of the conductive paste The rate of increase was determined.

その結果、銀被覆銅合金粉末の銀の被覆量は22.1質量%、銅の含有量は74.9質量%、亜鉛の含有量は3.0質量%であった。また、体積基準累積50%粒子径(D50径)は3.0μmであり、BET比表面積は0.62m/gであった。また、真密度は9.21g/cm、DBETは1.05μm、D50/DBETは2.9になる。また、溶出液中の銅イオン量は175mg/Lであり、導電ペーストの粘度増加率は17%であった。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.1% by mass, the copper content was 74.9% by mass, and the zinc content was 3.0% by mass. The volume cumulative 50% particle diameter (D 50 diameter) is 3.0 [mu] m, BET specific surface area was 0.62m 2 / g. The true density is 9.21 g / cm 3 , D BET is 1.05 μm, and D 50 / D BET is 2.9. Moreover, the amount of copper ions in the eluate was 175 mg / L, and the viscosity increase rate of the conductive paste was 17%.

[実施例5]
銅8kgを加熱した溶湯をタンディッシュ下部から落下させながら高圧水を吹付けて急冷凝固させ、ろ過し、水洗し、乾燥し、解砕し、分級して、銅粉を得た。
[Example 5]
While dropping molten metal heated 8 kg from the lower part of the tundish, high-pressure water was sprayed and rapidly solidified, filtered, washed with water, dried, crushed and classified to obtain copper powder.

このようにして得られた(銀被覆前の)銅粉の体積基準累積50%粒子径(D50径)を実施例1と同様の方法により求めたところ、銅粉の体積基準累積50%粒子径(D50径)は2.3μmであった。 Was this way determined in the same manner as in Example 1 resulting (before silver coating) volume-based cumulative 50% particle size of the copper powder (D 50 diameter), the volume-based cumulative 50% particle of copper powder diameter (D 50 diameter) was 2.3 .mu.m.

また、EDTA−2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液(溶液1)と、EDTA−2Na二水和物136.5gと炭酸アンモニウム68.2gを純水544gに溶解した溶液に、硝酸銀22.7gを純水70gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。   Further, a solution (solution 1) in which 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate were dissolved in 720 g of pure water, 136.5 g of EDTA-2Na dihydrate and 68.2 g of ammonium carbonate were purified. A solution obtained by adding a solution obtained by dissolving 22.7 g of silver nitrate in 70 g of pure water to a solution dissolved in 544 g of water was prepared (solution 2).

次に、窒素雰囲気下において、得られた銅粉130gを溶液1に加えて、攪拌しながら25℃まで昇温させた。この銅粉が分散した溶液に溶液2を加えて1時間攪拌した後、ろ過し、水洗し、乾燥して、銀被覆銅粉を得た。   Next, 130 g of the obtained copper powder was added to the solution 1 in a nitrogen atmosphere, and the temperature was raised to 25 ° C. while stirring. The solution 2 was added to the solution in which the copper powder was dispersed and stirred for 1 hour, followed by filtration, washing with water, and drying to obtain a silver-coated copper powder.

この銀被覆銅粉を水素ガス(100%)雰囲気中において100℃で1時間保持して、銀被覆銅粉の表面改質を行った。   The silver-coated copper powder was held in a hydrogen gas (100%) atmosphere at 100 ° C. for 1 hour to modify the surface of the silver-coated copper powder.

次に、得られた銀被覆銅粉80gとパルミチン酸0.24g(銀被覆銅粉に対して0.3質量%)をカッターミルに入れ、20秒間の解砕を2回行うことによって、パルミチン酸で表面処理された銀被覆銅粉を得た。   Next, 80 g of the obtained silver-coated copper powder and 0.24 g of palmitic acid (0.3% by mass with respect to the silver-coated copper powder) were placed in a cutter mill and pulverized for 20 seconds twice, so that palmitic acid was used. A silver-coated copper powder surface-treated with an acid was obtained.

このようにして得られた銀被覆銅粉について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。 This way, the silver-coated copper powder obtained in the same manner as in Example 1, composition, volume-based cumulative 50% particle diameter (D 50 diameter), determine the BET specific surface area, true density, D BET, D 50 / D BET was calculated to determine the amount of copper ions in the eluate, and the viscosity increase rate of the conductive paste.

その結果、銀被覆銅粉の銀の被覆量は10.6質量%、銅の含有量は89.4質量%であった。また、体積基準累積50%粒子径(D50径)は2.3μmであり、BET比表面積は0.51m/gであった。また、真密度は9.09g/cm、DBETは1.29μm、D50/DBETは1.8になる。また、溶出液中の銅イオン量は404mg/Lであり、導電ペーストの粘度増加率は29%であった。 As a result, the silver coating amount of the silver-coated copper powder was 10.6% by mass, and the copper content was 89.4% by mass. The volume cumulative 50% particle diameter (D 50 diameter) is 2.3 .mu.m, BET specific surface area was 0.51 m 2 / g. The true density is 9.09 g / cm 3 , D BET is 1.29 μm, and D 50 / D BET is 1.8. Moreover, the amount of copper ions in the eluate was 404 mg / L, and the viscosity increase rate of the conductive paste was 29%.

[実施例6]
表面改質の際の加熱温度を120℃として加熱時間を10時間とした以外は、実施例5と同様の方法により得られた銀被覆銅粉について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Example 6]
Except for the heating temperature at the time of the surface modification being 120 ° C. and the heating time being 10 hours, the composition of the silver-coated copper powder obtained by the same method as in Example 5 by the same method as in Example 1, Volume-based cumulative 50% particle diameter (D 50 diameter), BET specific surface area are calculated, true density, D BET , D 50 / D BET are calculated, the amount of copper ions in the eluate is calculated, and the viscosity of the conductive paste increases The rate was determined.

その結果、銀被覆銅粉の銀の被覆量は10.4質量%、銅の含有量は89.6質量%であった。また、体積基準累積50%粒子径(D50径)は2.3μmであり、BET比表面積は0.48m/gであった。また、真密度は9.08g/cm、DBETは1.38μm、D50/DBETは1.7になる。また、溶出液中の銅イオン量は297mg/Lであり、導電ペーストの粘度増加率は22%であった。 As a result, the silver coating amount of the silver-coated copper powder was 10.4% by mass, and the copper content was 89.6% by mass. The volume cumulative 50% particle diameter (D 50 diameter) is 2.3 .mu.m, BET specific surface area was 0.48 m 2 / g. The true density is 9.08 g / cm 3 , D BET is 1.38 μm, and D 50 / D BET is 1.7. Moreover, the amount of copper ions in the eluate was 297 mg / L, and the viscosity increase rate of the conductive paste was 22%.

[比較例1]
表面改質を行わなかった以外は、実施例1と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Comparative Example 1]
Except for not performing the surface modification, the silver-coated copper alloy powder obtained in the same manner as in Example 1, by the same method as in Example 1, composition, volume-based cumulative 50% particle diameter (D 50 diameter ), The BET specific surface area was determined, the true density, D BET , D 50 / D BET were calculated, the amount of copper ions in the eluate was determined, and the viscosity increase rate of the conductive paste was determined.

その結果、銀被覆銅合金粉末の銀の被覆量は22.0質量%、銅の含有量は74.9質量%、亜鉛の含有量は3.1質量%であった。また、体積基準累積50%粒子径(D50径)は2.0μmであり、BET比表面積は0.82m/gであった。また、真密度は9.21g/cm、DBETは0.79μm、D50/DBETは2.5になる。また、溶出液中の銅イオン量は467mg/Lであり、導電ペーストの粘度増加率は54%であった。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.0% by mass, the copper content was 74.9% by mass, and the zinc content was 3.1% by mass. The volume cumulative 50% particle diameter (D 50 diameter) is 2.0 .mu.m, BET specific surface area was 0.82m 2 / g. The true density is 9.21 g / cm 3 , D BET is 0.79 μm, and D 50 / D BET is 2.5. The amount of copper ions in the eluate was 467 mg / L, and the viscosity increase rate of the conductive paste was 54%.

[比較例2]
表面改質を行わなかった以外は、実施例5と同様の方法により得られた銀被覆銅粉について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Comparative Example 2]
Except for not performing the surface modification, the silver-coated copper powder obtained in the same manner as in Example 5, in the same manner as in Example 1, composition, volume-based cumulative 50% particle diameter (D 50 diameter) The BET specific surface area was determined, the true density, D BET , D 50 / D BET were calculated, the amount of copper ions in the eluate was determined, and the viscosity increase rate of the conductive paste was determined.

その結果、銀被覆銅粉の銀の被覆量は10.5質量%、銅の含有量は89.5質量%であった。また、体積基準累積50%粒子径(D50径)は2.2μmであり、BET比表面積は0.54m/gであった。また、真密度は9.20g/cm、DBETは1.23μm、D50/DBETは1.7になる。また、溶出液中の銅イオン量は463mg/Lであり、導電ペーストの粘度増加率は69%であった。 As a result, the silver coating amount of the silver-coated copper powder was 10.5% by mass, and the copper content was 89.5% by mass. The volume cumulative 50% particle diameter (D 50 diameter) is 2.2 .mu.m, BET specific surface area was 0.54 m 2 / g. The true density is 9.20 g / cm 3 , D BET is 1.23 μm, and D 50 / D BET is 1.7. The amount of copper ions in the eluate was 463 mg / L, and the viscosity increase rate of the conductive paste was 69%.

[比較例3]
表面改質の際の加熱温度を200℃として加熱時間を40時間とした以外は、実施例1と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Comparative Example 3]
The silver-coated copper alloy powder obtained by the same method as in Example 1 except that the heating temperature during the surface modification was 200 ° C. and the heating time was 40 hours, the composition was the same as in Example 1. , Volume-based cumulative 50% particle diameter (D 50 diameter), BET specific surface area, true density, D BET , D 50 / D BET are calculated to determine the amount of copper ions in the eluate, and the viscosity of the conductive paste The rate of increase was determined.

その結果、銀被覆銅合金粉末の銀の被覆量は21.8質量%、銅の含有量は74.9質量%、亜鉛の含有量は3.3質量%であった。また、体積基準累積50%粒子径(D50径)は4.1μmであり、BET比表面積は0.57m/gであった。また、真密度は9.20g/cm、DBETは1.14μm、D50/DBETは3.6になる。また、溶出液中の銅イオン量は187mg/Lであり、導電ペーストの粘度増加率は19%であった。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.8% by mass, the copper content was 74.9% by mass, and the zinc content was 3.3% by mass. The volume cumulative 50% particle diameter (D 50 diameter) is 4.1 .mu.m, BET specific surface area was 0.57 m 2 / g. The true density is 9.20 g / cm 3 , D BET is 1.14 μm, and D 50 / D BET is 3.6. Moreover, the amount of copper ions in the eluate was 187 mg / L, and the viscosity increase rate of the conductive paste was 19%.

[比較例4]
表面改質を大気雰囲気中において行った以外は、実施例4と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、体積基準累積50%粒子径(D50径)、BET比表面積を求め、真密度、DBET、D50/DBETを算出し、溶出液中の銅イオン量を求めるとともに、導電ペーストの粘度増加率を求めた。
[Comparative Example 4]
The silver-coated copper alloy powder obtained by the same method as in Example 4 except that the surface modification was performed in the air atmosphere, the composition and volume-based cumulative 50% particle diameter ( D 50 diameter), BET specific surface area, true density, D BET , D 50 / D BET were calculated, the amount of copper ions in the eluate was determined, and the viscosity increase rate of the conductive paste was determined.

その結果、銀被覆銅合金粉末の銀の被覆量は22.2質量%、銅の含有量は74.9質量%、亜鉛の含有量は2.9質量%であった。また、体積基準累積50%粒子径(D50径)は2.3μmであり、BET比表面積は0.85m/gであった。また、真密度は9.22g/cm、DBETは0.77μm、D50/DBETは2.9になる。また、溶出液中の銅イオン量は2210mg/Lであり、導電ペーストの粘度が著しく増大して粘度増加率を求めることができなかった。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.2% by mass, the copper content was 74.9% by mass, and the zinc content was 2.9% by mass. The volume cumulative 50% particle diameter (D 50 diameter) is 2.3 .mu.m, BET specific surface area was 0.85 m 2 / g. The true density is 9.22 g / cm 3 , D BET is 0.77 μm, and D 50 / D BET is 2.9. Moreover, the amount of copper ions in the eluate was 2210 mg / L, and the viscosity of the conductive paste was remarkably increased, and the rate of increase in viscosity could not be determined.

これらの実施例および比較例の銀被覆金属粉末の製造条件および特性を表1〜表3に示す。   Tables 1 to 3 show the production conditions and characteristics of the silver-coated metal powders of these examples and comparative examples.

Figure 2016176093
Figure 2016176093

Figure 2016176093
Figure 2016176093

Figure 2016176093
Figure 2016176093

表1〜表4からわかるように、実施例1〜6の銀被覆金属粉末(銀被覆銅粉または銀被覆銅合金粉末)では、D50/DBETが低く、粒子の焼結が進んでいなかった。また、実施例1〜6の銀被覆金属粉末では、溶出液中の銅イオン量が低く、実施例1〜6の銀被覆金属粉末を使用して作製した導電ペーストの粘度増加率は低かった。一方、比較例3の銀被覆金属粉末(銀被覆銅合金粉末)では、D50/DBETが高く、粒子の焼結が進んでいた。また、比較例1、2及び4の銀被覆金属粉末(銀被覆銅粉または銀被覆銅合金粉末)では、溶出液中の銅イオン量が高く、比較例1、2及び4の銀被覆金属粉末(銀被覆銅粉または銀被覆銅合金粉末)を使用して作製した導電ペーストの粘度増加率は高かった。
As can be seen from Tables 1 to 4, in the silver-coated metal powders of Examples 1 to 6 (silver-coated copper powder or silver-coated copper alloy powder), D 50 / D BET is low and the sintering of particles is progressing. There wasn't. Moreover, in the silver covering metal powder of Examples 1-6, the amount of copper ions in an eluate was low, and the viscosity increase rate of the electrically conductive paste produced using the silver covering metal powder of Examples 1-6 was low. On the other hand, in the silver-coated metal powder (silver-coated copper alloy powder) of Comparative Example 3, D 50 / D BET was high, and the sintering of the particles proceeded. Further, in the silver-coated metal powders of Comparative Examples 1, 2, and 4 (silver-coated copper powder or silver-coated copper alloy powder), the amount of copper ions in the eluate is high, and the silver-coated metal powders of Comparative Examples 1, 2, and 4 The viscosity increase rate of the electrically conductive paste produced using (silver-coated copper powder or silver-coated copper alloy powder) was high.

Claims (14)

銅または銅合金の粉末を銀含有層により被覆した後、銀含有層で被覆した銅または銅合金の粉末を還元性雰囲気下において60〜160℃で0.5〜50時間加熱して表面改質を行うことを特徴とする、銀被覆金属粉末の製造方法。 After the copper or copper alloy powder is coated with the silver-containing layer, the copper or copper alloy powder coated with the silver-containing layer is heated at 60 to 160 ° C. for 0.5 to 50 hours in a reducing atmosphere for surface modification. A method for producing a silver-coated metal powder, characterized in that 前記銀含有層の被覆量が、前記銀含有層で被覆した銅または銅合金の粉末に対して7〜50質量%であることを特徴とする、請求項1に記載の銀被覆金属粉末の製造方法。 2. The silver-coated metal powder according to claim 1, wherein a coating amount of the silver-containing layer is 7 to 50% by mass with respect to a copper or copper alloy powder coated with the silver-containing layer. Method. 前記銀含有層が銀または銀化合物からなる層であることを特徴とする、請求項1または2に記載の銀被覆金属粉末の製造方法。 The method for producing a silver-coated metal powder according to claim 1 or 2, wherein the silver-containing layer is a layer made of silver or a silver compound. 前記銅合金が、1〜50質量%の亜鉛を含み、残部が銅および不可避不純物からなる組成を有することを特徴とする、請求項1乃至3のいずれかに記載の銀被覆金属粉末の製造方法。 The method for producing a silver-coated metal powder according to any one of claims 1 to 3, wherein the copper alloy contains 1 to 50% by mass of zinc and the balance is composed of copper and inevitable impurities. . 前記還元性雰囲気が水素雰囲気であることを特徴とする、請求項1乃至4のいずれかに記載の銀被覆金属粉末の製造方法。 The method for producing a silver-coated metal powder according to any one of claims 1 to 4, wherein the reducing atmosphere is a hydrogen atmosphere. 前記表面改質の前または後に、前記銀含有層で被覆した銅または銅合金の粉末を表面処理剤で表面処理することを特徴とする、請求項1乃至5のいずれかに記載の銀被覆金属粉末の製造方法。 The silver-coated metal according to any one of claims 1 to 5, wherein the copper or copper alloy powder coated with the silver-containing layer is surface-treated with a surface treatment agent before or after the surface modification. Powder manufacturing method. 前記銅または銅合金の粉末をアトマイズ法により製造することを特徴とする、請求項1乃至6のいずれかに記載の銀被覆金属粉末の製造方法。 The method for producing a silver-coated metal powder according to any one of claims 1 to 6, wherein the copper or copper alloy powder is produced by an atomizing method. 前記銅または銅合金の粉末のレーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)が0.1〜15μmであることを特徴とする、請求項1乃至7のいずれかに記載の銀被覆金属粉末の製造方法。 8. The volume-based cumulative 50% particle diameter (D 50 diameter) measured by a laser diffraction particle size distribution device of the copper or copper alloy powder is 0.1 to 15 μm. 8. A method for producing the silver-coated metal powder according to claim 1. 銅または銅合金の粉末が銀含有層により被覆され、粒子形状を真球としてBET比表面積から算出した粒子径DBET(μm)に対するレーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)の比(D50/DBET)が3.5以下であり、pH0の硫酸水溶液に30分間浸漬したときの銅イオン溶出量が450mg/L以下であることを特徴とする、銀被覆金属粉末。 Copper or copper alloy powder is coated with a silver-containing layer, and the volume-based cumulative 50% particle diameter measured by a laser diffraction particle size distribution apparatus with respect to the particle diameter D BET (μm) calculated from the BET specific surface area with the particle shape as a true sphere (D 50 diameter) ratio (D 50 / D BET ) is 3.5 or less, and the copper ion elution amount when immersed in a sulfuric acid aqueous solution of pH 0 for 30 minutes is 450 mg / L or less, Silver coated metal powder. 前記銀含有層の被覆量が、前記銀含有層で被覆した銅または銅合金の粉末に対して7〜50質量%であることを特徴とする、請求項9に記載の銀被覆金属粉末。 The silver-coated metal powder according to claim 9, wherein a coating amount of the silver-containing layer is 7 to 50% by mass with respect to a copper or copper alloy powder coated with the silver-containing layer. 前記銀含有層が銀または銀化合物からなる層であることを特徴とする、請求項9または10に記載の銀被覆金属粉末。 The silver-coated metal powder according to claim 9 or 10, wherein the silver-containing layer is a layer made of silver or a silver compound. 前記銅合金が、1〜50質量%の亜鉛を含み、残部が銅および不可避不純物からなる組成を有することを特徴とする、請求項9乃至11のいずれかに記載の銀被覆金属粉末。 The silver-coated metal powder according to any one of claims 9 to 11, wherein the copper alloy contains 1 to 50% by mass of zinc and the balance is made of copper and inevitable impurities. 前記銅または銅合金の粉末のレーザー回折式粒度分布装置により測定した体積基準累積50%粒子径(D50径)が0.1〜15μmであることを特徴とする、請求項9乃至12のいずれかに記載の銀被覆金属粉末。 Wherein the copper or volume-based cumulative 50% particle size measured by a laser diffraction type particle size distribution apparatus of the powder of the copper alloy (D 50 diameter) is 0.1-15, more of claims 9 to 12 A silver-coated metal powder according to claim 1. 樹脂と溶剤および反応性希釈剤の少なくとも一方とを含み、導電性粉体として請求項9乃至13のいずれかの銀被覆金属粉末を含むことを特徴とする、導電ペースト。


A conductive paste comprising a resin, at least one of a solvent and a reactive diluent, and the silver-coated metal powder according to claim 9 as the conductive powder.


JP2015055530A 2015-03-19 2015-03-19 Silver-coated metal powder and its manufacturing method Active JP6956459B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015055530A JP6956459B2 (en) 2015-03-19 2015-03-19 Silver-coated metal powder and its manufacturing method
JP2021049786A JP7042945B2 (en) 2015-03-19 2021-03-24 Silver-coated metal powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015055530A JP6956459B2 (en) 2015-03-19 2015-03-19 Silver-coated metal powder and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021049786A Division JP7042945B2 (en) 2015-03-19 2021-03-24 Silver-coated metal powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2016176093A true JP2016176093A (en) 2016-10-06
JP6956459B2 JP6956459B2 (en) 2021-11-02

Family

ID=57070445

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015055530A Active JP6956459B2 (en) 2015-03-19 2015-03-19 Silver-coated metal powder and its manufacturing method
JP2021049786A Active JP7042945B2 (en) 2015-03-19 2021-03-24 Silver-coated metal powder and its manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021049786A Active JP7042945B2 (en) 2015-03-19 2021-03-24 Silver-coated metal powder and its manufacturing method

Country Status (1)

Country Link
JP (2) JP6956459B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018080090A1 (en) * 2016-10-31 2018-05-03 엘에스니꼬동제련 주식회사 Surface-treated silver powder and method for producing same
WO2018124365A1 (en) * 2016-12-29 2018-07-05 서울과학기술대학교 산학협력단 Method for preparing rice ear-shaped copper particles, rice ear-shaped copper particles prepared thereby, and conductive paste using same
KR20180078208A (en) * 2018-06-29 2018-07-09 엘에스니꼬동제련 주식회사 Surface treated silver powder and manufacturing method of the same
JP2018119187A (en) * 2017-01-26 2018-08-02 株式会社村田製作所 Copper particle structure and copper ink
JP2019031735A (en) * 2017-08-07 2019-02-28 Dowaエレクトロニクス株式会社 Surface treatment silver-coated alloy powder, production method of powder, conductive paste, electronic component and electric device
KR20200000791A (en) * 2018-06-25 2020-01-03 호서대학교 산학협력단 Method for preparing silver coating copper particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105404A (en) * 2001-09-28 2003-04-09 Mitsui Mining & Smelting Co Ltd Producing method for silver coated copper powder, silver coated copper powder obtained by the producing method, conductive paste using the silver coated copper powder and printed circuit board using the conductive paste
WO2008059789A1 (en) * 2006-11-17 2008-05-22 Nippon Mining & Metals Co., Ltd. Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
JP2010144197A (en) * 2008-12-16 2010-07-01 Mitsui Mining & Smelting Co Ltd Metal powder, and method for producing the same
JP2015021143A (en) * 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same
JP2015034310A (en) * 2013-08-07 2015-02-19 三井金属鉱業株式会社 Composite copper particles and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138001A (en) * 1979-04-11 1980-10-28 Kobe Steel Ltd Preparation of powder of alloy steel with low oxygen
JP2007245077A (en) * 2006-03-17 2007-09-27 Hitachi Metals Ltd Catalyst and hydrogen production apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105404A (en) * 2001-09-28 2003-04-09 Mitsui Mining & Smelting Co Ltd Producing method for silver coated copper powder, silver coated copper powder obtained by the producing method, conductive paste using the silver coated copper powder and printed circuit board using the conductive paste
WO2008059789A1 (en) * 2006-11-17 2008-05-22 Nippon Mining & Metals Co., Ltd. Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
JP2010144197A (en) * 2008-12-16 2010-07-01 Mitsui Mining & Smelting Co Ltd Metal powder, and method for producing the same
JP2015021143A (en) * 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same
JP2015034310A (en) * 2013-08-07 2015-02-19 三井金属鉱業株式会社 Composite copper particles and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018080090A1 (en) * 2016-10-31 2018-05-03 엘에스니꼬동제련 주식회사 Surface-treated silver powder and method for producing same
WO2018124365A1 (en) * 2016-12-29 2018-07-05 서울과학기술대학교 산학협력단 Method for preparing rice ear-shaped copper particles, rice ear-shaped copper particles prepared thereby, and conductive paste using same
US10994334B2 (en) 2016-12-29 2021-05-04 Foundation For Research And Business, Seoul National University Of Science And Technology Method for preparing rice ear-shaped copper particles, rice ear-shaped copper particles prepared thereby, and conductive paste using same
JP2018119187A (en) * 2017-01-26 2018-08-02 株式会社村田製作所 Copper particle structure and copper ink
JP2019031735A (en) * 2017-08-07 2019-02-28 Dowaエレクトロニクス株式会社 Surface treatment silver-coated alloy powder, production method of powder, conductive paste, electronic component and electric device
KR20200000791A (en) * 2018-06-25 2020-01-03 호서대학교 산학협력단 Method for preparing silver coating copper particles
KR102175700B1 (en) * 2018-06-25 2020-11-06 호서대학교 산학협력단 Method for preparing silver coating copper particles
KR20180078208A (en) * 2018-06-29 2018-07-09 엘에스니꼬동제련 주식회사 Surface treated silver powder and manufacturing method of the same
KR102007857B1 (en) 2018-06-29 2019-08-06 엘에스니꼬동제련 주식회사 Surface treated silver powder and manufacturing method of the same

Also Published As

Publication number Publication date
JP6956459B2 (en) 2021-11-02
JP7042945B2 (en) 2022-03-28
JP2021113358A (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP7042945B2 (en) Silver-coated metal powder and its manufacturing method
JP6186197B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6154507B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
US7534283B2 (en) Method of producing copper powder and copper powder
JP5522885B2 (en) Nickel powder, method for producing the same, and conductive paste
JP6258616B2 (en) Silver-coated copper alloy powder and method for producing the same
CN1876281A (en) Copper powder
JP6194166B2 (en) Method for producing silver-coated copper alloy powder
JPH11264001A (en) Flake copper powder and its production
KR102023711B1 (en) A silver nano powder of high purity
JP2016084487A (en) Metal powder and manufacturing method thereof
KR102017177B1 (en) A method for preparing high-purity silver nano powder using wet process
JP2017179555A (en) Silver coat copper powder
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
JP2017201062A (en) Method for producing silver-coated copper alloy powder
JP2017210686A (en) Silver-coated copper alloy powder and production method therefor
CN113597350B (en) Silver palladium alloy powder and application thereof
JP7065676B2 (en) A silver-coated metal powder and a method for producing the same, a conductive paste containing the silver-coated metal powder, and a method for producing a conductive film using the conductive paste.
JP2020196928A (en) Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method
JP6740829B2 (en) Ruthenium dioxide powder, method for producing the same, thick film resistor paste, and thick film resistor
TW201609558A (en) Solder ball and method of making the same
JP2015163726A (en) Method of producing nickel powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190823

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190902

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190903

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191122

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20191126

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200720

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210324

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210413

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210817

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210824

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211005

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211005

R150 Certificate of patent or registration of utility model

Ref document number: 6956459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150